
NetGraph System

Searching through
the Prague Dependency Treebank

Jǐŕı Mı́rovský and Roman Ondruška

Abstract

The goal of one of the projects being solved at our Center is to build a corpus of Czech with a rich

annotation scheme–the Prague Dependency Treebank. Text files containing these data in the form of

labeled trees are being created automatically with manual corrections. With the increasing amount

of annotated material searching a corpus becomes a complex task. The present paper describes the

software system that was developed to contribute to the solution of this problem. Some requirements

were established during the analysis of the design: the software has to be able to work in the Internet

environment, to display tree structures in a graphical form, and the client part has to be hardware

independent.

1 Introduction

The Prague Dependency Treebank (PDT) (Böhmova et al.), (Hajič, 1998) is a very large corpus
of Czech texts with a rich annotation scheme. Its theoretical background is a dependency-
based syntax, handling the sentence structure as concentrated around the verb and its valency
members, but containing a further dimension, namely coordination and apposition. The nodes
of the dependency tree are labeled by complex symbols, consisting of lexical, morphological and
syntactic parts.

The PDT has a three-level scenario. Full morphological tagging is carried out on the lowest
level (Hajič). The intermediate level (Hajič et al., 1997) deals with syntactic annotation using
dependency syntax; it is called analytical level and is conceptually close to the syntactic an-
notation used in the Penn Treebank. The highest level of annotation is the tectogrammatical
level (Hajičová et al., 2000), or the level of linguistic meaning.

The current version of the treebank is PDT 1.0 (CD-ROM), which contains ≈ 100, 000
sentences on the analytical level. A non-automatic searching for concrete dependencies through
so large set is impossible. For this purpose we have developed a special software called Netgraph.

Netgraph is a multiuser system with a net architecture (Ondruška, 1998). This means that
more than one user can access it at the same time and its components may be located in
different nodes of the Internet (see Fig. 1). Netgraph generally consists of a server part, which
mainly realizes the corpus searching itself, and a client part, which provides a user interface to
the system. The client part, to be flexible, exists in two forms—as a Java2 application and as
a Java2 applet (Horstmann et al., 1999).

After the client part is started, it allows the user to choose a subcorpus in which the searching
is executed, to enter a query, and it offers the possibility to display the result of the query in
a graphical form. A query has the form of a labeled tree structure, which is derived from the
tree structure that represents sentences in the corpus files. The result of the query consists of
trees from the subcorpus that contain the tree from the query as a subtree. The matching of
the nodes evaluation is checked as well.



client nodeserver node

HTTP
server

NETSER

Java2 run-

time env.

NETGRAPH
application

or

NETGRAPH
applet

Web browser

Java2 plug-in

1

2

3

3

Figure 1: Start of Netgraph client. The arrows #1 and #2 represent the first two steps of the
work with the Netgraph client as an applet. First, the user clicks in a web browser on a link
to Netgraph client applet (the arrow #1). Then the applet is loaded into the web browser (the
arrow #2) and connects to the program netser waiting for connections on the same server the
applet has been loaded from (the lower arrow #3). Using the Netgraph client as an application,
the user runs the client, then selects a server (the name and the port) and the client connects
to the server (the upper arrow #3). In both of the cases, the Netgraph client needs Java2
as its running environment - either Java2 plug-in (the Netgraph applet) or Java2 run-time
environment (the Netgraph application).

2 Searching in Netgraph

After the user is connected to the server, s/he has to go through three steps: to define a
subcorpus to be queried, to define an object of a query, and to fetch and display the result of
the query. All the steps can be passed using an easy-to-use graphical interface.

2.1 Subcorpus definition

The user can browse the directory structure of the corpus provided by the server and select files
s/he wants to use for searching; this set can be saved to disk (and loaded back). The subcorpus
may be also defined as the result of the previous query.

2.2 Query definition

By queries it is determined which trees will be included in the result of searching. The user
defines a tree (see Fig. 2) s/he wants to be included as a subtree in each tree of the result. For
defining such a tree, including the labels of its nodes, a graphical interface can be used. The
graphically created tree is simultaneously displayed in a linear text form; the text form can also
be edited directly.

If an unlabeled tree is used for a query then the searching process only considers the tree
structure itself, the node matching is not checked in this case. However, the user usually de-

[lemma=chodit]

[origf=na]

[tag=N...4*]

Figure 2: Example of a simple query with attributes: lemma—an identifier of the underlying
lexical unit, origf—an original word form as found in text, tag—a morphological category.



Figure 3: Example of tree depiction in Netgraph. The nodes in the tree represent words
and their linguistic attributes and the edges represent analytical dependencies. Although the
depicted tree is projective, this treatment also supports non-projective dependencies (present
in Czech surface shapes of sentences and thus on the analytical level of PDT). The user can
select attributes to be displayed by each node of the tree.

mands some restrictions on the node evaluation. In Netgraph one may enter them for every
attribute by defining so called masks. The masks are expressions written into particular nodes
of a query in brackets, separated by commas. Two special characters can be used in the mask
definitions: the asterisk character ‘*’ represents a sequence of characters and the dot ‘.’ rep-
resents a single character.

Example: [origf=.resident*]

This mask indicates that the attribute origf can be of the value ‘President’, ‘presidents’
and so on.

Another useful operation is the alternation—the logical conjunction, represented by the sep-
arator ‘|’.

Example:
[lemma=president,afun=Sb]|

[lemma=president,afun=Obj,tag=N...4*|N...6*]

This requires the lemma president as the (subject or (object in (accusative or locative))).
The analytical function is represented by the afun attribute.1

To define the query in more detail a system of meta attributes—attributes not really present
in the corpus—can be used. There are two meta attributes at this point: transitive – by defining
this as true, nodes between this node and its parent (in query) are allowed (in result); optional
– if true, then the node may but need not be in the result. If any node is on its place, it must
be the node itself or the root of its subtree in the query.

2.3 Result viewing

After the first tree matching the query is found, it is immediately displayed; the subtree match-
ing the query is emphasized. The order of words is viewed from left to right. According to

1The exact description of the attributes meaning can be found in (CD-ROM).



that, the tree in Fig. 3, obtained as the result of the query from Fig. 2, represents the sen-
tence: “Vojáci v základńı službě musej́ı opět chodit na vycházky ve stejnokroj́ıch.” (Soldiers in
obligatory service must again go on walks in uniforms.)

The order of nodes on the analytical level may be different from the order on the tectogram-
matical level. Also, some nodes from the analytical level (esp. those representing function words
and punctuation marks) should be hidden on the tectogrammatical level. Netgraph provides
two modes of tree displaying according to these two levels.

3 Conclusion

Netgraph provides anyone interested with access to PDT simply and effectively. PDT itself
is just an amorphous set of trees without any structure. With Netgraph a user can add the
structure into PDT and obtain linguistic information that PDT contains. Netgraph also works
corpus-language independently, so it is not restricted to Czech corpora. It only requires a corpus
in fs (CD-ROM) format. Netgraph is stable, but is still being developed and other features are
planned to be added in the future—for example relations among numeric values of attributes
cannot be defined in a query yet. Some technical enhancements like XML support are planned
too. The most recent version of Netgraph is available for downloading on the Netgraph home
page (Mı́rovský).

Acknowledgments

This work has been supported by the Ministry of Education—project Center for Computational
Linguistics (No. LN00A063).

References

Böhmová A., Hajič J., Hajičová E., Hladká B.:
The Prague Dependency Treebank: Three-
Level Annotation Scenario, In: Treebanks:
Building and Using Syntactically Annotated
Corpora, ed. by Anne Abeille. Kluwer Aca-
demic Publishers, in press2

Hajič J.: Building a Syntactically Annotated Cor-
pus: The Prague Dependency Treebank,
In: Issues of Valency and Meaning, ed. by
E. Hajičová, pp.106-132, Karolinum, Praha
1998

Hajič J.: Disambiguation of Rich Inflection—
Computational Morphology of Czech.
Charles University Press - Karolinum, in
press.

Hajič J. et al.: A Manual for Analytic Layer Tag-
ging of the Prague Dependency Treebank.

ÚFAL Technical Report TR-1997-03, Charles
University, Czech Republic, 1997

Hajičová E., Panevová J., Sgall P.: A Manual for
Tectogrammatical Tagging of the Prague De-
pendency Treebank. ÚFAL/CKL Technical
Report TR-2000-09, 2000

CD-ROM PDT 1.0, available at
http://shadow.ms.mff.cuni.cz/pdt/

Ondruška R.: Tools for Searching in Syntactically
Annotated Corpora, Diploma Thesis, Charles
University, Praha 1998

Horstmann C.S., Cornell G.: Core Java2 Volume
I-II, The Sun Microsystems Press, Prentice
Hall, 1999

Mı́rovský J.: Netgraph home page3

2PDT documentation can be found at
http://shadow.ms.mff.cuni.cz/pdt/Corpora/PDT 1.0/References/index.html

3http://shadow.ms.mff.cuni.cz/∼mirovsky/netgraph/index.html


