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Abstract

Automatic translation from one human language to another using computers, better known as machine
translation (MT), is a longstanding goal of computer science. In order to be able to perform such a task,
the computer must \know" the two languages|synonyms for words and phrases, grammars of the two
languages, and semantic or world knowledge. One way to incorporate such knowledge into a computer is
to use bilingual experts to hand-craft the necessary information into the computer program. Another is
to let the computer learn some of these things automatically by examining large amounts of parallel text:
documents which are translations of each other. The Canadian government produces one such resource,
for example, in the form of parliamentary proceedings which are recorded in both English and French.

Recently, statistical data analysis has been used to gather MT knowledge automatically from parallel
bilingual text. Unfortunately, these techniques and tools have not been disseminated to the scienti�c
community in very usable form, and new follow-on ideas have developed sporadically. In a six-week
summer workshop at Johns Hopkins University, we constructed a basic statistical MT toolkit (called
Egypt) intended for distribution to interested researchers. We also used the toolkit as a platform for
experimentation during the workshop. Our experiments included working with distant language pairs
(such as Czech/English), rapidly porting to new language pairs, managing with small bilingual data
sets, speeding up algorithms for decoding and bilingual and text training, and incorporating morphology,
syntax, dictionaries, and cognates. Late in the workshop, we built an MT system for a new language
pair (Chinese/English) in a single day. We describe both the toolkit and the experiments in this report.

1 Introduction

Automatic translation from one human language to another using computers, better known as machine
translation (MT), is a longstanding goal of computer science. In order to be able to perform such a task, the
computer must \know" the two languages|synonyms for words and phrases, grammars of the two languages,
and semantic or world knowledge. One way to incorporate such knowledge into a computer is to use bilingual
experts to hand-craft the necessary information into the computer program. Another is to let the computer
learn some of these things automatically by examining large amounts of parallel text: documents which are
nearly exact translations of each other. The Canadian government produces one such resource, for example,
in the form of parliamentary proceedings which are recorded in both English and French. Similar resources
are becoming available for other language pairs, and it is possible to mine the Internet for bilingual text
[Resnik, 1999].

Recently, statistical data analysis has been used to gather MT knowledge automatically, from parallel
bilingual text. These techniques are extremely promising, as they provide a methodology for addressing the
knowledge-acquisition bottleneck that plagues all large-scale natural language processing applications. In
the early 1990s, a substantial project by IBM achieved (and slightly exceeded) commercial-level translation
quality through automatic bilingual-text analysis. Much of this e�ort was documented in [Brown et al.,
1993a].
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The statistical machine translation (SMT) techniques have unfortunately not been applied widely yet
in the MT community. The statistical approach is still very much a minority approach in the �eld of MT.
This is partly due to the fact that the mathematics involved were not particularly familiar to computational
linguistics researchers at the time they were �rst published [Brown et al., 1993a]. Another reason is that
common software tools and data sets are not generally available. It requires a great deal of work to build
the necessary software infrastructure for experimentation in this area. Such infrastructure is available, for
example, in the speech recognition community. It is possible for an individual researcher to

1. come up with a new idea (for example, to study how topical context can be used to resolve acoustic
ambiguities [Florian and Yarowsky, 1999].

2. do some initial studies (for example, to observe e�ects on task-independent statistical measures such
as language model perplexity)

3. test the new idea the context of an end-to-end speech recognition task (for example, by measuring
word-error rate on a standard data set such as SWITCHBOARD or CALLHOME)

4. revise the idea

5. and compare the �nal results to previous work

It is far more di�cult to do this sort of thing in machine translation|in fact, it is seldom done. In
practice, a huge proportion of the work would be need to be spent on large-scale MT software development,
rather than on inventing and revising the new idea itself. Of course, evaluating machine translation is harder
than evaluating speech recognition word-error rate, and this complicates the picture substantially. However,
the lack of tools and data sets remains the biggest barrier to entry in this �eld.

2 Workshop Goals

At the outset of the workshop, we proposed �ve goals:

1. Build a statistical machine translation toolkit and make it available to researchers. This toolkit would
include corpus preparation software, bilingual-text training software, and run-time decoding software
for performing actual translation. It would be aimed at two types of users:

� users who say to themselves \I have a parallel corpus|what can I do with it?" and

� users who say to themselves \I have a new idea for statistical machine translation|how can I test
it?"

2. Build a Czech-English machine translation system during the workshop, using this toolkit.

3. Perform baseline evaluations. These evaluations would consist of both objective measures (statistical
model perplexity) and subjective measures (human judgments of quality), as well as attempts to
correlate the two. We would also produce learning curves that show how system performance changes
when we vary the amount of bilingual training text.

4. Improve baseline results through the use of morphological and syntactic transducers.

5. Late in the workshop, build a translator for a new language pair in a single day.

We largely achieved these goals, as described in this report. We also had time to perform some unantic-
ipated beyond-the-baseline experiments: speeding up bilingual-text training, using online dictionaries, and
using language cognates. Finally, we built additional unanticipated tools to support these goals, including
a sophisticated graphical interface for browsing word-by-word alignments, several corpus preparation and
analysis tools, and a human-judgment evaluation interface.
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3 Background on Statistical Machine Translation

The designer of an SMT system constructs a general model of the translation relation, then lets the system
acquire speci�c rules automatically from bilingual and monolingual text corpora (see Figures 1 and 2). These
rules are usually coarse and probabilistic|for example, in a certain corpus, bat translates as palo 71% of
the time, and as murci�elago 29%. The most-established SMT system is based on word-for-word substitution
[Berger et al., 1994], although some experimental SMT systems employ syntactic processing [Wu, 1997;
Alshawi et al., 1997; Su et al., 1995]. An advantage of the SMT approach is that designers can improve
translation accuracy by modestly changing the underlying model rather than overhauling large handcrafted
resources.

SMT views any string of words e as a potential translation of any string f . We would like to set up a
probability distribution P(ejf) over all pairs of strings, so that given f , we can output the e which maximizes
P(ejf). We break this problem down into two simpler problems by using Bayes' Rule:

P(e j f) � P(e) � P(f j e)

The P(e) factor helps our e output to be natural and grammatical, while the P(f je) factor ensures that
e is normally interpreted as f , and not some other thing.

It is interesting that reasonable translations can come from highly 
awed P(e) and P(f je) estimates. For
example, below are several English translations of some French sentence. Translations that pass P(e) are
marked with x in the �rst column; likewise for translations that pass P(f je).

P(e) P(f|e)

Jon appeared in TV. x

Appeared on Jon TV.

In Jon appeared TV. x

Jon is happy today. x

Jon appeared on TV. x x

TV appeared on Jon. x

TV in Jon appeared.

Jon was not happy. x

Both models are 
awed. P(e) assigns too much probability to TV appeared on Jon, while P(f je) assigns
too much to Jon appeared in TV. However, the translation that they both agree on is very reasonable. A
goal of SMT is to �nd probability estimates that are \good enough" to yield acceptable translations. Once
the general models are in place, we need a training algorithm to �x their parameters, and a \decoding"
algorithm for �nding the e that maximizes the value of the formula above. We discuss these problems in the
next section.

4 Core Software Modules Built During the Workshop

Here we describe core software modules for bilingual-text training, translation (\decoding"), corpus prepa-
ration, and visualization.

4.1 GIZA

This section describes the part of Egypt which extracts linguistic information from a bilingual corpus. This
module is called GIZA, and it is based on the algorithms and translation models described in [Brown et al.,
1993a]. We brie
y review these models here. Longer reviews are available, and readers looking for more
background should consult:

� \A Statistical MT Tutorial Workbook" [Knight, 1999]. A user-friendly description of the translation
models, with exercises. Readers who go through this workbook will �nd it easier to understand papers
such as [Brown et al., 1993a].
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Garcia and associates .

Garcia y asociados .

Carlos Garcia has three associates .

Carlos Garcia tiene tres asociados .

his associates are not strong .

sus asociados no son fuertes .

Garcia has a company also .

Garcia tambien tiene una empresa .

its clients are angry .

sus clientes estan enfadados .

the associates are also angry .

los asociados tambien estan enfadados .

the clients and the associates are enemies .

los clientes y los asociados son enemigos .

the company has three groups .

la empresa tiene tres grupos .

its groups are in Europe .

sus grupos estan en Europa .

the modern groups sell strong pharmaceuticals .

los grupos modernos venden medicinas fuertes .

the groups do not sell zanzanine .

los grupos no venden zanzanina .

the small groups are not modern .

los grupos pequenos no son modernos .

Figure 1: Bilingual text corpora used to train SMT systems (adapted from [Knight, 1997]).
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Carlos has strong clients .

its small groups have strong enemies .

Carlos is angry with his enemies in

Europe who also sell pharmaceuticals .

the pharmaceuticals are with Carlos .

Garcia and associates .

Carlos Garcia has three associates .

his associates are not strong .

Garcia has a company also .

its clients are angry .

the associates are also angry .

the clients and the associates are enemies .

the company has three groups .

its groups are in Europe .

the modern groups sell strong

pharmaceuticals .

the groups do not sell zanzanine .

Figure 2: Monolingual text corpora used to train SMT systems (adapted from [Knight, 1997]).

� \The Mathematics of Statistical Machine Translation" [Brown et al., 1993a]. A full mathematical
description of the IBM translation models. This paper provides 99 percent information needed for
implementation. The material is presented in equation format, and there is a fair amount working
involved in turning these equations into equivalent program code.

� \Automating Knowledge Acquisition for Machine Translation" [Knight, 1997]. A very high-level de-
scription of the ideas involved in statistical machine translation, as well as knowledge acquisition for
other types of machine translation. This is a reasonable paper to start with, but it does not give
enough information for implementation.

� \Translation with Finite-State Devices" [Knight and Al-Onaizan, 1998]. A view of translation as a
cascade a �nite-state devices. Readers familiar with such devices may �nd it convenient to start here.

We chose Model 3 of [Brown et al., 1993a] as our baseline for the workshop, so we describe it �rst. The
purpose of the translation model is to assign a probability P(f j e) to every pair of sentences. Model 3
represents a particular naive theory about how, given an English sentence, one might stochastically produce
French equivalents. The theory goes like this:

1. For each English word e in the sentence, we choose a fertility phi with probability n(� j e).

2. Call the sum of all those fertilities m-prime.

3. Make a new English string by deleting words with fertility zero, copying words with fertility one,
duplicating words with fertility two, etc.

4. After each of these m-prime words, make a decision to insert a NULL (with probability p1) or not
(with probability p0).

5. Let �0 be the number of NULL words inserted.

6. Let m be the total number of words in front of us now, m-prime + �0.

7. Replace each word e with a foreign-language translation f, according to the probability table t(f j e).

8. Assign target-language positions to those foreign-language words not generated by NULL, according
to the probability table d(j j i,l,m). Here, j is the target-language position, i is the position in the
English string of the words that generated the French word now being placed, l is the number of words
in English string, and m is the number of words in the French string.
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9. If any target-language position is over subscribed (contains more than one word), then return failure.

10. Assign target-language positions to the NULL-generated words. These should fall into empty positions.
Any assignment is deemed equally likely as any other, so any assignment can be carried out with
probability 1/�0.

11. Finally, read o� the French string.

Many sequences can yield the same French string from the same English string. At least some of these
sequences can be collapsed if we consider word alignments. Here is a sample alignment from [Brown et al.,
1993a]:

NULL And the program has been implemented

| | | | | | |

| | | | +-+---+

| | | | | | |

Le programme a ete mis en application

Model 3 only considers alignments in which every French word is connected to exactly one English word.
Each English string is assumed to begin with a special word NULL, which French words may connect to. An
alignment can therefore be represented as a vector a, assigning to each French position a \source" English
position. In Model 3, an English word may connect to zero or more French words, corresponding to its
fertility in the sentence.

We can compute the number (say, k) of generative sequences (as above) that correspond to certain word
alignment, and it turns out that all those sequences will have the same probability. So we can compute
the probabilities employed along one sequence, and multiply the results by k to get P(a,f j e). To get P(f
j e), we sum P(a,f j e) over all word alignments a. The formula for P(a,f j e) is given in section 25 of the
\Statistical MT Tutorial Workbook" [Knight, 1999], and in equations 32 and 101 of [Brown et al., 1993a].
It is a function of the words in the sentence pair and the probability tables n, p, t, and d:

P(a; f j e) =

�
m� �0

�0

�
p0

m�2�0p1
�0 �

lY
i=1

n(�i j ei)

lY
i=0

�i! �

mY
j=1

t(fj j eaj ) �

1
�0!

�
Y

j:aj 6=0

d(j j aj ; l;m)

Training is a matter of inducing those four probability tables from a bilingual corpus. This is what GIZA
does. The basic idea is to bootstrap. For given English word e, we initially pretend that all French words are
equally likely translations. For a given sentence pair, all alignments will therefore look equally likely as well.
Every time we see a certain word pair co-occurring in an alignment, we mark down a \count." After we have
traversed the entire corpus, we normalize these counts to create a new word-translation table. (The same
goes for the fertility, null, and distortion tables). According to these new tables, some alignments will now
be more probable than others. We collect counts again, but now weigh co-occurrences by the probability of
the alignments that they occur in. This is the EM algorithm:

set t, d, n, and p tables uniformly

for several iterations

set up count tables tc, dc, nc, and pc with zero entries

for each sentence pair (e, f) of lengths (l, m)

for each word alignment a of (e, f)
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target position is j

target string has m words

old alignment is a

old fertilities are g(0..l)

new alignment is a'

old source position for j is i

new source position for j is i'

word fj now points to word ei'

if (i == i')

P(a' | e,f)

----------- = 1.0

P(a | e,f)

if (i > 0) and (i' > 0)

P(a' | e,f) g(i')+1 n(g(i')+1 | ei') n(g(i)-1 | ei) t(fj | ei') d(j | i',l,m)

----------- = ------- x ---------------- x -------------- x ----------- x -------------

P(a | e,f) g(i) n(g(i') | ei') n(g(i) | ei) t(fj | ei) d(j | i,l,m)

if (i == 0)

P(a' | e,f) t(fj | ei') n(g(i')+1 | ei') d(j | i',l,m) x g(i')+1 g(0) x (m-g(0)+1) p0^2

----------- = ----------- x ---------------- x ----------------------- x ---------------------- x ----

P(a | e,f) t(fj | NULL) n(g(i') | ei') 1 (m-2g(0)+2)(m-2g(0)+1) p1

if (i' == 0)

P(a' | e,f) t(fj | NULL) n(g(i)-1 | ei) 1 (m-2g(0))(m-2g(0)-1) p1

----------- = ----------- x ---------------- x ------------------- x -------------------- x ----

P(a | e,f) t(fj | ei) n(g(i) | ei) d(j | i,l,m) x g(i) (m-g(0))(g(0)+1) p0^2

Figure 3: Calculating the relative probability of a word alignment a' obtained by moving a single link in
word alignment a.

compute P(a | e, f) = P(a,f | e) / sum over all a' of P(a',f | e)

for j = 1 to m

tc(fj | ei) += P(a | e,f)

update dc, nc, and pc similarly

normalize tc, dc, nc, and pc to create new tables t, d, n, and p

Unfortunately, there are too many alignments for us to enumerate, so this method is impractical. Instead,
we �nd a reasonable-looking alignment (using some other method), score it with the Model 3 formula
above, and then iteratively improve it through small steps until it can be improved no further. This is
called hill climbing. We call the resulting alignment the Model 3 Viterbi alignment, even though it is an
approximation|there may be a more probable alignment somewhere else. We can collect counts over this
Viterbi alignment and its neighborhood, de�ned as alignments that can be reached by the same \small
steps." A small step consists of either (1) moving a French-word connection from one English position to
another, or (2) swapping connection positions between two French words. When taking a small step from an
alignment a to another alignment a', we can avoid the wholesale recomputation of P(a',f j e) by computing
it in terms of P(a,f j e). Figure 3 illustrates case (1) above, in which we move a single connection. Figure 4
illustrates case (2).

These tricks make hill climbing fast, and they also allow us to determine alignment weights for collecting
counts in the neighborhood of the pseudo-Viterbi alignment.
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target positions are j1 and j2

target string has m words

old alignment is a

old fertilities are g(0..l)

new alignment is a'

old source position for j1 is i1

new source position for j1 is i2

old source position for j2 is i2

new source position for j2 is i1

so word fj1 now points to word ei2

so word fj2 now points to word ei1

if (i1 == i2)

P(a' | e,f)

----------- = 1.0

P(a | e,f)

if (i1 > 0) and (i2 > 0)

P(a' | e,f) t(fj1 | ei2) t(fj2 | ei1) d(j1 | i2,l,m) d(j2 | i1,l,m)

----------- = ------------ x ------------ x -------------- x --------------

P(a | e,f) t(fj1 | ei1) t(fj2 | ei2) d(j1 | i1,l,m) d(j2 | i2,l,m)

if (i1 == 0)

P(a' | e,f) t(fj1 | ei2) t(fj2 | ei1) d(j1 | i2,l,m)

----------- = ------------ x ------------ x --------------

P(a | e,f) t(fj1 | ei1) t(fj2 | ei2) d(j2 | i2,l,m)

if (i2 == 0)

P(a' | e,f) t(fj1 | ei2) t(fj2 | ei1) d(j2 | i1,l,m)

----------- = ------------ x ------------ x --------------

P(a | e,f) t(fj1 | ei1) t(fj2 | ei2) d(j1 | i1,l,m)

Figure 4: Calculating the relative probability of a word alignment a' obtained by swapping two links in word
alignment a.
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Where do we start hill climbing? We start by training a simpler model (Model 2) and then using the
best alignment it knows about. Model 2 has the same word-translation (t) probabilities, but it does not
know about fertilities. Instead of distortion (d) probabilities, Model 2 uses alignment (a) probabilities. The
alignment probabilities point \backwards," having the form a(i j j,l,m) instead of d(j j i,l,m). Model 2 has
an e�cient EM training algorithm that avoids the necessity of enumerating all alignments:

set t, d, n, and p tables uniformly

for several iterations

set up count tables tc, dc, nc, and pc with zero entries

for each sentence pair (e, f) of lengths (l, m)

for j = 1 to m

total = 0

for i = 0 to l

total += t(fj | ei) * a(i | j,l,m)

for i = 0 to l

tc(fj | ei) += t(fj | ei) * a(i | j,l,m) / total

ac(i | j,l,m) += t(fj | ei) * a(i | j,l,m) / total

normalize tc and ac to create new tables t and a

There is also a fast algorithm for computing the best Model 2 alignment between two sentences, used as the
base for hill climbing in Model 3. Essentially, each French word chooses an English \source" independently,
�nding the best one it can. This is di�cult to do in Model 3 because one choice may a�ect another. For
example, if every French word chooses English position 5 to connect to, then this will leads to a very large
fertility for the English word positioned there.

It is possible to run Model 2 directly on the corpus, but it can be useful to solidify certain word-pair
connections by �rst running yet a simpler model (Model 1) that only has a single table t. The training
algorithm for Model 1 looks similar to the one above. We take the t table learned by Model 1, together with
a uniform a table, as the starting point for Model 2.

It is possible to use uniform fertilities when starting Model 3, but [Brown et al., 1993a] give equations
suggesting an initialization of fertilities that takes Model 2 knowledge into account. GIZA's implementation
is shown in Figure 5.

[Brown et al., 1993a] advise replacing words that occur only once (singletons) with a special token UNK.
Partially due to cheaper/bigger computer memories, and partially due to careful implementation, we were
able to induce translation models for the entire vocabulary of the Canadian Hansard Set A, without even
discarding singletons. This is a qualitative advance over what Brown et al. were able to accomplish given
the resources available to them. The more detailed training data resulted in improved model perplexity, a
statistical measure we discuss in Section 5).

4.2 Decoder

In this section we brie
y describe the implementation of the decoder built for the workshop. The job of
the decoder is to search for the most probable target (English) sentence given the input source (French)
sentence, weighing together the source-to-target translation model and the language model prior on target
sentences. Our implementation is very similar to the decoder used in the Candide system.1

Not long after beginning to implement the decoder, it became clear that it was necessary to have working
versions of the translation and language models for testing and debugging. Thus, we extended the imple-
mentation of Model 1 that had been developed at CMU for information retrieval applications into a full
implementation of IBM Models 1{3. The resulting decoder, translation models and interface to the CMU{
Cambridge language modeling toolkit now constitute a complete, standalone statistical translation system
that we callWeaver.

When the prototype decoder was completed during the workshop, we were pleasantly surprised with
its speed and performance. From the days of DARPA machine translation evaluations carried out at IBM

1Since the Candide decoder was not documented beyond the fairly high-level description given in the 1992 IBM patent,

it appears to be impossible to resolve detailed di�erences between the two implementations without recovering the original

Candide source code. During the workshop we spoke several times with Peter Brown, Stephen Della Pietra, and Vincent Della

Pietra, but many details could not be recalled.
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phi-max = maximum fertility of any word

big-gamma(n) = partition of n into a sum of integers all >= 1

(e.g., 1+2+4 is a partition of 7, and so is 1+1+1+1+3)

times(partition, k) = number of times integer k appears in partition

for j = 1 to m

total = 0

for i = 0 to l

total += t(fj | ei) * a(i | j,l,m)

for i = 0 to l

pij = t(fj | ei) * a(i | j,l,m) / total

if (pij > 0.99) then pij = 0.99 ;; for under- and

if (pij < 0.01) then pij = 0.01 ;; overflow later

for i = 1 to l

for k = 1 to min(m, phi-max)

beta = 0.0

for j = 1 to m

beta += [ pij / (1 - pij) ]^k

alpha[i,k] = (-1)^(k+1) * beta / k

for i = 1 to l

r = 1.0

for j = 1 to m

r = r * (1 - pij)

for phi = 0 to min(m, phi-max)

sum = 0.0

for each partition p in big-gamma(phi) ;; always enter this loop

prod = 1.0 ;; even if phi is 0!

for k = 1 to phi

prod = prod * alpha[i,k]^times(p,k) / times(p,k)!

sum += prod

c(phi | ei) += r * sum

Figure 5: Transferring parameter values from Model 2 to Model 3.
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during the early 1990s, one had come to expect that only short (� 10 word) sentences could be decoded in
the statistical approach, and that even then the decoding time might be hours per sentence. In the nearly 10
years since the early IBM work, Moore's law, better compilers, and more plentiful memory and disk space
have helped build a system that now allows us to decode 25 word sentences in seconds. To be sure, we use
fairly tight thresholds and constraints on the search, as described below. But the relative e�ciency of the
decoder bodes well for future work in this direction, and a�rms the original spirit of the IBM work, which
emphasized probabilistic modeling over e�ciency.

Our long-term goal in building a decoder is to design a 
exible research tool that can be used for exploring
new terrain in statistical translation, with context-sensitive or structural models that go beyond the trail
blazed by the rudimentary Models 1{5.

4.2.1 Models 1{3

The implementation of Models 1{3 was originallymade in the context of applications to information retrieval,
and was intended to support large vocabularies and large numbers of parameters. The basic data structure
for Models 1{3 in the Weaver system is based on dense arrays and binary search rather than hash tables
for lookup of the translation parameters.

The distortion parameters for Model 3 are modi�ed from those used in the Candide system for boot-
strapping Models 4 and 5. The original parameters take the form

d (j j i; l;m)

where j is an index in the source (French) sentence, i is an index in the target (English) sentence, and l and
m are the lengths of the target and source sentences, respectively. The length m of the source is determined
once all of the fertilities have been chosen. When decoding Model 3, however, the length l is unknown. As
a result, our implementation uses the parameters

d (j j i;m) :

Training of Model 3 can be carried out in three di�erent modes: collecting counts in the E-step by
summing only over the neighbors of the best alignment reachable (by moves and swaps) from the Model 2
Viterbi alignment, or by summing over the neighbors of all \pegged" alignments. In the later case, the
alignments can be hashed to avoid collecting counts over the same alignment more than once. Experiments
were not completed to compare the results of training in these di�erent ways, but these comparisons should
be made in the future.

4.2.2 Organization of the Decoder

The decoder is designed according to the \stack decoding" paradigm. This scheme is similar to A� search,
but the stack decoding algorithm enforces a discipline and organization on the search that is very useful.
The stacks (priority queues) in our implementation are indexed by subsets of the source (French) sentence,
corresponding to the source words that have been generated so far in a given hypothesis. Each hypothesis
is extended by exactly one source word in each step.

The basic structure of the decoder is very simple. The interface to the StackDecoder<State> template
is shown below:

template <class State> class StackDecoder {

public:

StackDecoder(int numStacks_, int maxStackSize_=10000);

~StackDecoder();

Stack<State> &StackOfState(State &state);

void RecomputeThresholds();

int Frontier(List<State> &list);

int AddState(State *pState);

int RemoveState(State *pState);

int UpdateThresholds(List<State> &list);

}
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The basic operations that are performed during search are adding states and updating the thresholds of
the frontier stacks, propagating these thresholds back to \ancestor" stacks. The interface to the decoder is
also very basic:

class Decoder {

public:

enum {ALIGN=0, DECODE};

Decoder(TranslationModel &tm_, LanguageModel &lm_, int debug=0);

~Decoder();

int translate(Sentence &e_, Sentence &f_, int m=Decoder::DECODE);

int align(Sentence &e_, Sentence &f_);

void writeAlignmentData(const String &fn, int id1, int id2) const;

...

One di�erence between the current implementationand the Candide decoder is that we do not \normalize"
the stacks based upon the total unigram probability of the set of source words corresponding to that stack.
As a result, other things being equal, there is a bias against hypotheses that contain one or more rare words.

4.2.3 Intermediate Calculations

Several intermediate calculations are required to carry out the search: inverse translations, language model
\holes," and fertility marginals.

It is impractical to consider all possible translations of all words. Instead, we restrict to the most
promising candidates by calculating \inverse translations." The inverse translation probability t�1(e j f) of
a source word f is calculated as

t�1(e j f) =
t (f j e) p (e)P
e0 t (f j e

0) p (e0)

where we use a unigram model p (e) to estimate the prior probability of a target word being used. This prior
term was not used in the IBM system, but we found that it gave better results to include it, and also allowed
the candidate translation lists to be smaller.

In order to hypothesize a word that generates no source words{that is, a word with fertility zero{it is
useful to have a modi�cation of the trigram language model to estimate the probability

p (w2 j w1; w3)

that a word falls in the between two words. Noah Smith modi�ed the language modeling code to compute
these values e�ciently, using the approximation

p (w2 j w1; w3) / p (w1) p (w2 j w1) p (w3 j w2) :

When building up a hypothesis in which a single English word e aligns with several French words, we
need to factor in the probability that e has fertility at least a given value. Thus, the sums

m(k j e) =

�maxX
�=k

n(� j e)

are precomputed and stored together with the fertility probabilities.

4.2.4 Conversion from GIZA to Weaver format

A program was written to convert the GIZA format for the translation models into Weaver format. The
main task of this program is to sort the probabilities into a form suitable for the binary search data structures.
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4.2.5 Performance

On one test run of the decoder on Hansard data, sentences of lengths between 5 and 25 words were decoded,
and the average decoding time was 17 seconds per sentence. In this run, the top 12 inverse translations
were considered for each source word, and the top 8 words according to the language model probabilities
p (w2 j w1; w3) were considered as fertility zero extensions. The stack thresholding parameter was set to
0:001, meaning that those hypotheses with a score smaller than 0:001 times the best scoring hypothesis in a
stack were not considered for extension. These represent fairly tight thresholds, typically resulting in several
hundreds of thousands of hypotheses scored, rather than millions.

4.2.6 Future Development of the Decoder

Our ultimate goal in building a decoder is to design a 
exible research tool for the next generation of
statistical machine translation models. Thus, the most immediate development of the decoder will be to
abstract away any of the details of Model 3 that remain in the interface, so that general translation models
and language models can be \plugged in."

Further work needs to be done to implement stack normalization, �-probabilities and other improvements
in pruning. Further work also needs to be done to analyze search errors, and to support an \anytime"
translation mode.

4.3 Cairo

Cairo is a visualization tool developed for statistical translation models of the sort developed at IBM in the
early 1990s. These models, referred to as the \Candide" models, are based on the source-channel paradigm,
where one language (the \source" language) is interpreted as an encoded form of another (the \target"
language). A translation model is built using iterative training on a sentence-aligned bitext. Translations
are produced through a process known as \decoding."

Statistical translation systems are di�cult to understand, even for their designers, because of the vast
number of probabilities learned automatically. Candide Model 3, for which Cairo was designed, consists of
four types of parameters to model unidirectional language translation. Using a French-to-English example,
these are:

� Translation. The probability that an English vocabulary item (type) will translate to a given French
type.

� Fertility. The probability that a given English type will translate into n French tokens.

� Distortion. The probability that any English token in indexed position i of an English sentence will

align with an French token in position j of an French sentence, given the lengths of the sentences.

� NULL-insertion. The probability of insertion of a NULL token at any position in the English sentence
during the encoding (a NULL token is empty in English but is aligned to one or more French tokens).
This is a single value for the model.

Cairo was implemented to allow inspection of the bilingual text word alignment process and the decoding
process in statistical machine translation models.

4.3.1 Capabilities

Cairo takes as its input an SGML-style �le that speci�es the two sentences, their alignment, and all relevant
model parameters.2 The more information given as input, the more powerful the visualization will be;
however, no information is required except for the sentences themselves.

In a graphical user interface (GUI), Cairo displays the given sentence pair (assumed to be a translation
pair) with lines drawn between aligned words. This representation can be displayed vertically or horizontally,
and accommodates sentences of arbitrary length.

2Relevant parameters may include the probabilities associated with a word translation, fertility, etc. that actually occur in

the alignment as well as other probabilities to be used as a basis for comparison.
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Each token in a sentence can optionally include multiple, parallel streams of data. One common use
by our collaborators is to include part-of-speech tags, lemmas, and/or most-probable translations for each
token. The number and names of all streams are provided in the input �le by the user. The user has full
control over which streams are displayed.

Cairo allows for up to three alignments to be displayed at once for a sentence pair. Visual rendering of
multiple alignments is accomplished with di�erent colors, using subtractive color mixing to indicate shared
word alignments.

When evaluating a machine translation, it is useful to refer to a gold standard, or reference translation and
alignment. Cairo provides the simultaneous display of a reference translation alongside the given translation,
and allows rapid switching of the display between the machine alignment and the reference alignment.

A Cairo user can mouse-click on a English token and see its model parameters displayed in tables alongside
the alignment. In addition, if relevant language model parameters (used in tandem with the translation model
in the decoding process) are speci�ed, then these will be displayed as well. For example, if the user clicks
on an English word ", a list of French words to which " is likely to translate appear in the translation table,
sorted by probability. The French words �1; �2; : : : ; �n which are aligned to " for each alignment are displayed
in colors matching their respective alignments. Likewise, sorted lists of fertilities, distortions, and likely
English words (i.e., expected by the language model) are displayed. One, two, or four of the tables may be
shown at a time.

A window displays information such as the names of the languages the sentences are in, sentence identi-
�cation numbers, the language model used, etc. Any text given in the input �le is displayed in this window.

4.3.2 Implementation and Use

Cairo is implemented in Java, using the Swing interface library; this makes it portable to any architecture
and useful in Web-based applications. It is possible to modify and extend Cairo for purposes other than
statistical machine translation.

Cairo has proven extremely useful in statistical machine translation research. When dealing with models
consisting of millions of parameters, actually examining speci�c alignments can be enlightening. Being able
to see potential neighborhood alignments by looking at other model parameters that \might have been"
gives additional insight. This tool has allowed us and others to track the progress of our translation models
and discover models' biases that a�ect performance.

4.4 Whittle

Whittle is a corpus preparation tool. It splits the corpus into training and test corpora, generates vocabulary
�les, replaces words with integers assigned by frequency, discards sentences over a certain length, etc. Its
options are as follows:

whittle v1.0, by mike jahr, 8/13/99

usage: whittle.pl [options] <input-directory | input-stem>

-a all: do not split into training and test sets

*-b nn specify baseline test set size; nn can be either an integer

(the desired number of sentences) or a decimal (fraction of

the total corpus size)

-c only generate a counts/vocab file; usually done automatically

-d dd specify output file directory; overriden by -o

-E xx specify suffix for English files

-f i specify minimum word frequency; less-frequent words will be

replaced with the UNKNOWN token. i<=1 retains all words.

-F xx specify suffix for foreign-language files

-h print this help information

*-i nn interleaving ratio: fraction of test set to be spread evenly

throughout the corpus. the rest is taken from the end.

-l i specify maximum sentence length; pairs where one or both are

longer will be discarded. use i=0 for no max length.
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-n i assign word identifiers starting from i

-o d/p specify output file directory and prefix; overrides -d

-s nn specify total output corpus size; nn as above

-t nn specify training set size; nn as above

-T nn specify test set size; nn as above. note that the test set

cannot be larger than specified by the -b value.

-u i specify identifier of unknown word

-v print version information

-w word format, no integerizing; output in human-readable form

--all do not split corpus; identical to -a

--bst output in binary (.bst) format

--snt output in .snt format, one sentence per line

--sfreq sort output by sentence frequency

--split only split the corpora: output parallel files in the

same format as the input

--test nn specify test set size; identical to -T

--test-only only generate a test set; equivalent to --train 0

--train nn specify training set size; identical to -t

--train-only only generate a training set; equivalent to --test 0

5 Learning Curves

During the workshop, we aimed at producing several kinds of informative learning curves.

5.1 Training-set Size vs. Translation Quality

One question we had about statistical machine translation was, how much data do you need? Are 50,000
sentence pairs enough? If you go from one million sentence pairs to two million, how much improvement
will you see? We imagined that a lot of data is useful|if you've never seen the phrase \real estate" before
in your parallel corpus, then you probably aren't going to translate it correctly. It is virtually mandatory in
the machine-learning community to plot data size on the x-axis vs. performance on the y-axis (a learning
curve). This is particularly important in natural language processing, where we can frequently \purchase"
more data. For some reason, this type of study has not often been done (one exception is [Melamed, 1998a]).
The learning curve leads naturally to a second question: what to plot on the y-axis? Machine translation
is notoriously di�cult to evaluate. It shares this notoriety with other tasks that involve generating human
language, as opposed to interpreting it. It is possible to evaluate a speech recognizer by counting word errors;
not so with a speech synthesizer. Likewise, it is easier to say whether a language interpretation system \got
the right syntactic structure" than to say whether a generation system \produced a good syntactic structure."
Machine translation involves both interpretation and generation.

Following many of the evaluation regimes that have been proposed for MT (e.g., [White and O'Connell,
1994]), we decided to go with either a simple 1-5 scoring mechanism, or a simple relative ranking of trans-
lations from di�erent systems/con�gurations.

Most MT evaluation regimes involve collecting human judgments over many sentences, and these regimes
are expensive for individual researchers. In the commercial world, the market provides a constant evaluation
of translation software, albeit one that seems currently driven by factors other than output-text quality. In
the �nal analysis, there is no measure that can substitute for user satisfaction. But this leaves the individual
researcher in a bind.

The speech recognition community has largely focused on word-error recognition rate, in the belief that
this �gure will ultimately correlate with user satisfaction. And it is easy to measure. Researchers can try,
discard, and adopt many new ideas without involving human subjects. They can also compare results on
common test data sets. As mentioned above, even this is di�cult to do in translation.

Interestingly, many speech researchers �nd it convenient to evaluate their ideas with respect to perplexity,
a measure of how well a statistical model �ts (or explains) the data. For example, in language modeling,
the goal is to produce a program that assigns a probability P(e) to every string of words e. (All these
probabilities sum to 1, so there is only so much to go around). It is possible to ask how good a language
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model is without making reference to word-error rate or any other task-level measure. One simply asks for
the particular number P(e) that a particular (instantiated) model assigns to a particular text. If the text is
good English, we expect P(e) to be high; if the text is bad English, we expect P(e) to be low. If we observe
a language model assigning probabilities the other way around, then it probably isn't a very good language
model.

It is reasonable to ask for the P(e) that a model assigns to the text it was trained on. In this case, a
memorizing program would do very well, by assigning P(e) = 1. However, this program would by de�nition
assign P(e') = 0 to every other text e', and this will lead to a very poor word-error rate. Therefore a more
reasonable evaluation is test-set perplexity, which is related to the probability that the model assigns to a
previously unseen (test) English text. This becomes a gambling game. The language model must lay bets
on all kinds of strings. If it concentrates its bets on certain subset of strings, then it must hope that when
the previously unseen text is revealed, it is to be found in that subset. Because all probabilities sum to 1,
increasing our bet on one string necessarily means decreasing our bet on some other string.

Perplexity is a function of probability. A translation model assigns a value P(F j E) to any pair of
sentences F and E, and the perplexity over a set of S sentences is given by:

2
�

P
S

i=1
log P (FijEi)

N

(N is the number of words in the corpus). If we want a high probability, then we want a low perplexity.
Probabilities are typically in the unintelligible range, such as 10�43, while perplexities look more like 50.6.

It is typical in language modeling to bet at least something on every conceivable string e'. If we ac-
cidentally bet nothing on e', then our P(e') would be zero, and our perplexity would be in�nite. So if a
language model uses previously-observed word-pair frequencies in constructing a probability score P(e) for a
new string, it will typically smooth these frequencies so as to accept a string that contains novel word pairs.

In statistical MT, a key component is the translation model. We can do the same thing. An instantiated
translation model (such as learned by GIZA) assigns a probability P(f j e) to every pair of sentences. In this
case, our previously-unseen test data consists of sentence pairs. Given a certain sentence e, a model will lay
bets on various sentences f'. When the actual translation is revealed in the test data, we can see whether
the model bet a lot or a little. We hope it bet a lot.

5.2 Training-set Size vs. Test-set Perplexity

Using perplexity as a substitute for translation quality allows us to produce learning curves such as the one
shown in Figure 6, for Czech/English MT. In computing test perplexity, we had to take account of previously
unseen words. For a novel English word e, we take t(f j e) to be uniform across all French words observed
in both training and test corpora. For previously seen e, novel translations f are assigned a small t(f j e)
constant 
oor value.

How is perplexity related to translation quality? This question has no clear answer at present, and it is
a question that we wanted to investigate in the workshop. Test-set perplexity does not measure how well a
system translates, but rather how well it recognizes whether two sentences are (or are not) translations of
one another. If a system had in�nite computing power, it is easy to see how it could use good recognition to
do good translation|it could simply enumerate all possible translations and select the one that it recognizes
as being the best. This does not work the other way around. A commercial MT system may produce good
translations without being able to recognize one. Recognition has other applications as well, e.g., identifying
whether or not to web documents constitute parallel text, or taking an initial automatic pass at scoring
student translations.

But the main thing is that if practice follows theory, and improved test-set perplexity indeed leads to
better translations, then an individual researcher can try, discard, and adopt new ideas daily using test-set
perplexity as a guide, pending subjective human evaluations held less frequently. There is one additional
interesting twist. Many of the parameter-learning algorithms used in statistical speech and MT (such as the
EM algorithm) are designed to optimize training-set perplexity. Mathematically, that's all they do. If better
perplexity means better translation, then maybe these algorithms are doing pretty much the right thing.
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5.3 Training Iterations versus Test-set Perplexity

This leads to a second kind of learning curve (see Figure 7), one that plots performance as a function of the
number of EM iterations. [Brown et al., 1993a] reported such a curve for training-set perplexity, but not
test-set perplexity. While training-set perplexity is guaranteed to decrease, this is not the case with test-set
perplexity, as would be demonstrated by a program that is able to successively memorize more and more of
the training data on each iteration.

Among the workshop participants, there was much disagreement over the value of test-set perplexity,
and so we wanted to do experiments that would quantitatively relate objective perplexity with subjective
human judgments of translation quality. We planned to generate models with various perplexities by training
the baseline Model 3 system on variously sized parallel corpora. During the workshop, we decided that it
would be good to generate additional data points by keeping corpus size constant while comparing the
baseline system with our improvements. There was a fair amount of consternation over smoothing, which is
a necessity (with tangible bene�ts) in language modeling, but something IBM never did in their translation
modeling. It was interesting that before the Egypt toolkit was fully integrated (in the penultimate week of
the workshop), several participants used perplexity to guide their research|despite reservations about its
utility!

Moreover, the plots we generated were often counterintuitive. For example, some of us expected that
overtraining in Model 2 would be revealed. That is, training-set perplexity would continue to decrease as
test-set perplexity would begin to rise. However, on some runs with particularly small training corpora, we
observe the second iteration of Model 1 to have the lowest test-set perplexity|all subsequent iterations of
Models 1, 2, and 3 made things worse (see Figure 8)! Yet we felt that the alignments were getting better.
Our theory was that the machine was indeed learning useful things about the training corpus, but that as the
word-translation (t) table became sharper, many of the test sentence pairs were left without \explanation."
Of course, the early-stage Model 1 explanations were not particularly good|they were just the result of a
fuzzier word-translation (t) table. This pattern was not observed when we trained on larger parallel corpora.
In that case, better alignments led to better explanations of the previously unseen test set.

5.4 Evaluation of Translation Quality

We believe more work on evaluation is called for. There was insu�cient time during the workshop to fully
evaluate the quality of output from Egypt, but we record some of our thoughts here.

It is ideal that human subjects 
uent in both the source language and the target language evaluate the
material. Monolingual users of the target language alone are poorly prepared to evaluate the content of the
translation, despite reference translations. This point is proven with the DARPA evaluations of 1994, when
the quality of human translations, of variable quality, were also used for evaluation in an exam that asked
evaluators to answer questions on the content of a translated passage. A monolingual evaluator is best suited
for evaluating the 
uency of the output, and not the content, unless the content can really be assured, such
as in treaties and other legal documents where the translator has a very high incentive for ensuring that
precise translations are produced.

Another concern that arises relates to the use of native speakers of the source language, and their capacity
to determine the 
uency of output in the target language, as well as possible biases which allow them to �nd
meaning in \word hash" output from MT that a monolingual speaker might miss. In de�ning the scale for
evaluation, we aim to address this concern.

Since the system is trained on texts with unique properties in terms of lexicons used, translation styles
involved, and so on, we concluded that it was reasonable to draw evaluation texts from the pre-training
corpus. However, we strongly emphasize that in no way is the system to be trained on texts that will later
be used for evaluation. This was described in a previous section on the corpus-preparation tool Whittle.

In �nding text for evaluation, there were several concerns: length, context, and novelty. Because of limits
on the computational complexity of decoding and training, the corpora was stripped of sentences of length
above a certain bound, originally 30 tokens. This processed corpora was then used for extracting sentences
for evaluation. In addition, for the length of the entire evaluation, we suggest a testbed of 300 sentences. As
100 sentences seems like a reasonably small amount of work for evaluators, per evaluation, we decided upon
300 test sentences from the outset.
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For the precise sentences to select, two text-dependent measures are signi�cant: how the MT performs
on text that is in the context of text on which it has been trained, and how it performs on relatively novel
text. For the latter, text out of context, we decided to strip the last 150 sentences from the processed
corpora, and call this \novel," because the system has not seen these sentences in the neighborhood of other
text which is more likely to use the same names, the same events, and so on. One can go further with this
concept|for the processing of a number of news stories, one may extract an entire story and de�ne it as
novel in relation to the others, or with a number of Reader's Digest stories, one may again use 150 sentences
from an entire story removed from the corpus. Then, for the remainder of the test text, we chose sentences
evenly spaced in the pre-training corpus. So, if there are about 1.5 million sentences in the corpus, then
every 100,000th sentence would be chosen for testing; this can be accomplished very easily using Whittle. A
nice aspect of this method is that one can use Whittle to create a series of training texts which operate like
a venetian blind|as one allows more and more sentences into the training text, the in-context factor should
be more relevant to the in-context sentences chosen for evaluation. We did not have a chance to evaluate
the perplexity of these sentences, but expect that this supposition will be validated.

For purposes of ensuring test integrity, we recommend that some subset of the test set be used for
researching how to improve the MT system and the remainder of the test set be used for objective analysis
of how the improvements are doing. Again, time limitations prevented us from deciding if this was a matter
of concern. However, a good division of the test-set may be to use the in-context sentences for research
purposes, so that one may seek to teach the MT how to learn more from the corpus, and use the out of
context sentences as a function of how much real achievement has been made in MT performance.

6 Experiments with Model 3 and 4 Training

In the IBM Models beyond Model 2, e�cient training algorithms are di�cult yet crucial. During the
workshop, we spent quite a bit of e�ort in this direction:

� The training program was pro�led and all time-consuming functions were rewritten and if possible less
often used.

� The data structures for lexicon, alignment/distortion and fertility parameters were rewritten for higher
e�ciency.

� The training of Model 3 was completely reorganized.

As Model 3 training is the most time-consuming part of the training procedure, the last point resulted
in the biggest improvement.

6.1 Speeding up Model 3 Training

Simple algorithm

A straightforward count collection procedure for a sentence pair (f ,e) following the description in [Brown et

al., 1993a] would be:3

1. Calculate the Viterbi alignment of Model 2: a0 := V (f je; 2), i := 0

2. While in the neighborhood N (ai) an alignment a0 exists with Pr(a0jf ; e; 3)> Pr(aijf ; e; 3):

(a) Set ai+1 to the best alignment in the neighborhood.

(b) i := i + 1.

3. For every alignment a in the neighborhood N (ai)

(a) Calculate p := Pr(ajf ; e).

3To simplify the description it is ignored the process called \pegging" which generates a bigger number of alignments

considered in training. In the training program for Model 3 pegging is implemented with minor simpli�cations.
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(b) For every j := 1 to m: Increase distortion counts

c(jjaj;m; l; f ; e) := c(jjaj;m; l; f ; e)+ p

(c) For every i := 1 to l: Increase the fertility counts with p:

c(�ijei; f ; e) := c(�ijei; f ; e)+ p

(d) Increase the counts for p0 and p1:

c(0; f ; e) := c(0; f ; e) + p � (m � 2 � �0)

c(1; f ; e) := c(1; f ; e) + p � �0

A major part of the training time in this procedure is consumed by calculating the probability Pr(a0jf ; e)
of an alignment a0. This takes in general about l +m operations. In [Brown et al., 1993a] a simple method
is mentioned to obtain Pr(a0jf ; e) incrementally from Pr(ajf ; e) if a di�ers only by moves or swaps from a0.
This trick results in a constant number of operations for calculating the score of a move or the score of a
swap (see also section 4.1).

Faster hill-climbing

Pro�ling the training program reveals that still most of the time is used in scoring a move and scoring a
swap. For reducing the number of calls to these functions the values are cached in a matrix

Mi;j =
Pr(m[i;j](a); f je)

Pr(a; f je)
� [aj 6= i]

for the scores of a move aj := i and in a matrix

Sj;j0 =
Pr(s[j;j0](a); f je)

Pr(a; f je)
� [aj 6= aj0] � [j < j0]

for the scores of a swap of aj and aj0. During the hill-climbing it is necessary after doing a move or a swap
to recalculate only those rows or columns in this matrix which are a�ected by the move/swap. Applying
this caching procedure it is possible to reduce the number of operations in hill-climbing by about one order
of magnitude. For example when performing a move aj = i it is necessary to perform the following updates:

� update in M the columns j0 with aj0 = aj or aj0 = i

� update in M the rows aj, i

� update in S the rows and columns j0 with aj0 = aj or aj0 = i

Similar rules hold after a swap. In the count-collection (step 3) it is possible to use the matrices obtained in
the last hill-climbing step.

Faster count-collection

The above described simple algorithm for performing the count-collection has the disadvantage that all
alignments in the neighborhood of a have to be enumerated explicitly. In addition for every of these align-
ments it is necessary to perform a loop over all English and a loop over all French positions to increase the
lexicon/distortion and the fertility counts. To increase e�ciency we make use of the fact that the alignments
in N (a) are very similar. This allows us to share a lot of operations over these alignments.

To get e�ciently the distortion and lexicon probability counts we introduce the following auxiliary quan-
tities which make use of the move/swap matrices which are available after performing the above described
hill-climbing:
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� probability of all alignments in N (a)

Pr(N (a)jf ; e) =
X

a02N (a)

Pr(a0jf ; e)

= Pr(ajf ; e) �

0
@1 +X

i;j

Mi;j +
X
j;j0

Sj;j0

1
A

� probability of all alignments in N (a) which di�er in position j from a is:

Pr(Nj(a)jf ; e) =
X

a02N (a)

Pr(a0jf ; e)[aj 6= a0j ]

= Pr(ajf ; e)

0
@X

i

Mi;j +
X
j0

(Sj;j0 + Sj0;j)

1
A

For the distortion probability counts and the translation probability counts holds:

c(jji; f ; e) =

(
Pr(N (a)jf ; e)� Pr(Nj(a)jf ; e) if i = aj

Pr(ajf ; e)
�
Mi;j +

P
j0 [aj0 = i] � (Sj;j0 + Sj0;j)

�
if i 6= aj

c(f je; f ; e) =
X
i

X
j

c(jji; f ; e) � [f = fj ] � [e = ei]

To get e�ciently the fertility probability counts and the counts for p0 and p1 we introduce the following
auxiliary quantities:

� probability of all alignments which have an increased fertility for position i:

Pr(N+1
i (a)jf ; e) = Pr(ajf ; e)

0
@X

j

[aj 6= i] �Mi;j

1
A

� probability of all alignments which have a decreased fertility for position i:

Pr(N�1
i (a)jf ; e) = Pr(ajf ; e)

0
@X

j

[aj = i]
X
i0

Mi0;j

1
A

� probability of all alignments which have an unchanged fertility for position i:

Pr(N+0
i (a)jf ; e) = Pr(N (a)jf ; e)� Pr(N+1

i (a)jf ; e)� Pr(N�1
i (a)jf ; e)

These quantities do not depend on swaps as a swap does not change the fertilities of an alignment. For the
fertility counts holds:

c(�je; e; f ) =
X
i

[e = ei]
X
k

Pr(N+k
i (a)jf ; e) � [�i + k = �]

For the fertility counts for the empty word holds:

c(0; e; f ) =
X
k

Pr(N+k
0 (a)jf ; e)(J � 2 � (�0 + k))

c(1; e; f ) =
X
k

Pr(N+k
0 (a)jf ; e)(�0 + k)

Using these auxiliary quantities we can formulate a count-collection algorithm which takes about O(M2)
operations (M = max(l;m)) which is about one order of magnitude faster than in the above described
straightforward algorithm. In practice, we observed that the resulting training is about 10-20 times faster.
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6.2 Working with Relative Distortion Probabilities

Motivation

A general de�ciency of the models 2 and 3 is the use of absolute alignment/distortion probabilities a(aj jj; l;m)
and d(jjaj; l;m) which do not take into account the fact that alignments have a strong tendency to preserve
the local neighborhood. In the mathematical model of the alignment probabilities this can be captured by
introducing a dependence of the previous alignment aj�1:

Pr(aj ja
j�1
1 ; f

j�1
1 ;m; e) = a(ajjaj�1; l;m)

which results then in the so-called Hidden Markov alignment model, see [Vogel et al., 1996; Dagan et al.,
1993]. The disadvantage of this model is that it does not model fertilities.

Simpli�ed Model 4: Model 4'

The corresponding extension of the distortion probabilities of Model 3 to relative distortion probabilities
leads to a model similar to Model 4 [Brown et al., 1993a] which therefore will be called Model 4'.4

Relative distortion probabilities extending Model 3 are more complicated as there is no unique previous
position j0 in the French sentence which is aligned with position aj�1. Therefore we use the di�erence of
position j to the ceiling of the average value of the positions in the French string of the words which are
aligned to the English word at position i� 1. In Model 4', we replace d(jji; l;m) by two sets of parameters:
one for placing the head of each cept, and one for placing any remaining words of the cept (for notation see
[Brown et al., 1993a]):

Pr(�[i]1 = jj�
[i]�1

1 ; � l0; �
l
0; e) = d1(j ��i�1)

Pr(�[i]k = jj�k�1
[i]1

; �
[i]�1

1 ; � l0; �
l
0; e) = d>1(j � �[i]k�1)

The resulting model has only 3 �M �2 distortion parameters if the sentence length is restricted to M words.
In Figure 9 are illustrated the dependencies of the alignment positions in Model 4.

To calculate the probability Pr(f ; aje; 4) we have to perform the summation over all (�; �) which produce
one (f ; a):

Pr(f ; aje; 4) =
X

(�;�)2(f ;a)

Pr(�; �je; 4)

=

�
m� �0

�0

�
p0

m�2�0p1
�0

lY
i=1

n(�ijei) �

mY
j=1

t(fj jeaj ) �

mY
j=1;aj 6=0

�
[j = h(aj)] � d1(j � c�aj ) + [j 6= h(aj)] � d>1(j � p(j))

�

with

� �rst French word in cept i (head of cept i):

h(i) = min
k
fk : i = akg

� previous French word in same cept as aj:

p(j) = max
k<j

fk : aj = akg

4In Model 4 of [Brown et al., 1993a] the relative distortion probabilities depend also on word classes A and B which divide

the English and French vocabulary into �fty classes. Using this re�ned model it is possible to model for example the e�ect

that adjectives and nouns have di�erent word order in French and English, but it also results in a huge number of distortion

parameters which have to be estimated.
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IBM-4

Figure 9: Dependencies of the distortion probabilities in Model 4.

� �rst word before ei with non-zero fertility:

�i :=

8<
:

maxfi0 : �i0 > 0 ^ 0 < i0 < ig if jfi0 : �i0 > 0 ^ 0 < i0 < igj > 0

0 else

� center of cept i:

ci :=

P
j[aj = i] � j

�i

Note that the combinatorial factor
Ql

i=1 �i occurring in Model 3 is not necessary, as �xing � and �

�xes also the order of these words in the resulting French string. In [Brown et al., 1993a] the value of �i is
unde�ned if there is no word before ei with non-zero fertility. We de�ned �i = 0 in this case.

Training

As in Model 3, it is too ine�cient in Model 4' to consider all possible alignments. The considered alignments
correspond to the alignments considered in Model 3 training. The hill-climbingprocedure for calculating good
alignments is signi�cantly more time-consuming as there is now a dependence between di�erent alignment
positions.

As in Model 3, it turned out to be better to �x p0 during the EM-training to avoid that the empty word
gets aligned with too many French words.

An important point for makingModel 4' training more e�cient would be to implement a better incremen-
tal computation for the costs of a move/swap operation. THe simpli�cation of the hill-climbing algorithm
mentioned in [Brown et al., 1993a], where the scoring of Model 3 is used to reduce the e�ort in scoring
according to Model 4, is also not implemented.

Results

The training of Model 4' is in the current implementation about 10 times slower than the training of Model 3.
Because of this only results on 50 thousand training corpus sentences (of the Hansards corpus) are reported
here.

Figure 10 shows the distortion probabilities d1 and d>1. Because of the construction of the probabilities
d>1(�j) = 0 for �j < 1. These probabilities are much more focussed than the distortion probabilities of
Model 3, which are also shown in Figure 10 for d(jj15; 30; 30).
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Figure 11 shows the behavior of the test perplexity. It can be seen that using Model 4' the test perplexity
can be reduced signi�cantly. Because of the di�erent kind of de�ciencies of Model 4 and Model 3 it is not
possible to conclude only from these learning curves the superiority of Model 4'. However by analyzing the
resulting Viterbi alignments it seems that Model 4' gives better results.

7 Czech-English MT

One of the goals of this workshop was to develop a Czech/English translation system. We present the �rst
experimental results of the Czech/English machine translation based on the probabilistic approach.

7.1 Resources

We had available a Czech/English corpus which is a parallel text of articles from the Reader's Digest, years
1993-1996. The Czech part is a translation of the English one. The Reader's Digest corpus consists of
53,000 sentence pairs from 450 articles. Sentence pairs were aligned automatically by [Gale and Church,
1993] algorithm, but this alignment was not su�cient for good quality alignment. Dan Melamed realigned
the corpus using SIMR/GSA [Melamed, 1996] during this workshop. With language-pair-speci�c parameter
settings learned from a small amount of word-aligned data, SIMR performance can be substantially improved;
however, this experiment simply adopted French/English settings.

There was also a lot of manual work to do on this corpus before the workshop. Every issue of this
magazine contains only 30-60% of articles translated from English to the local language. We had to search
in the English version to �nd the corresponding articles that are in the Czech version. The translations in
Reader's Digest are mostly very liberal. They include many constructions with direct speech. Articles with
culture-speci�c facts have been excluded.

The tools available for Czech were: a morphological analyzer, POS tagger, and lemmatizer provided by
IFAL (Charles University, Prague) and a statistical parser for Czech developed at a previous NLP summer
workshop at Johns Hopkins University. The corpus has been morphologically analyzed, tagged, lemmatized,
and parsed by these tools. Description of these tools are in [Haji�c and Hladk�a, 1998; Haji�c et al., 1998].

There is also a Czech/English online dictionary available. This dictionary consists of 88,000 entries and
covers 89% of tokens in the Czech part of corpus.

We also experimented with a technically-oriented Czech/English corpus from IBM. This is a huge and
very good source of Czech/English parallel data, but for a very speci�c domain. This corpus consists of
operating system messages and operating system guides. These are products of localization and translation
of software from English to Czech. The translations are very literal and precise. In most cases sentences
are translated sentence by sentence. This source is not publicly available and can be used only for internal
experiments at IFAL.

Two Czech commercial translation systems were available: PC Translator 98 and SKIK v. 4.0. We used
translations by commercial systems for evaluation purposes.

7.2 About the Czech Language

Czech, as a Slavic language, is a highly in
ectional and almost free word-order language. Most of the
functions expressed in Czech by endings (in
ection) are rendered by English word order and some function
words.

For example, most Czech nouns or personal pronouns can form singular and plural forms in 7 cases. Most
adjectives can form 4 genders, both numbers, 7 cases, 3 degrees of comparison, and can be either of positive
or negative polarity (giving 336 possibilities for each adjective). In the corpus there are 72,000 word forms
in Czech part against 31,000 forms in English.

Czech is a pro-drop language. This means that the subject pronoun (I, he, they) has usually a zero form.
There are no de�nite and inde�nite articles in Czech. English preposition equivalents can be also the part of
a Czech noun or pronoun in
ection. For demonstration there are 15% more tokens in English than in Czech
in the corpus.

All these features create problems in translation. Our implemented translation models (IBM3, IBM4)
allow only one-to-many alignments form English to Czech. Therefore it is useful to have more words in Czech
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I1 am2 convinced3 that4 []5 team6 work7 is8 the9 key10
for11 the12 realization13 of14 ones15 dreams16

[I]1 jsem2 p�resv�ed�cen3 , �ze4 [the]5 t�ymov�a6 pr�ace7 je8 [the]9 kl���cem10

ke11 [the]12 spln�en��13 [of ]14 [the]15 sn�u16

Figure 12: Addition of arti�cial words into Czech sentence

than in English. We therefore decided to help the translation model by preprocessing Czech into English-like
form|\Czech-prime," as we call it.

7.3 Tuning Czech-prime

As the training program for translation model parameters (GIZA) and decoder (from Weaver) were in
development during the workshop, we did many experiments on Czech/English translation using the Align-
ment Templates system developed at the University of Aachen [Och et al., 1999]. This system considers
whole phrases rather than single words as the basis for the alignment models. The basic idea is that a whole
group of adjacent words in the source sentence may be aligned with a whole group of adjacent words in the
target language. As a result the context of words has a greater in
uence and the changes in word order from
source to target language can be learned explicitly. The Alignment Template approach was applied to some
of the tasks considered during the Workshop. The aim was to provide an additional baseline for the IBM3
system and to analyze how important the modelling of word groups are for translation quality. For more
details, see [Och et al., 1999].

The normal Czech input containing all word forms is the baseline corpus. The next step was lemmatized
Czech input. In this version of the input, we discard information about number, tense, gender and other
features which are necessary to produce a useful translation. In the full Czech-prime, there is information
such as number or tense attached to each lemma, which is expected to be relevant for English translation.
Furthermore, arti�cial words are added to the Czech corpus in positions where they should appear in English.

An example of a Czech sentence with arti�cial words (in brackets) is given in Figure 12. Corresponding
words in both languages are coindexed. There is an arti�cial word [I] for �rst person, singular subject, large
numbers of arti�cial articles and an arti�cial preposition [of] corresponding to the Czech genitive. There
is a potential over-generation of arti�cial words as you can see in position 5. This over-generation can be
compensated for in the translation or language models.

Here is a description of major changes for individual parts of speech in Czech:

� nouns

{ di�erent lemma for singular and plural

{ if the noun is not governing pronoun, the arti�cial article is added before the noun group (group
of nouns and adjectives)

{ if the noun is in genitive, dative, locative or instrumental case, and it is not governed by a
preposition in parse tree, the arti�cial preposition is added before the noun group

� verbs

{ di�erent lemma for di�erent tenses

{ if the verb is not governing a nominative noun, the arti�cial subject is added (arti�cial subjects
di�er for person, gender and number depending on the form of the verb)

{ special solution for auxiliary verb to be

{ arti�cial word for negative verbs

� personal pronouns

{ di�erent lemma for singular and plural
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art. word translation % art. word translation %
NtheS the 41.20 Vsubj1S I 84.73
NtheS a 22.31 Vsubj1S my 6.59
NtheS , 5.19 Vsubj1S NULL 4.61
NtheS 's 4.06 Vsubj1S me 1.28
NtheP the 26.61 Vsubj3S he 12.61
NtheP of 11.68 Vsubj3S is 11.22
NtheP , 8.02 Vsubj3S it 8.02
NtheP - 6.83 Vsubj3S NULL 7.39

Nprep2 of 36.85 Vnot n't 27.09
Nprep2 , 16.89 Vnot not 14.49
Nprep2 - 7.83 Vnot NULL 12.11
Nprep2 in 5.53 Vnot no 8.45

Table 1: Examples of alignment of arti�cial words in the training corpus

{ for third person, singular, there is a di�erent lemma for masculine animate, feminine and others
(he, she, it)

{ if the pronoun is in genitive, dative, locative or instrumental case, and it is not governed by a
preposition in the parse tree, an arti�cial preposition is added

� other pronouns

{ di�erent lemma for singular and plural

� adjectives and adverbs

{ arti�cial word for second (more) and third grade (the most)

{ arti�cial word for negative adjective or adverb

In Table 1 see an example of arti�cial words alignment in the training corpus (�rst 4 cases in order).
We demonstrate in how many cases the arti�cial word is aligned to the certain word in English. The table
contains arti�cial words for the singular article (NtheS), plural article (NtheP), genitive preposition (Nprep2),
�rst person, singular subject (Vsubj1S), third person, singular subject (Vsubj3S), and negative verb (Vnot).

Translation models for the Alignment Templates system and the GIZA parameter estimation tool were
built on the training corpus with the Czech part preprocessed as above. The test Czech sentences were
preprocessed in the same way.

7.4 Evaluation

We carried out a human evaluation of translations to observe progress obtained by each level of preprocessing
the Czech input. The tool for the human evaluation, which allows us to make an evaluation via Internet, was
developed during the workshop. It displays the original sentence (in Czech) and translations from di�erent
translation systems. Translations are shu�ed for each original sentence. Evaluators assign marks from 1 to
5 to each translation. Mark 1 is the best, mark 5 is the worst translation.

In our particular case the evaluation was done by two evaluators on 66 randomly chosen sentences from
the test data. Results are in the Table 2. Average counts of assigned marks are in columns. Rows correspond
to translation systems. The average value of marks assigned to each translation system is in the last column
in the table.

We can observe the progress of quality of translation obtained by the Egypt toolkit from the baseline to
the simple lemmatized version and to the English-like version of Czech input (Czech-prime) in comparison
with the two commercial systems and the AlignmentTemplates system. Results on Czech/English translation
using the Alignment Templates system (AlTemp) are better then one of commercial systems and almost the
same as the second one.
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System 1(+) 2 3 4 5(�) average

Commercial 1 11 19.5 18 14.5 3 2.68182

Czech'+dict { AlTemp 13 18 14 17 3.5 2.69466

Commercial 2 7 18.5 21 16.5 3 2.84848

Czech' { Egypt 6 16 16.5 18 9.5 3.13636

Simple lemmatized { Egypt 3 12.5 23.5 23 4 3.18939

baseline { Egypt 3.5 6.5 13.5 27.5 15 3.66667

Table 2: Human evaluation of Czech/English Translation

7.5 Experiment with the Computer Oriented Corpus

The parallel corpus from Reader's Digest is relatively small. Experience from di�erent sizes of training sets
of the Canadian Hansard corpus indicates that 50,000 sentence pairs is really the basic amount of data. The
results are signi�cantly better for corpus ten times larger. Therefore, we have done an experiment on the
strictly domain-speci�c data from IBM as well. The training set contained 1 million short sentence pairs and
10 million words in each language. The Alignment Template system was used to train a translation model
and to translate the test part of corpus.

Almost 34% of the sentences from the testing data were translated exactly the same as in the reference
set. According to human evaluation on 56 randomly chosen sentences from testing corpus, another 30% of
sentences were excellent translations, 11% were good or acceptable, 8% of translations had bad word order,
and 17% of translations were bad.

By comparison, in the Reader's Digest test corpus, only 1.42% of translated sentences are exactly the
same as their reference translations.

7.6 Conclusion

We carried out the �rst experiments on statistical machine translation from Czech to English. We can observe
how the progress of translation quality depends on the preprocessing of the Czech input. The Reader's Digest
corpus output from the Alignment Template system is comparable with translations by commercial systems.
The results of the Alignment Template system and the Egypt system are not directly comparable as in
the Egypt system the dictionary was not used as a knowledge source. In addition, in the development of
the procedure of transforming Czech to Czech-prime we used the Alignment Template system to gather
knowledge about problematic constructions. This may have led to a bias in favor of the Alignment Template
system. Nevertheless it seems to be possible to conclude from these results that modelling word-groups in
source and target language (as done in Alignment Templates) is important.

The results reached for the technical computer oriented corpus are very good and promising. Larger
amount of data can signi�cantly help the system. As the general translation tool has been just developed, it
is now possible to experiment with di�erent system parameters, such as the number of iterations of particular
models, and to adjust the translation models to better suit the Czech/English language pair.

8 Using Online Bilingual Dictionaries and Cognates in Training

Intuition tells us that a bilingual dictionary could be used to improve the Model 1 translation model. This
model consists essentially of a function t such that t(e, f) = Pr(e j f) for all words e in the output language
and all words f in the input language. A dictionary provides precisely these mappings. Utilization of
dictionary information is further motivated by the fact that the word alignments chosen by our baseline
Model 3 training display a tendency to use rare words as \garbage collectors." Such words tend to align to
many common function words. Dictionary entries for these words could be used to curb this tendency. It
is possible that dictionary information could also slow or prevent overtraining. We experimented with three
methods of adding a bilingual dictionary to the training of the Model 3 translation system. The �rst was to
seed the t function before training, giving more weight to dictionary pairs. The second was simply to add
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the dictionary to the training corpus. Lastly, we modi�ed the Model 1 algorithm, rede�ning \co-occurrence"
[Melamed, 1998b] to make use of dictionary information.

For all of our experiments, we used a corpus of 50,000 total Czech-English aligned sentence pairs. The
Czech was lemmatized and included morphological markers. The dictionary entries were lemmatized using
the same lemmatization scheme as the corpus. The training corpus contained 38842 sentences, 555,714 En-
glish tokens (27,393 unique), 665,268 Czech tokens (28,429 unique), and 2,768,252 unique word co-occurrence
pairs. The Czech-English dictionary consisted of 204,110 entries of one Czech word to one or more English
words.

While these experiments were aimed at improving Model 1's performance, the improvement was most
noticeable after Model 2 and 3 training. This suggests that the global optimization of parameters in Model
1 training has been modi�ed.

8.1 Experiment 1: Seeding the Translation Parameters

GIZA's Model 1 training begins with a uniformly distributed t function:

8wCz 2 V ocabularyCz; wEn 2 V ocabularyEn; t(wCz j wEn) =
1

j V ocabularyCz j

We experimented with seeding the t function so that word pairs (wCz; wEn) receive a factor of C greater
probability than other pairs. The value of C was set at 2, 4, 8, 16, 32, 64, and 1 ( i.e., non-dictionary pairs
received an initial t value of 0).

Because the t function is based on one-to-one mappings, we modi�ed the dictionary so that it contained
only one-to-one entries. Multiword entries were converted to multiple entries (i.e., the cross-product of the
words in the original entry). Additionally, we limited the entries to those where both words appeared in the
corpus. The resulting dictionary contained 22,915 one-to-one entries.

The results of this experiment are shown in the table below. Note that a lower test perplexity score
corresponds to lower \surprise" at the test set sentences.

Results of Seeding.

Value of C Final test perplexity

1 (baseline) 1986.52

2 1974.49

4 1949.16

8 1905.78

16 1879.21

32 1848.84

64 1833.52

1 1649.00

It is clear that, while seeding the t function using the dictionary improves training (assuming the validity
of the perplexity measure), there is a limit to this improvement. This is explained easily: the information
that is given to the algorithm in the seeding step is \washed out" with successive iterations of training.

Two approaches to counter this are to apply a stronger �lter when seeding and to make the dictionary
part of the training data. Before we discuss these experiments, we will explain related work that we did to
enlarge the dictionary using cognates.

8.2 Finding Cognates

Tiedemann describes three methods of extracting a string similarity measure that is suitable for the
recognition of cognates in two speci�c languages [Tiedemann, 1999]. These methods are based on the
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longest common subsequence ratio (LCSR) measure of string similarity [Melamed, 1995]. They consist of a
set of weights for each mapping of a character in the �rst language to a character in the second language.
The weights are learned from a set of known cognate pairs. We used the simplest of his methods, which
maps single characters to single characters only, and within certain predetermined equivalence classes (in our
case, vowels, consonants, numbers, and punctuation). A word pair can only be scored (using Tiedemann's
methodology) if the ratio of the words' lengths is between 7/10 and 10/7 and both words are at least 4
characters long.

Because we did not have a set of known cognate pairs, we instead trained the weighting function on the
entire dictionary. Needless to say, most of the entries in the dictionary are not cognate pairs. But the hope
was that the noise from non-cognate pairs would cancel itself out. We then took the top scoring pairs from
the dictionary as a set of \known cognates." We had to arbitrarily choose a threshold value that would
separate true cognates from garbage. It must be noted that there were no faux amis in this set, because all
of the pairs came from a dictionary and could be assumed to be translation pairs.

We then scored all word co-occurrence pairs from the training corpus. The result was a list of pairs of
words (one Czech and one English) that \looked alike" based on transformations that tend to occur when
a word is borrowed across the two languages. An example of this is that English words containing the
character `c' often correspond to a Czech translation that substitutes `k'. These language-speci�c tendencies
are picked up by the weighting function for the string similarity measure.

The following table shows the number of co-occurring word pairs that scored above each of the thresholds.
The intuitive threshold that separates word pairs that actually do look alike from ones that don't appears
to be at a score of about 0.3. Note that the pairs which were \not scored" failed to pass through the length
ratio or minimum length �lters described above. The total number of co-occurrence pairs was 2,768,252.

Distribution of Similarity Scores.

Score range Number of pairs Cumulative percentage

0.550000{0.623911 37 0.0013

0.500000{0.549999 193 0.0083

0.450000{0.499999 733 0.0348

0.400000{0.449999 1,764 0.0985

0.350000{0.399999 1,959 0.1693

0.300000{0.349999 2,840 0.2719

0.250000{0.299999 7,775 0.5527

0.200000{0.249999 35,565 1.8375

0.150000{0.199999 114,114 5.9597

0.100000{0.149999 262,515 15.4428

0.050000{0.099999 277,103 25.4528

0{0.049999 176,901 31.8432

Not scored 1,886,753 100.0000

Using the hypothesized cognates, we can now augment the dictionary. The hope is that alignments between
rare words that \look alike" will improve the performance of a model which uses (in one way or another)
this dictionary.

From this point on, we will use the term dictionary to refer to the online dictionary that we used in
Experiment 1. A lexicon will refer to any listing of word pairs that are known or believed a priori to be
translations of each other. The cognate lexicons described here were used in the next two experiments, both
individually and merged with the dictionary.
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8.3 Experiment 2: Constraining Co-occurrence

In Candide (GIZA) Model 1 training, the t function is based on co-occurrence data. A pair of tokens is
said to co-occur once for every time they appear in parallel sentences. Melamed describes an \oracle �lter"
which uses a bilingual lexicon to limit events which can be considered co-occurrences [Melamed, 1995].
Essentially, co-occurrence is rede�ned as follows: \Given a lexicon and parallel sentences E = fe1; e2; :::; eng

and C = fc1; c2; :::; cmg, ei and cj co-occur if either (ei; cj) is in the lexicon or (ei; ck) is not in the lexicon
8k and (ep; cj) is not in the lexicon 8p."

Using this co-occurrence constraint in the �rst iteration of Model 1 training is akin to seeding in a greedier
fashion. We used GIZA to create translation models, with this constraint and numerous lexicons. The
lexicons used included the original dictionary (as prepared for Experiment 1), the various thresholded cognate
pairs (ranging from 0.05 to 0.55), and merged lists of cognate pairs and the dictionary. The results are shown
below.

Results of Constraining Co-occurrence.

Lexicon Final test perplexity

Dictionary + Cognates � 0.05 1596.89

Dictionary + Cognates � 0.10 1533.51

Dictionary + Cognates � 0.15 1478.24

Dictionary + Cognates � 0.20 1464.62

Dictionary + Cognates � 0.25 1491.43

Dictionary + Cognates � 0.30 1510.44

Dictionary + Cognates � 0.35 1510.24

Dictionary + Cognates � 0.40 1535.83

Dictionary + Cognates � 0.45 1560.68

Dictionary + Cognates � 0.50 1559.60

Dictionary + Cognates � 0.55 1562.23

Dictionary 1563.32

Cognates � 0.05 1767.05

Cognates � 0.10 1740.99

Cognates � 0.15 1797.04

Cognates � 0.20 1848.84

Cognates � 0.25 1847.05

Cognates � 0.30 1880.77

Cognates � 0.35 1885.75

Cognates � 0.40 1909.45

Cognates � 0.45 1953.93

Cognates � 0.50 1960.98

Cognates � 0.55 1985.35

None (baseline) 1986.52

It is interesting to note that the greatest bene�t seems to come when a merged lexicon of the original
dictionary and cognate pairs scoring above 0.20 is used. It was noted previously that the intuitive threshold
is at about 0.30; this indicates that even boosting pairs which are not cognates may aid in the alignment
process. Also, note that a signi�cant improvement comes even when only cognates are used, especially when
the threshold is as low as 0.10. This suggests that even 
awed, conjectural information about cognates can
improve word alignment in this type of model using the co-occurrence constraint.

In addition to test perplexity, we examined some Viterbi word alignments of test corpus sentences which
these models posited. An example sentence pair follows. Note that the Czech sentence has been lemmatized
and certain morphological markers have been inserted.

\It also unleashed a gigantic seismic sea wave, or tsunami, that killed people as far away as
California."
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\VR zpusobit t�e�z NS1 vsnik obrovsk�y mo�rsk�y NS2 vlna, kter�y VR; zb�ijet a�z v NS3 Kalifornie."

The baseline model built by GIZAmade the following alignments (a star indicates an incorrect alignment):

English Czech

�also ;

�gigantic zpusobit
�seismic vznik obrovsk�y seismick�y
sea mo�rsk�y
wave vlna
�tsunami kter�y
�that ;

far a�z
as v
California NS3 Kalifornie

In contrast, when the constraint described above is used (with the dictionary and cognates � .15 as the
lexicon), the model produces these alignments (a star indicates an incorrect alignment):

English Czech

�also zpusobit
gigantic obrovsk�y
seismic seismick�y
sea mo�rsk�y
wave vlna
tsunami ;

that kter�y
far a�z
�away NS3
as v
�California Kalifornie

Note that there are several pairs of cognates that were correctly aligned (although \California" should
have aligned to the morphological marker as well, indicating perhaps that the constraint is too strong in
some instances). Also, there is less garbage collection by unknown words (e.g., the word \tsunami" has no
parallel word in the Czech sentence and it is left unaligned; the rare word \seismic" no longer collects three
Czech words but is aligned to its cognate).

8.4 Experiment 3: Appending a Lexicon to the Corpus

Our third experiment is super�cially similar to work done by Brown et al. in which a bilingual lexicon was
appended to the corpus for training [Brown et al., 1993b]. Each lexicon entry is added to the training corpus.
The advantages of this approach are numerous: multiple-word entries can be handled easily (i.e., each entry
is like a sentence pair|there are no one-to-one requirements as in seeding); the information remains present
throughout all iterations of training. Also it is possible to weight the entries strategically. In a normal
situation, such a weighting of sentence pairs in the corpus indicates the number of times that each sentence
pair occurs. The dictionary referred to in this experiment is the original dictionary described above.

There are two types of lexical addition that we used. The �rst was to add every lexicon entry to the
corpus; the second was to add only those entries which consisted of items that appeared as co-occurrences
in the corpus. The latter of these two condenses the original dictionary to only 15,490 entries. Note that
this option applies only when the original dictionary is used; the cognates were gleaned from the corpus and
as such are known to be co-occurrences in the corpus. We also varied the weighting function. The three we
tested initially were: uniform (w1), inverse linear (w2), and inverse exponential (w3), all de�ned below:

w1(entry) = C;C 2 f0:1; 1; 2;4;8; 16; 32; 64; 128g
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w2(entry) =
1

frequency(entry)
�
nTokens

nUnique

w3(entry) = e�frequency(entry)�
nUnique

nTokens

Surprisingly, after initial trials, the �rst weighting function with C set to 1 gave the greatest improvement.
A smooth value of 0.001 was selected as the minimum weight any entry would receive (several others were
tried, but this value resulted in the greatest improvement in test perplexity). Because of the huge number
of tests we did using this technique, only trials using the �rst weighting function (uniform) and the smooth
value 0.001 will be discussed.

The results of this experiment are the most promising. The test sentence Viterbi alignments show im-
provements similar to those in Experiment 2. The alignments appeared to be most intuitive when the lexicon
used was the original dictionary merged with cognates thresholded at 0.3. The reduction in test perplexity
was greater than in the previous experiments. The table below shows the �nal test perplexity values for a
sampling of the experiments.

Results of Lexical Appension (C = 1).

Lexicon Final test perplexity

Dictionary (all) + Cognates � 0.05 1342.76

Dictionary (all) + Cognates � 0.10 1173.86

Dictionary (all) + Cognates � 0.15 1118.13

Dictionary (all) + Cognates � 0.20 1159.05

Dictionary (all) + Cognates � 0.25 1222.38

Dictionary (all) + Cognates � 0.30 1242.85

Dictionary (all) + Cognates � 0.35 1262.06

Dictionary (all) + Cognates � 0.40 1279.03

Dictionary (all) + Cognates � 0.45 1198.94

Dictionary (all) 1444.88

Dictionary (co-occurring pairs) 1588.60

Cognates � 0.05 1614.30

Cognates � 0.10 1450.13

Cognates � 0.15 1440.25

Cognates � 0.20 1624.73

Cognates � 0.25 1772.58

Cognates � 0.30 1787.76

Cognates � 0.35 1843.45

Cognates � 0.40 1869.95

Cognates � 0.45 1952.54

None (baseline) 1986.52

It is interesting to note that the greatest improvement from cognates came when extremely low thresholds
were used (0.15). Also, when only cognates were used and the threshold was set low enough, the improvement
was actually better than that gained when only the dictionary was used. The relative bene�t from using
all dictionary pairs as opposed to only those which co-occur is easily explained; a English word may have a
synonym which co-occurs with a Czech word in the test corpus but not the training corpus.

8.5 Conclusion

These experiments demonstrate the value of dictionaries and cognates in building translation models, and
they indicate that treating such information as data or using it as a constraint in training the model are
two computationally inexpensive and e�ective ways of improving translation models. In addition, cheap
and imperfect methods of �nding cognates appear to provide improvement over baseline models and models
using only a dictionary.
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9 \MT in a Day" Experiment

A late entry to our list of workshop goals (suggested by David Yarowsky) was to set aside a 24-hour period,
late in the workshop, to be devoted to building an MT system for a completely new language pair. This
would test all of our components and would allow us to see how rapidly a prototype could be built.

Here are the activities that were within the planned scope of this experiment:

� choose a new language pair with a bilingual corpus

� install the corpus

� sentence-align the corpus

� split the corpus into training in testing portions

� train a translation model on the full corpus

� train a language model on the English side of the corpus

� compute perplexity-based learning curves for these models

� obtain English translations (\decodings") of previously unseen foreign-language sentences

Likewise, here are activities that were outside the planned scope, but would have been useful also:

� implement signi�cant linguistic transductions to improve statistical modeling

� use dictionaries and cognates to further improve models

� evaluate translations using human judges

We decided on Chinese/English as our test language pair. We considered other language pairs, and
we also considered using the STRAND [Resnik, 1999] system from the University of Maryland to collect
bilingual data from the web.

The corpus we used was \Hong Kong Laws," a collection of promulgated laws in both Chinese an
English. The translations in this corpus are quite literal compared to the translations in the more typical
French/English Hansard corpus, which covers parliamentary debate. The corpus has 7 million words on the
English side.

We planned no linguistic signi�cant transduction work in the 24-hour experiment. We therefore re-used
our existing English tokenizer to break English sentences into words.

For Chinese, we decided to break each sentence into characters rather than words. We hoped to learn
translation models for each English word that would map it onto various Chinese characters, and further-
more assign it fertility values to specify (probabilistically) how many characters it might map into during
translation.

The most serious transduction work involved mixed-language strings. These occurred fairly often, as
a term of law written in English is sometimes followed by its Chinese equivalent, in parentheses. On the
English side of the corpus, we replaced any Chinese sequence by \@@@," and did likewise on Chinese side.

We used our standard corpus-preparation tool (Whittle) to divide the corpus into training in testing
parts. This tool also throws out sentences that exceed a speci�ed length|in this case, we threw out any
sentence pair with an English or Chinese sentence longer than 30 tokens. This resulted in 102,707 training
sentence pairs, and a held-out database of 1960 testing sentence pairs.

Previous experiments with Czech and English had revealed robustness problems in our training code. In
particular, if a very short sentence was paired with a very long sentence (perhaps by mistake), segmentation
faults could occur. We had already adjusted our training code to throw out such pairs, and so this potential
problem was already solved by the time we did our Chinese experiments (where such pairs also occurred).
This resulted in a total of 80,769 usable training sentence pairs.

Using Whittle, we also produced smaller training corpora of 40,427 and 59,476 sentence pairs. All three
corpora were processed by our translation modeling system GIZA without any problems. We measured
test-set perplexity on all three:
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Training Corpus Size Test-Set Perplexity

40,427 859.9
59,476 611.7
80,769 489.0

The perplexity value measures the ability of the system to recognize whether or not test sentence pairs
are indeed translations of each other. It is clear that additional corpora would signi�cantly improve this
recognition capability.

We used the CMU-Cambridge Language Modeling Toolkit to build an English trigram language model
for Hong Kong legal text.

Finally, we used the Weaver decoder to translate 100 Chinese test sentences. The �nal translations were
generated at 11:30pm on the day in question, and the �nal �ve translations were:

HUMAN: shall be guilty of an o�ence and shall be liable on summary conviction to a �ne of $
1000
EGYPT: commits an o�ence and liable on summary conviction on indictment , to a �ne of $
1000

HUMAN: ( 2 ) in this section , " authority " ( @@@ ) includes any authorized person
EGYPT: ( 2 ) in this section , " authority " ( @@@ ) means any authorized person

HUMAN: ( b ) it appears that the testator intended by his signature to give e�ect to the will
EGYPT: ( b ) purports wills is sought its signed it will e�ect

HUMAN: ( a ) which does not amount to a contract to purchase those shares ;
EGYPT: ( a ) the contract not constitute the likely to purchase those shares contract ;

HUMAN: ( a ) a company authorized under section 8 to carry on that class of insurance business
EGYPT: ( a ) under section 8 of the authorized undertaking class insurance business company

We subsequently did a quick low-level, word-level analysis of some of these results. Splitting Chinese
into single characters turned out to have many strengths, and also some weaknesses. The words \Hong" and
\Kong" were translated into separate characters. Had we done more linguistic analysis, the two characters
might have formed a single token. In that case, we might have had some problems, due to the asymmetric
nature of our translation model (IBM Model 3). In this model, each English word can produce zero or more
Chinese tokens, but it is di�cult for to English words to collaborate to produce a single Chinese token. This
would not be a show-stopper, however, as \Hong" can take responsibility for the Chinese word, and \Kong"
can be assigned a learned fertility of zero. (It is then up to the language model to notice a 
oating \Hong"
and insert a \Kong.") In any case, remedying this situation with a more symmetric phrase-based translation
model is part of the funded follow-on proposal by Franz-Josef Och.

We also noticed that the word like \June" had several character translations, including the character
for \month" and character for \six," as expected. It was typically assigned a fertility of 3, also grabbing
the character for \day"|which we expected to be produced by the day of the month, such as \8" in \June
8." Date translations seemed to work �ne, however. To get a more intuitive alignment, we should use the
relative distortions of Model 4, also part of the proposed follow-on work.

Finally, we noticed that some decodings would translate two Chinese characters (rather literally) as two
English words, when the correct answer was a single English word. In these cases, the language model was
failing to enjoy the single-word translation enough.

Over the next three days, we did some work to compare character-based tokenization with word-based
tokenization, experimenting with some of the behaviors just described. We also located another substantial
Chinese/English corpus, of the nature similar to the parliamentary debates of the Hansard corpus, and
we were able to obtain permission to use and distribute it for research purposes. In the future, it would
be good to perform some of the experiments described above (phrases, Model 4), to experiment with larger
combined corpora, to make use of the Chinese/English bilingual dictionary that we obtained, and to evaluate
translations using human judges, as these activities were not within the scope of the 24-hour project.
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10 Future Work

The Egypt toolkit is intended to be a base for future experimentation. We expect that many things will
be tried, and that some will succeed! These things may involve exploiting new resources, inventing better
translation models, and possibly traveling further up into the realms of syntax and semantics. We will
not anticipate them here. However, we know of certain enhancements that would improve the immediate
usefulness of Egypt, so we list these:

� Context-dependent translation probabilities. [Brown et al., 1991; Berger et al., 1996; Melamed, 1998a]
describe techniques for assigning \senses" to words and/or translating them di�erently based on con-
text. This would relieve substantial amounts of pressure currently on the language model to disam-
biguate words in the input text.

� Faster training. We have found speedy training to be a boon for rapid experimentation and debugging,
but much remains to be done. Currently, Model 3 training (with no pegging) is fast, but pegging slows
things down quite a bit. Also, Model 4 is slow to train, with or without pegging.

� English morphology. While the number of word forms in English is fairly small compared to many
other languages, some English morphology would serve to reduce the vocabulary size and improve
statistics.

� Phrases. It is frequently possible to locate word sequences that translates as a whole (perhaps non-
compositionally). It would be useful for translation models to uncover these and for decoding to take
these into account (see [Och et al., 1999; Melamed, 1997]).

� Better initial alignments. Models 3, 4, and 5 collect their counts over a small subset alignments, so
it is critical that the simple models used to bootstrap them are accurate, particularly with small data
sets (see [Melamed, 1998a]).
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