AuTtomMAaTIiC FUNCTOR
ASSIGNMENT
IN THE PRAGUE DEPENDENCY
TREEBANK

A STEP TOWARDS CAPTURING
NATURAL LANGUAGE SEMANTICS

Zdenék Zabokrtsky

MASTER THESIS
JANUARY 2001

SUPERVISOR: ING. IVANA KRUIJFF-KORBAYOVA, DR.

DEPARTMENT OF COMPUTER SCIENCE
FacuLtYy OF ELECTRICAL ENGINEERING
CzZECH TECHNICAL UNIVERSITY, PRAGUE

i
Abstract

The goal of this thesis is to design, implement and evaluate a software tool that
should reduce the huge amount of human work involved in the development of
the Prague Dependency Treebank. The PDT is a research project at the In-
stitute of Formal and Applied Linguistics, Faculty of Mathematics and Physics,
Charles University, Prague. It is aimed at a complex annotation of a part of the
Czech National Corpus, built at the Institute of the Czech National Corpus, Fac-
ulty of Philosophy, Charles University. The annotation scheme comprises three
levels: morphological, analytical, and tectogrammatical. At the last level, each
autosemantic word of a sentence is annotated with its tectogrammatical function
(functor) that represents its linguistic meaning within the sentence, e.g., Actor,
Patient, Addressee, various types of spatial and temporal circumstantials, Means,
Manner, Extent, Consequence, Condition. Manual annotation of functors nat-
urally is very time-consuming. The motivation for this thesis is the fact that
a system for Automatic Functor Assignment (AFA) (i.e., a system which could
automatically assign at least some of the functors), would save the time of the
experts and possibly accelerate the growth of the PDT.

For the purposes of development, the data, which were already manually an-
notated, were split into training and testing sets. After observing various char-
acteristics of this data, I proposed and implemented four complementary families
of methods of the AFA: methods based on handwritten rules, methods based on
automatically extracted dictionaries, a method based on the notion of nearest vec-
tor in feature space, and a method based on Machine Learning. The training set
played a crucial role for the development of the last three of them. Besides the
implemented methods, I outline several alternative approaches to the AFA.

The implementation of the presented AFA system consists of many small pro-
grams for data preprocessing, functor assigning, and performance evaluation. It
was implemented in the Linux environment. Most of the code was written in Perl.
All the programs are applied on the data in a strictly pipeline fashion. In this
way, the whole system remains open for further extensions.

The implementation was tested on the testing set. The performance (cover,
precision, etc.) of individual functor-assigning components was measured and

evaluated in detail.

1ii
Abstrakt

Cilem této prace bylo navrhnout, implementovat a vyhodnotit softwarovy néstroj,
ktery by pomohl snizit obrovské mnozstvi lidské prace potiebné pro vytvoreni
Prazského zavislostniho korpusu. Prazsky zavislostni korpus je vyzkumny pro-
jekt realizovany v Institutu formalni a aplikované lingvistiky pii Matematicko-
fyzikalni fakulté Univerzity Karlovy v Praze. Cilem tohoto projektu je komplexni
anotace &asti Ceského nirodniho korpusu. Anotaéni schéma zahrnuje t¥i Grovné:
morfologickou, analytickou a tektogramatickou. Na posledni z nich je kazdému
autosémantickému slovu pfifazena jeho tektogramatickd funkce (funktor), kterd
zachycuje jeho vyznam ve vété, jako napt. aktor, pacient, adresit, riazné druhy
¢asovych a mistnich doplnéni, prostiedek, zplsob, mira, diisledek, podminka.
Ruéni anotace funktori je pfirozené velmi naro¢nd na ¢as vyskolenych odborniki.
Motivaci pro tuto diplomovou préci tedy byla skuteénost, ze jakykoli systém auto-
matického dopliiovani funktort (Automatic Functor Assignment, AFA), ktery by
dokézal pritadit alespon ¢ast funktori, by snizil zatéz téchto odborniku a prispél
by tak k urychleni rustu Prazského zavislostniho korpusu.

Pro vyvoj systému AFA jsem pouzil data, kterd uz byla ru¢né anotovani na
tektogramatické roviné. Rozdélil jsem je na trénovaci a testovaci mnozinu. Navrhl
jsem a implementoval ¢tyfi vzdjemné se dopliujici skupiny metod automatické
anotace: metody zalozené na ru¢né psanych pravidlech, metody zalozené na auto-
maticky extrahovanych slovnicich, metodu zaloZenou na principu nejblizsiho vek-
toru v pifiznakovém prostoru a metodu zaloZenou na strojovém uceni. Trénovaci
mnozina hrala klicovou roli zejména pro posledni t¥i skupiny. Kromé metod, které
jsem implementoval, uviddim jeSté nékolik alternativnich pfistupu.

Vysledny systém AFA je realizovan jako skupina nékolika men§ich programu
pro piedzpracovani dat, pro pfifazovani funktoru a pro vyhodnoceni spravnosti
vysledki. Systém byl implementovan pod operaénim systémem Linux, vétSina
kédu byla napsdna v jazyce Perl. Veskeré zpracovani dat, tj. pfedzpracovani,
prifazeni a vyhodnoceni, je dusledné proudové (‘roury’). Diky této koncepci muze
byt systém v budoucnosti snadno rozsiten.

Funkénost implementace byla ovérena na testovacich datech. Charakteristické
vlastnosti jednotlivych metod (pokryti, ispésnost atd.) pro pfifazovani funktoru

byly naméfeny a jsou podrobné popsany.

v

Acknowledgements

I do not exactly recollect what was the very first stimulus for my personal “Lin-
guistic Turn”. But I do recollect my trembling knees two years ago when I first
came to the Institute of Formal and Applied Linguistics. Having met my present
supervisor Ivana Kruijff-Korbayova there, I was really very lucky. During the
whole time (though our mutual distance during the last year usually varied be-
tween one and two thousand kilometers), Ivana provided me with study materials
and contacts to other people, helped me a lot with my awkward English and,
above all, never stopped encouraging me. I am aware of the fact that this thesis
would never have come to existence without her help.

I am grateful also to other people from IFAL, especially to the head of the
department Eva Hajicovd for supporting the presentation of my work at the con-
ference on Text, Speech and Dialogue 2000, to Jarmila Panevova, Alla Bémov4,
and Alena B6hmova for consultations about tectogrammatical functions, to Petr
Pajas for writing a Perl interface between my modules and the Prague Depen-
dency Treebank data, and to Geert-Jan M. Kruijff for many useful comments to
the text of this thesis.

I am much obliged to Mirko Navara and Olga Stépankovd and to the CEEPUS
and SOCRATES projects for enabling my study stays abroad. I spent six weeks
at the Fuzzy Logic Laboratory Linz (Austria) that is led by Erich P. Klement;
I worked one month at Jozef Stefan Institute in Ljubljana (Slovenia) under the
supervision of Nada Lavra¢ and Tomaz Erjavec; I studied three months at the
Department of Mathematics, University of Patras (Greece), being supervised by
Costas Drossos and Panagis Karazeris. Each of these places somehow contributed
to the final version of the present thesis. In particular, I would like to thank SaSo
Dzeroski from Jozef Stefan Institute for his help with applying a machine learning
approach.

I am also grateful to my ex-roommates Rosfa Hor¢ik, Martin Kovaf, Zdenda

v

vi

Pohl, Pavel Puta and Luka$ Trejtnar, my jolly companions during “the hell at
FEL”, not only for the numerous wanderings through the mountains of Bohemia
and Slovakia but also for the shared interest in careful observation of Homer
Simpson’s life.

I have been very lucky. I appreciate all the nice and bright people whom 1
have met in the years of my study, all the marvellous places I have seen during my
travels and all the splendid music I have heard, for now I can adore the beauty of

the world more than before.

Contents

1 Introduction
1.1 Aimofthethesis o e

1.2 Summary e e e

2 Prerequisities
2.1 Natural Language Processing
2.2 Corpus Linguistics o oL
2.3 Machine Learning L oo

3 The Prague Dependency Treebank
3.1 Functional Generative Description
3.2 The textual data provided by the Czech National Corpus
3.3 Three levels of the PDT
3.3.1 Morphological annotation level
3.3.2 Analytical annotation level

3.3.3 Tectogrammatical annotation level

4 Problem Analysis, Data Preprocessing
4.1 Formulation of AFA problem
4.2 Imitial situation Lo o oL o
4.3 Granularity
4.4 TFeature selection and extraction
4.5 Data preprocessingo i e e e e

4.6 Available material, training and testingset

5 Components of the AFA System

5.1 Rule-based methods
5.2 Dictionary-based methods

vii

w

© g ot o

11
12
13
14
14
16
20

25
25
26
28
31
32
33

viii

5.3 Nearest vector approach

5.4 Machine learning approach

5.5 Alternative and complementary approaches

5.5.1 Neural network
5.5.2 EuroWordNet
5.5.3 Matching Algorithm
5.5.4 Valency frames of verbs

5.5.0 Categorial grammar

6 Implementation Details

6.1 Interface to the fs format
6.2 Perlassigners
6.3 Machine learning oo
6.4 Auxiliarytools
6.5 SQLqueries
6.6 Gluing the components together

6.7 Further extensions

7 Experiments and Results

7.1 How to measure AFA’s performance
7.2 Evaluation of experiments

7.3 Precision versusrecall

8 Conclusions

Bibliography

A Armchair linguistics vs. corpus linguistics
B List of Functors

C Examples of ATSs and TGTSs

D Valency equivalence classes of verbs

CONTENTS

63

......... 63
......... 65
......... 71

73

75

79

81

85

89

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1
4.2
4.3
4.4

4.5

5.1

Response from the CNC for the querry .+nosit
The layered structure of the PDT
A segment of a SGML tagged sentence.: “Ty maji pak nékdy takovou
publicitu, Ze to dotycnou kanceldr prakticky zlikviduje.”
A segment from the Document Type Definition File which corre-
sponds to the morphological annotation.
Derivation and dependency tree of the sentece “Beautiful girls live
in Bohemia”. e e
A segment from the Document Type Definition File which corre-
sponds to the morphological annotation.
A segment of a SGML tagged sentence. The analytical function is
bold-faced.
Analytical and tectogrammatical tree structures of the sentence
“Slovo “elita” se oviem v Ceskoslovensku stdle jesté chdpe trochu
pejorativné, jako podezield kategorie samozvané privilegovangch. . .”
(The word “elite”, however, in Czechoslovakia still is understood a
little pejoratively, as a suspicious category of self-appointed privi-

leged people...) e

The position of the AFA system within the PDT project.
The distribution of functors is nonuniform.
The minimal context of anode U.
Example of the TGTS for the sentence “Zastavme se viak na okamzik
u rozhodujicitho ustanoveni nové pravni normy.”
A sample of data (corresponding to the TGTS in Figure 4.4) after

PTEPIOCESSING.+ v v v i e e e e e e e e e e e e

Sketch of a AFA system based on the backpropagation neural network.

ix

17

18

19

20

21

22

26
28
29

33

34

43

5.2
9.3
5.4

9.5
5.6

6.1

6.2
6.3

7.1

7.2

C.1

C.2

C.3

C4

LIST OF FIGURES

WordNet 1.6 results for “Hypernyms (this is a kind of...)” search

of noun “forest”. Lo Lo 44
Matching algorithm. L L. 46
A sample from the dictionary of verb valency frames. 47
A sample from the preprocessed verb valency dictionary. 48

Binary classification tree of verbs with respect to their valency frames. 49

A sample from the file with the text representation of the learned

decision tree. L e 57
The architecture of the whole AFA system. 60
Tectogrammatical tree with automatically assigned functors. . .. 61

Comparison of the covers of individual families of methods for the
sequence machine learning, rule-based methods, dictionary based
methods. The outermost rectangle depicts the set of all functors to
be assigned in the testingset. 70
Precision versus Recall. This picture depicts the performance of
selected sequences of assigners. Obviously, the higher the recall

achieved, the lower the precision. 72

Analytical and tectogrammatical tree structures of the sentence
“Vidyt kazdy jing ndrod si své osobnosti hijckd, pysni se jimi, a
cesky stdt prdavée v soucasné dobé potrebuje sebevédomi dvojndsob. ” 85
Analytical and tectogrammatical tree structures of the sentence
“Zdiraznuji ovSem, Ze nepijde o slavné plakdty ani encyklopedickd
hesla. 7 . . . L e 86
Analytical and tectogrammatical tree structures of the sentence
“Snad se dohodneme, Ze alespori v pripadé natdéeni v zahraniéi se
sponzoringu nevzdame.”o o e e 87
Analytical and tectogrammatical tree structures of the sentence
“Jesté zajimavéjsi jsou vSak potady vénované afropopu, jaké ne-

najdeme ani na prili§ anglofilském MTV. 88

List of Tables

5.1
5.2
5.3

7.1

7.2

7.3

74

7.5

7.6

7.7

7.8

7.9

A sample from the dictionary of subordinating conjunctions.
A sample from the dictionary of adverbs.

A sample from the dictionary of for the method prepnoun.

Evaluation of the performance of the rule-based methods, when
applied on the testingset. L0,
Evaluation of the performance of the rule-based methods, when
applied on the trainingset.
Evaluation of the performance of the dictionary-based methods,
when applied on the testingset.
Evaluation of the performance of the rule-based and dictionary-
based methods, when applied on the testingset.
Evaluation of the performance of m180 (the method based on ma-
chine learning), when applied on the testing set.
Evaluation of the performance of similarity (the method based
on the nearest vector approach), when applied on the testing set.

Evaluation of the performance of the sequence RBMs, DBMs, and
ml180, when applied on the testingset.
Evaluation of the performance of the sequence m180, RBMs, and
DBMs, when applied on the testing set.
Results of all the methods on the testingset.

xi

66

xii

LIST OF TABLES

Chapter 1

Introduction

Die Grenzen meiner Sprache

bedeuten die Grenzen meiner Welt.

Ludwig Wittgenstein

The motivation for exploring natural language can be formulated in a variety
of ways, depending on the audience. So let me start with the motivation that
could attract a computer scientist.

The immense amount of data available on the World Wide Web undoubt-
edly exceeds that of any information source accessible to an individual within
the history of mankind, and moreover is still rapidly growing. For a human, this
fact unfortunately does not generally entail a “better knowledge” (in the sense of
[DePryck—-93]) about the world, since the information is scattered, imperfect (in-
complete, inconsistent), redundant (this also contributes to an overload of a human
perception, though the redundancy causes no troubles for a computer), and non-
homogenous. Besides searching and visualizing the documents, the contemporary
computer technology—as the culprit of this information overload—cannot help
much, thus leaving us often confused and unsatisfied in the web labyrinth. Any
development of “document processing technology” that goes beyond the text as
a sequence of characters and that is related to its meaning, sense and content, is
nowadays either accompanied with extreme difficulties (e.g., machine translation),
or still remains outside the realm of automation.

Obviously, many difficulties, which arise during the development of software
for more sophisticated and more fruitful processing of this incredibly unordered
heap of data, are caused by the fact that most of the information on the Internet is
expressed in natural language (of course, not only on the Internet; let us cite from

[Cermékf‘é)g]: “Most of information about anything is to be found in language;

1

2 CHAPTER 1. INTRODUCTION

there are, in fact, very few areas of human life based to a higher degree on non-
verbal symbols.”). The perspective of having technology that “understands” (i.e.,
can work with the meaning of) natural language, at least to some limited extent,
is then more than a sufficient motivation for computer science to cooperate with
linguistics.

We can look at natural language also from the viewpoint of artificial intel-
ligence. For example, Turing’s well-known and broadly discussed imitation test
of “thinking machines” implicitly presumes a possibility of a man-machine com-
munication in natural language; he mentioned even questions concerning poetry.
Therefore, if there is a way to create whatever we could call not only artificial but
also intelligent according to his definition, then it must contain “natural language

technology” as one of its cornerstones.

I believe that the growing availability of sophisticated and richly annotated
language data—especially those containing a semantic annotation—will be a mile-
stone in Al, similarly as the data precisely measured and carefully collected by
Tycho de Brahe played a key role for Johannes Kepler’s discovery of the funda-
mental laws of astrophysics. And if not a milestone, then at least the next step
towards the elusive horizon described by Allan Turing: “One day ladies will take
their computers for walks in the park and tell each other ‘My little computer said

such a funny thing this morning!” ”

One of the conditions for serious research in the domain of Natural Language
Processing is the availability of language resources. This term stands for sets of
language data and descriptions in machine processable form, used for building,
evaluating or operating natural language and speech systems. In this thesis, 1
attempt to participate in the building of a specific language resource, namely the

Prague Dependency Treebank.

1.1 Aim of the thesis

The Prague Dependency Treebank (PDT) is a research project aimed at a complex
annotation of (i.e., the addition of selected linguistic information to) a part of the

Czech National Corpus (electronic collection of Czech texts from selected sources).

The annotation scheme of the PDT was developed by the research team of the

1.2. SUMMARY 3

Institute of Formal and Applied Linguistics', Faculty of Mathematics and Physics,
Charles University, Prague, and consists of three layers of annotation: morpholog-
ical, analytical and tectogrammatical. On the tectogrammatical level, annotated
sentences are represented in the form of a specific kind of dependency tree, a so-
called tectogrammatical tree structure (TGTS), where every autosemantic word
has its own node ([BPS-99], [BH-99]).

Each node is annotated with its tectogrammatical function (functor) that rep-
resents its linguistic meaning within the sentence, e.g., actor, patient, addressee,
predicate, different types of spatial and temporal circumstancials, means, manner,
modality, extent, consequence, condition, aim, appurtenance, etc.

Most of the functors have to be assigned manually, word after word, sentence
after sentence. The huge amount of labor involved in manual annotation (the PDT
contains more than 26 thousand sentences) obviously slows down the growth of the
PDT on the tectogrammatical level. Therefore, decreasing the amount of manual
annotation has been the motivation for developing a more complex system for the
Automatic Functor Assignment (AFA) described in this thesis.

1.2 Summary

In Chapter 2, I briefly summarize a few basic notions from the domains of Natural
Language Processing, Corpus Linguistics and Machine Learning. They are not a
standard part of a computer scientist’s education, but they are indispensable for
the work on the topic of this thesis.

Chapter 3 describes the Prague Dependency Treebank. The reader is given
information about the source and the amount of the textual data involved. The
annotation principles and the meaning of the annotation on all three levels are
described in more detail, examples of tree structures are presented.

In Chapter 4, more careful formulation of the AFA task is given and the initial
situation before starting the work on the AFA is described. The minimal amount
of information that is sufficient for the correct functor assignment is discussed.
Further, the data preprocessing is explained and the available training and testing
material is mentioned.

In Chapter 5 all the methods incorporated into the AFA system are shown.

1h'l:'l:p://ufal .mff.cuni.cz

4 CHAPTER 1. INTRODUCTION

Namely, the methods based on dictionaries, rules, nearest vector, and machine
learning. Then I sketch several alternative approaches that have not been imple-
mented yet, or have only been implemented partially so far.

Chapter 6 concerns the implementation details of the AFA realization. The
description of how to extend the current AFA system is included.

In Chapter 7 measurements of the performance of the developed system are
presented and evaluated.

Chapter 8 contains conclusions, a discussion of the obtained results and an

outline of future improvements.

Chapter 2

Prerequisities

2.1 Natural Language Processing

The simplest way to elucidate what the Natural Language Processing (NLP) area

currently covers is to enumerate several possible examples of NLP applications:!

o Text databases and information extraction: finding appropriate documents

in response to user-queries from a database of texts.

e Machine translation: translating documents from one (natural) language

into another with the help of a computer.

o Text summarizing: extracting the most important information from large

texts.

e Text editors: a thesaurus or a system for correction of typing or grammatical

errors are useful assistents during a text preparation.

o Automatic documentation drafting: automatic generation of texts from un-
derlying content representation (possibly in multiple languages simultane-
ously), e.g. [KK-99].

o Man-machine communication: voice communication for control of a ma-

chine, automated customer service over the telephone etc.

e Human-human communication: computer aids for people with disabilities.

The development of applications like these profits from having collections of
natural language data at their disposal both for research and testing.
The attractiveness of many branches of NLP significantly increases in the age

of Internet. Most of the information accessible on the web consists of text in

' A more detailed description can be found, e.g., in [Allen-95] or [Strossa-99].

6 CHAPTER 2. PREREQUISITIES

natural language (usually in English), but its enormous amount is far beyond the
limits of the “text processing potential” of a human.

After the invasion of computers into every-day life, many NLP applications
have become of practical importance. However, this should not overshadow NLP’s
position in the scientific world.

NLP is a markedly interdisciplinary domain. The core academic discipline
focused on computer-based NLP is usually called computational linguistics (CL).
Broadly speaking, the aim of CL is to develop computational models of natural
language generation and understanding. But in order to build a computational

model of language, several other disciplines need to cooperate. They are especially:
e “classical” linguistics, psycholinguistics, sociolinguistics, cognitive science
e philosophy

mathematics

e computer science

artificial intelligence

Natural language and its structures are usually viewed at several levels. In

[Allen-95] the following levels of language description are distinguished:2

1. Phonetic and phonological knowledge concerns how words are related to the

sounds that realize them.

2. Morphological knowledge concerns how words are constructed from more

basic meaning units called morphemes.

3. Syntactic knowledge concerns how words can be put together to from correct

sentences and determines what structural role each word plays.

4. Semantic knowledge concerns what words mean and how these meanings

combine in sentences.

5. Pragmatic knowledge concerns how sentences are used in different situations

and how use affects the interpretation of the sentence.

6. Discourse knowledge concerns how the preceding sentences affect the inter-

pretation of the next sentence.

2These distinctions are a matter of continuing debate.

2.2. CORPUS LINGUISTICS 7

7. World knowledge includes general knowledge that the language users must

have in order to maintain conversation.

2.2 Corpus Linguistics

When creating, justifying or falsifying their hypotheses, linguists work with differ-
ent information sources: their intuition, introspection, experiments, observation,
corpora. The term corpus stands (on the most general level) for a collection of
records of authentic usages of natural language. It is the material baseline which
serves for the linguistic analysis and description, both of the written and spoken
language ([Sulc-99]).

It is natural to prefer to acquire information about language use directly from
naturally occurring text instead of using introspection or intuition. Moreover,
some new phenomena, which were not described nor observed yet, can be discerned
during work with large corpora. Corpora serve as a material source not only for
linguistics, but also for research areas dealing with human thinking or culture.
Therefore, the impact of corpora on linguistics (and other sciences) is steadily

growing. Or in the words of Frantisek Cermak([Cermak-99)):

At the turn of the century, linguistics is more and more dependent on
corpora; at the same time it is evident that corpora become a primary

source of information.

On the other hand, it can be supposed that there are still some linquists who
resist the “corpus challenge”, and are therefore sometimes called “armchair lin-
guists”, thus being the opposition to corpus linguists. Fillmore’s smart caricatures
of both groups can be found in Appendix A, the “problem” has been discussed
also in [Lager—95].

Not surprisingly, most corpora have been developed for English, e.g., the Brown
Corpus, the British National Corpus, and the Penn Treebank. In order to get a
feeling about the amount of text in contemporary corpora, let us mention that
their size is measured in the order of hundreds of millions of words. Most European
languages have some sort of a corpus already as well, even if just a small one.

Nowadays, due to the prevalence of electronic corpora, the term corpus is

used nearly exclusively for an electronically stored and computer-readable text

8 CHAPTER 2. PREREQUISITIES

collection. Some more detailed requirements for the size or the representativeness
can also be specified.

Corpora can be classified with respect to several criteria:

e corpora of one language versus parallel corpora, i.e., containing correspond-

ing texts in more languages (e.g., [Erjavec-Ide-98]),

e diachronous corpora reflect a language in a longer epoch, synchronous cor-

pora maintain only such a time period with no significant language changes,
e corpora of spoken or written language,

e corpora containing texts of particular genre(s).

The content of contemporary corpora is usually not only plain text; the text
is enriched by annotation. Note that the goal of this thesis—automatic functor
assignment—is nothing else than adding a specific type of annotation. Karel Pala

defines annotating in [Pala—99] as follows:

Annotating consist of adding selected linguistic information to an ex-
isting corpus of written or spoken language. Typically, this is done by
some kind of coding being attached (semi)automatically or manually

to the electronic representation of the text.

For different purposes there are different types of annotation, for instance:

e morphological tagging adds the part of speech specification (POS) and mor-

phological categories (gender, number, case, tense ...),

e parsing adds syntactical tags that usually represent tree structures of sen-

tences,
o tagging of anaphoric relations,
e prosodic tagging.

When annotating text in order to capture more complicated phenomena (e.g.,
annotation on the semantic level), the output is biased by the involved theory. This
is also the case with the tectogrammatical annotation concerned in this thesis.

The next section will be devoted to Machine Learning, since it is frequently

used for corpus annotation.

2.3. MACHINE LEARNING 9

2.3 Machine Learning

Learning can be viewed as the acquisition of new knowledge, improving perfor-
mance with practice, changing behaviour due to experience ([RL-95]). Mitchel’s
definition of machine learning is this: “a computer program learns if it improves
its performance at some task through experience.”

Machine learning (ML) can be used for classification and prediction tasks,
planning, problem solving, knowledge discovery etc. Learning can be either sym-
bolic or sub-symbolic. In the former case, the learned knowledge is represented
in some formalism, e.g., decision trees. In the latter case, the derived knowledge
does not have the form of symbolic descriptions that are easily understandable to
humans, e.g., weight vectors in neural networks, binary chromosomes in genetic
algorithms.

One of the ML strategies is inductive concept learning ([LD-94]). Inductive
concept learning means deriving general classification rules (concept descriptions)
from the descriptions of instances (positive examples) and non-instances (nega-
tive examples) of the concept to be learned, if it is the case of single concept
learning. In the case of multiple concept learning, the concepts are usually named
classes. Instead of having only positive and negative examples, the instances can
be classified into more classes.

ML can be either supervised or unsupervised:

e in supervised learning, we have a training set of instances whose classification

is known (the training set corresponds to the experience mentioned above),

e in unsupervised learning, the classification within the training set is unknown

before learning.

During the ML process, we can profit from having a priori knowledge about the
concepts which we have before the learning. This knowledge is called background
knowledge.

ML can be either incremental or non-incremental:
e incremental learning can improve its performance step by step, as the train-

ing set grows,

e non-incremental learning learns from the whole training set at once; if some

new examples come, the learning must start from beginning.

10 CHAPTER 2. PREREQUISITIES

Quinlan’s ML system C4.5 that will be employed in this thesis, is a member of
the family of TDIDT learning systems (Top Down Induction of Decision Trees).
The knowledge learned by these systems is represented in the form of decision

trees.

Chapter 3

The Prague Dependency Treebank

The Prague Dependency Treebank, which has been inspired by the activities re-
sulting in the Penn Treebank, is a research project aimed at a complex annotation
of (a part of) the Czech National Corpus (CNC) ([BH-99)).

The Prague Dependency Treebank (PDT) is based on a scheme of annotation
developed by the research team of the Institute of Formal and Applied Linguistics,
Faculty of Mathematics and Physics, Charles University, Prague. The annotation
procedures are formulated with the aim to reduce the manual work of the annota-
tors to a minimum, while adding to the raw text as reliable linguistic information
as possible.

The PDT comprises three layers of annotation:

1. The morphemic layer with about 3000 morphemic tag values; a tag is as-

signed to each word form of a sentence in the corpus.

2. The analytic tree structures (ATSs) with every word form and punctuation
mark explicitly represented as a node of a rooted tree, with no additional
nodes added (except for the root of the tree of every sentence) and with the

edges of the tree corresponding to (surface) dependency relations.

3. The tectogrammatical tree structures (TGTSs) corresponding to underlying

sentence representations.

The tectogrammatical level annotation is based on the framework of Functional
Generative Description (FGD) as developed within the Prague School of Linguis-
tics by Petr Sgall and his collaborators since the beginning of the 1960’s (e.g.,
[SHP-86]). The following section contains only a very rough sketch of some basic
FGD notions, the reader can find a better explanation in [SHP-86], [Kruijff-98]

and the literature quoted there.

11

12 CHAPTER 3. THE PRAGUE DEPENDENCY TREEBANK
3.1 Functional Generative Description

FGD is a stratificational approach to the systematic description of language, show-
ing the main principles and properties of a language from the perspective of several
sequentially related strata. A linguistic function at one stratum is realized by a

form in the next lower stratum, in this order:

1. Deep structure, or tectogrammatical representation
2. Morphonemics
3. Phonemics

4. Phonetics

A speaker’s utterance is then supposed to be generated as follows. The speaker
has a deep structure of the information he/she wants to convey. Then, on the
stratum of morphemics, the surface structure, conceived as a sequence of strings,
is formed. Its elements are subsequently transformed to the phonemics and finally
to the phonetics level.

In FGD, special attention is paid to the following features of natural language:

1. Dependency relations (they are discussed later in this chapter).

2. Coordination and apposition, which arise when two or more entities are
viewed as a whole, are represented as one more complex structure. For ex-
2

ample, in the sentence “Dévenka Stésti a Mlddenec Zal stdli mi za zddy . .. ”,

the subject consists of two parts that modify the verb “stdli” together.

3. Contextual boundness and nonboundness make distinction between what the
speaker presents as recoverable from the preceding context, and what is new

(modifying).

4. Deep word order represents the ordering of dependency relations within the

tectogrammatical structures, closely related to contextual (non)boundness.

5. Grammatical coreference, e.g., the relation of a relative pronoun to an an-

tecedent noun (“Yesterday I saw a girl who played the violin.).

3.2. THE TEXTUAL DATA PROVIDED BY THE CZECH NATIONAL CORPUS13

taCi se trochu vybavit , <nanosit> kupu listi a sena - ja ho
ie Kazdy mistr by se m&l <honosit> n&jakyjm rekordem ¢i jedin
antni tisni by m&ly dit& <donosit> . Bezvjhradnd povinnost p
i hladovéni bude schopna <donosit> plod . Mimochodem i u sou
evitané t&hotenstvi tzv. <donosit> a dité&te se vzdat ve pros
mZ sedime , nepostavil . <Vynosit> tuny kameni na z&dech , t
byl v nebezpeli a nad&je <donosit> dit& Z&dnad . Jeden veler
6 - Zivit mater . mlékem <Nanosit> 57 - UkonZit 1lét&ni 58 -
odstatné vét8i a miZe se <honosit> Fadou tdctyhodnych pfivlas

vy , Vv pokoji nekoufit , <nenosit> domi alkohol . DodrZovat

ve m&sté& , které se m&lo <honosit> jen svym " d&lnickym hnut

Figure 3.1: Response from the CNC for the querry .+nosit

3.2 The textual data provided by the Czech National Corpus

The Czech National Corpus, now containing more than a 100 million running
words, is being built since 1994 at the Institute of the Czech National Corpus
(ICNC) at Charles University in Prague, Czech Republic. The goal of the project is
to create and continuously update a representative textual basis of several hundred
million running words which would meet both the scientific and general cultural
needs of its prospective users. The core of the system is, of course, its synchronic
part consisting of contemporary texts: journalistic and technical texts since 1990,
prose and poetry since 1960 ([Cermak-99]).

A sample of this corpus, about 20 million running words, is accessible on the
Internet at URL http://ucnk.ff.cuni.cz. For example, Fig. 3.1 shows a part
of the response obtained from this Internet interface to the query .+nosit (i.e.,
find the occurrences of the words with the suffix “nosit”).

The CNC contains also morphosyntactic tagging, which is freely available for
research purposes.

For the PDT purposes, a subset of the textual data was selected from the CNC
as follows ([Hajic-98]):

e general newspaper articles, including but not limited to politics, sport, cul-

ture, hobby (newspapers Lidové noviny and Mlad4 fronta) — 40 %

14 CHAPTER 3. THE PRAGUE DEPENDENCY TREEBANK

e economic news and analysis Ceskomoravsky profit — 20 %
e popular science magazine Vesmir — 20 %
e information technology texts — 20 %.

This sample contains alltogether 456 705 tokens (both words and punctuation
marks) in 26610 sentences. This data was divided into 576 files, each containing

up to 50 sentences.

3.3 Three levels of the PDT

The Prague Dependency Treebank has a three-level annotation structure. Full
morphological tagging is available at the lowest level. The middle level provides
syntactic annotation using dependency syntax; it is called the analytical level. The
highest level of annotation is the tectogrammatical level, or the level of linguistic
meaning [Hajic-98].

“raw text
(provided by ICNC)

morphologically
tagged text

.

analytic tree
structures (ATS)

J

tectogrammatical
tree structures (TGTS)

Figure 3.2: The layered structure of the PDT

3.3.1 Morphological annotation level

On the morphological level, a morphological tag and a lemma is assigned to
each word form in the input text, the annotation contains no syntactic structure

([Hajic-98]).

3.3. THREE LEVELS OF THE PDT 15

I am going to describe the notation of the morphological tagging in detail here,
because its understanding will be important later, namely for the discussion of data
preprocessing (in particular, feature selection and extraction) in Section 4.5.

A morphological tag is a string consisting of two parts:

e prefix, part of speech (noun, adjective, pronoun, numeral, verb, adverb,
preposition, conjunctions, particles), and possibly some more detailed speci-

fication (e.g., pronouns can be personal, reflexive, possessive, indefinite . ..)
e suffix, specification of tag variables.

There are six tag variables corresponding to the following morphological cat-

egories:

1. number (abbreviation n), possible values are singular (in the morphological

tag denoted as S), plural (P), dual (D), both, or special combination (X)

2. case (c), possible values are nominative (1), genitive (2), dative (3), ac-
cusative (4), vocative (5), locative (6), instrumental (7), underspecified value
(X)

3. gender (g), possible values are masculine animate (M), masc. inanimate (I),
feminine (F'), neuter (N), any (X), masculine M or I (Y), not masculine (H),
not masculine, but in special combinations only (Q), masc. inanimate or

feminine (7T), not feminine (Z), not masculine inanimate, not feminine (W)

4. degree of comparison (d), possible values are positive (1), comparative (2),

superlative (3)

5. person (p, f), possible values are first (1), second (2), third (3), underspecified
value (X)

6. negation (a), possible values are affirmative (A), negated form (N).
Examples of morphological tags:

e the tag for a verb in indicative mood and present tense is of the form VP-
npa. For the word form ¢teme (we read) the tag variables (in this case only
number, person, negation) are to be filled like this: VPP1A (i.e., plural, first

person, affirmative),

16 CHAPTER 3. THE PRAGUE DEPENDENCY TREEBANK

e noun: Ngnca, hrochovi (to a hippotamus, singular number, dative case, ani-
mate gender) NMS3A

o reflexive possessive pronoun: PRSgnc
e ordinal numeral: CRgnc

e adverb: DB (there is no further specification of morphological categories,

i.e., no variables)

preposition: Rc

Czech is an inflectionally rich language (namely, there is a rich set of suffixes),
therefore the full tag set contains currently as many as 3030 tags.

The Standard Generalized Markup Language (SGML) is used for the anno-
tation on the morphological level. An example of a SGML tagged sentence is
in Figure 3.3. Each contains one token (a word or a punctuation mark) from
the annotated text. The element starting with the unpair tag <MM1> contains
an automatically assigned lemma. The element starting with MMt contains the
morphological tag.!

A segment of the Type Definition (DTD) file that is related to the morpholog-

ical annotation is given in Figure 3.4.

3.3.2 Analytical annotation level

During the transformation of a sentence from the morphological to the analytical
level, the corresponding linear sequence of words and punctuation marks is en-
riched with a dependency structure representing the given sentence. Each node
of the structure is assigned with a so called analytical function. This structure is

called an analytic tree structure (ATS).

Dependency structure

The basic principles of the dependency structure at the analytical level within the
PDT can be formulated as follows ([Hajic-98]):

"Warning: distinguish between an SGML tag and a morphological tag. A morphological tag
is an element in the terminology of the SGML, not the SGML tag!

3.3. THREE LEVELS OF THE PDT 17

<s id=cmpr9415:025-p19s2/bccldzua.fs/#18>

<f cap>Ty<MM1>ty<MMt>PP2S1<MMt>PP2S5<MM1>ten<MMt>PDFP1<MMt> ...
<f>maji<MM1>mit<MMt>VPP3A<A>Pred<r>2<g>0
<f>pak<MM1>pak<MMt>DB<A>Adv<r>3<g>2
<f>nékdy<MM1>n&kdy<MMt>DB<A>Adv<r>4<g>2
<f>takovou<MM1>takovy<MMt>AFS41A<MMt>AFS71A<A>Atr<r>b<g>6
<f>publicitu<MM1>publicita<MMt>NFS4A<A>0bj<r>6<g>2

<D>

<d>,<MM1>,<MMt>ZIP<A>AuxX<r>7<g>8
<f>Ze<MM1>Ze<MMt>JS<A>AuxC<r>8<g>6
<f>to<MM1>ten<MMt>PDNS1<MMt>PDNS4<A>Sb<r>9<g>13
<f>doty¢nou<MM1l>doty&ny<MMt>AFS41A<MMt>AFS71A<A>Atr<r>10<g>11
<f>kancelar<MM1>kanceldar<MMt>NFS1A<MMt>NFS4A<A>0bj<r>11<g>13
<f>prakticky<MM1>prakticky<MMt>DG1A<A>Adv<r>12<g>13
<f>zlikviduje<MM1>zlikvidovat<MMt>VPS3A<A>0bj<r>13<g>8

<D>

<d>.<MM1>.<MMt>ZIP<A>AuxK<r>14<g>0

Figure 3.3: A segment of a SGML tagged sentence.: “Ty maji pak nékdy takovou
publicitu, Ze to dotyénou kanceldr prakticky zlikviduje.” (The second line is short-

ened.)

e the analytical structure of the sentence is an oriented, acyclic graph with
one entry node; the nodes of the tree are annotated by complex symbols

(attribute-value pairs),

e the number of nodes of the graph is equal to the number of words in the

sentence plus one for the extra root node.

In a dependency tree (see an example in Figure 3.5 (b)), the position of the
word with respect to the vertical axis corresponds to the dependency relation
among words in the sentence. For each edge, the upper word is governing and
the lower one is depending (it completes, modifies, alters the upper word). The
difference between analytic (surface) and tectogrammatical (“real”) dependency

structures will be discussed later in this chapter.

18 CHAPTER 3. THE PRAGUE DEPENDENCY TREEBANK

<!ELEMENT MM1

0 (#PCDATA & R? & E7 & e7 & T* & MMtx)

—-- lemma (base form), description see the 1 tag;
machine assigned (by a morphological analysis program),
NOT disambiguated
-—>

0 (#PCDATA & R? & E7 & e? & T* & MDt*)

-- lemma (base form), description see the 1 tag;

<!ELEMENT MD1

machine assigned (by a tagger), disambiguated
if more than 1: n-best

-->

<!ELEMENT MMt

0 (#PCDATA)

-- morphological tag(s) as assigned by morphology,
NOT disambiguated
-—>

0 (#PCDATA)

-- morphological tag(s) as assigned by machine, disambiguated,

<!ELEMENT MDt

possibly also with weight/prob; if more than 1: n-best
-

Figure 3.4: A segment from the Document Type Definition File which corresponds

to the morphological annotation.

For the sake of comparison, let us recall the other possibility of depicting
the syntactic structure of a sentence. It is called a derivation tree (e.g., in
[Melichar—97]) and it is related to a view of formal grammars going back at least
to Chomsky’s work in the 1950’s. An example of a derivation tree is in the Figure
3.5 (a).

The key difference between dependency and derivation tree structures is that
the former represent the product of the derivation, while the latter represent the
derivation history. Dependency trees also directly reflect the head/dependent
binary relations (head/dependent asymmetry) between lexical elements, which
makes them closer to the semantic structure than the traditional derivation trees

in which this asymmetry is not reflected.

Analytical function

An analytical function determines the relation between the dependent node and its

governing node, or, in other words, the function of the dependent node with respect

3.3. THREE LEVELS OF THE PDT 19

a) Derivation tree S
NP VP
A I\‘I \‘/ EP
Beautiful girls live p/\ N
| |
n Bohemia
b) Dependency tree
lve
girls in \
Beautiful Bohemia

Figure 3.5: Derivation and dependency tree of the sentece “Beautiful girls live in

Bohemia”.

to its governing node. The name of the node attribute bearing the analytical
function is afun.

Let us mention several possible values of afun:

e Pred, predicate if it depends on the tree root

Sb, Subject

Obj, Object

Adv, Adverbial
e Atr, Attribute

e Pnom, Nominal predicate’s nominal part, depends on the copula “to be”.

The representation of the sentence at the analytical level can be again stored
in SGML format. In Figure 3.6 there is the corresponding segment of the DTD
file.

Now, the reader can look at the segment of a SGML tagged sentence in Fig.
3.7 with deeper understanding.

An example of the analytical tree structure is depicted in Figure 3.8 (a).

20 CHAPTER 3. THE PRAGUE DEPENDENCY TREEBANK

<!ELEMENT A - 0 (#PCDATA)
—-- analytical (syntactic) function manually assigned
to the word form
in the f tag; for allowed list see annotator’s guidelines
at fairway.ms.mf.cuni.cz / Projects / Treebank / guide
-—=>
<!ELEMENT MDA - 0 (#PCDATA)
-- analytical (syntactic) function(s) as assigned by machine,
disambiguated, possibly with weight; if more than 1: n-best
-—=>

<!ELEMENT g - O (#PCDATA)

-- governing node on the analytical level. For description
se also annotator’s guidelines
at fairway.ms.mf.cuni.cz / Projects / Treebank / guide.
Text contents points to identical r elsewhere in the
same sentence. Pointer to node 0 is allowed - it is
the artificial root node added to each sentence
annotated on the analytical level.

This is the manually assigned gov. node.

Figure 3.6: A segment from the Document Type Definition File which corresponds

to the morphological annotation.

3.3.3 Tectogrammatical annotation level

The annotation on the tectogrammatical? level results in so called tectogrammatical
tree structures (TGTS). If an ATS reflects the surface syntactic structure, then a
TGTS corresponds to the underlying sentence representation.

The transition from the ATSs to the TGTSs (described by Béhmova and

Haji¢ova in [BH-99]) consists of two phases:
1. automatic pre-processing,

2. manual correction and the completion of the results of the first phase using

user-friendly software.

During the transition from ATSs to TGTSs, the topology of the tree is slightly

?Both halves of the word “tectogrammatical” are of Greek origin: TekTwv means builder,
constructor, yoappuo means letter. The term “tectogrammatical representation” was introduced

by H.B. Curry as the representation signifying how expressions represent process of construction.

3.3. THREE LEVELS OF THE PDT 21

<f>maji<MM1>mit<MMt>VPP3A<A>Pred<r>2<g>0
<f>pak<MM1>pak<MMt>DB<A>Adv<r>3<g>2
<f>n&kdy<MM1>n&kdy<MMt>DB<A>Adv<r>4<g>2
<f>takovou<MM1>takovy<MMt>AFS41A<MMt>AFS71A<A>Atr<r>5<g>6
<f>publicitu<MMl>publicita<MMt>NFS4A<A>Obj<r>6<g>2

<D>

Figure 3.7: A segment of a SGML tagged sentence. The analytical function is
bold-faced.

changed. For example, synsemantic words (functional words, nodes “without their
own meaning”), e.g., prepositions, auxiliaries, subordinating conjunctions, as well
as punctuation marks, are pruned, i.e., they do not have their own node in TGTS,
but they are captured in the attributes of the remaining nodes representing the
autosemantic words.

The transition from ATSs to TGTSs involves also the assignment of the tec-
togramatical function—so called functor, to every node in the tree. Functors are
the tectogrammatical counterparts to the analytic functions.

There are approximately 60 functors divided into two subroups:?

e actants : ACTor, PATient, ADDRessee, EFFect, ORIGin

e free modifierss TWHEN (time-when), LOCaction, EXTent, BENeficiary,
MEANS, ATTribute ...

Actants are the basic participants in the sentence, they are usually dependent
on the verb node. The actants play a role of (often obligatory) “parameters” of
the governing node. Among the nodes with a common governing node, there can
be at most one actant of each type (e.g., there can be maximally one Actor in a
sentence, though it can be expressed by coordination containing more words).

Free modifiers (circumstantials) describe modifications of the governing node.

There can be more nodes with the same functor sharing the same governing node.

3 Authentic examples of the usage of functors can be found in Appendix B.

22 CHAPTER 3. THE PRAGUE DEPENDENCY TREEBANK

(a) Analytical tree structure

*¥17
Auxs
chape . , :
Fred Ak Ak Auxk
y stale jeita .
Sh AR ALY AUXP Adv Ady Apos\
alita \ Ceskoslovensku pejorativné jako
Atr Adv Adv_Ap AL
2 \ " trochu kategorie
AG AUNG Adv Addv_Ap
podezield privilegovanych
Atr Atr
sarnozvang
Ady
(b) Tectogrammatical tree structure
#16
SENT
chape
FPRED
Ceskoslovensku stale |esté .
PAT ACT PREC Loc THL THL APPS
elita pejorativié kategorie
|0 AL RAARIN
trochu podezfeld privilegavanych
EXT RESTR APP
Sarazvans
hAAMNM

Figure 3.8: Analytical and tectogrammatical tree structures of the sentence
“Slovo “elita” se ovsem v Ceskoslovensku stdle jesté chdpe trochu pejorativné, jako
podezreld kategorie samozvané privilegovanygch. ..” (The word “elite”, however, in
Czechoslovakia still is understood a little pejoratively, as a suspicious category of

self-appointed privileged people. . .)

For instance, the sentence “In Bulgaria we lived in tents” can be analyzed as

containing two spatial circumstantials LOC, both dependent on the node “lived”.

3.3. THREE LEVELS OF THE PDT 23

The reader can compare the analytical tree structure in Figure 3.8 (a) with the
corresponding tectogrammatical tree structure in Figure 3.8 (b). More examples

can be found in Appendix C.

24

CHAPTER 3. THE PRAGUE DEPENDENCY TREEBANK

Chapter 4

Automatic Functor Assignment: Problem

Analysis and Data Preprocessing

Presently, the procedure of Bohmova et al. [BPS-99] solves automatically the
topological conversion and the assignment of a few functors (e.g., ACT, PAR,
PRED) during the transition from ATSs to TGTSs. However, most of the func-
tors have to be assigned manually. The amount of labor involved in the manual
annotation obviously slows down the growth of the PDT on the tectogrammatical
level. Decreasing the amount of manual annotation has been the motivation for
developing the more complex automatic functor assignment (AFA) system, the

description of which forms the core of this diploma thesis.

4.1 Formulation of AFA problem

Supposing that the topological conversion of the ATS towards the TGTS has been
done, the aim of the AFA is to attach a functor to every node of the tectogram-
matical tree structure (or to as many as possible).

Since there is only a finite set of possible functors and all of them are known! in
advance, we can formulate the problem of the AFA as the classification of TGTS’s
nodes into 60 classes.

In order to create a system which would be really helpful to human annotators,

it has to fulfill several requirements:
e as many functors as possible should be assigned correctly,

e it must run in a reasonable CPU time, without any special hardware,

!The question of what is the ideal set of functors has probably not been completely closed

yet, but no considerable changes occurred during the period of my work on this project.

25

26 CHAPTER 4. PROBLEM ANALYSIS, DATA PREPROCESSING

“raw text*
(provided by ICNC)

mor phologically
tagged text

l

analytic tree
structures (ATS)

Automatic functor

l h assignment

tectogrammatical
tree structures (TGTS)

Figure 4.1: The position of the AFA system within the PDT project.

e it must be easy to apply, requiring no human interaction during the run
time,

e it must make use of the background knowledge and all available data sources,

e it must be open, i.e., the amount of work for integrating new components or

sources in the future should be minimized.

4.2 Initial situation

Let us briefly describe the situation in which the development of the AFA system
started:

o No general unambiguous rules for functor assignment are available, human
annotators use mostly only their language experience and intuition. We can
never reach 100 % precision of the AFA system since even the results of

individual annotators sometimes differ.?>

2The frequency of disagreement among annotators was evaluated by Haji¢ova and Pajas. The
results were presented at the conference Text, Speech and Dialogue 2000, but are not included

in the proceedings.
3This observation shows that the distinctions among the existing functor classes is probably

not sufficiently sharp. When classifying the nodes into the functor classes, we should keep in
mind Wittgenstein’s aphorism: “To remove vagueness is to outline the penumbra of a shadow.

The line is there after we have drawn it, and not before.”

4.2. INITIAL SITUATION 27

e The annotators usually decide on the basis of the whole sentence contexrt, and
possibly even extra-sentential context. It was not measured how often it is
really unavoidable to consider the full context and how large this context
must be. For the realization of the AFA system, it is practical to minimize

the size of the context taken into account.

e Preliminary measurements revealed that the distribution of functors is ex-
tremely non-uniform. The 15 most frequent functors cover roughly 90 % of
nodes (Figure 4.2). Conversely, there are hardly any examples for the rarest

functors.

e It would be very time consuming to test the performance of the AFA system
on randomly selected ATSs and find errors manually. Fortunately, we can
use the ATSs for which manually created TGTSs are already available for
initial tests, annotate them automatically and compare the results with the

manually annotated TGTSs.

e The available TGTSs contain imperfect data. Some errors are inherited
from ATSs, and functor assignments are in some cases ambiguous (nodes
with more than one functor) or incomplete (some nodes have no functor

yet). This again means that a 100% coverage cannot be obtained.

e The set of available TGTSs is too small. It cannot be viewed as a repre-
sentative sample of the Czech language, many language phenomena do not

occur in it at all.*

e There is no tag for idiomatic expressions in PDT yet, therefore they cannot
be automaticaly extracted and analyzed now. For instance, the noun “do-
brota” in “sekat dobrotu” (lit. “to make good”, “to behave well”) can not be
viewed as a Patient, although it is a noun in accusative that is dependent

on the verb in the active voice.

“But this is the deal of corpus linguists, they have to live with permanent doubts about the
corpora. Let us cite the headlong attack of Noam Chomsky: “Any natural corpus will be skewed.
Some sentences won’t occur because they are obvious, others because they are false, still others
because they are impolite. The corpus, if natural, will be so wildly skewed that the description

would be no more than a mere list.” ([AA-91]).

28 CHAPTER 4. PROBLEM ANALYSIS, DATA PREPROCESSING

MANN BEN the other
functors

APP PRED \ﬂCT

Figure 4.2: The distribution of functors is nonuniform.

4.3 Granularity

If a program is to decide what the correct functor of a node is, it must be provided
with sufficient information for such a decision. Naturally, from the implementation
point of view it is desirable to minimize the amount of the required information.
The question of what such a minimal sufficient amount of information is, decom-

poses into two subquestions:

e what is the minimal neccessary size of the neigbourhood of the node in the
tectogrammatical tree structure (the minimal tree context) which suffices

for a unique determination of the functor, and

e what kind of information (which node attributes) contained in the minimal

tree context has to be taken into account, and what can be neglected.

The first subquestion resembles the problem known from the area of parallel
programming: how large “pieces” of the task can be solved separately; that is why
I use the term granularity here as well.

I have already mentioned that the human annotators always analyze the entire
sentence (and this is also the trivial upper bound of a context size, see Figure

4.3 (a)), without thinking of any subdivision into subtrees. But when trying

4.3. GRANULARITY 29

a) the whole tree b) only node U
c¢) node U, its parent d) node U and its parent

and its siblings

CEOR

Figure 4.3: The minimal context of a node U.

to assign the functors automatically, we would have extreme difficulties with an

implementation of such an approach, since:

e there is no justifiable natural limit for the size of a TGTS (measured by the

number of nodes),
e there are nearly no limitations on the topology of the TGTSs.

The topology can be both very “flat” or very “deep”. Many circumstancials
might depend on one verb node, the sentence “she surely goes with Peter to the
cinema today at eight” contains 5 offsprings of the node corresponding to “goes”.
On the contrary, natural language can form pretty deep trees, for instance due to
its recursive nature: “the chair which was produced in a factory that employs 200
workers who are ... 7.

A further motivation for the effort to minimize the necessary context is based
on the intuitive expectation that the mutually very distant nodes in the TGTS do
not influence one another.

The trivial lower bound of the context size is only the node itself (Figure
4.3 (b)). This is obviously not enough. The node containing the expression “po
otci”/ “after father” (let us recall that the preposition has been merged into the
autosemantic node), can occur with at least three different functors, depending

on the context:

30 CHAPTER 4. PROBLEM ANALYSIS, DATA PREPROCESSING

1. “Prisel po otci.” (“He came after the father.”), time circumstancial TWHEN,

2. “Jmenuje se po otci.” (“He is named as the father.”), the functor NORM,

3. “Zdédil majetek po otci.” (“He inherited the property from the father.”), the
functor HER.

Another possible immediate context consists of the neigbouring nodes of a node
to be assigned in the TGTS, i.e., its mother, its sibling(s), and its daughter(s),
if any. Clearly, the governing node cannot be omitted when deciding about the
correct functor as it was proved in the example above. On the other hand, it is
very difficult to find an example where the knowledge of a child node is essential.
Although it is evident that the depending nodes alter the meaning of the node
itself, the change is mostly not so significant to make the value of the functor
attribute crossing the border between functor classes. Therefore I will neglect the

impact of the depending nodes.’

Since I do not suppose that the nodes with depth (the distance from the root)
differing at least by two from the depth of a given node, are of any considerable
influence of the functor, the last decision remains. Do the siblings of the given node
(i.e., the nodes with the common governing node) bear any essential information
(Figure 4.3 (c))? This is not the case, or at least not frequently (I did not find

any example of such a situation).

The conclusion is that the only two inevitably remaining nodes are the node
itself and its governing node (Figure 4.3 (d)). In other words, the attributes of the
node itself and of its parent (mostly) provide a sufficient amount of information

for the functor assignment of the former one.

5To be sincere, I have to admit I have later found several expressions, which I suspect of being
counterexamples. For instance, the functor of the node “v #seku” can be either TWHEN in case
of “v dseku Zivota” or LOC in “v tiseku ddlnice”, thus being influenced by the depending node. In
spite of the fact that such a situation is in the Manual for annotators ([Manual2]) solved using a
special type of prepositions (e.g., v prubéhu ceho/during the process of something) and therefore
they do not have a node of their own in TGTS, one could probably find such a sentence where
the knowledge of the dependent node would be important for functor assigning and it cannot be

classified as a special preposition.

4.4. FEATURE SELECTION AND EXTRACTION 31

4.4 Feature selection and extraction

Now, let us return to the second subquestion from the beginning of the previous
section: what kind of information from the minimal context (which attributes of
the nodes in the context) has to be taken into account. Since during the analytical
and morphological tagging, more than twenty attributes can be attached to every
node, the selection of the most informative ones (feature selection) has to be done.

I selected the following ten attributes:

e for both the current node (the node to be assigned) and for its parent: word

form, lemma, full morphological tag, analytical function,
e the functor of the lower node,

e the preposition or subordinating conjunction binding the governing and the

lower node.

Three more attributes have been extracted from the morphological tags (fea-

ture extraction):
e part of speech of both nodes,
e case of the lower node.

The functor attribute has been selected just for the training and testing pur-
poses of the AFA system. It cannot be used in the real-world application of the
AFA system, since in such a case the functor is obviously unknown.

There are formal procedures how to select the most informative attributes
(e.g., in [Kotek et al.-80]). I have selected the important attributes more or less
on the basis of my intuitive judgements. Moreover, many attributes which did not
get through the selection sieve were only of technical nature (identifiers, reserved
attributes etc.).

Altogether, for each node of the TGTS—except for the auxiliary root—we
have a vector of 13 symbolic (i.e., not numerical) attributes.

The task of the AFA can be now approximated as the classification of these

vectors with twelve attributes.b

5The attribute containing the tectogrammatical function can be used just for the comparison

of results, not as an input for the classification.

32 CHAPTER 4. PROBLEM ANALYSIS, DATA PREPROCESSING

4.5 Data preprocessing

The sentences contained in the PDT are divided into files, each file has up to 50
sentences represented by trees. To assign functors to a tree structure means to
assign a functor to each node in it (except to the root). For each node there is a
corresponding vector of symbolic attributes. So the first preprocessing step is to
transform each file of 50 trees into the sequence of vectors.

Besides the 13 attributes obtained by feature selection and extraction, two
additional attributes are added to each vector: the name of the file where the tree
is located and the ordinal number of the tree within the file. This is because once
some phenomenon is observed in the preprocessed data, it is useful to know its
location in the input data.

The output file is in plain text format, each line containing one vector with 15

attributes (separated by a tabulator) in this order:
1. The name of the original file.
2. The number of the sentence within the file.
3. The word form contained in the governing node.
4. The lemma of the governing word.
5. The full morphological tag of the governing word.
6. The part-of-speech of the governing node word, extracted from 5.
7. The analytical function of the governing node.
8. The word form of the node to be assigned.
9. The lemma, of the node to be assigned.
10. The morphological tag of the node to be assigned.
11. The part-of-speech of the node to be assigned, extracted from 10.
12. The case of the node to be assigned, extracted from 10, or zero.

13. The preposition or subordinating conjunction binding the two nodes, or the

empty string.

4.6. AVAILABLE MATERIAL, TRAINING AND TESTING SET 33

#12
.\SENT

Zastavit se
FRED

vEak okam#ik Lstanoven|

PREC TFHL LOC
GEM rozhodujici norma
ACT RETR PAT
oy prawni
RSTR RSTR

Figure 4.4: Example of the TGTS for the sentence “Zastavme se vsak na okamzik

u rozhodugictho ustanoveni nové pravni normy.”

14. The analytical function of the node to be assigned.
15. The functor of the node to be assigned.

The second preprocessing step is the elimination of those vectors where the
functor is not specified or where it is specified ambiguously, for such data can be
used neither for the training nor for the testing of the AFA system.

The last preprocessing step is the substitution of Czech accents by the corre-
sponding letter without accent followed by underscore.”

A sample of the preprocessed data is shown in Figure 4.5, it corresponds to
the TGTS in Figure 4.4 (the columns has been manually aligned for the sake of

better readability):

4.6 Available material, training and testing set

When 1 started working on the AFA, 18 files with TGTSs were available. Since

more new files become available relatively slowly (in each file, hundreds of functors

"This step produces ambiguity of e_ and u_, but it has no (serious) impact on the quality of
assigned functors. For instance, although the words bézné and bézné (commonly/common) are
translated to be_z_ne_, they can be still distinguished using their morphological tags. Moreover,

most of the proposed methods of the AFA do not use the lexical attributes of nodes.

34 CHAPTER 4. PROBLEM ANALYSIS, DATA PREPROCESSING

bcb01itrz 12 zastavme zastavitl vmpla v pred okamz_ik okamz_ik nis4a n 4 na advt
bcbO1trz 12 zastavme zastavitl vmpla v pred ustanoveni_ ustanoveni_ nns2a n 2 u adv
bcb01trz 12 normy norma nfs2a n atr nove_ novy_ afs2la a 0 atr
bcb01ltrz 12 normy norma nfs2a n atr pra_vni_ pra_vni_ afs2la a 0 atr
bcbO1ltrz 12 ustanoveni_ ustanoveni_ nns2a n adv mnormy norma nfs2a n 2 atr

fhl
loc
rstr
rstr

pat

Figure 4.5: A sample of data (corresponding to the TGTS in Figure 4.4) after

preprocessing.

have to be manually assigned), I did not wait for a larger data set.

I needed as much TGTSs as possible for data mining (for creating a list of
adverbs etc.). On the other hand, it was necessary to leave some data untouched
for the comparison purposes and for measuring the quality of the AFA system.
Therefore I decided to (disjunctively) split the available files into a training set
and a testing set.

The testing set consists of 3 randomly chosen files®, consisting of 1089 testing
vectors. The training set contains 15 files of TGTSs, after preprocessing containing

altogether 6049 training vectors.

8Chosing several entire files was probably not the best decision, because the testing set can
thus be biased: The sentences in one file are taken from the same original text, i.e., they have
the same author and are related to the same topic, moreover they were annotated by the same
annotator. It would have been better to select, say, 20 % from the whole set of edges, instead of

selecting the whole files.

Chapter 5

Components of the AFA System

There is no simple and straighforward method to assign the functors at the tec-
togrammatical level automatically. Therefore, it was inevitable to look at the prob-
lem from different viewpoints and to combine a spectrum of various approaches.
The “final” version of the AFA system consists of 12 different methods. The
methods are specialized, each method assigns only a subset of the functors to be
assigned.

The methods can be classified into four classes: rule-based methods, dictionary-
based methods, nearest vector approach, and machine learning approach. They
are described in the following four subsections, respectively.

Though this classification is helpful in explaining the functionality of the AFA
system, the classification is not inherent to the problem itself. Rather than being

predicted in advance, it arose during the AFA’s evolution.

5.1 Rule-based methods

The rule-based methods (RBMs) consist of simple hand written decision trees.
In the premises of the rules, lexical attributes (word forms and lemmas) in the
attribute vectors are disregarded. E.g., there is no difference between the sentences
“Your brother went to the theatre” and “Your dog slept on the grass” as far as the
RBMs are concerned.

In order to simplify the references to the individual methods in the rest of this
thesis, each method is assigned a short identifier typeset using nonproportional
letters.

Currently I have 7 methods, each of which has reasonable precision (the ab-

breviation “— X” stands for “the node is assigned the functor X”):

35

36 CHAPTER 5. COMPONENTS OF THE AFA SYSTEM

1. verbs_active: if the governing node is a verb in the active voice then

e if the analytical function (afun) is subject, then — ACT
e if afun is object and the case is dative then — ADDR

e if afun is object and the case is accusative then — PAT
2. verbs_passive: if the governing node is a verb in the passive voice then:

e if afun is subject then — PAT
e if afun is object and the case is dative then — ADDR

e if afun is object and the case is instrumental then — ACT
3. adjectives: if the node corresponds to an adjective then

e if it is a possessive adjective then — APP

e else -+ RSTR
4. pronounposs: if the node is a possessive pronoun then — APP
5. numerals: if the node is a numeral then — RSTR
6. pnom: if afun is PNOM then — PAT

7. pred: if afun is PRED then — PRED

Unfortunately, I found only several feasible rules in the manual for annotators
[Manual2]. They are utilized in verbs_active and verbs_passive.

The remaining five methods are based on an inspection of the training set. 1
simply searched for the correlations between the functors and the values of the
analytical function or morphological categories and on the basis of this I formed
hypotheses. I accepted only those hypotheses which were not in contradiction
with common sense or with my language experience.! Therefore the resulting set
of the 7 rule-based methods is more or less independent of the training set.

On the other hand, I am aware of the fact that the potential of the correla-

tions between the functors and the non-lexical attributes is broader. Many rules

'For example, it is not surprising that the possessive adjective mostly represents appurtenance

APP, though this was a quite new and useful fact for me.

5.2. DICTIONARY-BASED METHODS 37

probably remain hidden to my eye due to my limited linguistic knowledge, or be-
cause of the fact that some phenomena did not occur in the training set at all or
only in a statistically insignificant amount (once, twice) that does not justify any

generalization.

5.2 Dictionary-based methods

In contrast to the rule-based methods, sometimes the lexical value of a node
is the only key to the functor, and everything else (e.g., part-of-speech of the
governing node, etc.) can be neglected. I use the term dictionary-based methods
(DBMs), since I collected dictionaries of adverbs, subordinating conjunctions, and
prepositions for this purpose.

Some interesting side products emerged during the development of DBMs.
For example, I extracted from the training data some adverbs and subordinating
conjunctions which were previously not included in the Manual for annotators

([Manual2]). Now they can be used for further improvement of the manual.

Subordinating conjunctions

A dictionary of subordinating conjunctions (SCs) is used by the method subconj.
It contains 38 couples {subordinating conjunction, functor}.

The dictionary was created in several steps:

1. 40 distinct couples were extracted from the training set,

2. 69 couples from the manual for annotators [Manual2] were added (the union

contained 90 different couples),

3. 38 unambiguous subordinating conjunctios were selected.

An SC is called unambiguous if the nodes which are tied to its governor via
this SC have always the same functor. E.g., “kdyz” (when) is not unambiguous
for it can appear with the functors COND or TWHEN. Table 5.1 shows a sample
of the dictionary of unambiguous SCs.

The method subconj detects whether a node is tied to its governing node
through an SC. In such a case, the SC is searched for in the dictionary. If it
is found, the corresponding functor is assigned, otherwise the functor remains

unassigned.

38 CHAPTER 5. COMPONENTS OF THE AFA SYSTEM

SC functor

a proto CcSQ
ac CNCS
ackoli CNCS
ackoliv | CNCS
aniz COMPL
byt CNCS
dokud THL

Table 5.1: A sample from the dictionary of subordinating conjunctions.

Adverbs

The dictionary of adverbs is created in the same way. 267 couples {adverb, func-
tor} from the manual for annotators are merged with 236 couples found in the
training set. Altogether, this dictionary contains 456 different couples. After
elimination of ambiguous adverbs, the resulting dictionary contains 290 adverbs.
Some of them are shown in Table 5.2.

It is worth noting that the ambiguous adverbs were most frequently accom-
panied with the functor ATT (attitude) and with the functor MANN (manner),
e.g., “krasné”, “moudte”. The co-occurence of these two functors in the extracted
dictionary is so frequent that it opens the question whether the boundary between
them is always sharp enough and whether it would not be better to establish one

common functor instead of distinguishing them.

A sample from the dictionary of adverbs is in Table 5.2.

Prepositions and nouns

The method prepnoun is based on the fact that some nouns preceded by a given
preposition are always accompanied by the same functor. The dictionary of this
method consists of triples {preposition, noun, functor}. The dictionary was cre-

ated in three steps:
1. all such triples were isolated from the training set (659 different triples),

2. the triples containing ambiguous preposition-noun couples were eliminated,

5.3. NEAREST VECTOR APPROACH 39

adverb functor
nikdy TWHEN
nikoliv RHEM
nové MANN
nutné MOD
nyni TWHEN
obchodné | MANN
obecné EXT

Table 5.2: A sample from the dictionary of adverbs.

3. those triples which occur at least twice in the training set become included

in the dictionary.

A sample from the dictionary of these triples is in Table 5.2.

preposition | noun functor
v | roce TWHEN
v | Praze LOC
v | dobé TWHEN
pro | podnikatele BEN
od | doby TSIN
do | vlastnictvi DIR3
ze | zisku DIR1

Table 5.3: A sample from the dictionary of for the method prepnoun.

5.3 Nearest vector approach

The third approach used in the AFA system does not require any rules or dic-
tionaries. It uses the training data directly as a source of information. When
assigning a functor to a symbolic vector, we simply find the nearest, i.e., most
similar, or closest, vector in the training set. Then we just take the functor of

this most similar vector as the result. If we define a metric on the feature space,

40 CHAPTER 5. COMPONENTS OF THE AFA SYSTEM

we can simply find the nearest vector with respect to this metric. Instead of a
binary function representing the metric, I define a binary function representing
the similarity of vectors?, let us call it similarity function sg(¥, t—) Similarity and
distance measures are two sides of the same coin, so, the most similar vector and
the least distant one are the same, with respect to a given vector.

Let ¢ and £ be vectors from the symbolic feature space, @ is the weight vector of
non-negative real numbers representing the importance of individual attributes of
the vector (the higher value, the more important), e(a,b) is the equality function
(if both arguments are equal then returns 1, otherwise 0), then the similarity

function can be defined as follows:®

12
5117(17’{) = Zw’l ’ 6(’1_)',{)
i=1

The function f(Z) which returns the functor corresponding to the vector is
defined on the domain of the training set T. The functor assignment can be
approximated as searching for the value of f outside T. If ¥ is an unassigned
vector, then its functor can be estimated as:

f(@) = f(argmaxs(f, 7))
feT

Obviously, the vector 0 plays a crucial role for correct functor assignment. The
weights have been approximated intuitively, taking into account, for example, the

following facts:

e the weight of the preposition is higher than the weight of the word form of

the governing node,

e the sum of weights of the governing node’s lemma, preposition and case of

2The reason for talking about similarity rather than distance is only psychological: if two
symbolic vectors have nothing in common, I prefer to say that their similarity equals zero instead

of their distance equals infinity.
31 am aware of the fact that this concept of the similarity function is probably too simplistic

with respect to the complexity of the problem; no combination of a few weight coefficients can
reflect all the language phenomena which are important for the AFA system. That is why is I
did not accented this method too much, though one could play with tuning the weight vector
and try to astonish the audience using soft computing methods for its optimization, especially

genetic algorithms or neural networks.

5.4. MACHINE LEARNING APPROACH 41

the dependent node is higher than the sum of the weights of the remaining

attributes,

e the analytical function of the node to be assigned has higher weight than

the weight of the part-of-speech, etc.

The functor assignment then looks for example as follows. There is a sentence
in the testing set which contains the expression zdlohy na dané. A functor is to be
assigned to the dependent node dané. In the training set, the most similar record
is found (ndvrh na stanoveni) and the functor PAT of its lower node (stanovens)
is used, which is correct.

The disadvantage of the nearest vector method is its black box behaviour. Be-
sides tuning weights, there is no other way to incorporate some other background
knowledge, and it is difficult to decide which language phenomena are rendered
via weights.

By the way, the nearest vector method can be also viewed as a special case
of machine learning —so called case-based learning—since the program takes ad-
vantage of the experience given as a set of instances solved in the past. It is
incremental learning because new examples can be easily inserted into the train-

ing set.

5.4 Machine learning approach

In order to exploit the information in the training set as much as possible and to
find some more rules for functor assignment, I decided to apply a ML approach.
I have to emphasize that this would not have been possible without the help of
Saso Dzeroski from the Jozef Stefan Institute? in Ljubljana.

We applied Quinlan’s ML system C4.5. Speaking in terms defined in Sec-
tion 2.3, C4.5 can be described as inductive, symbolic, supervised, multiple con-
cept, non-incremental, TDIDT (Top Down Induction of Decision Trees) ML sys-
tem. In other words, it takes a training set with known classification (i.e., with
known functors) as an input and yields a decision tree as an output. C4.5 can also
prune the tree in order to obtain simpler and more general rules; it also evaluates

the quality of such a tree on a testing set.

4http://www.ijs.si/ijs

42 CHAPTER 5. COMPONENTS OF THE AFA SYSTEM

Having obtained the decision tree, I pruned it once more by hand in order
to eliminate the leaves of the tree for which the expected precision is lower than

80 %. This is the reason for the identifier of this method being m180.

5.5 Alternative and complementary approaches

In this section, several additional approaches to the AFA task will be outlined.
For various reasons that will be given below, these other approaches have not been
implemented in the present AFA system. Therefore, they will not be mentioned
in the following two chapters any more. However, some of them could contribute
to the quality of a future AFA system, either as an alternative stand-alone system

or as an extension of the presented one. This is the reason why I discuss them.

5.5.1 Neural network

My first proposal (from September 1999) for solving the problem of the AFA was
based on (Artificial) Neural Networks (NN, [MR-91]). A rough schema of such a
system is depicted in Figure 5.1.

After feature selection from a TGTS, the selected information is encoded into a
numerical vector, which is an input of a backpropagation NN with one inner layer.
In the last layer, each neuron is related to one functor. The resulting functor
corresponds to the neuron in the output layer with the highest output value.

The weights w1 ; and wp j can be estimated from the training data (supervised
learning) by a method of backpropagation learning.

This approach was not implemented because of the following problems the
implementation would have involved. Firstly, NNs can perform well especially in
applications where the topology of the input data space is clear and where the
notion of distance makes sense. Unfortunately this is not the case for the TGTSs;
all the input data for the AFA system are symbolic (non-numerical). For example,
it would be difficult to define distance within a set of lexical entries (within the
set of adverbs, etc.). Therefore the translation of the symbolic features into a
numerical form is not trivial. Secondly, the well-known black-box behaviour of
NNs could cause difficulties when we would try to make use of any background

knowledge (rules, etc.).

5.5. ALTERNATIVE AND COMPLEMENTARY APPROACHES 43

‘ feature selection ‘

4

‘ feature encoding ‘

R, + %
o .0

B T
S~

.“Aorl i o l‘WHEN

resulting

‘ argmax { yp} ‘ 7 functor

Figure 5.1: Sketch of a AFA system based on the backpropagation neural network.

5.5.2 EuroWordNet

The performance of the dictionary-based methods is naturally limited by the
amount of lexical entries in the dictionaries. One of the linguistic resources, which
one could use to improve the coverage of the dictionaries, is EuroWordNet?®.

EuroWordNet is a multilingual database with wordnets for several European
languages (Dutch, Italian, Spanish, German, French, Czech and Estonian). The
wordnets are structured in the same way as the American wordnet for English
(Princeton WordNet) in terms of synsets (sets of synonymous words) with basic
semantic relations between them. Among other relations, synonymy, hypernymy
(relation to a more general word) and hyponymy (relation to a more specific word)
are captured.

A basic idea of the data contained in a wordnet can be obtained from Figure
5.2, where the response of the Princeton WordNet® to the query about hypernyms
of the word forest is depicted.

The basic version of the Czech WordNet can be bought from ELRA/ELDAT,

Shttp://www.hum.uva.nl/~ewn
Shttp://www.cogsci.princeton.edu/cgi-bin/webun
"European Language Resources Association (ELRA), European Language resources Distribu-

44 CHAPTER 5. COMPONENTS OF THE AFA SYSTEM

2 senses of forest

Sense 1
forest, wood, woods -- (the trees and other plants in a large densely wooded area)
=> vegetation, flora -- (all the plant life in a particular region)
=> collection, aggregation, accumulation, assemblage -- (several things grouped together)

=> group, grouping -- (any number of entities (members) considered as a unit)

Sense 2
forest, woodland, timberland, timber -- (land that is covered with trees and shrubs)
=> land, dry land, earth, ground, solid ground, terra firma -- (the solid part of the
earth’s surface; "the plane turned away from the sea and moved back over land";
"the earth shook for several minutes"; "he dropped the logs on the ground")
=> object, physical object -- (a physical (tangible and visible) entity; "it was
full of rackets, balls and other objects")

=> entity, something -- (anything having existence (living or nonliving))

Figure 5.2: WordNet 1.6 results for “Hypernyms (this is a kind of...)” search of

noun “forest”.

The number of lexical units in it is naturally much smaller in comparison with its
older and bigger English cousin. The development continues further at the De-
partment of Information Technologies, Faculty of Informatics, Masaryk University,

Brno.

FEuroWordNet could be used in the AFA system for example as follows. The
dictionary of the method prepnoun (triples preposition-noun-functor) would be
manually enriched with more general entries like {v (case=locative), fyzicky ob-
jekt, LOC} ({in, physical object, LOC}). When assigning functors, all the hy-
ponyms of the term “physical object” which are preceded by the preposition “v”
could be assigned the functor LOC (spatial circumstancial). Thus also some pre-

viously unseen words could be assigned, e.g., “v lese” (in the forest).

This approach has not been implemented yet due to technical difficulties. The
EuroWordnet database is distributed with a browser of the database, but not with
a suitable interface for other programs that would enable automatic access to the

the data.

tion Agency (ELDA), http://www.icp.grenet.ft/ELRA/home.html

5.5. ALTERNATIVE AND COMPLEMENTARY APPROACHES 45

5.5.3 Matching Algorithm

Before the conception of the AFA system could get sharper contours, it was nec-
essary to get a feeling for the real content of the data at the tectogrammatical
level. This is why I took a sample of 20 tectogrammatical trees and I studied it
carefully. I performed manual measurements of selected phenomenona, e.g., the
distribution of nodes with respect to part-of-speech, the amount of nodes directly
dependent on a verb node, the relative frequency of individual functors etc.

Having observed these characteristics of the data, I was able to estimate the
trivial lower bound of the precision to be at least 40 % for the case when only very
simple methods would be used. This was rather optimistic and encouraging news.

However, the aim of my thesis project was to reach at least the level of 70 %
precision. For these purposes, I designed the following three-phase matching algo-
rithm (Figure 5.3):

1. Expected Roles: in the first phase each non-root node generates (using all
available information about itself) a set of possible functors—i.e., it suggests
the possible tectogrammatical roles for itself. Each generated functor should
be enriched by a weight which enables an ordering of these functors with
respect to their frequency of occurence. For example, a node with the adverb
“naopak” (on the contrary) generates only one functor (PREC) with the

maximum weight, since it can play no other role.

2. Ezpected Offsprings: in the second phase each non-leaf node generates a
set of functors which can possibly depend on this node, again accompanied
by weights. Moreover, some requirements about the dependent node can
be added. For instance, the verb “zamilovat se” (to fall in love) requires
the functor PAT to be tied with the preposition “do” (to fall in love with
somebody).

It is important to note that more than one set of functors can be generated.

This is the case of verbs which have more than one valency frame.

3. Matching: in the third phase, each non-leaf node matches its expectations
against the possible roles of its offsprings. The aim is to saturate as many
expected roles as possible and to fulfill all the requirements. When there are

more possibilities of coupling, we prefer the one with the highest weight.

46 CHAPTER 5. COMPONENTS OF THE AFA SYSTEM

O
expected
offsprings O O
H matching level
1 Ll expected
O @ ® roles
O O

Figure 5.3: Matching algorithm.

For nouns, adjectives, pronouns, numerals, adverbs and verbs, I considered
what their behaviour would be in each phase of the algorithm. I paid special
attention to verbs, trying to profit from the concept of valency frames as it is for-
mulated in FGD [Panev—80], or in a different form as L-valency frames in [Pala—99].

Though this approach seemed promising and it would have enabled a unifying
solution of the problem of automatic functor assignment, I never implemented
it. With respect to the uncertainity of the result, I found the amount of nec-
essary work inadequate. I expected difficulties especially with the initial tuning
of weights, the definition and implementation of the semantic distance function,
incorporating the lexicon of valency frames, etc. Later, I decided to concentrate
rather on implementing and testing a number of small specialized modules. This

proved to be a more efficient way to do the job.

5.5.4 Valency frames of verbs

The term valency is in this context related to the ability of a word (especially a
verb, but also a noun or an adjective) to “bind” other words.

One way of formulating, what a verb valency frame is, is as follows. The valency
frame of a verb contains the arguments (obligatory or optional) it combines with,
actants and/or free modifiers. For instance, the valency frame of the verb otevrit
(to open) contains an Actant and a Patient. Every verb has at least one valency

frame, though it can be empty (prset/to rain).

5.5. ALTERNATIVE AND COMPLEMENTARY APPROACHES 47

For the purposes of the AFA, Karel Pala provided me with a valency dictionary
of about 4400 of the most frequently occurring Czech verbs. In Figure 5.4 a sample
from the dictionary is shown. Note that nominative arguments are not contained

in this dictionary.

zadivat se do n&koho(2)
zadivat se do n&ceho
zadivat se na n&koho(4)
zadivat se na né&co
dohlédnout na n&koho (4)
dohlédnout na né&co
dohlédnout né&ceho
zlevnit né&co

zlevnit se v né&cem
evokovat né&co
konzumovat né&co
nastfelit né&koho(4)
nastfelit né&koho(4) n&&im

nast¥elit néco

nast¥elit néco né&cim

Figure 5.4: A sample from the dictionary of verb valency frames.

My hypothesis was as follows. If the verbs could be automatically classified
into less than 100 classes with respect to their valency frames, then it could be
possible to manually complete these classes with functors and thus all these verbs
would have their valency frames equipped with functors (the total number of all
frames in this dictionary is about 28000, therefore it was not realistic to manually
supply all the arguments in all the frames with their functors).

First, I preprocessed the dictionary. For each verb, I merged all its valency
frames from the original list into a single frame. For example, there are four frames
for the verb prepadnout in the original list: pfepadnout nékoho(4), pfepadnout
nékoho(4) v nétem, piepadnout do néceho, prepadnout pies néco. The result-

ing union of the frames is prepadnout nékoho(4) v nééem do néceho pres néco.b.

81 am aware of the fact that after this step the alternative (mutually exluding) arguments of a
verb may appear in one frame. However, I did not find any other automatic way to considerably

reduce the number of frames per verb.

48 CHAPTER 5. COMPONENTS OF THE AFA SYSTEM

Next, the differences between animate and inanimate arguments were disregarded.
For instance, both nékomu and nééemu (animate and inanimate in the dative
case) were rewritten to #3. Prepositional cases were substituted by the respec-
tive preposition followed by an underscore and the case expressed as a number,
e.g., v néfem was rewritten as v_6. Only the 15 most frequent prepositional and
direct cases were processed (#4, #7, v 6, #3, na 4, do2, na 6, z 2, k.3,
s.7, po6, #2, za 4, u2, od_2), all the remaining were ignored. A sample

from the preprocessed dictionary is shown in Figure 5.5.

koordinovat #4 s 7
kopat #4 #7 do 2 za 4
kopnout #4 #7 do_2
kopirovat #4 od 2 z 2
korespondovat #3 0.6 s_7
korespondovat si s_.7
korigovat #4 #7 v_6
korunovat #4 #7 na 4 za 4
koukat #3 na 4 po 6 z.2
koukat se do_2 na_4 po6 z.2
kouknout do_2 na 4 po6 z2
koupat #4 v 6

Figure 5.5: A sample from the preprocessed verb valency dictionary.

Having this material in hand, I tested two methods of classification: binary
classification tree and equivalence classes, which I discuss below.

Binary classification tree (top-down clustering). The set of all verbs was
recursively divided into two parts according to occurence/non-occurrence of a
selected prepositional or direct case. The case was chosen such that the difference
in the sizes of the two created sets was minimal. Thus the resulting tree was
as balanced as possible with respect to the weights of leaves, the weights being
expressed as the number of verbs in the corresponding class. The lower bound for
the size of a class was 20.

The binary classification tree was automatically induced from the dictionary
described above; for this, I wrote a Perl program. All the verbs were classified

into 76 classes. A fragment from the classification tree is depicted in Figure 5.6.

5.5. ALTERNATIVE AND COMPLEMENTARY APPROACHES 49

978 #3 1658 #3 648, na_ 6 1082 na_4

&

..
d

Class No. 43 (69 verbs) Class No. 44 (26 verbs)
prochazet se, rozirhnout se, spdlit se hospodarit, prospivat, svitit

Figure 5.6: Binary classification tree of verbs with respect to their valency frames.
In each non-leaf node, the number of verbs in the subtree and selected prepositional
or direct case are inscribed. Left subtree contains always verbs that have this case
in their valency frames, right subtree contains the rest. The leaf nodes represent

the resulting classes.

Equivalence classes. An equivalence relation (symmetric, reflexive, transi-
tive) on the set of verbs can be defined via the preprocessed valency dictionary:
two verbs are “equivalent” if they have the same (preprocessed) valency frame.
This equivalence relation entails a partitioning of the set verbs into the equivalence
classes, i.e., all the verbs in one class have the same (preprocessed) valency frame.
For example, one of the equivalence classes contains the verbs with valency frames
containing only an object in the accousative case (okupovat #4/occupy, pochopit
#4/understand, prozkoumat #4/explore...). The ten largest equivalence classes

are in Appendix D.

The latter classification method seemed more promising, that is why I con-
sulted it with Jarmila Panevovd. According to her opinion, out of the 50 largest

equivalence classes, only 4 can be uniquely assigned with functors. The conclusion

50 CHAPTER 5. COMPONENTS OF THE AFA SYSTEM

from this experiment is that none of these classifications helps to assign functors
to the verb valency frames. It is very likely that there is no other than manual
(or semiautomatic) way to do it.

In the second experiment I concentrated only on the valencies typically realized
by nouns in the genitive case tied with prepositions z (from) and do (into, till). In
the valency dictionary, 1428 verbs with at least one of these valencies were found.
The hypothesis is that they should mostly represent functors DIR1, resp. DIR3.
From this set, I manually removed 114 verbs for which the hypothesis does not
hold. (e.g., “zamilovat se do nékoho”/“to fall in love with somebody” does not
engage a directional modifier). I collected the remaining verbs into a dictionary of
“directional-verbs”. This dictionary was used in a new AFA module. This module
assigned all nouns in the genitive case, which were dependent on a verb from the
directional-verbs dictionary and which were accompanied by the preposition z
(resp. do), with the functor DIR1 (resp. DIR3). I tested it on the union of the
training and testing sets. After automatically removing a few nouns of clearly
“non-directional” meaning (e.g., “rok”/ “year”), 71 z/do remained genitives to be
assigned. Using the directional-verbs dictionary, 49 functors were assigned, 43 of
them correctly (precision 88 %, recall 0.6 %).

This approach was not incorporated into the presented version of the AFA
system since the recall is too low. However, the potential of valency-based methods
goes far beyond the processing of these two prepositions. Unfortunately, for the
further development of the valency-based methods, adding functors into the verb

valency dictionary manually seems to be inevitable.

5.5.5 Categorial grammar

The term Categorial Grammar (CG, cf. [Steedman-98] for a brief overview) names
a group of theories of natural language syntax and semantics in which the main re-
sponsibility is borne by the lexicon. This is an alternative approach to Chomsky’s
Context-free Grammar. The lexicon associates a functional type or category with
all grammatical entities. The category associated with a word captures (among
others) two things: what are the categories of the words that are expected on the
left- and right-hand side of the respective word and what is the resulting type of

the whole after the saturation of these expectations. For example, the category of

5.5. ALTERNATIVE AND COMPLEMENTARY APPROACHES 51

the word “likes” is (S\NP)/NP, since one noun phrase is required on the left-hand
side (subject) and another on the right-hand side (object).

Very recently I have realized that the idea of the Matching Algorithm bears a
slight resemblance with the main principle of CG: instead of cutting the sentence
into phrases, a lexical element “generates” its expectations about its neighbour-
hood within the sentence and the expectations of the neighbouring elements have
to meet each other.

The symbiosis of categories and a dependency approach based on the Prague
School of Linguistics has been elaborated in the framework of Dependency Gram-
mar Logic by Geert-Jan Kruijff (a introduction to DGL can be found in [Kruijff-99]
or in [Kruijff-01]). This formalism is “tailored” for FGD and therefore is ready
to be tested on the PDT data. The task of the AFA could be one of the possible
applications of DGL.

52

CHAPTER 5. COMPONENTS OF THE AFA SYSTEM

Chapter 6

Implementation Details

6.1 Interface to the fs format

The files containing the tectogrammatical tree structures are saved in the so called
fs format. This format was designed together with a general graph editor by Michal
Kien ([Kfen-96]). This editor provides a graphical user interface for comfortable
work with graph structures (under MS Windows). In the PDT project, it is used
for manual modifications of the trees (including, e.g., functor annotation) both on
the analytical and the tectogrammatical level.

When trying to automatically assign functors, I need access to the contents
of the fs files. For this purpose, I use an interface written by Petr Pajas which is

composed of two parts:

e foreach.pl is a Perl script that reads another Perl script from standard
input and executes it for every node of every tree in the file; it enables to

read/write values of all attributes attached to a node,

e hrany2.fsp extracts for each node 15 attributes (as described in Section

4.5) and writes them to the standard output.

The training set (and similarly the testing set as well), i.e., the 6049 training

vectors, can be saved into the file train.txt by executing the following pipeline:!
> foreach.pl ~/FUNKTORY/VstupniData/Train/*.fs <hrany2.fsp >train.txt

A piece of the output file is in Fig. 4.5 on page 34.

'The components of the AFA system were developed under the Linux environment.

53

o4 CHAPTER 6. IMPLEMENTATION DETAILS

6.2 Perl assigners

Following the common design practice of modularity, I prefered to compose the
AFA system of a number of small Perl programs (“assigners”). Each assigns only
some functors, and above all, each can be developed and tested independently on
the remaining ones. Each method described in Chapter 5 has its own assigner.
In order to be able to glue all the modules together later, I formulated the

following mandatory rules for the assigners:

1. The input data are to be read from the standard input, each line correspond-
ing to one vector, the 15 columns are separated by tabulator. The columns

are ordered in the same way as in the list on page 4.5.

2. If an assigner can “guess” what the correct functor is, then it attaches the
functor into the 16th column and the assigner’s “signature” starting with
the “&” into the 17th column; the line with these 17 columns is written to

the standard output.

3. If an input line is already assigned, then the line is copied to the standard

output without any change, i.e., once assigned functor is never overwritten.

4. If an input line is not assigned yet and the assigner cannot assign the functor,

then the line is copied without any change.

This stategy brings several advantages. First, by reordering the assigners (sim-
ply by changing their order in the pipeline, without changing any single line of
Perl code) in such a way that the assigners with a higher precision are applied
first, the overall precision is improved. Second, it is easy to add a new assigner,
or to remove an assigner, e.g., one with low precision. Third, we can monitor not
only the performance of the whole system, but also the performance of individual
assigners separately.

All the assigners have one common template, only the subscribing string and
the decision part (lines, where the functor is computed) are varying. The following

assigner corresponds to the rule-based method verbs_active:

#!/usr/bin/perl

$subscribe="verbs_active";

6.2. PERL ASSIGNERS 55

while (<>)
{
if (m/&/)
{ print }
else {
$functor="";
chop;

@_=split("\t");

- DECISION PART - BEGINNING
if ((@_[4]1="m/"v["s]/) &% # is the governing node a verb in active form and

(@_[12] eq "")) # is the given node tied without preposition nor conjunction?

{
if (@_[13] eq "sb") {$functor="act"}
elsif (@_[13] eq "obj")
{
if (@_[11] eq 3) {$functor="addr"}
elsif (@_[11] eq 4) {$functor="pat"}
}
}
fmmmmmmm e DECISION PART - END

if ($functor eq "") {print "$_\n" }
else {print "$_\t$functor\t\&$subscribe\n"}
}

In the case of a dictionary-based method, the dictionary has to be loaded into
an associative array first. In the decision part, the lexical value is searched in the

associative array:

- DECISION PART - BEGINNING
if (@_[10] eq "d") # is it an adverb?
{
$functor=$adverbs{@_[8]}
}
o DECISION PART - END

In the nearest vector assigner (signature similarity), the whole training set

56 CHAPTER 6. IMPLEMENTATION DETAILS

is loaded into the array called pole. The similarity function is implemented in the

decision part and the nearest vector is found:

#-—— DECISION PART - BEGINNING
$max=0;
for ($i=0;$i<=$count;$i++)
{
$weight=0;
@tr=split(/:/,$pole[$il);

if (@_[8] eq @tr[8]) {$weight+=15; }; #lower lemma

if (@_[9] eq @tr[9]) {$weight+=18}; #lower tag

if (@_[11] eq @tr[11]) {$weight+=60}; #lower case

if (e_[10] eq @tr[10]) {$weight+=49}; #lower PoS

if (@_[13] eq @tr[13]) {$weight+=50}; #lower afun

if (@_[12] eq @tr[12]) {$weight+=60}; #preposition or conjunction
if (e_[6] eq @tr[6]) {$weight+=30}; #upper afun

if (@_[3] eq @tr[3]) {$weight+=10}; #upper lemma

if (@_[4] eq @tr[4]) {$weight+=12}; #upper tag

if (@_[5] eq @tr[5]) {$weight+=30}; #upper PoS

if ($weight>$max) {$max=$weight;$functor=0tr[14]1}

#ommmmm oo DECISION PART - END

6.3 Machine learning
The assigner based on machine learning was created in 5 steps:

1. Different feature selection and extraction; I restricted the set of attributes
which are in the input vectors for C4.5; I omitted attributes containing
word forms and lemmas of the governing and the dependent nodes (and,
of course, also the name of the source file and the ordinal number of the
sentence); instead of taking the whole morphological tags (as described on

page 15), only their prefixes were extracted.

2. Preparation of input files for the C4.5; a file containing the list of possible
values of all attributes, and files with training and testing set were trans-

6.3. MACHINE LEARNING 57

formed into a format required by the C4.5; this is a sample from the training
file:

n, n, adv, a, a, 0, null, atr, rstr.
vs, v, obj, n, n, 2, do, adv, dir3.

vp, v, pred, vs, v, 0, z_e, obj, pat.
znum, z, sb, dg, d, 0, null, auxz, ext.

n, n, atr, znum, z, 0, null, sb, rstr.

3. The C4.5 was applied on the prepared data.
4. The leaves with lower than 80 % expected precision were pruned.

5. The resulting decision tree was semi-automatically translated into Perl code.

A sample from the file with the learned decision tree in text representation is

depicted in Figure 6.1.

gov_pos = a: rstr (1.0/0.8)
gov_pos = j: pat (1.0/0.8)
gov_pos = n: rstr (21.0/8.0)
gov_pos = null: act (1.0/0.8)
gov_pos = z: act (19.0/5.9)

gov_pos = V!

vp: act (463.0/25.9)
vr: act (133.0/12.9)
vs: pat (28.0/8.2) *

| gov_morph

|

|

| gov_morph = vf:
|

|

|

gov_morph

gov_morph

| dep_case = 0: pat (2.0/1.0)
| dep_case = 1: act (6.0/3.3)
| dep_case = 4: pat (1.0/0.8)

Figure 6.1: A sample from the file with the text representation of the learned

decision tree.

It is interesting to observe that the machine learning approach learns also some

rules which are part of the manual for annotators [Manual2]. For instance, the

58 CHAPTER 6. IMPLEMENTATION DETAILS

line in Figure 6.1 that is marked with an asterisk corresponds to the following
rule from the manual: if a subject is dependent on a verb in the passive voice,
then its functor is PAT. This observation proves that the C4.5 can really uncover
some simple rules that are valid in the training set. Besides those specified in the
manual, it also learns “new” regularities.

This is a fraction of the semiautomatically created Perl code of the assigner

m180 which corresponds to a part of sample in Figure 6.1.

if ($dep_afun eq "sb") {
if ($gov_pos eq "v") {
if ($gov_morph eq "vp") {$functor="act"};
if ($gov_morph eq "vr") {$functor="act"};
I3

If the analytical function of a node is Subject and its governing node is a verb
in the active voice, then this code assigns the functor ACT to the dependent node.
6.4 Auxiliary tools

It proved to be very useful to have a few tools for exploring the automatically
assigned data (i.e., the stream of rows with 17 columns). I mention only a few of

them:

e correct.pl and incorrect.pl, Perl filters extract either the correctly or

incorretly assigned lines,

e assigned.sh and unassigned. sh, shell filters extract either the lines where

the functor has been automatically assigned, or where it was not,

e stat.pl performs a statistic evaluation of the qualitative characteristics of

the performed functor assignment.

The tools can be further combined with shell commands, e.g., if I want to
know what are the most frequent misclassifications, I send the assigned data into

the following pipeline:

incorrect.pl | cut -f15,16 | sort | uniq -c | sort -nr | head

6.5. SQL QUERIES 59

and thus obtaine for example the following missclassifications and the number

of their occurences:

16 pat act
14 app pat

11 ev twhen
10 pat app

7 id rstr

This is useful for determining where the AFA system makes the most errors,

and thus where further improvements are needed.

6.5 SQL queries

Sometimes I employed the Simple Query Language (SQL), especially when it was
necessary to interconnect more files. For example, I had a file with a single list
containing only unambiguous adverbs and a file with two columns: adverbs (both
ambiguous and unambiguous) and functors. The task was to find a correct functor
for each unambiguous adverb, i.e., to construct the dictionary of adverbs as defined
in Section 5.2. For this, I transformed the files into the tables A11Adverbs and
UnambigAdverbs and executed the following query:

SELECT All_Adverbs.Word, All_Adverbs.Funktor
FROM Unambig_Adverbs
INNER JOIN All_Adverbs ON Unambig_Adverbs.Word = All_Adverbs.Word;

6.6 Gluing the components together

There are two possibilities where to store the assigned functors:

1. into the text file as the 16th column (as it was described in the Section 6.2);

this is used only for development and testing purposes,

2. directly into the original file in fs format; this is used for the automatic

pre-annotation of the files for annotators.

In the former case, all the data goes through a long pipeline, e.g., through the

following pipeline:

60 CHAPTER 6. IMPLEMENTATION DETAILS

| currently available TGTSs |

testing set

preprocessing

——»{" 45 }—»{ ML-based methad
7 rule-based methods

dictionary of adverbsl_;(adverbs)

dict. of subord.conj subcon)

training set

preposition-noun dict prepnoun

Motation:

|automat|ca\ly assigned testing aet|

Figure 6.2: The architecture of the whole AFA system.

> foreachn.pl <hrany.fsp VstupniData/Test/*.fs | cestinaOff |
ml80.pl | pred.pl | verbs_active.pl | verbs_passive.pl |
pnom.pl | adjectives.pl | numerals.pl | pronounposs.pl |

adverbs.pl | prepnoun.pl > test_result.txt

And this is a segment from the resulting text file (only a few last columns are
shown):

. reakce reakce nfsla n 1 sb act act &verbs_active
. napr_i_klad napr_i_klad db d 0 auxy rhem

. lon_ske_m lon_sky_ ais6la a 0 atr rstr rstr &adjectives

. Troce rok niséa n 6 v adv twhen

. dvana_cti dvana_ctl2 cbp2 c 2 mi_sto exd rstr rstr &numerals

. zaplatili zaplatit vrmpa v 0 pred pred pred &pred

The architecture of the whole AFA system is shown in Figure 6.2. It depicts
how the available data—after being split into the training and testing set—go
through the system. The training set is used for the extraction of the dictionaries
and for machine learning (C4.5). The testing set then goes through the sequence
of modules (assigners) in which the functors are automatically assigned.

Taking advantage of the pipeline-fashioned execution of the assigners, I could
examine many different permutations of the assigners—as it is discussed in the
following chapter—without any additional effort.

For the automatic pre-annotation, the interface foreachn.pl is used. In the
following example, the complete AFA system is applied on the file bcb21trz.fs

and the functors are assigned in it:

6.7. FURTHER EXTENSIONS 61

“a15
SENT
bt
PRED
proto a 1a
PREC PAT S

GEMN “seznamit_se pfedchazet
ACT ACT
prakiika wiastng preventivng metoda
Y ATT P ADDR
eho Moz firma
APP RSTR e
konkurendni
R=TR

Figure 6.3: Tectogrammatical tree with automatically assigned functors.

> foreachn.pl <afa.fsp bcb2ltrz.fs

In the Perl program afa.fsp, a text line with 15 columns is generated for each
node and sent into the pipeline of assigners. Then the 16th column is isolated
(cut -f16) and the resulting functor is assigned to the appropriate attribute of
the node. An example of an automatically annotated tectogrammatical tree is in

Figure 6.3.

6.7 Further extensions

Since the presented AFA system has a very transparent architecture, it remains
open for future improvements and extensions. The only condition for a new as-
signer is that it must fulfill the modularity requirements formulated at the begin-
ning of section 6.2. Then it can be easily inserted into the pipeline of assigners,
either directly in the command line (for testing purposes) or in the file afa.fsp

(for the direct automatic annotation of a fs-file).

62

CHAPTER 6. IMPLEMENTATION DETAILS

Chapter 7

Experiments and Results

7.1 How to measure AFA’s performance

With respect to the “quality” of the individual methods of the AFA system, instead
of being directly comparable (i.e., lying along one dimension), the methods should
be rather placed into a two-dimensional space. The first coordinate corresponds
to precision (it grows with minimization of the number of errors) and the other
reflects recall (it grows with maximization of the number of correctly assigned
functors). As it will be shown later, these two properties tend to be in opposition.*
In order to have a complete view on the AFA’s qualitative characteristics, I

measured several quantities for each assigner:
e (Cover = the number of all nodes assigned by the given method

e Relative cover = cover divided by number of all functors to be assigned (1089
in the training set). This number also reflects the frequency of particular

phenomenona (e.g., occurrences of possessive pronouns).
e FErrors = the number of incorrectly assigned functors
e Hits = the number of correctly assigned functors

e Recall = the percentage of correct functor assignments by the given method
among all the functors to be assigned (hit/1089-100%)

e Precision = the percentage of correct functor assignments by the given

method among all functors assigned by this method (hits/cover-100%)

! Distinguisting between precision and recall is the standard way to describe the results which
are —because of the complexity of the problem or imperfection of the solution—both incomplete

and inconsistent, e.g., in [Baldwin-97].

63

64 CHAPTER 7. EXPERIMENTS AND RESULTS

All the measurements of the qualitative characteristics of AFA’s components
were evaluated exclusively using the tool stat.pl which is joined to the end of

the pipeline of assigners. For example, after execution the command line

> foreachn.pl <hrany.fsp VstupniData/Test/*.fs | m180.pl |
pred.pl | verbs_active.pl | verbs_passive.pl | pnom.pl |
adjectives.pl | numerals.pl | pronounposs.pl | adverbs.pl |

prepnoun.pl | stat.pl

we obtain the following evaluation:

Number of lines: 1089 (100%)

Method #Cover #Hits #Errors Precision
ml180 406 (37.28 %) 384 (35.26 %) 22 (2.02 %) 94.58 %,
adjectives 175 (16.06 %) 170 (15.61 %) 5 (0.45 %) 97.14 %
pronounpos 16 (1.46 %) 13 (1.19 %) 3 (0.27 B 81.25 ¥%
prepnoun 8 (0.73 N 8 (0.73 %) 0 (W 100 %
numerals 19 (1.74 % 13 (1.19 %) 6 (0.55 %) 68.42 9,
adverbs 28 (2.57 %) 24 (2.20 %) 4 (0.36 %) 85.71 %
pred 4 (0.36 %) 4 (0.36 %) 0 (0% 100 %
verbs_passive 7 (0.64 %) 6 (0.55 %) 1 (0.09 %) 85.71 %
verbs_active 21 (1.92 %) 18 (1.65 %) 3 (0.27 %) 85.71 %

684 (62.80 %) 640 (58.76 %) 44 (4.04 %) 93.56 %

The first column contains the names of the assigners. In the second, third,
and fourth columns, the numbers of occurrences are followed by the percentages
in brackets; each percentage is expressed with respect to the number of all func-
tors to be assigned, i.e., to the number of lines in the measured file. Obviously,
these percentages are related to a different base than in the case of the precision

calculation.

The evaluating script stat.pl is the exclusive source of the data discussed in

this chapter.

7.2. EVALUATION OF EXPERIMENTS 65

7.2 Evaluation of experiments

Applying all the assigners available in the AFA system needn’t necessarily be
the most suitable solution for the purpose of automatic preprocessing during the
transition from analytic to tectogrammatical structures in the PDT project, since
the overall precision can be inacceptably low. Therefore, I needed to decide which
assigners should be incorporated in the final AFA system.

The second question is in what order the assigners should be executed. When
the covers (the sets of assigned functors) of individual assigners partly overlap
each other, the assigners with the higher precision should be applied first. In such
case, the order can play a very important role for the combined precision.

In order to be able to compose the optimal AFA configuration, I performed
several measurements on different sequences of assigners. The results are in Tables
7.1-7.8, in which the assigners are presented in the same order in which they were
executed. In each table, the quantitative characteristics described in the previous
section are evaluated for each assigner separately as well as for the whole sequence
of assigners. Let me remind, that the size of the training set is 6049 vectors and
the size of the testing set is 1089 vectors.

The following measurements have been performed:

e Only the rule-based methods (RBMs) were applied on the testing set (Table
7.1); rel.cover=>51.2%, prec.=93.9%.

e Since the RBMs are not directly dependent on the training set, they can and
were applied also on the training set (Table 7.2); rel.cover=49 %,

prec.=92.5%.

e Only the dictionary-based methods (DBMs) were applied on the testing set
(Table 7.3); rel.cover=4.2%, prec.=89%.

e Both RBMs and DBMs were applied on the testing set (Table 7.4);
rel.cover=>55.5%, prec.=93.5%.

e Only the method m180 which is based on the machine learning was applied
on the testing set (Table 7.5); rel.cover=37.2%, prec.=94.6%.

e Only the method similarity which is based on the nearest neigbour ap-

proach was applied on the testing set (Table 7.6); rel.cover=100%, prec.=73%.

66 CHAPTER 7. EXPERIMENTS AND RESULTS
e The RBMs, DBMs, and m1 80 were applied on the testing set (Table 7.7);
rel.cover=63%, prec.=93.4%.

e The m1 80, RBMs, and DBMs (Table 7.8) were applied on the testing set;
rel.cover=63%, prec.=93.4%.

e All the available methods have been applied on the testing set in the order
ml180 , RBMs, DBMs, similarity (Table 7.9); rel.cover=100%, prec.=78.6%.

Method Cover | Rel. cover Hits Recall | Errors | Precision
pred 104 9.6 % 104 9.6 % 0 100 %
verbs_active 199 18.3 % 184 16.9 % 15 92.5 %
verbs_passive 7 0.6 % 6 0.6 % 1 85.7 %
pnom 34 3.1 % 32 29 % 2 94.1 %
adjectives 177 16.2 % 170 15.6 % 7 96.0 %
numerals 21 1.9 % 15 1.4 % 6 71.4 %
pronounpos 16 1.5 % 13 1.2 % 3 81.3 %
Total X558 | X51.2% | X524 | X481 % 3. 34 93.9 %

Table 7.1: Evaluation of the performance of the rule-based methods, when applied

on the testing set.

In the remainder of this section I will point out a few facts that can be derived
from the measured data.

The rule-based methods are not directly derived from the training set, that
is why I could have applied them on the training set as well. So Tables 7.1 and
7.2 describe the performance of the same sequence of assigners on the two disjoint
sets of data. The results achieved on the testing and training set are quite similar:
relative recall is 51.2 % or 49 %, precision is 93.9 % or 92.5 %. This observation
supports the conjecture that the performance of the rule-based method should not
be drastically lower for any other PDT data.

Tables 7.7 and 7.8 show the performance of two sequences which contain the
same assigners but in a different order (RBMs, DBMs and m180 versus m180,
RBMs, DBMs). The coverage of the respective families of methods is depicted in
Figure 7.1. Surprisingly, the overall precision (93.4 %) and recall (63 %) of these

7.2. EVALUATION OF EXPERIMENTS 67

Method Cover | Rel. cover Hits Recall | Errors | Precision
pred 574 9.5 % 554 9.2 % 20 96.5 %
verbs_active 973 16.1 % 907 15.0 % 66 93.2 %
verbs_passive 34 0.6 % 27 0.4 % 7 79.4 %
pnom 164 2.7 % 152 2.5 % 12 92.7 %
adjectives 1063 17.6 % 976 16.1 % 87 91.8 %
numerals 92 1.5 % 66 1.1 % 26 1.7 %
pronounpos 64 1.1 % 61 1.0 % 3 95.3 %
Total ¥2964 | X 49.0% | X 2743 | ¥ 45.3 % | X 221 92.5 %

Table 7.2: Evaluation of the performance of the rule-based methods, when applied

on the training set.

Method Cover | Rel. cover | Hits Recall | Errors | Precision
prepnoun 9 0.8 % 9 0.8 % 0 100 %
adverbs 34 3.1 % 30 2.8 % 4 88.2 %
subconj 3 0.3 % 2 0.2 % 1 66.7 %
Total 3 46 42% | X241 | £38% 512891 %

Table 7.3: Evaluation of the performance of the dictionary-based methods, when

applied on the testing set.

two sequences do not differ. This implies that in the intersection of the coverage
of m180 and RBMs the (hand-written) rules achieve the same performance as the
method based on machine learning. It can be a coincidence, but it is more likely
that if the system C4.5 discovers a rule which has the same premise as one of the

hand-written rules, then they have the same resulting functor too.

On the basis of a comparison of tables 7.4 and 7.7 we can conclude that the

contribution of machine learning approach to the overall recall is 7 %.

One more interesting observation comes from the comparison of tables 7.5 and
7.9. If we employ the nearest vector approach (similarity) alone first, and then
add the rule-based, dictionary-based and ML-based approaches, the improvement
of precision is only 5.6 % (recall does not change, it is 100 % in both cases). This

68 CHAPTER 7. EXPERIMENTS AND RESULTS

Method Cover | Rel. cover Hits Recall | Errors | Precision
pred 104 9.6 % 104 9.6 % 0 100 %
verbs_active 199 18.3 % 184 16.9 % 15 92.5 %
verbs_passive 7 0.6 % 6 0.6 % 1 85.7 %
pnom 34 3.1 % 32 2.9 % 2 94.1 %
adjectives 177 16.3 % 170 15.6 % 7 96.0 %
numerals 21 1.9 % 15 1.4 % 6 71.4 %
pronounpos 16 1.5 % 13 1.2 % 3 81.3 %
prepnoun 9 0.8 % 9 0.8 % 0 100 %
adverbs 34 3.1 % 30 2.8 % 4 88.2 %
subconj 3 0.3 % 2 0.2 % 1 66.7 %
Total 2604 | X55.5% | X565 | X51.9% Y39 | X93.6%

Table 7.4: Evaluation of the performance of the rule-based and dictionary-based

methods, when applied on the testing set.

Method | Cover | Rel. cover Hits Recall | Errors | Precision
ml80 406 37.3 % 384 35.3 % 22 94.6 %
Total Y406 | 373% | X384 | 353 % 2212946 %

Table 7.5: Evaluation of the performance of m180 (the method based on machine

learning), when applied on the testing set.

Method Cover | Rel. cover Hits Recall | Errors | Precision
similarity 1089 100 % 796 73.0 % 293 73.0 %
Total > 1089 100% | 2796 | X73.0% | 293 | ¥ 73.0%

Table 7.6: Evaluation of the performance of similarity (the method based on

the nearest vector approach), when applied on the testing set.

shows that the weights in the implementation of similarity were tuned well.
But in contrast to the single method with 100 % coverage, the existence of the

spectrum of methods enables to choose a compromise between precision and recall,

7.2. EVALUATION OF EXPERIMENTS 69

Method Cover | Rel. cover Hits Recall | Errors | Precision
pred 104 9.6 % 104 9.6 % 0 100 %
verbs_active 199 18.3 % 184 16.9 % 15 92.5 %
verbs_passive 7 0.6 % 6 0.6 % 1 85.8 %
pnom 34 3.1 % 32 2.9 % 2 94.1 %
adjectives 177 16.3 % 170 15.6 % 7 96.0 %
numerals 21 1.9 % 15 1.4 % 6 71.4 %
pronounpos 16 1.5 % 13 1.2 % 3 81.3 %
prepnoun 9 0.8 % 9 0.8 % 0 100 %
adverbs 34 3.1 % 30 2.8 % 4 88.2 %
subconj 3 0.3 % 2 0.2 % 1 66.7 %
ml80 82 7.5 % 76 7.0 % 6 92.7 %
Total Y686 | X63.0% | X 641 | X 58.9 % Y45 | X 93.4 %

Table 7.7: Evaluation of the performance of the sequence RBMs, DBMs, and m180,
when applied on the testing set.

Method Cover | Rel. cover Hits Recall | Errors | Precision
ml80 406 37.3 % 384 35.3 % 22 94.6 %
pred 4 0.4 % 4 0.4 % 0 100 %
verbs_active 21 1.9 % 18 1.7 % 3 85.7 %
verbs_passive 7 0.6 % 6 0.6 % 1 85.7 %
adjectives 175 16.1 % 170 15.6 % 5 97.1 %
numerals 19 1.7 % 13 1.2 % 6 68.4 %
pronounpos 16 1.4 % 13 1.2 % 3 81.3 %
prepnoun 8 0.7 % 8 0.7 % 0 100 %
adverbs 28 2.6 % 24 2.2 % 4 85.7 %
subconj 2 0.2 % 1 0.1 % 1 50 %
Total Y686 | X63.0% | X641 | X 58.9 % > 45 93.4 %

Table 7.8: Evaluation of the performance of the sequence m180, RBMs, and DBMs,
when applied on the testing set.

70 CHAPTER 7. EXPERIMENTS AND RESULTS

unassigned

Figure 7.1: Comparison of the covers of individual families of methods for the
sequence machine learning, rule-based methods, dictionary based methods. The
outermost rectangle depicts the set of all functors to be assigned in the testing

set.

as it will be shown in the next section.

RBMs and m180 ignore lexical attributes of the nodes (word form, lemma),

Method Cover | Rel. cover Hits Recall | Errors | Precision
ml80 406 37.3 % 384 35.3 % 22 94.6 %
pred 4 0.4 % 4 0.4 % 0| 100 %
verbs_active 21 1.9 % 18 1.7 % 3 85.7 %
verbs_passive 7 0.6 % 6 0.6 % 1 85.7 %
adjectives 175 16.0 % 170 15.6 % 5 97.1 %
numerals 19 1.7 % 13 1.2 % 6 68.4 %
pronounpos 16 1.5 % 13 1.2 % 3 81.3 %
prepnoun 8 0.7 % 8 0.7 % 0 100 %
adverbs 28 2.6 % 24 2.2 % 4 85.7 %
subconj 2 0.2 % 1 0.1 % 1 50 %
similarity 403 37.0 % 215 19.7 % 188 53.3 %
Total > 1089 100 % | X856 | X 78.6 % | X 233 78.6 %

Table 7.9: Results of all the methods on the testing set.

7.3. PRECISION VERSUS RECALL 71

the only exceptions are prepositions and subordinating conjunctions. From the
Tables 7.3 and 7.7 it can be computed that the recall of the assigning sequence
RBMs, m180 is 55 %. In other words, at least one half of functors can be assigned

without the slightest idea about ‘what the sentence is about’.

7.3 Precision versus recall

As T already mentioned, it is possible to select and apply only a subset of the avail-
able methods and thus control the characteristics of the AFA system. It should
be decided whether to prefer to minimize the number or errors, thus maximazing
precision, or mazimize the number of correctly assigned modes, thus maximizing
recall. This choice is very explicit. The optimal compromise should be influenced
by the misclassification cost corresponding to the amount of annotators’ work in-
volved in finding and correcting a wrongly assigned functor. However, estimating
the misclassification cost would require additional experiments with the annota-
tors, in order to perform the necessary measurements of annotators’ performance.
This would in turn imply an additional load for them, which is in contradiction
with the main goal of this thesis (decreasing the amount of annotators’ work).

The relation between recall and precision is depicted in Figure 7.2. The high-
est recall is achieved when all methods are applied. Unfortunately, the overall
precision 78.6 % is not acceptable, since the resulting automatically annotated
files would require too many manual corrections. Precision grows to an accept-
able level if the method similarity is removed (precision 93.4 %, recall 58.9 %).
Therefore, I think that the most feasible compromise between precision and recall
is the sequence m180, RBMs, DBMs.

72 CHAPTER 7. EXPERIMENTS AND RESULTS

pred, miao REM= mleo, mlBO ;REMz ,
Qctlves REMsS , DBM BMS, simil.
N % [
=1 |l |
90 T B TH“ H
<0 L NI RN ~— 1,
i || Pt e e —__—a
1 T T T
60—ttt]
50 L | LL1 L
A6 || I
I T
o e
20 L e
10 gk
T}
0 T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100

Relative cover [%0]
@ Recall[26] & Precision [%o]

Figure 7.2: Precision versus Recall. This picture depicts the performance of se-
lected sequences of assigners. Obviously, the higher the recall achieved, the lower

the precision.

Chapter 8

Conclusions

Die Umgangssprache ist ein Teil des menschlichen Organismus

und nicht weniger kompliziert als dieser.

Ludwig Wittgenstein

The goal of this thesis. The goal of this thesis was to design, implement and
evaluate a system for automatic functor assignment within the Prague Dependency
Treebank projekt at the Institute of Formal and Applied Linguistics. Such a
tool should reduce the manual annotation effort during the transition from the
analytical tree structures to the tectogrammatical tree structures, which otherwise
consumes a huge amount of time of linguistic experts.

The contribution of this thesis. The presented AFA system is based on
the hypothesis that when a functor is to be assigned to a node, then in a signif-
icant subset of the cases sufficient information for this decision can be acquired
from the node itself and from the parent node. Using this assumption, I con-
structed a system that profits from the symbiosis of different approaches, namely
rule-based methods, dictionary-based methods, machine learning approach, and
nearest vector approach. During the development of the AFA system, I used the
available manually annotated tectogrammatical tree structures for training and
testing purposes.

The overall performance (recall versus precision) of the resulting AFA system
can be tuned by combining selected methods in various ways. Either all functors
are assigned and the precision is 78.6 %, or 63.0 % of nodes are assigned with the
precision 93.4 %. The implementation of the latter approach is ready to be used
at the IFAL since September 2000. No other AFA system with comparable recall

was available before.

73

74 CHAPTER 8. CONCLUSIONS

Discussion. Since I had only very limited testing set, the question about
the reliability and extensibility of the achieved results naturally arises. When the
system is used on new data, the performance can be expected to decrease for
two reasons. Firstly, I tested the AFA system on tectogrammatical trees which
were not only manually annotated with functors, however, their topology was
manually revised. The topology of the new tectogrammatical tree structures is
generated automatically from the analytical tree structures. If this procedure
generates also some topological mistakes in the trees, then these mistakes will
inevitably influence the performance of the AFA system. Secondly, a part of the
involved dictionaries was mined from the training data. If the new trees to be
assigned represent sentences with very distant topic and genre, then the recall of
the dictionary-based methods is likely to decrease, since “new” words (those not
observed in the training set) will appear.

Obviously, the real contribution of the presented system, i.e., its usefulness
for the annotators, can only be evaluated after a period of its use in the actual
annotation process.

Future work. The potential of the AFA was undoubtedly not fully exploited
in this thesis. But the future improvements of the AFA system, which will increase
the recall while keeping the precision high, will probably require extensive utiliza-
tion of linguistic resources which are not available yet (e.g., tectogrammatically
annotated lexicon of verb valency frames) and a larger and more diverse training
set of the PDT data. However, one can hardly expect a system that would be
able to completely substitute the experts for the tectogrammatical annotation. At

least not in the near future.

Bibliography

[AA-91]

[Allen—95]

[Baldwin—97]

[BPS-99]

[BH-99)

[Cermék-99]

[DePryck-93]

Aijjmer, K., Altenberg, B. (eds.): English Corpus Linguistics. Long-
man, New York, 1991.

Allen, J.: Natural Language Underestanding. The Ben-
jamin/Cummings Publishing Company, 1995.

Baldwin, B.: CogNIAC: High Precision Coreference with Limited
Knowledge and Linguistic Resources. Operational Factors in Prac-
tical Robust Anaphora Resolution for Unrestricted Texts, Proceed-
ings of the Workshop at the Annual Meeting of the ACL’97, Univer-
sidad Nacional de Educacién a Distanci, Madrid, pp. 38-45, 1997.

Bohmovd, A., Panevovd, J., Sgall, P.: Syntactic Tagging: Procedure
for the Transition from the Analytic to the Tectogrammatical Tree

Structures. Text, Speech and Dialogue, Springer, pp. 34-38, 1999.

Bohmova, A., Hajicova, E.: How much of the underlying syntactic
structure can be tagged automatically? In: The Prague Bulletin of

Mathematical Linguistics 71, Charles University, Prague, 1999.

Cermdk, F.: Information, Language, Corpus and Linguistics. Text,

Speech and Dialogue, Springer, pp. 39-43, 1999.

DePryck, K.: Knowledge, Evolution and Paradoz. The Ontology of
Language. State University of New York Press, 1993.

[Erjavec-1de-98] Erjavec, T., Ide, N.: The MULTEXT-East Corpus. First Inter-

[Hajic-98]

national Conference on Language Resources and Evaluation, 1998.

Haji¢, J.: Building a Syntactically Annotated Corpus: The Prague
Dependency Treebank. Issues of Valency and Meaning, Karolinum,
1998.

75

76 BIBLIOGRAPHY

[Hoffman—95] Hoffman, B.: Computational Analysis of the Syntaz and Interpre-
tationf of ‘Free’ Word-order in Turkish. Ph.D. thesis, University of
Pennsylvania, 1995.

[Jansen—96] Jansen, T.M.V.: Composionality. Handbook of Logic and Language.
Elsevier Science, pp. 419-475, 1996.

[Kazakov—99] Kazakov, D.: Natural Language Processing Applications of Machine
Learning. Ph.D. thesis, Department of Cybernetics, Czech Technical
University, 1999.

[Kotek et al.—80] Kotek, Z., Chalupa, V., Bruha, 1., Jelinek, J.: Adaptivni a ucici
se systémy. SN'TL, 1980.

[Kruijff-98] Kruijff, G. M.: Basic Dependency-based Logical Grammar. Techni-
cal Report UFAL-TR-5, 1998.

[Kruijffi-99] Kruijff, G. M.: Dependency Grammar Logic. An Introduction,
manuscript available at http://cogsci.ed.ac.uk/ gj , 1999.

[Kruijff-01] Kruijff, G. M.: A Categorial-Modal Architecture of Informativity.
Ph.D. thesis, Faculty of Mathematics and Physics, Charles Univer-
sity, Prague, 2001 (to appear).

[KK-99] Kruijff, G., Kruijff-Korbayova, 1.: Text structuring in a multilingual
system for gemeration of instructions. Text, Speech and Dialogue,
Springer, pp. 89-94, 1999.

[Kfen-96] Kien, M.: Editor grafu. Master thesis, Faculty of Mathematics and
Physics, Charles University, Prague, 1996.

[Kucera—99] Kucera, K.: The General Principles of the Diachronic Part of the
Czech National Corpus. Text, Speech and Dialogue, Springer, pp.
62-65, 1999.

[Lager—95] Lager, T.: A Logical Approach to Computational Corpus Linguis-
tics. Ph.D. thesis, Department of Linguistics, Goteborg University,
1995.

BIBLIOGRAPHY 7

[Manuall]

[Manual2]

[Melichar—97]

[MR-91]

[Pala—99)

[Panev—80]

[Pere-98]

[SHP-86]

[LD-94]

Bémovd, A., et al: Anotace na analytické roviné: mndvod pro
anotdtory. Technical Report UFAL-TR-4, 1997.

Hajicova, E., Panevova, J., Sgall, P.: Manudl pro tektogramatické
znackovdni. Technical Report fJFAL—TR—7, 1999.

Melichar, B.: Languages and Translations. Czech Technical Univer-
sity, Prague, 1997.

Muller, B., Reinhardt, J.: Neural Networks — An Introduction.
Springer, 1991.

Pala, K.: Semantic Annotation of (Czech) Corpus Texts. Text,
Speech and Dialogue, Springer, pp. 56-61, 1999.

Panevova, J.: Formy a funkce ve stavbé ceské wvéty. Academia,
Prague, 1980.

Peregrin, J.: Obrat k jazyku: druhé kolo. FILOSOFIA, Prague,
1998.

Petr Sgall, Eva Hajicovd, and Jarmila Panevova: The Meaning of
the Sentence in its Semantic and Pragmatic Aspects. Reidel, Dor-
drecht, The Netherlands, 1986.

Lavra¢, N., Dzeroski, S.: Inductive Logic Programming. Techniques
and Applications, Chichester, UK, 1994.

[Steedman-98] Steedman, M.: Categorial Grammar. The MIT Encyclopedia of

[Strossa—99]

[Sulc-99]

[RL-95]

Cognitive Sciences, MIT Press, 1998.

Strossa, P.: Vybrané kapitoly z pocitacového zpracovdni prirozeného

jazyka. Silesian University, Institute of Informatics, Opava, 1999.
Sule, M.: Korpusovd lingvistika. Karolinum, Prague, 1999.

De Raedt, L., Lavrac, N.: Introduction to Inductive Machine Learn-
ing. Lecture notes for a course in machine learning, J. Stefan Insti-
tute, Ljubljana, 1996.

78 BIBLIOGRAPHY

[Will-93] Willems, M.: Chemistry of Language. Ph.D. thesis, Department of
Applied Mathematics, University of Twente, 1993.

[Witt—22] Wittgenstein, L.: Tractatus logico-philosophicus. Institut pro

stredoevropskou kulturu a politiku, Prague, 1993.

[ZZ—00] Zabokrtsky, Z.: Automatic Functor Assignment in the Prague De-
pendency Treebank. Text, Speech and Dialogue, Springer, pp. 45-50,
2000.

Appendix A

Armchair linguistics vs. corpus linguistics

Armchair linguistics does not have a good name in some linguistics
circles. A caricature of the armchair linguist is something like this.
He sits in a deep soft comfortable armchair, with his eyes closed and
his hands clasped behind his head. Once in a while he opens his eyes,

sits up abruptly shouting, “Wow, what a neat fact!”

, grabs his pencil,
and writes something down. Then he paces around for a few hours in
the excitement of having come still closer to knowing what language is
really like. (There isn’t anybody exactly like this, but there are some

approximations.)

Corpus linguistics does not have a good name in some linguistics cir-
cles. A caricature of the corpus linguist is something like this. He has
all of the primary facts that he needs, in the form of approximately one
zillion running words, and he sees his job as that of deriving secondary
facts from his primary facts. At the moment he is busy determining
the relative frequencies of the eleven parts of speech as the first word
of a sentence versus as the second word of a sentence. (There isn’t
anybody exactly like this, but there are some approximations.) These
two don’t speak to each other very often, but when they do, the corpus
linguist says to the armchair linguist. “Why should I think that what
you tell me is true?”, and the armchair linguist says to the corpus

linguist, “Why should I think that what you tell me is interesting?”

Charles Fillmoore (1992)

79

80 APPENDIX A. ARMCHAIR LINGUISTICS VS. CORPUS LINGUISTICS

Appendix B

List of Functors

All the following examples are authentic, they occured in the training set, and vice

versa, the functors which did not appear in the training set at all, are not listed.

ACMP

ACT
ADDR
ADVS
AIM

APP
APPS

ATT
BEN
CAUS
CNCS

COMPL

COND

CONJ

CPR

CRIT

Se zadostmi o vyjimku je nutné se

obratit na radu mésta.

Moje firma vyrobila na zakdzku zbozi pro zdkaznika, ...

V Plzni je stankaiam k dispozici trznice ...

...do ceny bytu se promitne fada faktoru, zejména viak amortizace.
Hospoda byla jen startem, polem k podnikani

S masem a masnymi vyrobky.

Provoz mé prece uz svlj rytmus.

... v8ak nefesi zdkladni problém, a to volné,

bezbariérové prichodnosti ...

Samoziejmé existuji pocitacové programy, které vyuzivame ...
Profit pfipravuje pro své ¢tenaie poradnu pro diky.

Védél diky letité praxi, Ze obyvatelé z okolnich dom1 ...

Od négj ziskal vnuk vytecné ziklady, a¢ sdm

vystudoval §kolu zameéienou na dopravu.

Jako hlavni zlo vidim velké mnozstvi dani ...

Kdyz o nékom fekneme, zZe je zlodéj ...

V Prazei v jinych velkych méstech je pochiizkovy a

stolkovy prodej na ulicich zakazany.

Pokud budeme postupovat stejnou metodikou, jako je propoéten
fond pracovni doby v Némecku ...

Podle ptedbéZnych odhadu se totiz pocita ...

81

82 APPENDIX B. LIST OF FUNCTORS

CSQ ...vhodna pozornost dokdze vytvofit prostiedi
duvéry a sympatie, takze urcité ledy
a bariéry rezervovanosti se brzy rozplynou.

DENOM Sance pro movité nijemniky.

DIFF Soucasna danova soustava funguje o néco vice nez rok.

DIR1 Na zacatku je nejdulezitéjsi ujasnit si cile a pak z cesty neustupovat.
DIR2 ...jako kdyz se prodirite kifovim a v dali sviti mytina.

DIR3 Podnikatel ma sledovat vyvoj ve svém oboru a doslova

tdhnout svoji firmu dopfedu ...
EFF Ptitom jen za materidl pro uvedenou zakizku

jsme vynalozili pres 150 tisic korun.

EXT Celkem zaméstnavam zhruba stovku lidi.
1D Je tu pro vas pfipravena rubrika Danovy poradce.
INTF Uvédomuje se, ze u nas by to neslo ...

INTT A kuchaf, ktery vynikajici pokrmy piipravi,
se prijde za uznani hosti podékovat.
LOC V Plzni je stankaiam k dispozici trznice . ..
MANN Klidné jsem mohl seskocit a dal délat
ve statnim podniku, nic by se nestalo.
MAT Firma produkuje na padesit sortimentnich druhu parkau, ...
MEANS Nedat na prvni dojem, jakym na nds zdkaznik pusobi ...
MOD Podnikani je bezpochyby kruta diina, ale krasna.
NORM Snad na zdkladé reklamy, i kdyz se zdd, Ze tentokrat ...

ORIG ...nendpadny ¢lovitek, z néhoz se muze vyklubat $pién ...
PAR Zagal jsem, reknéme, jako provazochodec.

PAT Napsali jsme novou urgenci.

PREC Myslel jsem si totiz, Ze uz vSechno umim.

PRED Zabyvam se mezinirodni kamiénovou prepravou.

REG Drobnéjsi podniky se také tucelové sdruzuji u vétsich zakazek.

RESL Policie tak jen bezmocné prihlizi ...

RESTR Nase platné pravo kromé trestnépravni odpovédnosti
umozinuje postihnout nelegdlni metody ...

RHEM Stéle jesté mohou lidé zacit.

RSTR Kvalitni boty dnes stoji dvakrat i ctytikrat vice ...

SUBS
TFHL
TFRWH
THL
THO
TOWH
TPAR
TSIN
TTILL
TWHEN

Misto vlastniho rozhodovéni o svych akciich ...

Obuv na vic nez jednu sezénu vyzaduje péci i opravy.

Pavodni rozhodnuti vlady odroceno z 1.4. na 1.5.

Délal jsem bez prestavky celé tydny, ¢asto v noci.

Kfovi je husté a ¢asto neprostupné.

Pavodni rozhodnuti vlady odroceno z 1.4. na 1.5.

Pfi letoSnim udileni ceny Grammy byla ...

Od té doby uplynulo uz nékolik mésicu, .. .

Na Vase dotazy, které nam zaSlete do redakce do 5. dubna ...

Miuzeme je prodavat i letos.

83

84

APPENDIX B. LIST OF FUNCTORS

Appendix C

Examples of the analytical and

tectogrammatical tree structures

(a) Analytical tree structure

Auxl-(

o
Coord_Co

hytka nysni

sebevédomi dvojndsah
Pred_Cno Pred_Cno

Sh AuxP Ohj Ady
kaZdy jiny osohnost 58 jirmi tesky dohé
Atr Atr Ady Ohj AT Ohj Afr Adv
ové pravé soudasng
Atr AE Atr
(b) Tectogrammatical tree structure
#1176
SENT
a
COMJ
potfebuje
PRED
hycka pyEni prawd dobé sebevédami dvojindsob
PRED PRED RHE TWHEN PAT

kaZdy
RETR

Jing

osobnosti jirni Cesky soucashe
RETR

PAT PAT RETR RZTR

Figure C.1: Analytical and tectogrammatical tree structures of the sentence
“Vidyt kazdy jing ndrod si své osobnosti hyjckd, pysni se jimi, a cesky stdt prdvé

v soucasné dobé potrebuje sebevédomi dvojndsob. ”

85

APPENDIX C. EXAMPLES OF ATSS AND TGTSS

(a) Analytical tree structure

Sz

AUxS
\Zdﬂrazﬁuji .
Fred Auxk
oviem \Ze
ALY ALXT
, nepljde
Al Chj
\,
AuxP
ani
Coord
plakaty hesla
Obj Co Chj_Co
oslavna encyklopedicks
Atr Atr

(b) Tectogrammatical tree structure

#21
q\SENT

\kzdﬁrazﬁuji

FRED

\

777 ovEerm nepdjde
ACT PRELC PAT

=T
RHEM

oslavné
RSTR

hesla
PAT

encyklopedicks
RSTR

Figure C.2: Analytical and tectogrammatical tree structures of the sentence

“Zduraznuji ovsem, Ze nepujde o slavné plakdty ani encyklopedickd hesla.

7

87

(a) Analytical tree structure

®paz
AL
dohodneme .
Fred ALl
Shad =) ?}'{e
ALy AuxT AuxC
’ nevzdare
ALK O
W =] sponzoringu
ALxP AT [6]4]]
pfipadé
Ay
alespaon nataceni
AL Atr
W
AP
Zahranidi
Alr
(b) Tectogrammatical tree structure
%431
SEMT
dohodneme
FPRED
Shnad e nevzdarne
ATT ACT PAT
alespof piipadé sponzotingu Meg
RHEM ConND PAT RHEM
\natéﬁeni
APP
Zahranici
LOC

Figure C.3: Analytical and tectogrammatical tree structures of the sentence
“Snad se dohodneme, Ze alespori v pfipadé natdceni v zahranici se sponzoringu

nevzddme.”

88 APPENDIX C. EXAMPLES OF ATSS AND TGTSS

(a) Analytical tree structure

Pred AuxK
zajimavejsi viak pofady
Prom ALY Sh
Jesté \vénované nenajderme
Ady Atr Adr
aftopopu ; jaké \na
obj A Obj AlP
MTY
Ay
anglofilgkérm

Al Afr

piilis
Ady

(b) Tectogrammatical tree structure

a3
SENT
jsou._
PRED
Zajimave)si pofad
PAT PREC ACT
JestE YENOVane nenajdeme
EXT RETR RETR

T
Loc

afropopu Jaké Y Meg ani
PAT PAT ACT RHEM RHEM

anglofilském
RETR

prilis
ExT

Figure C.4: Analytical and tectogrammatical tree structures of the sentence “Jesté
zajimavéjsi jsou véak porady vénované afropopu, joké menajdeme ani na prilis
anglofilském MTV.”

Appendix D

Equivalence classes of verbs with respect to

their valency

The following list contains the ten largest equivalence classes that were induced

by an equality relation defined on their valency frames, as described on page 49.

1.

Class No. 1 (271 verbs), #4 : aktivovat, aktualizovat, bodovat, deformovat,
dokoncit, hroutit, ignorovat, instalovat, kvasit, mobilizovat, monitorovat,
obdivovat, odpracovat, odsouhlasit, ohlédnout, okrast, okupovat, pochopit,
podstupovat, pozménit, projektovat, prostudovat, prozkoumat, prosetfit,
predpokladat, tradovat, utlumit, varovat, vychutndvat, vyrknout, zapricinit,

zdrazovat, znasilnit, zpochybnit, zpronevétit, zvedat, zvladnout, ...

. Class No. 2 (245 verbs), #4 #7 : ctit, dotovat, klestit, mast, mylit, narovnat,

obtézovat, odemknout, oslabovat, ovladat, pojmenovat, rozzlobit, uchvatit,

ujistit, ukonéit, uzivit, vitat, zakryvat, zapliovat, zesilit, zobrazit, ...

. Class No. 3 (138 verbs), #4 #3 : dorucit, nabizet, nelhat, ode-

jmout, odepfit, odpustit, podfizovat, prezentovat, prodluzovat, projevit,
predpovidat, prislibit, pfisoudit, rezirovat, sdé€lovat, snizovat, snizit, vyprset,

vytknout, zamitnout, zdanit, zptistupnit, §éfovat, ...

. Class No. 4 (78 verbs), se #7 : budit se, doplnit se, li¢it se, nalit

se, namalovat se, obhajovat se, ozivit se, ozivovat se, poboufit se, polit se,
pominout se, prodlouzit se, pfi¢init se, spasit se, travit se, ujit se, unaset
se, utvaret se, uzivit se, vzrusit se, zabezpecovat se, zaplnit se, zapliovat se,

zaslouzit se, zastrelit se, znepokojit se, znepokojovat se, zvétsit se, ...

. Class No. 5 (64 verbs), #4 #7 v_6 : charakterizovat, hrabat, korigovat,

napodobit, napodobovat, obohacovat, obohatit, opomijet, ovliviiovat, ovérit,

89

90 APPENDIX D. VALENCY EQUIVALENCE CLASSES OF VERBS

podeprit, podvadét, poskodit, poskozovat, provérit, provérovat, predhanét,
predstihnout, pfekonat, pfekondvat, prekvapit, prekvapovat, prevysit, silit,
ubezpecit, uprednostinovat, zabrzdit, zabydlet, zdokonalovat, zhorsit, zjednodusit,

zjednodusovat, ...

6. Class No. 6 (64 verbs), #4 #7 #3 : dosvédéit, garantovat, kompenzo-
vat, komplikovat, nahradit, nahrazovat, oduvodiiovat, oplatit, podepisovat,
potvrdit, potvrzovat, protrhnout, piekazit, rozumét, tiit, usnadnovat, vy-
jadfovat, vylepsit, vylepSovat, vylicit, vyslovit, zabezpecit, zmafit, zmérit,

zniCit, zpusobit, zpusobovat, ztézovat, ztizit, ...

7. Class No. 7 (58 verbs), si #4 : chvélit si, chytnout si, domyslit si, kldst
si, nadélat si, obejit si, planovat si, pokazit si, popudit si, prohlédnout si,
predejit si, pfemoci si, pripisovat si, rozdat si, rozmyslit si, slibit si, ujasnit
si, vypit si, vyslechnout si, vysvétlit si, vytknout si, vycitat si, zméfit si,

fikdvat si, ...

8. Class No. 8 (53 verbs), se #7 v_6 : konkretizovat se, otfdst se, podepftit
se, pohorsit se, prohloubit se, projevit se, predhanét se, prezivat se, rozhybat
se, rozmnozovat se, rozvijet se, ujistit se, ujistovat se, utvrdit se, uvést
se, zahltit se, zastirat se, zavést se, zdokonalit se, zhorSovat se, zlepsit se,

zmensSovat se, zmitat se, zpevnit se, zpomalit se, zrcadlit se, ztélesiiovat se,

9. Class No. 9 (51 verbs), se s_7 : hréit se, hidat se, milovat se, méfit
se, namdhat se, obejmout se, objimat se, ozenit se, pohadat se, poprat se,
poradit se, prohodit se, pritdhnout se, sblizovat se, sehrat se, seznamovat
se, seznamit se, shleddvat se, sloudit se, smifovat se, smifit se, soudit se,
stretavat se, tahat se, utéSovat se, vadit se, vodit se, vsadit se, vypotradat

se, vitat se, zapomenout se, ztotoznit se, Zenit se, ...

10. Class No. 10 (48 verbs), #4 v_6 : brzdit, hijit, koupat, navstivit, novel-
izovat, podporovat, podpofit, preferovat, prolomit, provozovat, pfeceniovat,
rozhodnout, rozpoustét, tolerovat, vyjmenovat, vylosovat, vytusit, véznit,
zhasnout, zminovat, zminit, ztvarnit, ztélestiovat, zuzovat, zvyhodiovat,

z0zit, . ..

