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ABSTRACT

CZECH LANGUAGE TAGGING

Barbora Hladka
Supervisor: Jan Haji¢

Corpus linguistics is interested in the way people use language in speech
and writing; the usage is documented in a corpus. In general, a corpus
is conceived of as a structured and annotated collection of texts covering
written or spoken language resources. In terms of computational linguis-
tics, a corpus is a huge, electronically (by computer) processed collection
of texts and speeches containing a variety of information. Corpus discloses
the factual usage of language patterns and represents a source for linguis-
tic statistics. Using corpora for various linguistic tasks, we speak about
corpus-based approaches.

Practically every natural language processing system (machine transla-
tion, information retrieval, parsing, etc.) for (not only) an inflective lan-
guage needs a morphologically processed text, i.e. to know for each word
the list of all possible combinations (tags) of morphological category values
which make sense for the given word. However, most the systems need more
precise information. They need just a single combination of morphological
category values (from the list of all available combinations) to be identified
which fits to the particular context. The task called tagging uses the con-
text of a word in the input text to select the correct tag from the list of all
possible tags.

The goal of this dissertation is to make progress toward tagging a highly
inflective language, namely Czech. Since all currently used tagging ap-
proaches are driven by corpus-based methods, we can take advantage of
having at our disposal a structured and annotated Czech corpus. This fact
and the absence of corpora for other Slavic or similar languages promote the
presented results as a pioneering effort with many positive and stimulating
conclusions.

For a more sophisticated evaluation of tagging of Czech, we apply our
code and settings also to tag English texts. Czech language exhibits a rich

v



vi

inflection accompanied by a high degree of ambiguity. On the other hand,
English represents a language with poor inflection. Differences between
Czech and English (from the point of view of morphology) are reflected in
the amount of information included in the tags. It is no wonder then that
the performances of tagging systems on English are still better.

Our main focus is on the data and on the various corpus-based methods
we apply to tag texts - hidden Markov model based approach, rule-based
approach and exponential model based approach. We discuss in detail the
results we have obtained when tagging Czech written texts.

A special attention is paid to the considerations on the context. Our
aim is to concentrate on the idea which context should be selected from the
processed text to tag it properly.

As the performances of Czech tagging systems are very close to each
other in the end, we propose and test an original strategy of a combination
of the tagging methods, to achieve better results.

To have more morphologically annotated data compatible with the Prague
Dependency Treebank, we convert (by semi-automatic procedures) the orig-
inal data available to pioneer Czech tagging experiments into the format of
the Prague Dependency Treebank.
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CHAPTER 1

LANGUAGE PROCESSING

1.1 NATURAL LANGUAGE PROCESSING

To specify what Natural Language Processing (NLP) means, we will trace,
first, the senses of the lexicon [Collins Cobuild English Dictionary, 1995]
head words corresponding to the words from the title (natural, language,
processing) independently and we try then, to put together those senses
which suit for our interpretation if we say “Natural Language Processing is
”

The following relevant senses are assigned to the respective lexical head
words:

e Someone with a natural ability or skill was born with that ability and
did not have to learn it.

e A language is a system of communication which consists of a set
of sounds and written symbols which are used by the people of a
particular country or region for talking or writing. ... the English

language . ..

e when people process information, they put it through a system or into
a computer in order to deal with it. { processing ... data processing

It could seem meaningless to separate natural from language. Unfortu-
nately, neither natural nor language do appear under the headwords language
and natural, respectively in the lexicon from which we draw particular senses.

Putting together the chosen senses of natural and language, we get a
“rough” meaning of the term natural language: it is a system of communi-
cation and people were born with ability and skills to talk and to write (i.e.
to use this system) without any learning. But, in case of natural language,
we are not sure whether one has to or does not have to acquize it. The
question how children learn the language in reality is difficult to answer and
remains still open.



The way the language is being used can be observed in different types
of writing and speech. The books, newspapers, letters, magazines, conver-
sations, interviews, meetings bring a lot of natural language information.
Using these language resources, we can follow the usage of various language
“events”. How to follow them? To read an unimaginable number of written
texts or to listen to (again an unimaginable number of) records. As we
speak about an era of computers, let us join human forces with a computer.

Finally, we can answer the question What is Natural Language Process-
ing? Natural Language Processing is an analysis of natural language
information using a computer®.

In principle, there are two basic ways how a computer can analyse lan-
guage information:

(a) to encode human “know-how” directly into a computer program

(b) to simulate getting of human “know-how” and human applying of
“know-how” by a computer program

To be more specific, we illustrate these two approaches to the problem
of classification of words according to the part of speech criterion, i.e. for
identification of nouns, verbs, pronouns, etc. in a sentence, in a chapter, in a
book. This task is motivated by such questions as Which part of speech is 0b-
served most frequently? or Are nouns preceded by adjectives more frequently
than by pronouns?

Given the approach (a) one pre-annotates, for instance, 20 sentences and
gets (with certain simplifications) such observations as: if the word is “ve-
douci” and is preceded by an adjective then it is a noun (“boss”); otherwise
it is an adjective (“leading”). Consequently, such observations are encoded
into a computer code which annotates whatever texts we need. It is an ob-
vious fact that we need texts to be annotated as precisely as possible. The
“quality” of annotation depends on the “quality” of observations. As the
number of pre-annotated text increases, one gets a large number of observa-
tions which describe not only general events but specific events as well. On
the other hand, we are sure that in principle the observations cannot be ab-
solutely correct. Altogether, one has to pre-annotate a reasonable number of
texts and to generate the observations. The computer then annotates texts
using the observations. We speak about a knowledge-based approach.

The approach (b) provides a way how to minimize the amounts of human
work and how to get observations automatically. One pre-annotates the

n practice, the term NLP is used mostly to refer to written language resources and
speech recognition to spoken language. Within the language processing introduction, we
will concentrate on the NLP issues and terms related to the presented work.
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texts and then the computer (not a human!) learns the observations from the
pre-annotated texts. We call such an approach a corpus-based approach,
where the pre-annotated text is understood as the corpus. The corpus-based
approach exhibits a very useful tool to discover phenomena which no one
could observe without examining unimaginable amount of data.

Corpus is a vast, electronically (by computer) processed, uniformly
structured and continually added collection of language texts or speeches
containing (not essentially) a variety of (as much explicit as possible) infor-
mation the corpus might (implicitly) provide.

The corpus (or part of corpus only) ready for any linguistic application
is usually split into two parts - the training data and the test data. In
addition, it is often useful to separate so called held-out data as well.
Ordering the parts according to their size, the training data should be the
biggest one. The held-out data and the test data should be split relatively
to the total size of the used corpus. The training and held-out data supply
the data for training (learning) the events determined by the needs of the
particular application. While the training data provide sources for training
the basic algorithm, the held-out data offer the sources for tuning the pa-
rameters specifying the algorithm. The quality of the chosen algorithm is
measured on the test data “deprived” of the annotations. Consequently, the
output of algorithm is compared with the test data annotations.

The most wide-spread corpus-based methods are the statistical (or
probabilistic) methods. The statistical methods offer good theoretical
background, an automatic estimation of probabilities from data and a di-
rect way how to disambiguate the particular information. To illustrate the
statistical approach, let us have look at the problem of parsing ( = a syn-
tactical analysis of a sentence). Given any of the two core methodological
approaches to the syntactic analysis - the approach based on the dependency
structures and the approach based on the phrase structures - the parsing
procedure returns a syntactic tree for the input sentence. To parse the test
data using the statistical methods includes the following steps: (i) the syn-
tactic annotation of the texts, (ii) the separation of the training and test data
(no held-out data in the easiest case), (iii) the training of the probabilistic
model (e.g. driven by the relative frequency of events) on the training data
and finally (iv) the assignments (based on the trained probabilistic model)
of the syntactic trees to the sentences in the test data.



1.2 CzECH LANGUAGE PROCESSING

As Czech language is a natural language, we can simply reformulate our NLP
definition so that Czech Language Processing (CzLP) is an analysis of
Czech language information using a computer. Looking at the CzLP from
the perspective of the usage of the annotated corpora, we can traditionally
classify the CzLP approaches without the corpora as knowledge-based and
the CzLP approaches via the corpora as corpus-based.

A method of automatic extraction of significant terms from texts (MO-
SAIC, [Kirschner, 1983]) provides for the input scientific texts the sets of
expressions (simple, complex terms) which reflect the general theme of the
input texts. The selection of the expressions to be extracted is based on
linguistic criteria driven by the semantic properties in the morphemic struc-
tures. Experimental versions of MOSAIC were implemented for Czech and
Slovak.

A complex description of a method designed for the build-up of a question-
answering system (KODAS) capable to accept questions formulated in Czech
and to retrieve answer in a simple database is given in [Haji¢, 1984]. The
KODAS was elaborated in close connection with the systems MOSAIC and
TIBAQ.

ASIMUT - a system to automatically retrieve terms or whole termino-
logical collocations in full texts (details in [Kralikova, Panevovd, 1990] - was
originally designed for Czech. The ASIMUT is not based on any directed
dictionary; the linguistic information necessary for lemmatization is added
automatically and the potential user has to know the rules of the query
language.

The Czech text-and-inference based approach to question answering is
an automatic system, called TIBAQ, concentrating on human-machine com-
munication. The idea is to construct a system as general as possible which
can be easily modified for a specific domain on the basis of a serious linguistic
analysis. The experiments (domain of electronics and endoscopic examina-
tion) conceive of a question answering system with questions and answers
in Czech. The knowledge bases of the system reflect semantic-pragmatic
representations of the input sentence and inference rules (“if” “then” form)
processing of the given representations. A detailed description of presented
approach is available in [Hajicovd et al., 1995].

Naturally, the CzLP knowledge-based approaches are “older” than the
corpus-based ones. At the same time, the use of the corpora does not mean
an absolute exclusion of the knowledge-based approaches.

Grammar checkers are being developed in order to provide information
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about the type and location of grammatical errors within a sentence. The
grammar checker represents one example of a practically oriented applica-
tion. In [Kubon, Holan, Plitek, 1997], the authors are discussing not only
the theoretical background but also the implementation ideas of the gram-
mar checker of Czech sentences.

The CzLP corpus-based research started to appear at the beginning
of the 90s, firstly thanks to the existence of the Czech Tagged Corpus
(Sect. 3.1.2) and later thanks to the building of the Prague Dependency
Treebank (Sect. 3.1.5).

The rule based error-driven learning algorithm (described in [Brill, 1998])
was applied (besides other) for parsing free text (see [Brill, 1993b]). The
modification of this corpus-based method in order to work with a depen-
dency tree structure which describes more efficiently the syntax of the free-
word order languages, such as the Czech language, is the major concern of
the work explained in [Ribarov, 1996] and [Haji¢, Ribarov, 1997]. We have
already mentioned above the principle of a statistical approach to parse
free text. A simple probabilistic model built over the dependency struc-
ture of Czech sentences is presented in [Zeman, 1998]. Both of the above
mentioned Czech parsers (the rule-based and the statistical one) were mo-
tivated by the original efforts to parse English sentences and were designed
for Czech language. However, there exists another idea how to parse Czech
sentences - to take the parser originally designed for English and to modify
it with regard to the character of the Czech language. The description of
the practical experiments over this idea together with its results is described
in [Haji¢ et al., 1998].

Besides the monolingual corpora, there emerge urgent demands for bilin-
gual corpora, so much needed in machine translation applications. The pi-
oneer statistical experiments of an automatic extraction of a Czech-English
translation dictionary based on the bilingual Czech-English corpus are in-
troduced in [Cufin, Cmejrek, 1999)].

Most of the enumerated CzLP issues call for preprocessing of their in-
put text files in the sense of the morphological analysis. But for the most
part, they need more precise information, a disambiguated morphological
analysis. We provide, throughout this dissertation, a detailed description
of steps we have carried out on the way from the first experiment on the
automatic morphological analysis disambiguation ([Hladk4, 1994]) up to the
latest experiments.

Some aspects of computational solutions to formal Czech morphology
was described in [Haji¢, 1994]. A more comprehensive description of com-

5



putational Czech morphology in connection with disambiguation of morpho-
logical analysis is given in [Haji¢, in press].



CHAPTER 2

TAGGING

In this chapter, we first present the tagging motivation (Sect. 2.1), illustrate
possible tagging difficulties, we review then the key tagging corpus-based
strategies and compare their basic characteristics (i.e. context handling,
time and space requirements, performances, etc.), and, at the end, we give
an overview of these strategies to tag English texts (Sect. 2.3).

2.1 TAGGING MOTIVATION

To tag something (or to mark something) by a specific kind of information
embodied in a tag, we have to decide what exactly we mean by “something”
and what we mean by a “specific kind of information”. We have already
introduced the main object of our interest - written natural language re-
sources.

Tokenization is a process of splitting an input text document into units
called word form tokens. Let a word form be a string of characters
(letters, numbers) preceded and followed by a space or a delimiter such as
a punctuation symbol. Abbreviations, acronyms and all kinds of numbers
and punctuation marks are considered to be special types of word forms.
More exactly, we work with word form tokens. Finally, let a word form
token be an elementary unit we tag and for our purposes, we suppose that
each input text to be processed is tokenized.

The next step which should be taken is to specify a repertoire of tags - a
set of tags called TAGS. From the automatic processing point of view, in the
course of tagging the tags should be designed in a unique and “economical”
way: unique for expressing given information by exactly one tag, “econom-
ical” for a comfortable and “cheap” processing with regard to the design of
data structure representing a tag. To tag word tokens in a sentence w;,,
we take one word token after another and choose the appropriate tag from
TAGS for each word token according to the context preceding or following
w;. However, not all tags from TAGS are meaningful for a word form w;;
it seems useful to select for each w the set TAGS,, in such a way that it
contains only the plausible tags for the word form w and is therefore a subset

7



of TAGS. Then, the selection of the tags for word token wj; is limited to a
particular set TAGS,,.

Formally, the tagging procedure ¢ selects a sequence of tags T for
the input text W:

¢:W—>T,¢(wi) =11 ETAGSwi,Vi 1 <1< n,n= |W|

where TAGS,, is the set of meaningful tags for a word token w;.

So far, we have used the term tag in a general way. In the current usage
in computational linguistics, the term tagging is used mainly for the assign-
ment of part of speech information to a word token. Whereas this might be
sufficient for morphologically impoverished languages such as English, we
need and want more: natural language processing of a highly inflectional
language such as Czech requires that tags contain the information given by
natural language morphology, i.e. a tag embodies the values of morphologi-
cal categories (MCs). The granularity of the set TAGS depends mainly on
the task for which the tagging is used; in principle, we can freely modify
TAGS from a very coarse granularity to a very detailed one or vice versa.
The set TAGS,, for a word w is determined by morphological analysis (MA).

In the sequel, when speaking about tag or tagging, we have strictly in
mind the morphological point of view; even more, by tagging we mean an
automatic assignment of tags covering morphological information. At the
same time, the manual assignment of tags covering morphological informa-
tion is called here an annotation'. We will indicate other cases of tagging
or annotation explicitly. We can split the view on tags into two levels: on
the tag level, we take tags as they are (i.e., as an “atomic” value), and on
the subtag level, we “dig into” the tag and take each MC separately.

TAGGING DIFFICULTIES

To illustrate what kind of difficulties we can face during the tagging, let us
take a really “spicy” Czech sentence to be tagged:

Kose  travnik, vidél kose, podival se  na né kose.
Mowing lawn  he-saw baby-blackbird he-looked Refl. at it wryly.

"Mowing lawn, he saw a baby blackbird, and looked at it wryly.’
Let us define three very simple tag sets (TAGS(A), TAGS(B), TAGS(C))
covering the following morphological information:

'In the sequel, we will speak about the Czech Tagged Corpus because of the historical
convention though it is an annotated corpus.



Tagging

(A) part of speech only
(B) part of speech and case

(C) part of speech and gender

Having in mind the economical and unique format of tags, we use the
character (letter and numeral) representation of morphological category val-
ues. Tab. 2.1 contains all possible values of MCs we are interested in - 10
basic part of speech classes + 1 punctuation class; 7 + 1 case values and
4 4+ 1 gender values. Together, the tag set TAGS(A) contains 11 tags; the
tag set TAGS(B) contains up to 77 (number of all possible combinations
of part of speech and case values (excluding ’-’ value) = 11%7) tags and
tag set TAGS(C) up to 44 (11%4) tags. However, not all combinations are
meaningful. For instance, it does not make sense to determine case of verb,
of conjunction, of adverb, or gender of preposition, of particle and so on.
In case of meaningless combinations, we set up one more additional value
-7 for those MCs which are not involved in the inflection of the particular
part of speech class.

POS H case H gender

value description value description value description

A adjective 1 nominative M masculine animate
N noun 2 genitive I masculine inanimate
P pronoun 3 dative F feminine

C numeral 4 accusative N neuter

R preposition 5 vocative - not specified

A% verb 6 locative

J conjunction || 7 instrumental

T particle - not specified

K interjection

D adverb

Z punctuation

Table 2.1: Motive selection of morphological categories

Reading along the lines in Tab. 2.2, the tag subsets (in the columns
marked by "TAGS(X)’ (X € {A, B, C}) that are the output of MA in the
frame of a given tag set are listed for the given word (totally, there are 9
word forms (12 word tokens) in the input sentence)?.

*Thus e.g. the word form “na” could be tagged as a preposition (TAGS,,(A) = {R} C
TAGS(A)), as a preposition connected with a noun in accusative or locative (TAGS,.(B)



WORD FORM H TAGS(A) H TAGS(B) H TAGS(C) ‘
kose N,V,D N1,N3,N4,N5,N6, | NM,NN,NF,
V-,D- VF,VM,VLVN,D-
travnik N N1,N4 NI
vidél VvV V- VM, VI
podival vV V- VM, VI
se R, T R7,T- R-,T-
na R R4,R6 R-
né P P4 PN,PF,PM,PI
, Z Z- Z-
7 7- 7-

Table 2.2: Motive tag sets

With respect to the size of the individual subsets, the word form “kose”
seems to be the most complicated one. However, it is a common fact when
a word token appears in the context of the other words, the ambiguity is
often reduced. The ambiguity is often reduced, not completely removed! As
expected, from the tagging point of view we ’like’ the word forms for which
there exists just a single tag, i.e. these word forms need no context to find
their proper tag. Since with word forms which represent an ambiguity prob-
lem (the tag subset assigned to them contains more than one element), the
context must take part in the process of tagging. However, in general, there
is no strict rule saying how many preceding and following word tokens we
should look at to be sure that we tag the word token properly. The criterion
of the context dimension depends in fact on the character of the word order
of the given language. More detailed considerations on the context are the
main topic of the Chapter 4.

Observing the column marked by TAGS(B) in Tab. 2.2, we see that the
word forms “kose”, “travnik”, “se” and “na” belong to the ambiguous word
forms. The given sentence is being tagged from the left to the right and
the ambiguous word tokens become unambiguous using the annotated cor-
pus which represents a source of language usage. For instance, the word
token“se” is preceded by an unambiguous verb; taking into account (as con-
text information) the preceding word token together with its tag (podival,

= {R4, R6} C TAGS(B)) or a preposition for which gender is not involved in its inflection
(TAGS,.(C) = {R-} C TAGS(Q))

10
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V-), there is a strong preference to tag “se” as a reflexive particle (T-). On
the other hand, taking into account just the tag of the preceding word to-
ken(the only information we have is the fact that “se” is preceded by verb),
it is not so evident how to tag “se”; the decision depends on the frequency of
the situation verbd followed by a preposition and the situation verbd followed
by a reflexive particle in the annotated corpus.

As we are the witnesses of “blackbird’s” event we give the appropriate
MC values (in the order part of speech, case, gender) of word tokens
in the input sentence: Kose/V-M travnik/N4I ,/Z-- vidél/V-M kose/N41
,/Z-- podival/V-M se/T-- na/R4- né/P4I kose/D--.

2.2 TAGGING MEASURES

To measure the quality of a tagger A, we use the usual tagging accuracy
(TA) measure which gives the percentage of correctly tagged words:

TA(A) = (Correctly Tagged W ords_by_A/Total Tagged W ords) * 100(%)
(2.1)

We can also express the performance of a tagger A by the error rate (ER)
measure which gives the percentage of incorrectly tagged words:

ER(A) = (Errors_Produced_by_A/Total Tagged W ords) x 100(%)
(= ER(A) =100 —TA(A)(%)) (2.2)

To illustrate the defined measures, let us assume a sentence W = wy
wy wy wy ws and let us represent the output of the tagger as a sequence of
0’s and 1's where 0 corresponds to an incorrectly tagged word and 1 to a
correctly tagged word. The tagger A correctly tags words wy and wy, the
tagger B correctly tags words ws, ws and ws. Thus, we can express the
output of the tagger A as a sequence T4 = 01010 and the output of the tag-
ger B as a sequence Tg = (00111 and we can say that Total_Tagged_Words
= 5, Errors_Produced_by A = 3 (number of 0s in Ty, wi, w3, ws), Er-
rors_Produced_by_B = 2 (number of 0s in Tp, wi, wy). Finally, TA(A) =
(2/5)x100(%) = 40%, TA(B) = (3/5)x100(%) = 60%. The conclusion is
that the performance? of the tagger B is better than the performance of the
tagger A.

3Speaking about the performance of a tagger we always have in mind the tagging
accuracy of the tagger.

11



2.3 CORPUS-BASED METHODS OF TAGGING

Several approaches to the automatic tagging of texts have been proposed.
The so called stochastic strategies use various statistical models, namely
Markov models (MM), the maximum entropy (ME) model and the expo-
nential (EXP) model. A memory-based (MB) strategy represents a kind
of supervised learning based on similarity-based reasoning. In a rule-based
(RB) strategy, a set of meaningful rules is automatically acquired. Neural
networks (NE) represent an artificial intelligence strategy. The strategies
mentioned up to now belong to corpus-based approaches, i.e. they work on
annotated corpora to achieve appropriate probabilities, memory patterns,
transformation rules and weights. Table 2.3 provides the review of the re-
sults of representative corpus-based methods applied for English language.

Markov Model Tagger Let us formulate the problem of tagging in terms
of (in)dependent random variables, stochastic (random) processes, Markov
models, etc. We suppose that the set of possible tags TAGS for the given
language is already designed.

A stochastic or random process is a sequence of random variables
based on the same sample space 2. The possible outcomes of variables
constitute possible states of a stochastic process. In general, the random
variables are independent. However, the variables are dependent in the
course of the stochastic process.

Let us work with random variables 71, 79,..., for which = TAGS =
{t1,t2,...,t-} is a discrete finite set of 7; outcomes (j> 1), and likewise with
random variables w1, wa,... for which Q = LEXICON = {wi,ws,...,w,, } is a
discrete finite set of wy outcomes (k> 1).

Let us consider an annotated paragraph W that contains n words so that
w1 is the first word of the paragraph, wo is the second word,... Let 71 be the
tag of the first word, 7o the tag of the second word,..., 7, the tag of the last
word of the given paragraph. The sequence of the tags T creates a random
process (states = tags) with discrete random variables and a discrete time
parameter (we suppose that each word is “processed” in every time unit).

A Markov model (MM) is a stochastic process where the probability
of the next state given the entire sequence of previous states up to the
current state is dependent only on the current state (this is called Markov
property or the first Markov assumption) (see Eq. 2.3)

p(tit+1 |ti17 R ’tit) = p(tit+1 |tit) (23)

To apply the Markov property on tagging means that the probability that

12



Tagging
the (t+1)-th word is marked by the tag t;,, depends only on the tag of the
previous word and not on tags of all previous words “read” up to the current
point. The probability of a Markov model ¢;,, %;,,...,t;, can be expressed as
(3.4) (using the Bayes’ formula p(A|B) = p(A, B) /p(B))

Ptiy,s tigyoos in) R p(tiy) * (Liy|tiy) * p(Ligltiy) * ... ¥ p(ti, [ti_y)  (24)

The conditional probabilities p(t;,,, |t;,) are called the transition proba-
bilities of the Markov model, i.e. the probability of the transition from the
state t;, to the state ¢;,,,. In the tagging terminology, the transition prob-
abilities are called the contextual probabilities and the current context
for the tag t;,,, of the (t+1)-th word is determined by the tag t;, of the ¢-th
word.

The Markov models for which the probability of the next state depends
on the current state are called Markov models of the first order. In the
Markov models of an m-th order the probability of the next state depends
on the m previous states and the states correspond to a sequence of m-1 tags.
The second Markov assumption says that the probability of a particular
output depends only on the current state and not on the sequence of the
previous states and the previous outputs:

p(wt,tit|w1, W, --.y wt—latilatiza teey titfl) ~ p(wt‘tit) (2.5)

In the tagging terminology, the conditional probabilities p(w|t;,) are called
lexical probabilities.

If it is not possible to observe the sequence of states of a Markov model,
but only the sequence wy, wo,..., w,, of output signals, (n is the size of the
paragraph to be tagged), the model is called a hidden Markov model

Let W be a sequence of output signals (which we know) and let T be
an unknown sequence of states in which W is produced. The goal is to find
such a sequence of states I' that maximizes the probability of the sequence
T given the W. The formula expressing the condition put on the optimal
state sequence is

= qu}xp(T|W) (2.6)
Given the Bayes’ formula, we can rewrite the formula (2.6) as

' = max(p(WI[T) * p(T))/p(W) (2.7)



As p(W') does not depend on T and it is a positive number, we can approx-
imate

NS mj@xp(W|T) * p(T) (2.8)

Using the Markov assumptions (Egs. 2.3 and 2.5) the equation expressing
the condition put on the optimal state sequence of the first order Markov
model (bigram Markov model) is

n

I ~ max p(unti, ) * [ p(wilts) = pltalti), T = tiy tiy, o ti,  (2.9)
t=2

Similarly for the second order Markov model (trigram Markov model* ):

n
'~ mj@xp(wlﬁil) *p(til) *p(ti2|ti1) * H3p(wt‘tit) *p(tit‘tit—l’tit—Q)’
t=

T =i, iy, oons by (2.10)

n

In practice, we work also with the so called unigram Markov model,
which does not take into account any history and is just looking for the
most probable tag for given word:

n
I'= mj@xtl:[lp(’wt'tit),T = tilatim '--atin (211)

If an annotated corpus is available ( Wirain, Tirain), i-€. if we know the se-
quence of the output signals (= words, Wirin) and the sequence of the
states (= tags, Tirqin), We can calculate (train) the distribution p(T}qin)
and p(Wirqin|Tirain) directly from the observed relative frequencies in the
annotated corpus, i.e. we can directly construct the corresponding Markov
model.

To tag a non-annotated text W;.s; means to determine the most probable
tag sequence I'tes; that suits Egs. 2.9 and 2.10 calculating with the trained
MM determined by the distribution p(Tyrein) and p(Wirgin|Tirain)- In order

“Tag N-gram in the annotated corpus is a sequence of N tags which follow one another.
For N = 2, we speak about a tag bigram and for N = 3 about a tag trigram.

Let us illustrate these notions on the annotated sentence from Section 2.1: Kose/V-M
tradvnik /N4I ,/Z-- vidél/V-M kose/N4l ,/Z-- podival/V-M se/T-- na/R4- né/P4I kose/D--.
The list which follows contains all different tag bigrams and tag trigrams together with
their counts within the annotated sentence. For instance, tag bigram (V-M, N4I) occurs
twice; (V-M, N4I; 2), (N4I, Z--; 2), (Z--, V-M; 2), (V-M, T--; 1), (T--, Rd~; 1), (R4-, P4I;
1), (P41, D—; 1); tag trigrams (V-M , N4I , Z—; 2), (N4I , Z-- , V-M ; 1), (Z— , V-M , N4I
; 1), (N4I, Z--, V-M ; 1), (Z-, V-M , T--; 1), (V-M, T-- , R4-; 1), (T-- , R4-, P4l ; 1),
(R4- , PAI, D—; 1).
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to prevent the problem of unknown words which occur in Wies and do not
occur in Wipgin, i.e. p(unknown_word|tag) = 0,Vtag : tag € TAGS, we use a
linear smoothing to generate the distribution p(Tirqin) and p(Wirain| Tirain)
instead of the trained one so that p(word|tag) > 0 for any word and any
tag from the set TAGS. The Viterbi algorithm is used to find an optimal
sequence of tags and employs the parameters p(Tirain ), D(Wirain|Tirain) and
the sets TAGS,, (see Sect. 2.1). The complexity of the Viterbi searching of
the optimal tag sequence is O(Njess * T?), where Nyeg is the test data size
and T is the number of states.

It is not our objective to explain the smoothing procedure and the Viterbi
algorithm in detail; for a detailed explanation see [Jelinek, Mercer, 1980)]
and [Forney, 1973]. We only present here the final equations (including
the smoothing and relative frequency counting) expressing the condition
imposed on the optimal tag sequence I' for all mentioned MMs we discuss,
i.e. unigram MM, bigram MM and trigram MM:

n
'~ m,lg'xgﬁ(wt|tzt)aT :tilat’iza"'atin (212)
n
T~ max plw [t;, ) * [1P(wilti) = 5tiltioo), T = tis, by, o ti, (2.13)
t=2

n
'~ mﬁxﬁ(wﬂtil) *ﬁ(til) *ﬁ(ti2|ti1) * H3ﬁ(wt|tit) *ﬁ(tit|tit—17tit—2)a
t—

T:ti17ti27""tin (214)

where
plwilti,) = Aw x p(welts,) + (1 — Ay) * 1/ Wy, (2.15)
ﬁ(tz’t) = Aop * p(tz't) + (1 — /\01) * l/CT (2.16)

Ptiy[ti,_y) = A1 * p(ts,[ti,_,) + A2 * p(ts,) + (1 — A — Ai2) * 1/Cr (2.17)

Pty |tiy_1stip_s) = Ao1 * D(tiy|ta,_ 1, tiy) + Xo2 % Pty [ts,_) + Ao * p(ts,) +
+(1 — Aol — Agg — Agg) * l/CT (2.18)

p(wi|t;,) = Count(wy, t;,)/Count(t;,) (2.19)

15



p(tit) = Count(tit)”Ttmin' (2'20)
p(ti,|ti,_,) = Count(t;,,ti,_,)/Count(t;,_,) (2.21)

p(tit|tit—1’tit—2) = Count(tit’ tit—lvtit—z)/count(tit—latit—z) (2'22)

where Wy, is the number of words that have the tag ¢;,, Cr is the number
of different tags in Tyrqin, Aw, Ao1, A1, A12, A21, A22, A2s < 1 and Count(z) is
the frequency of an event z in the training text.

In [Merialdo, 1994], the author provides a very convincing comparison
of the taggers based on Markov models (i.e. with an annotated corpus) and
on hidden Markov models (without an annotated corpus). His experiments
confirm the assumption that the more annotated texts are available the bet-
ter training is obtained. The tagger trained on 955k words of the annotated
Associated Press corpus (76 tags) has the tagging accuracy 97%.

Maximum Entropy Tagger described in [Ratnaparkhi, 1996] “manipu-

n
lates” with a probabilistic model basically defined as p(¢,z) = 7y [] /\Zf i(t’w),
=1

where 1z is a context from the set of possible word and tag contexts, tis a tag
from the set of possible tags, 7 is a normalization constant, {u, A1, A2, ..., An}
are the positive model parameters and {f1, f2, ..., fn} is a set of yes/no fea-
tures; i.e. f;(t,x) € {0, 1}. Each parameter ); (the so called feature weight)
corresponds to exactly one feature f; and features operate over the events
(context, tag). For a currently processed word, the set of specific contexts is
limited to the currently processed word, the preceding two words together
with their tags and the following two words. The positive model parame-
ters are chosen (according to the MLP) to maximize the likelihood of the
training data.

During the test step, the tagging procedure gives for each word a list of
B highest probability sequences up to and including the currently processed
word. The performance of the baseline model for English is 96.6% (training
data size is 962kB) and the experiment uses the size B = 5. The complexity
of the searching procedure is O(Nyest * T * F x B), where Ny is the test
data size (number of words), T is the number of meaningful tags, F is the
average number of features that are active for the given event (t,x) and B is
explained above. The cost of the parameter estimation is O(Nyyqin * T * F),
where T, F are defined above and Ny, is the training data size.
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Exponential Tagger was first introduced in [Haji¢, Hladkd, 1998b] and
is described in detail in [Haji¢, in press]. EXP approach is primarily de-
signed for Czech tagging. It predicts proper tags from the list of meaningful
tags given by AMA which works with a positional tag system (see Par. 3.1.5).
With respect to the tag and subtag levels, the ME tagger (described above)
operates on the tag level, whereas the EXP tagger operates on the sub-
tag level. The ambiguity on the subtag level is mapped onto the so called
ambiguity classes (ACs). For instance, for the word ”"se” the morphology
generates two possible tags (i.e. the case of ambiguity on the tag level) RV-
ST (preposition “with”) and P7-X4---------- (reflexive particle). The
ambiguity on the subtag level is represented by four ACs: [RP] (1st subtag),
[V7] (2nd subtag) [-X](4th subtag) and [74] (5th subtag). The number of
ACs matches the number of MCs, the value of which is not unique across
the list of tags for a given word.

With regard to the ACs, the EXP tagger generates a separate model
pac(y|z) (where z is a context, y is the predicted subtag value € Y), which
has the general form ([Berger et al., 1996]) determined by the Eq. 2.23 for
each AC, while the ME tagger “manipulates” with just one probability dis-
tribution p.

exp(dizy Aifi(y; 7))
Z(z)

pac,e(ylz) = (2.23)

where Z(x) is the normalization factor:

Z(z) =Y exp()_ Nifi(y, ) (2.24)

yeYy =1

To avoid the “null probabilities” pac(y|z) caused by an unseen context in
the training data or by an unseen AC in the training data (i.e. there is
no model for it), we formulate the final pac(y|z) distribution using the
smoothing procedure:

pac(ylz) = opace(ylz) + (1 —o)p(y) (2.25)

where p(y) is the unigram distribution per MC. {fi, fo,..., fn} is a set of
yes/no features; i.e. fj(y,x) € {0, 1}. Each parameter \; (so called feature
weight) corresponds to exactly one feature f; and the features operate over
the events (subtag value, context). To define feature function more exactly,
we have to introduce the following terms: Let Catsc be the ambiguity
class AC of a morphological category Cat (for instance, Cat = gender and
Catac = {feminine,neuter}), y be an attribute for the subtag value being
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predicted, z be an attribute for the context value and y, = be values of y,
attributes. Thus,
the feature function fcat,eo.9,2(y, ) = {0,1} is well-defined iff

g € Catac (2.26)

The value of a well-defined feature function fcat,q5,2(y, ) is determined
by

featacgzy,r) =1 y=9gATCx (2.27)

The computing of the feature weights is usually based on the maximum
entropy approach originally described in [Berger et al., 1996]. However, in
the exponential approach, the weight estimation is built on the ratio of
conditional probability of y in the context defined by the feature f4¢ 5z and
the uniform distribution for the ambiguity class AC, Ay, . = P fﬁéﬂéﬁ')‘
While the ME tagger uses the MLP for selection of the features, the EXP

tagger puts stress on the model’s feature selection (during the training step)

from the error rate point of view (like in the RB approach, see below).
From the pool of features available for selection those features are chosen
which lead to the maximal improvement in the error rate with respect to
the setting of the threshold. The threshold is set to half the number of data
items which contain the ambiguity class AC at the beginning of the feature
selection loop, and then it is cut in half at every iteration.

The designed algorithm predicts all MCs independently and even more,
the prediction is based on the ACs rather than on the previously predicted
values. Thus, the tag which is given by the EXP tagger does not have to
be an element of the list of tags returned by the AMA for the given word.
That is why, the purely subtag independent strategy is modified by the so
called Valid Tag Combination (VTC) strategy. The formula 2.28 expresses
the dependence assumption.

p(tlz) = 11 pac(yaclz) (2.28)
Catac,CateCategories

where t is a complete tag, zis a context, y4c € Cat ¢ and pac is determined
by Eq. 2.25.

Let Ngrgin be the training data size, Ny be the test data size, F be
the average number of active features for the given event (y,x), A be the
average number of ACs for the given word and C be the average number of
AC elements. Then the complexity of training is O(Nyygin * F' ¥ A+ C) and
the complexity of tagging of the test data is O(Niest * Ffinai), where Nieg
is the test data size and Ff;pq is the number of trained features.
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Penn Treebank has been used for the EXP tagging of English texts. A
Penn Treebank tag set has been converted to a positional tag system includ-
ing the usage of subtag value letters defined in the frame of the Czech posi-
tional tag system. Penn Treebank positional tag is defined as a concatena-
tion of 4 MCs - part of speech, subpart of speech, number, gender.
For instance, for the word “under”the morphology generates three possible
Penn Treebank tags: IN (preposition), JJ (adjective) and RB (adverb). The
given positional tags are RR--, AA-1, DO-1. The EXP tagger trained on
WSJ (1.2M words) gives 96.8% TA.

Memory-Based Tagger is introduced in [Daelemans, Zavrel, 1996]. As
mentioned above, the MB tagger represents a supervised learning that makes
use of similarity-based reasoning. At the same time, the MB tagger belongs
to the corpus-based taggers, which work on an annotated corpus. Based on
such a corpus, the MB tagger “maps” training examples into three struc-
tures: lexicon, case base for known words and case base for unknown words.
Each training pattern in the case bases includes word, manually assigned tag
and contezt information. During testing, for each test pattern (word, con-
text information) its distance from all training patterns (belonging to the
case base specified according to the presence of the test word in the lexicon)
present in the memory is computed and a tag from “the closest” training
pattern is assigned to the given word in the test data.

In particular, patterns (training, test) are represented as a vector of fea-
ture values for each particular tag. There are two important issues which
have to be discussed: the distance metric and the representation of training
patterns in the memory. The metric (Arp_1¢) ([Daelemans, Zavrel, 1996])
takes into account not only the comparison of appropriate feature values of
two patterns but also the information gain of the feature value. These pat-
terns are represented in the memory as IG Trees ([Daelemans, Zavrel, 1996]),
which provide a comfortable way of an automatic identification of the opti-
mal context size.

The complexity of a searching test pattern in a tree is O(log (V) x F),
where F is the number of features (= the maximal depth of tree) and V is
the average number of values per feature (= the average branching factor in
the tree). The cost of the building of the tree is O(Nypqin *1log (V) % F'), where
Nirain is the number of training patterns (training data size), F and V are
defined above. The IGTree implementation (IGTrees, Arp_jc) of memory-
based learning on English tagging has tagging accuracy 96.4% (trained on
2MB words, tested on 200kB).
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Rule-Based Tagger The supervised transformation-based error-driven
learning method described in [Brill, 1998] is classified as corpus-based; how-
ever, we have to stress that it employs not only a small annotated corpus
but a large unannotated corpus as well. A pool of allowable lexical and con-
textual transformations is predetermined by templates operating on word
forms and word tokens, respectively. A general lexical/contextual template
has the form: “for a given word change tag A to tag B if precondition C is
true” There are three main steps in the training process:

(a) From the annotated corpus, a lexicon is built specifying the most likely
tag for the given word. The unknown words are tagged by the most
frequently occurring tag in the annotated corpus.

(b) Lexical transformations are learned to guess the most likely tag for
the unknown words (i.e. words not covered by the lexicon). The pre-
conditions strictly oriented on the adding/deleting of prefixes/suffixes
(resulting in the currently processed word form) and on the presence
of a “special” character in the word form are crucial for these lexical
transformations.

(c) Contextual transformations are learned to improve tagging accuracy.
While lexical transformations operate over word forms, preconditions
covering word tokens context are fundamental for contextual transfor-
mations.

It remains to explain why error-driven learning is employed. The learning
procedure is carried out by iterations. During each iteration, the result
of each transformation (an instantiation of a template) is compared to the
truth and the transformation that causes the greatest error reduction is
chosen. If there is no such transformation or if the error reduction is smaller
than a specified threshold, the learning process is halted. The complexity of
learning the cues is O(L*Nypqin*R), where L is the number of prespecified
templates, Nyrqin is the size of training data and R is the number of possible
template instances. The complexity of tagging of the test data is O(T*Nyest),
where T is the number of transformations and Ny is the test data size.
The rule-based tagger trained on 600K of English text has tagging accuracy
96.9%.

In [Megyesi, 1999], the author has demonstrated how Brill’s rule-based
tagger can be applied to a highly agglutinative language - Hungarian. When
she applied a rule-based tagger as it is (i.e. designed for English), the tagging
accuracy for Hungarian was not so high as for English (85.9% vs. 96.9%). To
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get a higher accuracy, the author modified lexical and contextual templates
with regard to the character of Hungarian. After the modification of the
templates, the tagging accuracy for Hungarian increased to 91.9% (training
data size is 99,860 words; tag set size is 452).

Neural Network Tagger The tagger presented in [Schmid, 1994] is based
on neural networks; it consists of a multilayer perceptron (MP) network and
a lexicon. The given MP network contains only an input and an output layer
and no hidden layers; further experiments indicated that a neural network
tagger does not make a gain on a hidden layer. Each unit of the output
layer of the MP network corresponds to one tag from the tag set. The con-
text which is the input of the MP network includes the currently processed
word, p number of previous words and f number of following words. MP
network is trained on an annotated corpus using the so called backpropaga-
tion procedure. The lexicon has three parts - full form lexicon, suffix lexicon
and a default entry; each of three parts covers a priori tag probabilities for
each lexicon entry. The input-output layer version of tagger was trained on
English text of 2 million words, the context was set up on 3 previous words,
2 following words and the number of training cycles was 4 millions. The
performance of neural-network tagger is 96.2%.

Corpus-Based Taggers on English Our comparison of the representa-
tive corpus-based tagging strategies applied to English can be summarized
by means of Tab. 2.3; it shows that the tagging accuracy of the individual
approaches applied to English falls within a narrow range.
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STRATEGY TAGGER TRAINING TAGGING
ID DATA (SIZE) | ACCURACY
(%)
Trigram MM ([Merialdo, 1994]) | MM_EN Associated 97.0
Press (955Kw)
ME ([Ratnaparkhi, 1996]) ME_EN | WSJ (962Kw) 96.6
EXP ([Haji¢, Hladk4, 1998b]) | EXP_EN | WSJ (1.2Mw) 96.8
MB ([Daelemans, Zavrel, 1996]) | MB_.EN | WSJ (2Mw) 96.4
RB ([Brill, 1998]) RB_EN | WSJ (600Kw) 96.9
NE ([Schmid, 1994]) NE_EN WSJ (2Mw) 96.2

Table 2.3: Performances of the representative corpus-based tagging strate-

gies applied to English
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CHAPTER 3

CzECH TAGGING

In the previous chapter, we have discussed the corpus-based tagging strate-
gies. The following issues belong to the most discussed questions: which
methods to use to tag texts, which tag set is optimal, whether a bigger tag
set or a smaller one is preferable, and how the tagging accuracy changes as
the size of the tag set or the method of tagging changes.

In the present chapter, we will try to find out how these questions can
be answered for Czech. We can take the advantage of having at our disposal
rich (from the point of view of other Slavonic languages an unusually rich)
set of annotated language resources. Each of the Czech annotated corpora is
connected with a particular tag set. Concretely, we will describe four Czech
tag sets - the Czech Tagged Corpus tag set, the Reduced Czech Tagged
Corpus tag set, the positional tag set, and the Xerox tag set (Sect. 3.1).

Before performing any tagging experiments on Czech we first try to find
out by means of the Czech and English annotated corpora if tagging of Czech
is different from tagging of English (Sect. 3.2). For a more sophisticated
answer, we apply the same code and settings to tag Czech and English
texts (Sect. 3.4.1). We give a short introduction to the Czech automatic
morohological analysis in Sect. 3.3.

Sect. 3.4 of this chapter is devoted to a detailed analysis of all results we
obtained from various tagging experiments.

Describing all Czech tagging experiments we wished to identify them by
unique titles which should express the basic information (tagging strategy,
corpus, training data size, morphological preprocessing) regarding the ex-
periments. As the basic information is too complex (we did not find any
efficient way to code it into the experiment identification), we decided to use
as the unique experiment IDs city names (written by the SansSerif font) to
remind us of the factors relevant for the objective of this dissertation.

3.1 LANGUAGE RESOURCES

For the experiments described herein, we have used two different corpora:
one “old” (Czech Corpus (CC) - texts from the 60s and early 70s, see
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Sect. 3.1.1), one “new” (Czech National Corpus (CNC) - of a smaller volume
but modern and technically compatible with our MA system, see Sect. 3.1.4).
In particular, we have not used CC as it is, but we have converted it into the
so called Czech Tagged Corpus (CTC), see Sect. 3.1.2. CNC represents the
source of textual data for Prague Dependency Treebank (PDT, Sect. 3.1.5)
and for Xerox Czech annotated data (Sect. 3.1.6). Together with the pre-
sentation of language resources we pay attention to the description of the
designed tag sets to annotate available corpora. At the end of this chap-
ter, we enumerate the tags of word forms in the given sentence used in all
designed Czech tag sets (Table 3.8).

3.1.1 CzecH CORPUS

Thanks to the enthusiasm of a group of researchers from the Institute of
Czech Language headed by M. Tésitelovd the main corpus of written and
spoken Czech was created during the 60s and 70s. The main motivation
for building CC was to obtain the quantitative characteristics of present-
day Czech. The corpus includes newspapers, journals, scientific and literary
texts. The quantitative research concentrated among other things on the
frequency of part of speech classes, frequency of morphological categories
and of certain syntactic phenomena. For these purposes CC was morpho-
logically and syntactically annotated. Tags used in CC were different from
our suggested tags (CTC tag system, see Tables 3.1 and 3.2) especially as
concerns the number of processed MCs and the notation. Thus we carried
out conversions of the original data (CC) into the Czech Tagged Corpus
(CTC) CTC tag system. As we are interested how the tagging accuracy
changes as the amount of information included in tags changes, we design
reduced CTC tag system (RCTC tag system) and map CTC into Reduced
Czech tagged corpus (RCTC).

3.1.2 CzEcH TAGGED CORPUS

As mentioned above, CC was originally morphologically annotated, includ-
ing lemmatization and syntactic tags. For the purpose of Czech tagging
experiments, we have used only a part of the CC and we have disregarded
the lemmatization information and the syntactic tags, as we were interested
in word tokens and tags only.
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CTC Tac SET

The CTC tag set was derived from the original tag set used to annotate
the CC. CTC tag set is designed ([Hladké, 1994]) in a similar way as the
tag systems traditionally used for English: the first letter of the tag defines
the part of speech (POS) class and the remaining letters express the values
of morphological categories within a particular POS. Table 3.1 provides a
complete list of the MCs (together with their variables and all possible val-
ues, totally nine MCs) which we are interested in. We concentrate on 10
major part of speech classes - nouns (N), adjectives (A), verbs (V), pro-
nouns (P), numerals (C), adverbs (D), conjunctions (C), prepositions (R),
particles (K), interjections (F). In addition to these typical POS classes
we used three specific classes, namely punctuation marks (T_IP), sentence
boundaries (T-SB), unknowns (X ). However, not all MCs are involved in the
inflection of each POS class. The meaningful sequences of the MCs in the
pre-specified order for 1043 POS classes are defined in Table 3.2. Some of
the major POS classes are associated with detailed POS category (so called
sub-POS category), i.e the tag for the given POS class contains not only the
sequence of the MCs but also the letter identifying the sub-POS category.

For instance, the MCs gender, number, case are involved in the inflec-
tion of nouns; according to the pre-specified order of MCs within the noun
tags, we can easily decode the tag NFS3: feminine (F - the 2nd position)
singular (S - the 3rd position) noun (N - the 1st position) in dative (3 - the
4th position).

In our CTC tag system, the POS class pronouns (P) represents the cat-
egory associated with the most detailed division into sub-POS categories -
personal pronouns (PP), possessive pronouns (PR), "svij” reflexive (pos-
sesssive) pronoun (PS), reflexive particle (PE) and demonstrative pronouns
(PD). For example, the pronoun ”svij” is characterized by MCs object
gender, object number, case (PSgenac).

The prepositional (R) tags do not include a sequence of MCs, they just
consist in the given preposition, i.e. the prepositional tag “Rpied” represents
the tag of the preposition “pred”(“in front of”).

There is no MC involved in the inflection of interjections (F), particles
(K), sentence boundaries (T_SB), punctuation (T_IP) and unknowns (X).

3.1.3 REDUCED CzZECH TAGGED CORPUS

Once the annotated corpus is available, we can get several annotated corpora
which differ from the original one in the reduction of the original corpus tag
set. In other words, we map the original tag set into a less detailed tag set
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MORPHOLOGICAL
CATEGORY

CATEGORY
VARIABLE

POSSIBLE
VALUE

DESCRIPTION

gender

9,( 91, 92)

masculine animate
masculine inanimate
neuter

feminine

number

n, N1, N2

singular

plural

tense

past
present

future

mood

indicative

imperative

case

nominative
genitive
dative
accusative
vocative
locative

instrumental

voice

active voice

passive voice

polarity

negative

affirmative

degrees of

comparison

base form
comparative

superlative

person

st (I, we)
2nd (you)
3rd (she, he, it, they)

e S R R S T o~ e v B = IEN S~ S, SO SUR R - B @ B e Bl e Bl v B 7 B s B e

st (I, we)
2nd (you)

Table 3.1: Morphological categories included in (R)CTC tag set
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POS CLass CTC TAG RCTC TAG
nouns Ngnc Nn
noun, abbreviations NZ NZ
adjectives Agncda Anda
verbs, infinitives VTa VTa
verbs, transgressives VWnisga VWntsa
verbs, common Vpnstmga Vpnsta
pronouns, personal PPfnc PPfn
pronouns, 3rd person PP3gnc PP3n
pronouns, possessive PRgin1cpgane® | PRnypng
7svij” — reflexive possessive pronoun | PSgonac PSng
reflexive particle ”se” PEc PE
pronouns, demonstrative PDgnca PDna
adverbs Oda Oda
conjunctions S[S|P] S[S|P]
numerals Cgnc Cn
prepositions Rpreposition Rpreposition
interjections F F
particles K K
sentence boundaries T_SB T_SB
punctuation TIP TIP
unknown tag X X

“g1/n; - possessor’s gender/number, gz/n, - object gender/number with possessive

pronouns

Table 3.2: CTC tag set and RCTC tag set

B ]
# of word tokens 622K
# of different tags 1,171
average number of tags per word form || 3.65

Table 3.3: CTC characteristics
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so that we disregard the chosen MCs. In practice, we have decided to use
CTC in order to get RCTC by CTC tag set reduction.

REDUCED CTC TAG SET

The RCTC tag set is based on the same MCs (see Tab. 3.1) as the CTC
tag set except the MCs case, gender and mood. Table 3.2 illustrates the
decrease (expressed by the RCTC tag set) in the amount of information
included into CTC tag set.

‘ FEATURE H ‘
# of word tokens 622K
# of different tags 206
average number of tags per word form || 2.23

Table 3.4: RCTC characteristics

3.1.4 CzECcH NATIONAL CORPUS

The Czech National Corpus (CNC) is being built-up by an concerted effort of
a number of institutions, mostly by the Institute of Czech National Corpus,
Faculty of Philosophy, Charles University. The work on CNC has started at
the beginning of the 90s. Primarily, the CNC (as a representative collection
of Czech synchronic and diachronic texts obviously stored on computer) is
supposed to serve as a source for the build up of a dictionary of contemporary
Czech. At this time, the number of word form tokens included reaches 100
million.

3.1.5 PRAGUE DEPENDENCY TREEBANK

The work on the Prague Dependency Treebank (PDT) started in 1997
and is still “under construction”. The PDT is conceived of as a corpus
of Czech texts with a rich annotation scheme. PDT has a three level
structure: morphological ([Haji¢, Hladkd, 1998a]), analytical syntactic level
([Haji¢, Hajicovd, Panevovd, Sgall, 1998], [Bémova et al., 1999]) and level
of linguistic meaning ([Hajicovd, 1998], [Hajicovd, Panevovd, Sgall, 1998],
[Bohmovd, Hajicova, 1999], [Bohmova, Panevova, Sgall, 1999]).

Textual data for the PDT are selected from CNC and are pre-processed
by the automatic morphological analysis (AMA) that gives a list of all possi-
ble positional tags (see below) for the given word forms. Currently, the PDT
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O
MORPHOLOGICAL ANNOTATION

MERGIN
MORPHOLOGICA%/ \ OG-

O O

ANALYSIS \ / P]SQT 0.5

ANALYTICAL ANNOTATION
O

CLEANING OF CNC

Figure 3.1: The scheme of building PDT version 0.5

version 0.5 (26,610 sentences, 456,705 word tokens) is available. The PDT
0.5 has been prepared in the way displayed in Fig. 3.1: texts from CNC are
cleaned (removing of the duplicates of documents, paragraphs, sentences,
spelling errors checking, etc.), morphologically and analytically annotated;
because of the chosen strategy of annotations on different levels, it is neces-
sary to merge (procedure MERGING,,_,) the annotations into a single data
resource. As the cleaning of CNC texts and the annotations are executed
in a parallel way, the merging process cannot be fully automatic because of
the different text versions (in the sense of cleaning phases) which enter the
annotations. A semi-automatic procedure is applied and the discrepancies
must be resolved manually.

POSITIONAL TAG SYSTEM

Czech positional tags are defined as a concatenation of 15 MCs' which are
introduced in Table 3.5; each MC corresponds to precisely one position so
that POS “sits” in the 1st position, SubP0S in the 2nd, g in the 3rd, n in the
4th, c in 5th, possg in the 6th, possn in the 7th, p in the 8th, t in the 9th
, d in the 10th, a in the 11th, v in the 12th and s in the 15th position®. We
present only the MCs we work with in the positional tag system and we do
not deal with the possible values of MCs here. A very detailed description
of the positional tag system of Czech is presented in [Haji¢, in press].

! Actually, there are 13 MCs currently used for Czech and there are two more categories
x1, x2 the values of which are not defined yet. In other words, the sets of all possible values
RESERVE1, RESERVE2 are empty.

%Positions 13 and 14 correspond to MCs x1 and x2.
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CATEGORY VARIABLE € SET OF CATEGORY VALUES

part of speech POS € POS
sub-part of speech | SubP0S € SUBPOS
gender g € GENDER
number n € NUMBER
case c € CASE

possessive gender | possg € POSSGENDER
possessive number | possn € POSSNUMBER

person P € PERSON
tense t € TENSE
degree d € DEGREE
negation a € NEGATION
voice v € VOICE

not defined x1 € RESERVE1
not defined x2 € RESERVE2
variation s € VAR

Table 3.5: Individual morphological categories and their variables

Formally, let CZT be a set of all theoretically possible Czech posi-
tional tags and Cz.T be a set of all meaningful Czech positional tags:
CZT = POS x SUBPOS x GENDER x NUMBER x CASE x POSSGENDER x
POSSNUMBER x PERSON x TENSE x DEGREE x NEGATION x VOICE x
RESERVE1 x RESERVE2Xx VAR,Cz.T C CZT.

3.1.6 XEROX CZECH TAGGED DATA

[Schiller, 1996] describes the general architecture of the Xerox Language
Tool (XLT) for noun phrase mark-up and a statistical tagger for seven Eu-
ropean languages based on finite state techniques. The XLT tagger (belong-
ing to the MM category; [Cutting at al., 1992], [Tapanainen, 1995]) does
not require annotated data (or very small amount of them) and uses the so
called Baum-Welch algorithm ([Baum, 1972]) for the generation of a HMM.
To train the Xerox tagger on Czech, we annotated 15,000 word tokens long
newspaper texts selected from CNC. As described below, we designed three
tag sets for the purposes of the Xerox experiments. Consequently, we an-
notated the specified texts by these tag sets and we obtained the anno-
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tated corpora CNC¥___ (Xeroxy; tag set), CNC32,  (Xeroxys tag set) and

Xerox Xerox

CNC3  (Xeroxss tag set).

Xerox

XEROX TAG SETS

We performed three Xerox experiments, which differ in the tag set. The
analysis of the results of the first experiment (Xeroxs; tag set) showed a
very high ambiguity between the nominative and the accusative case of
nouns, adjectives, pronouns and numerals. This fact was a strong motiva-
tion to replace the tags for nominative and accusative of nouns, adjectives,
pronouns and numerals by new tags NOUN_NA, ADJ_NA, PRON_NA and
NUM_NA (meaning nominative or accusative, undistinguished). The rest of
tags stayed unchanged. This modification resulted in the Xerox43 tag set.
In the next step, we deleted the morphological information (excluding part
of speech information) for nouns and adjectives altogether. This process
resulted in the final Xeroxss tag set. Table 3.6 provides a complete list of
morphological categories we work with during the Xerox experiments and
Table 3.7 presents the tags for the given POS classes.

3.1.7 ANNOTATION USING THE S1X DIFFERENT CZECH TAG SYSTEMS

In the course of the creation of annotated language resources, there have
been designed six different Czech tag sets in total. The MCs in the CTC
tag set are same as the MCs assumed in the Czech positional tag set except
for the MCs sub-part of speech and variation. However, the list of
possible MC values in the positional tag system is greater than in the CTC
tag set. We demonstrate the influence of the tag set size on the tagging
accuracy on the example of the RCTC tag set and XEROX tag sets that
are not so detailed as the CTC and the positional tag sets.

To give an example of the annotation using the different tag systems, we
have chosen an annotated sample sentence from the CTC:

Knihkupec Vaclav Klement a  strojnik Vaclav Laurin se  dohodli na spole¢né
Bookseller Viclav Klement and mechanic Vaclav Laurin Refl. have agreed on joint
vyrobé jizdnich kol.

production of-bicycles.

"The bookseller Viclav Klement and the mechanic Viclav Laurin have agreed on joint
production of bicycles.’

Table 3.8 contains not only CTC tags but also the appropriate tags from
the other Czech tag sets.
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MORPHOLOGICAL | CATEGORY | POSSIBLE DESCRIPTION

CATEGORY VARIABLE VALUE

case c NOM nominative
GEN genitive
DAT dative
ACC accusative
VOC vocative
LOC locative
INS instrumental

case c’ NA nominative or accusative
GEN genitive
DAT dative
VOC vocative
LOC locative
INS instrumental

kind of verb form k PAP past participle
PRI present participle
INF infinitive
IMP imperative
TRA transgressive

32
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POS cLAss XEROX47 XEROX43 XEROX34
TAG SET TAG SET TAG SET
nouns NOUN_c NOUN_¢ NOUN
abbreviations NOUNLINV | NOUNLNV NOUN
adjectives ADJ ¢ ADJ ¢’ ADJ
verbs VERB_k VERB_k VERBL_k
pronouns PRON_c PRON_¢’ PRON_c
reflexive particle “se” P_SE P_SE P_SE
adverbs ADV ADV ADV
conjunctions CONJ CONJ CONJ
numerals NUM_c NUM_¢’ NUM_c
numbers NUM_INV NUM_INV | NUM_INV
prepositions PREP PREP PREP
interjections INTJ INTJ INTJ
particles PTCL PTCL PTCL
sentence boundaries SENT SENT SENT
punctuation (excluding comma,) PUNCT PUNCT PUNCT
comma CM CM CM
proper names PROP PROP PROP
clitics CLIT CLIT CLIT
date DATE DATE DATE
Table 3.7: Xerox tag sets
TAG CTC RCTC POSITIONAL XEROX47 XEROX43 XEROX34
SYSTEM
Knihkupec NMS1 NS NNMS1----- A-mmm NOUN_NOM NOUN_NA NOUN
Vaclav NMS1 NS NNMS1----- A NOUN_NOM NOUN_NA NOUN
Klement NMS1 NS NNMS1----- A NOUN_NOM NOUN_NA NOUN
a SS SS B CONJ CONJ CONJ
strojnik NMS1 NS NNMS1----- A-mmm NOUN_NOM NOUN_NA NOUN
Viéclav NMS1 NS NNMS1-——- A NOUN_NOM NOUN_NA NOUN
Laurin NMS1 NS NNMS1----- A NOUN_NOM NOUN_NA NOUN
se X X P7-X4--mmme - P_SE P_SE P_SE
dohodli V3PAMOMA V3PAMA VpMP---3R-AA--1 VERB_PAP VERB_PAP VERB_PAP
na Rna Rna RR--6------—--- PREP PREP PREP
spole¢né AFS61A AS1A AAFS6----1A---- ADJ_LOC ADJ_LOC ADJ
vyrobé NFS6 NS NNFS6----- A NOUN_LOC NOUN_LOC NOUN
jizdnich ANP21A AP1A AANP2--—1A-—- ADJ_GEN ADJ_GEN ADJ
kol NIP2 NP NNNP2----- A NOUN_GEN NOUN_GEN NOUN

Table 3.8: The example of annotation of the sentence using the different
Czech tag sets
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3.1.8 THE PENN TREEBANK

A very detailed review of the experience from building the Penn Treebank
is given in [Marcus, Santorini, Marcinkiewicz, 1993]. Wall Street Journal
(WSJ) is the main annotated and parsed part (1.2 Mw) of the Penn Tree-
bank.

THE PENN TREEBANK TAG SET

The Penn Treebank tag set® is given in Appendix A. It is designed for
English and contains 36 tags and 12 other tags (for punctuation and currency
symbol).

3.2 Is TAGGING OF CzECH DIFFERENT FROM TAGGING OF
ENGLISH?

At the first sight we would say yes, the tagging of Czech should be dif-
ferent from the English one. The answer can be found in the cardinality
of the English tag set and Czech tag sets; for English, we work with the
Penn Treebank tag set. The difference between a morphologically complex
and ambiguous inflective language and a language with poor inflection is re-
flected, e.g., in the number of tags for adjectives. Table 3.9 provides factual
numbers.

Penn Treebank tag set distinguishes three tags for adjectives - JJ (ad-
jective), JJR (adjective comparative) and JJS (adjective superlative). For
Czech, we illustrate the differences between Czech and English using four
Czech tag sets: CTC, RCTC, positional and Xerox. We get the number
of all possible adjective tags as the product of the number of possible val-
ues of those MCs which are involved in the adjective inflection within the
given tag set. As the positional tag set is the most detailed (namely in the
course of sub-POS categories), the number of possible adjective positional
tags outnumbers the others. The last column of Table 3.9 provides conclu-
sive empirical evidence (3 vs. 336; 12; 7; 6; 1; 2,916) of the morphological
difference between Czech and English.

In addition to the morphological ambiguity it is also interesting to note
the frequencies of the most ambiguous word forms encountered in the whole
CTC and to compare them with the English data. Table 3.10 and Table 3.11
contain the first word forms with the highest number of possible tags in the
complete CTC and in the complete WSJ.

3Sect. 3.2 provides a detailed analysis of the Penn Trebank tags.
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TAG ADJECTIVE # OF
SET TAGS ADJECTIVE
TAGS
Penn JJ, JJR, JJS 3
Treebank
| cTC | A[MIFN][SP][1234567][123][AN] | 1x4x2x7x3x2 = 336
| RCTC | A[SP][123][AN] | 1x2x3x2 = 12
Xeroxar ADJ_[NOM|GEN|DAT|ACC|VOC|LOCIINS] 1x7 = 7
Xeroxss | ADJ[NA|GEN|DAT|VOC|LOC|INS] 1x6= 6
Xeroxsq ADJ 1
Positional | adjective general
AA[FIMN][DPS][1234567]----[123][AN]---[-678] | 1x1x4x3x7x3x2x4 = 2,016
adjective nominal
AC[FMNQT][PSW][-4]----- [AN]---- 1x1x5x3x2x2 = 60
adjective derived from
present transgressive
form of a verb
AG[FMIN][DPS][1234567]-----[ AN]---[-67] Ix1x4x3xTx2x2 = 336
adjective derived from
verbal past
transgressive form
AM[FMIN]|[DPS][1234567]----- [AN]---[-67] 1x1x4x3x7x2x2 = 336
adjective possessive
AU[FMIN][DPS][1234567][FM]--------- 1x1x4x3x7x2 = 168
TOTAL POSITIONAL ADJECTIVE TAGS 2,916

Table 3.9: Czech tag sets vs. Penn Treebank tag set

WORD FORM | FREQUENCY IN CTC ‘ # OF TAGS IN CTC

jejich 1,087 51
jeho 1,087 46
jehoz 163 35
jejichz 150 25
vedouci 193 22

Table 3.10: The most ambiguous word forms in CTC
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WORD FORM | FREQUENCY IN WSJ ‘ # OF TAGS IN WSJ

a 25,791 7
down 1,052 7
put 380 6
set 362 6
that 10,902 6
the 56,265 6

Table 3.11: The most ambiguous word forms in WSJ

AFP11A || 2 ANPI11A
AFP41A || 2 ANS41A
AFS11A || 10 NFS1
11 AFS21A ||1 NFS2
AFS31A ||1 NFS3
AFS41A ||1 NF$4
AFS7T1IA || 2 NFS7
AIP11A 34 NMP1
11 AMPI11A | 17 NMP4
3 AMP41A || 61 NMS1
12 AMS11A || 1 NMS5H

Table 3.12: Tags of “vedouci” in CTC

To go back to the morphological ambiguity of adjectives, for instance in
the CTC, the word form ”vedouci” appeared 193 times and was annotated
by twenty two different tags: 13 tags for adjective and 9 tags for noun. The
word form ”vedouci” means either: ”leading” (adjective) or "manager”,
"boss” (noun). The columns in Table 3.12 represent the tags for the word
form ”vedouci” and their frequencies in the CTC; for example ” vedouci” was
annotated twice as adjective, feminine, plural, in nominative, first degree,
affirmative (2 AFP11A).

It is an obvious fact that there exists a strong relationship between the
tag set and the tag bi/trigrams in the annotated corpus: the more detailed

tag set, the higher is the number of possible tag bigrams and tag trigrams.
Theoretically, let TAGS be a tag set. Thus |[TAGS|? is the number of
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all possible tag bigrams and |TAGS|® is the number of all possible tag
trigrams. Be |[TAGS| = 102, then |TAGS|?> = 10* and |[TAGS|? = 10%;
consequently, there must be many tag bigrams and tag trigrams that are
infrequent; Tables 3.13 and 3.14 illustrate this for CTC and WSJ. With
regard to the number of different tags in CTC and WSJ (1,171 vs. 48),
the numbers of different tag bigrams (33,928 vs. 1,453) and tag trigrams
(177,083 vs. 18,257) in the CTC and the WSJ are completely different. In
the CTC, 70.93% of tag bigrams appear less than four times and 4,66% of
tag bigrams appear more than sixteen times. In the WSJ, to get reasonably
high counts, we do not use such low limits; 31.59% of tag bigrams appear less
than ten times and 15.49% of tag bigrams appear more than one thousand
times. For tag trigrams, the situation is similar. We would like to stress
that the CTC has a total length of 622K word tokens and the WSJ is 1.2M
word tokens long. It seems that we cannot directly compare the counts of
tag bigrams and tag trigrams due to the different size of corpora. In spite of
this fact, we are sure that since we apply tagging methods based on lexical
and tag context, the more detailed tag set of Czech we use the more different
is tagging of Czech from tagging of English.

It is clear from these observations that due to the fact that the two lan-
guages in question have quite different properties; nothing can be said about
the possible tagging differences without really going through an experiment.

| cTe | | wsJ |
x<=4 24,064 || x<=10 459
4<x<=16 5,577 || 10<x<=100 411
16<x<=64 2,706 100<x<=1,000 358
x>64 1,581 | x>1,000 225
total # of tag bigrams | 33,928 | total # of tag bigrams | 1,453

Table 3.13: Number of tag bigrams with frequency z in CTC and WSJ

3.3 CzZECH AUTOMATIC MORPHOLOGICAL ANALYSIS

In [Haji¢, in press|, the author deals with the computational Czech morphol-
ogy and tagging (language independent) and the description of their mutual
relationship. Using the mathematical terms, the author defines morpholog-
ical analysis (MA) as a function MA: F — 22T .

MA(f) = {<lt>,1e L&t € T} CLxT,feF,
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| cTc | | wsJ |

x<=4 155,399 || x<=10 11,810
4<x<=16 16,371 10<x<=100 4,571
16<x<=64 4,380 100<x<=1,000 1,645
x>64 933 x>1,000 231
total # of tag trigrams | 177,083 || total # of tag trigrams | 18,257

Table 3.14: Number of tag trigrams with frequency z in CTC and WSJ

where F is a set of word forms, L is a set of lemmas, T is a set of tags. Given
the tokenized input text, the MA gives all possible morphological analyses
of the word forms. Then, tagging is a function ® : FF — T: &(f) =t so
that 31 € L: <l,t>€ MA(f). At this point, we have to stress that “Czech”
tagging strategies which operate over the morphologically preprocessed text
take into account no lemma information. To tag text in the form word token
w, lemma I, tag t we (i) choose tag ¢ according to the tagging algorithm and
then (ii) take such lemma [ that < I,t > € M A(w).

3.4 TAGGING EXPERIMENTS

In this section, we present results of various corpus-based techniques applied
to tag Czech texts in order to show how these techniques work for one of
the highly morphologically ambiguous inflective languages. Together with
the description of concrete variants of tagging techniques we concentrate on
a detailed analysis of the results. Table 3.29 provides a complete overview
of all accomplished experiments.

3.4.1 MM STRATEGY

We have used the basic Markov models described in Sect. 2.3. Our imple-
mentation is driven by the Egs. 2.13 (bigram MM) and 2.14 (trigram MM)
expressing the conditions put on an optimal tag sequence given the input
text.

The first code (under MS-DOS platform) that carries out the Czech

tagging via bigram MM, Viterbi algorithm and an “intuitive”*

smoothing
procedure appeared in the course of the work described in [Hladkd, 1994].

As the next ideas came up through the series of the experiments, we enriched

“We tune the \ parameters using an empirical experience.
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the given code; we processed not only bigram MM but trigram MM as well,
and we included the output of MA. The latest versions of the code are also
running under Unix platform.

Altogether, we have performed two sets of the MM experiments: the
first one ezxcluding morphological preprocessing and the second one includ-
ing morphological preprocessing. The difference is determined by the way in
which the set TAGS,, is generated (the set of all meaningful tags for a given
word token w is obtained, see Sect. 2.1). The experiment without morpho-
logical preprocessing does not cooperate with any morphological analyser to
get the sets TAGS,,; thus the set TAGS,, for each word token w in a file to
be tagged contains all different tags which occur in the training corpus. In
this case, it is too audacious to speak about the set of meaningful tags for
the given word token w. On the other hand, the experiment with morpho-
logical preprocessing works with really meaningful tags for the given word
token obtained via morphological analyser.

Later on, the new version of Czech MM tagger which tags a text that
is morphologically preprocessed has appeared ([Mirovsky, 1998]). This ver-
sion operates only with contextual probabilities (no lexical probabilities;
Sect. 2.3). Then the condition put on the optimal tag sequence (I') has the
following form:

=~ mj@xp(T) (3.1)

We have already discussed the contextual tag probabilities, and the equa-
tions 2.16, 2.20 (unigram MM), 2.17, 2.21 (bigram MM) and 2.18, 2.22 (tri-
gram MM) are valid for the model covering only contextual information; the
smoothing procedure is realised via EM-algorithm ( [Jelinek, Mercer, 1980]).
The result for Czech is presented in Tab. 3.29 (experiment Mannheim).

WITHOUT MORPHOLOGICAL PRE-PROCESSING

We have split the complete CTC into two mutually exclusive parts: the big-
ger part (621,015 word tokens) was used as a training file (CTC®2L ) and the

train
smaller part (1,294 word tokens) as a test file (CTCyes). Identically to the
splitting of CTC, we have split RCTC into the parts RCTC?,?;m, RCTCieqt
directly corresponding to the parts CTC2L = CTCyest. Even more, we have
separated from CTC?TZC}m the file CTC#&H containing only 110K word to-
kens. The six experiments based on the MMs differ in three aspects: (i)
the order of MM, (ii) the training data size and (iii) tag set size; we will

discuss the performance of the experiment according to these three aspects.
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Tab. 3.15 lists the experiment parameters. We will discuss the results and

the aspects of the experiments using as background Fig. 3.2.

EXPERIMENT MM CORPUS | TRAINING
ID MODEL DATA SIZE

Hlinsko unigram | CTC 621,015
Prague bigram CTC 621,015
Maridnska trigram CTC 621,015
Copenhagen | bigram CTC 110,874
Granada bigram | RCTC 621,015
London trigram | RCTC 621,015

Table 3.15: The specification of the MM experiments without morphological
preprocessing

order of MM — Involvement of the tag history in the tag prediction gives

significantly better results than a simple assignment of the most prob-
able tag (unigram MM vs. bigram MM, unigram MM vs. trigram
MM). Comparing the results of bigram and trigram MMs, we cannot
conclude that including the tags of two previous word tokens gives
better results than including only the tag of the preceding word to-
ken because of the simple fact that 80.91% % 81.38%. In Tabs. 3.13
and 3.14 we presented the idea concerning the number of different bi-
gram tag histories and trigram tag histories. Clearly, if 88% trigrams
occur four times or less, then the statistics are not reliable. In order
to get better results for a trigram prediction model, we would need a
much larger amount of data.

training data size — The experiments Prague and Copenhagen show (not

surprisingly) that the more training data, the better the success rate.

tag set size — In [Elworthy, 1995] experiments with changing tag sets are
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presented for three different languages (English, French, Swedish).
These experiments show that the relationship between tag set size
and accuracy is a weak one and is not consistent even if applied for
the same language. The main conclusion derived from the results of
experiments is to choose the tag set according to the requirements
of the given post-tagging application rather than to optimize it for
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the tagger. The question arises why it is so useful to add a mor-
phological information to a text. The adequate answer is that there
are applications for which tagged input data are needed and it is an
obvious fact that these applications presuppose a text tagged as thor-
oughly as possible. We have decided to reduce the CTC tag set not
only because of the specific mutual dependence between the size of
the tag set and the tagging accuracy but because of the relation of
tag set and the results of the parsing procedure ([Ribarov, 1996]) as
well. The deduction presented in [Hladk4, Ribarov,1998] says that a
reduced tag set (Xeroxss) brings better absolute success values. On
the other hand, it could seem very strange to disregard such impor-
tant MCs for Czech as case and gender (CTC tag set — RCTC tag
set). Immediately, the tagging accuracy increases from 81.38% (ex-
periment Prague) to 90.11% (experiment Granada) and from 80.91%
(experiment Maridnskd) to 90.30% (experiment London); the relatively
high performance is achieved at the cost of the omitted morphological
information which could be so important for a number of post-tagging
applications.

100

95 -

90 <& 90.304
90.11

85

081.38 080.91

75 ©74.20
70 - -

65 965.53 i

60 | | | |
Hlinsko Prague Maridnsks Copenhagen Granada London

MM experiment ID

Figure 3.2: The results of the MM experiments without morphological pre-
processing

The way of defining the tagging accuracy (Eq. 2.1) concerns only the tag

level perspective. It says nothing about the subtag level errors. In order to
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know what kind of errors the MM taggers produce we analysed the output

621
train

of trigram MM tagger trained on CTC (experiment Maridnskd).

The letters in the first column and the corresponding rows of Tab. 3.16
denote 10 basic POS classes + 2 additional classes (see Par. 3.1.2) (for the
evaluation, the punctuation class and sentence boundary class are involved
under a single class marked by T). The numbers show how many times
the tagger assigned an incorrect tag to a word token in the test file. The
total number of errors was 244. Altogether, the adjectives (A) were tagged
incorrectly fifty times, nouns (N) 93 times, numerals (C) 5 times, etc. (see
the last unmarked column); to provide a better insight, we should add that
in 32 cases out of 50, the adjective was correctly tagged as an adjective,

but the mistakes appeared in the assignment of the other morphological

categories.
_ |ajc|FIKIN[O|PIRIS|T|VIX] |
Ajll32(0(]0]0]6 3|2 2|21 2]0]|50
c|jfo|4(0/,0y1,0]0|10]0[0]O0]|O0
F|lolfoj0oj0j0j0]0j0|]O0O]O0O|0]0O0
K|lofojojo;0j0j0j0|1]0|0]1
N|l4(0]0]0]64| 8| 04|25 24|93
ofjofofojofrfojoyjo0foj1r{1j0y3
PlO[O]0O]0O]O0|3]19({0|0]0| 0123
R|loOf(0OjOj0O]1|1]0|0]|]0]0]|]O0]|2
S{|{o0(0{0|0|O0]O0O]|]O0O|O0O|O0]O0O]|]O0O]|2
T 0(0j]0]0]1]0]0]0]|]0]0|0]0]| 1
Violfojoj0|3|8|0(3|8]1]|28]|2]53
X|l0(0j]0]|0]O0O|O0O]S5|0]12]0|2]|0]| 8

Table 3.16: The distribution of the errors produced in the trigram experi-
ment on CTC

Tables 3.17-3.20 provide a very concrete idea about the kind of the incor-
rect assignments of MCs in case of a correct part of speech class assignment.
Going back to the adjectives (Tab. 3.17), only gender of the 17 adjectives
was tagged incorrectly, only number was wrong once, six times case was
an error, gender and case were mistagged three times jointly, etc. Putting
together the numbers in the error evaluation tables, the numbers confirm
the expected fact that MCs case, gender and number belong to the most
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errorable Czech MCs.

‘AHg‘n‘c‘g&c‘g&n‘c&a‘g&n&c‘g&c&d‘
3217|116 3 2 1 1 1

Table 3.17: The distribution of the adjective errors produced in the trigram
experiment on CTC

‘NHg‘n‘c‘g&c‘n&c‘%NZ‘
64 ufsfa] 2 | 4| 1 |

Table 3.18: The distribution of the noun errors produced in the trigram
experiment on CTC

glc|| P|g]|c|gkec|PD—PP
4 113|198 |7| 3 1

Table 3.19: The distribution of the numeral and pronoun errors produced
in the trigram experiment on CTC

For running the experiments on English (without any morphological pre-
processing), we had to change the format of WSJ to prepare the data for our
MM tagging software. The numbers in Tab. 3.21 confirm our corpus-driven
(not experiment-based!) assumption concerning the differences in tagging
of Czech and of English; the results for English outperform results for Czech
significantly.

WiTH MORPHOLOGICAL PRE-PROCESSING

Since the start of the tagging experiments it has been clear that includ-
ing linguistic information into purely statistical approaches should be a step
forward. The term linguistic information means (in our case) linguistic infor-
mation obtained from the MA, although we are aware that also more general
layers of linguistic information are relevant. As mentioned in Sect. 2.1, we
need a set of meaningful tags TAGS,, for a given word token w. Altogether,
the linguistic information received from the MA is expressed in the TAGS,,
for each word token w in the text.
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|V [p|t]n]s|n&t]|p&t]t&a] gka | plnkt |V — VT |
(28 fsfefsfs[ 1 [ 1 1 [1] 1 | 4 |

Table 3.20: The distribution of the verb errors produced in the trigram
experiment on CTC

STRATEGY | CORPUS | TRAINING TAGGING
DATA SIZE | ACCURACY (%)

unigram MM | WSJ 1,287,749 89.50
bigram MM WSJ 1,287,749 96.38
trigram MM WSJ 1,287,749 97.14
bigram MM WSJ 110,530 93.74

Table 3.21: The experiments on English using the MM strategy

The specification of the experiments with the morphological preprocess-
ing are listed in Tab. 3.22. The power of linguistic information if included
in the pure statistical method can be illustrated by Fig. 3.3.

linguistic information — Having the training data of a comparable size
(experiment Copenhagen vs. experiments Birmingham, Montecatini),
a comparable number of different tags (882 vs. 860) and having the
same tagging strategy (MM) allows us to make a fair comparison of
taggers without and with morphological preprocessing. The presence
of the list of all meaningful tags for each word token in the test file
causes an improvement from 74.2% to 87.8% in TA of the tagging
procedure. The demand for more training data in case of a tagger
with morphological preprocessing becomes more intensive.

EXPERIMENT MM CORPUS | TRAINING

ID MODEL DATA SIZE
Birmingham | bigram PDT 124,692
Montecatini | trigram | PDT 124,692

Table 3.22: The specification of the MM experiments with morphological
preprocessing
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Figure 3.3: The comparison of the MM experiments with/without morpho-
logical preprocessing

3.4.2 RB STRATEGY

For Czech, we take the rule-based tagger “as it is” (designed for English),

i.e. with the prespecified lexical/contextual templates of the following form
([Brill, 1993a):

lexical templates

Change the most likely tag to X

if deleting the prefix x, |z| < 4, results in a word form
if the first (1,2,3,4) characters of the word form are x
if deleting the suffix x, |z| < 4, results in a word form
if the last (1,2,3,4) characters of the word form are x

if adding the character string x as a suffix results
in a word form (|z| < 4)

if adding the character string x as a prefix results
in a word form (|z| < 4)

contextual templates
Change the most likely tag to X
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EXPERIMENT | CORPUS | TRAINING

D DATA SIZE
Baltimore CTC 75,863
Washington CTC 19,565

Table 3.23: The specification of the RB experiments

e if the word token w ever appears immediately to the 1/2/3 positions
left /right of the word token

e if the word token w is the current word token

e if the word token w tagged by tag ¢ appears immediately left/right of
the word token

e if the word bigram w;, wy appears immediately left/right of the word
token

o if the tag ¢ ever appears immediately to the 1/2/3 positions left/right
of the word token

The strategy of a rule-based tagger determines the usage of annotated
and unannotated corpora. The annotated corpus is being split into two
parts of equal size. The first of these parts is used for learning the rules
to predict the most probable tag for unknown words (lexical rules) and the
second one is used for learning contextual rules.

For Czech, we used the complete CTC with tags removed as an unan-
notated corpus. Two experiments differ in the annotated corpus (part of
CTC) size; see Tab. 3.23. Needed training time is the reason we separated
relatively small parts with regard to the size of the complete CTC is in the
time needed for training.

The disadvantage of statistical methods is the “opaqueness” of the com-
putational process across the large statistical tables. At the same time, in
contrast to the large statistical tables, it is a pleasure to follow a small set
of rules generated during the learning phase of a rule-based tagger.

The lexical rules learn the morphology from the training data by “play-
ing” with suffixes and prefixes of word forms. The lexical templates (as they
are designed for English) look at up to the four first or last characters in
a word form. It seems that the number four is suitable for Czech as well.
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Table 3.24 offers those lexical rules which belong to the lexical rules gener-
ated during the training step of experiments Baltimore and Washington at
the beginning of training.

Tab. 3.25 provides the word token samples which satisfy the condi-
tions determined by the rules listed in Tab. 3.24. For instance, the rule
25 (Tab. 3.24) says: if the given word form has the two letter suffix “ym”,
then change the tag of the word token to the tag AIS71A. Since the word
token “novym” satisfies the left-hand side of the given rule, we can change
the tag of “novym” to the tag AIST1A. The usage of an unannotated corpus
is obvious from the rules No. 11, 23 and 24 which add the suffixes to the
given word form and test if the result is a word (in an unannotated corpus).
Let “problém” be the currently processed word form; adding one-letter suffix
“u” results in the word “problému”. If the word form “problému” appears in
unannotated corpus, then the tag of “problém” is changed to the tag NIS1
(see rule No. 11).

if Change to if Change to
1 t char? VTA 14 | e hassuf 1 V3SAPOXA
2 | u  hassuf 1° NIS2 15 | v hassuf 1  AIS11A
3 a hassuf 1 NIP2 16 | me  hassuf 2 V1PAPOXA
4 a hassuf 1 NFS1 17 | ou hassuf 2 AFS41A
5 y hassuf 1 NFS2 18 |1 hassuf 1 V3SAMOMA
6 é hassuf 1 O1A 19 | ni hassuf 2 NNS4
7 a hassuf 1 AFS11A 20 | i hassuf 1 NFS6
8 ho hassuf 2¢ AIS21A 21 | im hassuf 2 NNS7
9 m  hassuf 1 NIS7 22 | la hassuf 2 V3SAMOFA
10 | h hassuf 1 AFP21A 23 | 4ch  addsuf 3¢ NFP2
11 | u addsuf 1¢ NIS1 24 | me addsuf 2f V3SAPOXA
12 | é hassuf 1 AFS21A 25 | ym  hassuf 2 AIST1A
13 | i hassuf 1 V3PAPOXA

“character appears in the word

bone-letter suffix in the word

“two-letter suffix in the word

dadding a three-letter suffix results in a word
‘adding a one-letter suffix results in a word
fadding a two-letter suffix results in a word

Table 3.24: A sample of Czech lexical rules

Comparing the first fifty contextual rules learned by experiments Bal-
timore and Washington, just three same rules were generated at the same
time. The others are similar with regard to the context size or are totally
different. For instance, we present the first eight out of the mentioned fifty
contextual rules in Tab. 3.26. The first rules (a) change the tag AFP21A to
the tag ATP21A if the tag NIP2 appears 1 or 2 positions to the right of the
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1 plavat / to swim 14 | (ona) plave / she swims
2 (bez) problému / without problem 15 | novy (problém) / new problem
3 (bez) problému / without problems || 16 | plaveme
4 divka / a girl 17 | (s) veselou (divkou) /
with merry girl
5 (bez) divky / without a girl 18 | (on) plaval / he swam
6 pékng / nicely 19 | potapéni / diving
7 veseld (divka) / marry girl 20 | (na) lodi / on the boat
8 (bez) nového (problému) / 21 | (s) potdpénim /
without new problem with diving
9 (s) problémem / with problem 22 | (ona) plavala / she swam
10 | (bez) veselych (dive)k / 23 | (bez) vln /
without merry girls without waves
11 | problém / problem 24 | (on) plave / he swims
12 | (bez) veselé (divky) / 25 | (s) novym (problémem) /
without merry girl with new problem
13 | (oni) spi / they sleep

Table 3.25: A sample of word forms satisfying the Czech lexical rule condi-
tions

current word token. In other words, if the current word token temporar-
ily tagged as adjective, feminine, plural, in genitive, base form, positive is
followed by two word tokens one of which is temporarily tagged as noun,
masculine inanimate, plural, in genitive (i.e. there is not a gender agree-
ment between the noun and its attribute), then change the gender value of
the attribute. The second rule (b) of experiment Baltimore involves up to
three preceding tags (PREV1OR20R3TAG), while the second rule of ex-
periment Washington only two preceding tags (PREVIOR2TAG). Similarly,
the third rule (c) of experiment Baltimore involves up to three following
tags (NEXT10R20R3TAG), while the third rule of experiment Washington
only the immediately following tag (NEXTTAG). The remaining rules (d-
h) operate with different information. In majority of cases, the contextual
rules concentrate on the case, gender, number agreement. Despite the
relatively small training data size, the results of RB tagger (see Fig. 3.4)
on Czech seem very optimistic when compared with the results (74.20%) of
statistical experiment Copenhagen trained on data of a comparable size.

3.4.3 XEROX STRATEGY

The numbers representing the results of all Xerox experiments are presented
in Fig. 3.5. Given the strategy of Xerox taggers, they belong to the set of
taggers with morphological preprocessing. The tag set size is the aspect we
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Baltimore
Change to if
a | AFP21A AIP21A NEXT10R2TAG NIP2
b | NIS2 NIS6 PREVIOR20R3TAG Rv
¢ | AIS21A ANS21A NEXT1OR20R3TAG NNS2
d | AIP21A AFP21A NEXT10R2TAG NFP2
e | AFS41A AFST1A NEXT10R20R3TAG NFS7
f | NIS2 NFS4 PREVTAG AFS41A
g | AFS21A AFS61A NEXTTAG NFS6
h | NFS2 NFS6 PREVIOR20R3TAG Rv
Washington
Change to if
a | AFP21A AIP21A NEXT10R2TAG NIP2
b | NIS2 NIS6 PREV1OR2TAG Rv
c | AIS21A ANS21A NEXTTAG NNS2
d | NNS2 AFS21A NEXTTAG NFS2
e | AFP21A AFP61A NEXTTAG NFP6
f | AFS21A ANS11A PREVIOR20R3TAG V3SAPOXA
g | NNS2 V3SAPOXA PREVIOR20R3TAG T.IP
h | NNS2 NNS3 PREVIOR20R3TAG Rk
Table 3.26: A sample of Czech contextual rules
100
95 - .
90 - —
Tagging
Accuracys§5 |- -
(%)
80 [ —
@ 79.06
77.13@
75 - —
70
Baltimore Washington

Rule-Based Experiments ID

Figure 3.4: The results of the rule-based experiments
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concentrate our attention on.

EXPERIMENT CORPUS TRAINING

ID DATA SIZE
Montreal | CNCY,, .. | 15,000
Philadelphia | CNC%, | 15,000
Grenoble | CNC%, . | 15,000

Table 3.27: The specification of the Xerox experiments

tag set size The results show that the more radical reduction of Czech
tags (CTC tag set — Xeroxss tag set) the higher accuracy of the
results and the more comparable are the Czech and English (Tab. 2.3)
results. Again, we face the problem of the amount of information
provided by the tags. For instance, how can we grammatically check
the input Czech sentence when the only information we are provided

(with precision 96%) is the part of speech information?

100

96.200
95 - .

[ ]
Accuracy9Q - —

(%)

85 .

80 :
Montreal Philadelphia Grenoble

Xerox Experiments ID

Figure 3.5: The results of the Xerox experiments
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3.4.4 EXP STRATEGY

The strategy of an exponential tagger is driven by the set of features which
can operate on any context (in general). Within the experiment Tihany and
Tibingen, we limited the pool of contexts to a combination of:

e currently processed word form, or
e AC of a single category
and
e the current position in text, or
e the immediately preceding/following position in text, or

e the closest preceding/following position (up to four positions away) in
text having a certain AC in the POS category.

The use of the VTC should guarantee an improvement of overall ac-
curacy, but the accuracy of the individual MCs is open. The experiments
(Fig. 3.6) support the hypothesis on the overall accuracy.

EXPERIMENT STRATEGY CORPUS TRAINING
D DATA SIZE
Tihany pre-determined | PDT 0.5 | 198,023
context only
Tibingen VTC PDT 0.5 | 198,023

Table 3.28: The specification of the exponential experiments

3.5 DISCUSSION OF THE RESULTS

The series of the experiments came into life step by step and each experiment
was intended to improve to improve the tagging accuracy of the previous
experiments. The increasing character of the accuracy curves shows that
we have been successful in the selection of the model ’parameters’ - more
training data, a less detailed tag set, a different tagging method, inclusion of
linguistic information. The choice of such 'parameters’ has emerged mostly
from the comparison of our different approaches to tagging. The experience
from other tagging experiments had a very important influence on our deci-
sions as well. The results show that a smaller tag set achieves better tagging
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Figure 3.6: The results of the exponential experiments

performance than the bigger one does (as expected) and the statistical ap-
proach seems to be a little better than a rule-based one. Nevertheless, the

results mean that many sentences will contain at least one error.

None of the representative corpus-based tagging methods do achieve the
magic point of 100% performance. It is believed that the context can reveal
almost all the secrets of a language. We stress almost, in some cases the
context is not sufficient to specify the function/meaning of a word form. As
we are interested in context-based models of language, the magic point of
such models cannot be 100% because the world knowledge which is hidden
somewhere between the lines cannot be read from the set of word forms and
tags.

Using Xerox tagging tools, the tagging accuracy (Grenoble - 96.2%) is
becoming closer to 98%. However, the Xerox experiment was performed
upon a smaller tag set containing tags concentrating mostly on POS classes
and, not in all but in many applications, it is too coarse for the subsequent
processing of the tagged text such as automatic syntactic analysis, spelling
correction, speech recognition, etc.

One of the conclusions, which we have drawn from the experiments, is
the following: the tag set should be chosen according to the requirements
of a given application rather than to optimize it for the tagger. The more
detailed tag set the better - but again, one should primarily consider the
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application at hand and (if possible at all) must optimize the accuracy/tag
set size ratio.

All results reported in Table 3.29% are based on the best-only approach
using the tagging accuracy criterion. It should be stressed that whereas the
experiments Hlinsko, Prague, Maridnskd, Copenhagen, Granada and London
do not use any morphological preprocessing, the experiments Birmingham,
Montecatini, Montreal, Philadephia, Grenoble, Tihany, Tiibingen, Mannheim,
EXP_CZ and MM_CZ;; employ the output of MA; the experiments Balti-
more, Washington learn the morphology from a part of the training data.
The experiments Maridnskd and Mannheim illustrate the importance of mor-
phological preprocessing; in spite of the double size of training data in the
experiment Maridnskd with regard to the Mannheim training data size, the
TA of Mannheim experiment significantly (80.91% vs. 93.38%) exceeds the
TA of Marianskd experiment. The main conclusion is that the best tagging
results (93.85%) were achieved using the exponential tagger.

STable 3.29 recapitulates not only the experiments discussed above, but the experi-
ments performed later on the PDT as well. The experiments with the best TA within the
characteristic subset of experiments are in boldface.
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STRATEGY EXPERIMENT CORPUS TRAINING TAGGING
ID DATA SIZE ACCURACY
(%)
unigram MM Hlinsko CTC 621,015 65.53
bigram MM Prague CTC 621,015 81.38
trigram MM Maridnska CTC 612,015 80.91
bigram MM Copenhagen CTC 110,874 74.20
bigram MM Granada RCTC 621,015 90.11
trigram MM London RCTC 612,015 90.30
bigram MM + MA | Birmingham | PDT 0.5 124,692 87.80
trigram MM + MA Montecatini PDT 0.5 124,692 86.90
bigram MM + MA MM_CZy; PDT 0.5 300,000 91.80
trigram MM + MA MM_CZ;¢,; PDT 0.5 300,000 92.80
RB Baltimore CTC 75.863 79.06
RB Washington CTC 19.565 77.13
Xeroxar Montreal CNCY.rox 15,000 91.70
Xeroxas Philadelphia | CNC%.,.. 15,000 93.00
Xeroxsy Grenoble CNC%., .. 15,000 96.20
pre-determined
context only EXP Tihany PDT 0.5 198,023 92.30
VTC EXP Tiibingen PDT 0.5 198,023 92.60
EXP EXP_CZ PDT 0.5 300,083 93.85
trigram MM + MA Mannheim PDT 0.5 300,083 93.38
EM alg. (MM _CZ¢,;)
bigram MM + MA MM _CZy; PDT 0.5 300,083 92.50

EM alg.
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CHAPTER 4

CONTEXT CONSIDERATIONS

Notwithstanding the importance of context information, we have not in-
cluded the context considerations into the evaluation of the influence of
various parameters on the tagging accuracy yet. Let us do it now. Our
aim is to focus on the problem, which context should be selected from the
processed text to tag it properly rather than to concentrate on the way by
which the tagging strategies treat the context information. The PDT is
intended to serve as the source of annotated data.

4.1 ENGLISH AND CzZECH TAGGING EXPERIMENTS

The corpus-based approaches determine the amount of human work involved
in the NLP tasks on the building of training data and on the coming up with
an algorithm giving results as precise as possible. The ideas of context spec-
ification cannot be left out in the formulation of the algorithm. The scope:
of context must be specified according to the character of the particular
NLP task. As we consider the nature of context from the perspective of the
tagging application, an elementary unit we process is a word token. In gen-
eral, there is no strict rule saying how many preceding and following word
tokens we should look at to be sure that we tag the word token properly.
Thus, let us have a look at the empirical experience.

Let W = wjwows...w, be an input text to be tagged. As all the pre-
sented tagging strategies tag the input text in the left-to-right direction, a
word token w; is processed when the word tokens w;ws...w;—; have already
been tagged - wi|ti...w;_1|ti_1wiwii1...w, . For the currently processed
word token w;, the context c(w;) of the representative corpus-based tag-
ging strategies for tagging Czech (MM_CZ,;, MM_CZy;, EXP_CZ taggers -
see Tab. 3.29) and English (MM_EN, ME_EN, EXP_EN, MB_EN, RB_EN,
NE_EN taggers?) can be expressed as follows:

! As the EXP tagger operates on a subtag level determined by the ACs, (see Sec. 2.3)
let ma; consist of all fifteen ACs for a given word token w;. The text entering the tagging
step has the form {w1, ma1, w2, mas,...,, wn, ma,}

2The basic characteristics of the given corpus-based English tagging experiments are
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MM _EN - c(w;) = {w;_9,t; 2, w;—1,t;-1}
MM_CZy; - c(w;) = {ti—2,ti—1}

MM _CZy; - c(w;) = {ti—1}

ME_EN - ¢(w;) = {wi—2,ti—2, Wi—1,ti—1, Wit1, Wiy2}

EXP_CZ, EXP_EN - c(w;) = {wj_4, M;i_4, W;—3, Ma;_3,W;i_2, Ma;_2,

Wi—1,MA;—1, W41, MA;41, W42, A2, Wit 3, TMA;4-3, Wi44, m(li+4}
MB_EN - not directly specified
RB_EN - c(w;) = {wi—3,ti—3, wi—2, ti—o, Wi—1,ti—1, Wit1, Wit2, Wit3}
NE_EN - c(w;) = {w; 3,t; 3, w; 2,t; 2,w; 1,1 1, Wit1, Wit}

Observing the given description, the Markov models are locally (pro-
cessing w;) based only upon the left-hand side context® while the other
strategies look not only at the left positions but consider also the right-hand
side context. Some authors offer practical experience with a modification
of the context scope. In the paper [Schmid, 1994], the author describes the
context shrinking to two preceding and one following words together with
their tags which causes accuracy reduction only by 0.1%. Enlarging the
context gave no improvement. The authors [Daelemans, Zavrel, 1996] do
not specify directly the context scope, but they construct a distance metrics
between similar enviroments within modest contexts. We can conclude that
the enumerated contexts as a whole are limited up to 4 positions to the
left /right.

4.2 THE CONTEXT FOR HUMANS

At the starting point of the tagging procedure, all tagging strategies are
given the same input text. The input text (as a whole) is understood as
a whole text context. Consequently, the tagging strategies select from the
whole text context any subcontext over which they process the given word
token. Let us limit the subcontext to the word tokens (wi,wsa,...,w;—1)
preceding the currently processed word token (w;) within the input text. For
a vocabulary size n there are n‘~! different subcontexts (for ex. n = 1,000
and i = 4 then n® = 10%). The problem which immediately appears concerns

introduced in Tab. 2.3.
3In the end, the incorporation of the Viterbi algorithm to find the best tag sequence
means the usage of the right-hand side context.
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the matrices (of n*~! order) representing the counts of particular subcontexts
within the training corpus. With regard to the astronomically large number
of such subcontexts, a vast majority of the possible subcontexts will never
occur in Czech (or other natural language) and that is the reason why the
given matrices are sparse. Nevertheless, the computational linguists’ effort
is directed to deal with sparseness of data being connected with context
specification.

The bigram and trigram MMs employ the smallest left-hand side context
size relatively to the other corpus-based methods; at the same time, their
performances are the best (Tab. 2.3, Tab. 3.29). We believe that a further
improvement of MMs lies in a better selection of the analysed context. Not
to limit ourselves only to experiments modifying the context size and in order
to discover certain guidelines we explore how people handle the information
coming from the predefined left-hand side context.

4.2.1 PREREQUISITES

The annotation of the test file was assigned to a group of 5 students: 2
undergraduate students (S1, S2) with rich experience learned during the
annotation of the PDT; 3 computational linguistics graduate students (S3,
S4, S5) - one of them (S5) with an experience with various tagging strategies
and one of them (S4) being bilingual not educated in Czech. The test file
that was given to the students comprised a 283 word token subset (141
unambiguous tokens and 142 ambiguous tokens) of the test file which we
used in the tagging experiments mentioned above (MM_CZ.;, MM_CZj;,
EXP_CZ). For purposes of evaluation of the tagging and annotation, the
given test file was annotated independently by another annotator upon an
unlimited context.

ForMALISM

Let S = wiwy...w, be a sentence? (a sequence of word tokens) we tag/annotate
in the left-to-right direction, Siokens = (w;)i=1..s be a list of word tokens oc-
curring in the sentence S. While tagging the +th word, the i-1 preceding
word tokens are already tagged by tags t1,%o,...,%;—1; let T be a list of tags
(tj)j=1.i-1-

The contexts which come into play during the experiments of annotation
(BC, TC, SC) and the experiments of tagging (TTC, BTC) can be defined

as functions:

4We consider a context within a sentence, we do not cross the sentence boundaries.
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e Bigram Context (BC) as a function

BC' : Siokens — 2St°ke"saBC(wi) = {wi—l},BC(wl) =0

e Tag Bigram Context (TBC) as a function
TBC : Siokens — 27, TBC(w;) = {t; 1}, TBC(w;1) =0

e Trigram Context (TC) as a function

TC : Siokens — 2St0ke"saTC(wi) = {wifla wi*Z}aTC(wl) = (D,
TC(wz) = {w1}

e Tag Trigram Context (TTC) as a function

TTC : Stolcens — 2T,TTC(wi) = {ti_l,ti_g},TTC(wl) = @,
TTC(’U)Q) = {tl}

e Sentence Context (SC) as a function

SC : Siokens — ZSt”ke"S,SC(wi) = {wl, ...,wi_l},SC(wl) =0

To illustrate the defined terms, let us assume a sample of the sen-
tence fragment O dal§i Stribrné medvédy se podélily ... [lit. about — fur-
ther — Silver — Bears — Refl. — they-shared ..., E. The remaining (Prizes
of) Silver Bears were obtained by ..] and let us suppose that the first
four word tokens are already tagged O|RR--4---------- dalsi|AAMP4----1A----
Stifbrné| AAMP4----1A---- medvédy|NNMP4-----A----. Then the word token
se is to be tagged/annotated. According to the chosen particular context,
the word token se is being processed within the context information embod-
ied in one of the sets BC(se) = {medvédy}, TC(se) = {Stfibrné, medvédy},
SC(se) = {O, dalsi, Stiibrné, medvédy}, TTC(se) = {AAMP4----1A--—-,
NNMP4-----A-—--}, BTC(se) = {NNMP4-----A----}.

4.2.2 How HUMANS TREAT THE CONTEXT INFORMATION

A specially developed tool for morphological annotation, which offers an
easy disambiguation of lemmas and tags (which are outputs of the auto-
matic morphological analysis), was used as a disambiguation tool, which
displays, for the currently annotated ambiguous word token, its morpholog-
ical information and the whole text context. For our aims, we have modified
the disambiguation tool in the sense of the visibility of a partial context; in
case of Bigram Context only the previous word token is visible, for Tri-
gram Context only two previous word tokens are, and finally, for Sentence
Context the preceding word tokens up to the beginning of the sentence are
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at the annotator’s disposal. We have to stress that unambiguous word to-
kens remain obviously untouched by the annotator and while annotating
the given ambiguous word token the annotators have no information on the
assigned tags of the word tokens which are included in the context; an-
notators just suggest a hypothesis of the tags of the context word tokens
themselves. On the other hand, the presented Markov models working over
Tag Trigram/Bigram Context do not deal with the word tokens.

4.3 DISCUSSION OF THE RESULTS

Table 4.1 provides information on the evaluation of the annotation and tag-
ging of the given test file. Reading the table horizontally, we observe that all
the students are getting better as the context enlarges. Reading the table
vertically, we speculate that the learned experience in the course of the anno-
tation over the whole context comes into play (students S1, S2 vs. students
S3, S4, S5). On the other hand, the knowledge of the tagging methods seems
not to be so important (student S5). The bigram MMs beat the students
annotating over the bigram context TBC. However, the situation is inverse
for the trigram contexts T'TC, TC - annotation almost beats tagging.

context BC ‘ TC ‘ SC ‘ TTC ‘ TBC
# of incorrectly tagged /annotated ambiguous
annotator/tagger word tokens out of 142 ambiguous
S3 36 | 20 | 16 - -
S4 47 | 32 | 27 - -
S1 26 | 20 | 9 - -
S2 16 | 13 | 7 - -
S5 29 | 20 | 17 - -
MM _CZy; - - - 20 -
MM _CZy; - - - - 24

Table 4.1: The evaluation of tagging and annotation over the predefined
contexts

Table 4.2 gives a detailed view on the annotation/tagging on a subtag
level®>. A more interesting observation concerns the way how the error rate
over these MCs changes as the context enlarges.

®We present only the most problematic MCs - gender, number, case - together with
POS and SubP0S.
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annotator/ || context | POS | SubP0S | g n c
tagger

BC 0.711 0.711 4.95 | 3.18 | 8.13
S3 TC 0.35 0.35 4.59 | 1.77 | 2.83
SC 0.00 0.35 3.89 | 1.41 | 2.47

BC 1.06 1.41 6.36 | 3.53 | 13.43
S4 TC 1.77 2.12 4.24 | 3.18 | 8.83
SC 0.35 0.71 4.95 | 247 | 6.36

BC 0.35 0.71 459 | 1.77 | 5.65
S1 TC 0.35 0.71 283 | 177 | 4.24
SC 0.00 0.35 212 | 1.06 | 1.41

BC 0.35 0.35 2.83 | 035 | 3.53
S2 TC 0.35 0.35 1.06 | 0.35 | 3.53
SC 0.35 0.35 1.41 | 0.35 | 1.06
BC 0.06 1.77 6.36 | 2.47 | 6.01
S5 TC 0.00 0.35 495 | 212 | 3.89
SC 0.35 0.71 459 | 247 | 3.89
MM_CZy; BTC | 0.71 0.71 247 1071 | 6.71
MM_CZy¢r; TTC | 0.71 0.71 212 | 035 | 5.30

Table 4.2: Error rates (%) over the POS, SubP0S, gender, number, case
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morphological category g ‘ n ‘ c
annotator/tagger context the error rate improvement (%)

enlarging

TC+BC 0.36 | 1.41 5.3

S3 SC+TC 0.7 0.36 0.36

TC+BC -0.71 | 0.35 4.6

S4 SC+TC 141 | 0.71 2.47

TC+BC 1.76 | 0.00 141

S1 SC+TC 0.71 | 0.71 2.83

TC+BC 1.77 | 0.00 0.00

S2 SC+TC -0.35 | 0.00 2.47

TC+BC 1.68 | 0.35 2.12

S5 SC+TC 0.36 | -0.35 0.00

MM_CZ | TTC+TBC | 0.35 | 036 | 1.41

Table 4.3: The error rate changes (%) due to the context enlarging

Looking at Tab. 4.3, the numbers represent decreasing/increasing (pos-
itive/negative numbers) of the error rates over the MCs gender, number,
case for each student and the MM taggers. For example, for student S3,
the error rate over gender decreases by 0.36% if the bigram context (BC) is
enlarged to the trigram context (TC) and at the same time it decreases by
0.7% if the trigram context (TC) is enlarged to the sentence context (SC).
Given the Czech typical word order and given the assumed left-hand side
contexts, the improvement of the case error rate is more expressive than
the changes of the gender and number error rates. Again, given the Czech
word order, it is necessary to include the right-hand side context to identify
the gender and number of the word token.

The strategy of human annotation described above can be understood
only as a simulation of the MMs. The humans work with the left-hand side
context from the beginning till the end; the MMs assign to the currently
processed word token tags with regard to the left-hand side context as well,
but the incorporation of the Viterbi algorithm to find the best tag sequence
which means, in fact, the usage of the right-hand side context in fact.

Putting together this fact and the insufficiently representative size of the
test sample we cannot make any definite conclusions. On the other hand,
the presented results offer the idea that the sentence context (SC) can be
sufficient for successful context-based approaches. We speculate that it is
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not necessary to take the sentence context (SC) as a whole, but dynamically
to select a trigram subcontext from the sentence context.
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CHAPTER 5

CLASSIFIER COMBINATIONS

The research based on the different strategies applied to tag Czech texts
has reached the state in which the performance results of the Czech tagging
systems are very close to each other. A relatively new idea that has emerged
concerns a way of combination of Czech taggers.

In the present chapter, we first give a machine learning motivation and
then, we illustrate the usage of combination techniques on concrete applica-

tions.

5.1 MOTIVATION

Let X be a set of components zi1,zs,... ,T,,, and Y be a discrete set; we
do not specify the type of the X-, Y- components. To each element x;, we
assign just one element from the set Y. In supervised learning, a set of pairs
(x4,9;) is called a training set. The learning algorithm “trains” the pairs
from the training set and for new input set X% (be | X"¢¥| = n) returns a
set of pairs (z1,v1), (2,92)s--- » (Tn,Yn), z; € X" y; € Y. The given set
of pairs is called a classifier and a set of classifiers is called an ensemble of
classifiers. According to the number of different learning algorithms n, we
get a set of classifiers C = {C1,Cs,... ,Cy}. In general, a classifier Cy, (k =
1... n) operates on a set X = {z1,%2,... ,Zp} and is uniquely determined
as the set of pairs (z;,v;), x; € X, y; € Y. In particular, a classifier C =
{(@1,9%), (z2,95), ..., (Tn, ¥E)}, xi € X", y¥ € Y over the input set X"e.

For instance, we want to combine classifiers in the ensemble (n classi-
fiers) to get another classifier. We apply plurality voting as the method of
combination - each case z is assigned a value y for which most of the input
classifiers vote. Let us suppose that classifiers are independent, the error
rates of them are equal to pyp, and pyiy, < 0.5. 1t is difficult to decide whether
the classifiers are really independent or not and we will discuss this issue
in detail below. The following question arises immediately: Does it make
sense to combine classifiers in order to get a more accurate final classifier?
Or, in other words, what is the probability that the value y for which most
of the input classifiers vote is not the correct one? Let A be the event that
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the value y for which the most of the input classifiers vote is not the correct
one, let B be the event that the value of y for which more than half of the
input classifiers vote is not the correct one. Since the event B corresponds
to the binomial distribution (correct/uncorrect classifier output), then

Pr(B) = Z ( :L ) * Dhigm * (1 — Prim)™ ™" (5.1)
1

[i=n/2

One of the preconditions limits py;,, to be less than 0.5. The reason WHY
is captured by Eq. 5.1. If py, equals 0.5, the accuracy of the combination
is the same as the accuracy of the input classifiers; if py;,, is greater than
0.5, there is no way how to get a more accurate classifier by a combination
of classifiers.

As the left-hand side of the implication A C B — Pr(A) < Pr(B)! comes
true for our situation, the right-hand side must come true as well. Thus, let
n = 21 and p = 0.1, then the error rate of the final classifier is less than or
equal to 1.35e-06 which is significantly less than p = 0.1. [Dietterich, 1997]
provides a very nice overview of the classifier combinations.

Basically, there are two types of classifiers: (i) classifiers based on dif-
ferent learning strategies and trained on the same training set - original
classifiers; (ii) classifiers based on the same learning strategy but trained
on different training sets. Bagging and boosting are two different methods
that produce a diverse set of classifiers - bagged and boosted classifiers,
respectively - by manipulating the training data used for the learning algo-
rithm. The mentioned methods take advantage of the learning algorithm
sensitivity on the training data.

The bagging algorithm ([Breiman, 1996]) votes the classifiers generated
by different replicates of the original training set containing m training pairs.
The different replicates are produced by a random sampling of m instances
from the training set. We speak then about bagged training sets, which
contain m training examples.

The boosting algorithm ([Freund, Schapire, 1999]) votes the classifiers
generated (with regard to the distribution of correctly and incorrectly pre-
dicted training examples by the previous classifier) one after another. The
classifiers work with the example weights so that the incorrectly predicted
examples obtain higher weights (to put attention on the errors) than the
correctly predicted examples.

1This is a true implication due to the definition of the probability measure.
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Most of the previous writings on machine learning have demonstrated
that these two methods are effective for neural networks ([Maclin, Opitz, 1997])
algorithms and decision trees ([Bauer, Kohavi, 1998], [Dietterich, 1998] and
[Quinlan, 1996]). Since to find a global optimal decision tree or a neural net-
work is NP-hard problem ([Hyafil, Rivest, 1976], [Blum, Rivest, 1988]), the
given techniques use the greedy search method to find a locally optimal de-
cision tree or locally optimal weights of a neural network. The results show
that the bagging and boosting strategies compensate for the imperfection
of the greedy search algorithm in the sense of improving the performance of
the classifier ensembles in comparison with the performance of the individual
classifiers.

In the following sections, we concentrate only on the bagging algorithm.

5.2 NLP APPLICATIONS

5.2.1 ORIGINAL CLASSIFIERS
ORIGINAL TAGGERS

Practically, almost every natural language processing system needs as its
input a pre-tagged text. A number of various techniques has been developed
to tag texts. Summarizing the results of tagging systems, the performances
of different tagging approaches are comparable in the end. The character
of the training data and of the strategy are the two most important things
which come into play. The experiments confirm that the more training
data, the higher is the tagging accuracy. An even more important aspect is
the fact that the more different language patterns training data cover, the
higher is the tagging accuracy. There are two possible resources to obtain
better results: to have more representative training data and to apply a
more “powerful” tagging method.

Similar ideas trying to improve tagging methods and using an original
taggers combination are described in [Brill, 1998], [Halteren et al., 1998]. It
is a well-known fact that taggers (trained on the same training data) handle
the same information though in a different way with comparable results.
Both papers show that all used taggers (MM, rule-based, memory-based,
maximum entropy) produce different types of errors. Since the maximum en-
tropy approach gives the best results, a maximum entropy tagger is taken as
a baseline tagger. Various methods of combinations are presented - majority
voting, contextual cues, memory-based techniques, etc. In [Brill, 1998], the
authors achieve a maximum improvement of 0.4% over the baseline tagger
using the context-based techniques. The maximum improvement of 0.48%
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over the baseline tagger is increased in [Halteren et al., 1998].

In the paper [Chanod, Tapanainen, 1994], they evaluate the performances
of statistical and constraint-based taggers of French not only separately but
they compare their errors as well. They propose a procedure of combination
of their taggers on the basis of the error evaluation, but the performance of
the combination does not outperform the constraint-based tagger accuracy.

ORIGINAL PARSERS

2 combina-

In [Henderson, Brill, 1999], the authors explore statistical parser
tion techniques. The employed techniques are divided into two basic groups;
parse hybridization and parse switching. Within each group, they distin-
guish non-parametric (constituent voting, similarity switching) and para-
metric (probabilistic) strategies. The improvement of the baseline parser’s
performance is significant (precision up to 3%, recall up to 1%, F-measure

up to 1.5%).

5.2.2 BAGGED CLASSIFIERS
BAGGED PARSERS

We present here the results of the experiments with parser bagging on Czech
language using dependency structures and on English language based on
phrase structures (for details, see [Haji¢ et al., 1998]). In the sequel we
refer to the adapted Collins parser trained on the original Czech training
data (Prague Dependency Treebank) as to the Czech original parser and
to the Collins parser trained on the original English training data (Wall
Street Journal) as to the English original parser.

In general, we carry out the following steps: first, we generate the bagged
Czech/English parsers and then test the independence of the bagged parsers.
The independence test of parsers A and B is measured by the percentage
of dependencies/constituents posited by the parser A and not by the parser
B. We take the union of all dependencies/constituents (Czech/English) at
the output of bagged parsers in parsing the test data. There are two
methods how to modify this union into the final unbalanced and bal-
anced outputs. Thus, we speak about an unbalanced and a balanced
method, respectively. The unbalanced output is created by keeping all de-
pendencies/constituents that were posited by more than a half of the bagged
parsers. We cannot be sure that the unbalanced output represents a fully-

2They used three statistical parsers.
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linked parse. Thus, for every word in the sentence, the bagged parsers vote
on which X — Y dependency/constituent should be chosen.

Table 5.1 recapitulates the results. For Czech, the balanced method still
gives an improvement over the Czech original parser, but not as great an im-
provement as the unbalanced method has achieved. With 18 Czech bagged
parsers we get the improvement in F-measure of 1.2% (with 6 Czech bagged
parsers - 0.7%) using the unbalanced method. For English, the unbalanced
method with 6 English bagged parsers gives an improvement over the En-
glish original parsers as well, but the improvement is not so “considerable”
as for Czech (with 6 English bagged parsers - 0.4%). For Czech bagged
parsers, the average parser independence is 7.1% and for English it is 2.2%.

PARSER(S) H PRECISION ‘ RECALL ‘ F-MEASURE
Czech original 77.0 77.0 77.0
18 Czech bagged (Balanced) 77.8 77.8 77.8
6 Czech bagged (UnBalanced) 81.1 74.6 e
18 Czech bagged (UnBalanced) 80.6 76.0 78.2
English original 88.7 88.4 88.5
6 English bagged (UnBalanced) 90.6 87.3 88.9

Table 5.1: Bagging results on Czech and English parsing

5.3 TAGGER INDEPENDENCE MEASURE

To see how the errors produced by two taggers differ, we use a difference
measure called the complementary rate (CR) (see [Brill, 1998]) which
gives the percentage of errors produced by a tagger A and not produced by a
tagger B:

CR(A,B) = (1 — Common_Errors_A_B/Errors_Produced_by_A) * 100(%) (5.2)
At the same time

CR(A,B) = CR(B, A) & Errors_Produced_by_A = Errors_Produced_by_B
(5.3)

To illustrate the defined measure, let us go back to the example given in
Section 2.2. Now, as we know that Common_Errors.A_B = 1 (w4). Thus,
CR(A,B) = (1-1/2)%100(%) = 50%, CR(B,A) = (1 - 1/3)*100(%) = 66%.

The following situations may obtain:
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e CR(A,B) = 100% - taggers A and B are independent; combination
of A and B gives the improvement.

e CR(A,B) = 0% - taggers A and B are totally dependent; combina-
tion of A and B does not make progress.

e 0% < CR(A,B) < 100% - taggers A and B are dependent; the
higher CR(A,B) the stronger is the chance to get better results by the
combination of A and B.



CHAPTER 6

BAGGING CzeEcH TAGGERS

Early studies point out that if bagging is to succeed, it must produce a
sufficiently diverse set of classifiers and the ensemble of classifiers should
not degrade the original classifier performance significantly. A diverse set of
classifiers can be explained as a set of classifiers producing different types of
errors, better to say complementary errors.

Whether bagging can be a good solution of the Czech tagging problem
remains an open question. The answer to such a question should be provided
by the set of the experiments we perform.

6.1 DaAtA

The manually disambiguated text file we use for experiments with bagging
Czech taggers comprises 23,397 sentences and 330,355 words excluding punc-
tuation marks. We divide the file into two parts. The first part, called the
original training set, consists of 21,270 sentences and 300,383 words (ex-
cluding punctuation marks), compiled by taking the first ten of every eleven
sentences. This part is used to generate bagged training sets of the orig-
inal training set according to the bagging strategy. The second part, the
test data, consists of 2,127 sentences and 29,972 words, created by taking
the last one of every eleven sentences.

In the first bunch of experiments, we have generated totally 20 bagged
training sets (train_l.dat, train 2.dat, ..., train_20.dat) from the original
training set (train 0.dat). Table 6.1 provides an overview of their basic
characteristics. Given the bagging strategy and given the precondition that
the sentence is taken as a training example, the number of sentences in all
bagged training sets is the same (i.e. 21,270). The bagged training sets cover
on average 300,000 words (again, excluding punctuation marks). The last
column of Table 6.1 illustrates the fact that each of the bagged training sets
contains about 73% unique sentences from the original training set, i.e. the
remaining 27% sentences appear in the bagged training sets at least twice.
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# OF WORDS

# OF SENTENCES

# OF UNIQUE

(EXCLUDING SENTENCES
PUNCTUATION)
ORIGINAL 300,383 21,270 21,270
TRAINING SET
BAGGED
TRAINING SETS
1 300,019 21,270 15,640
2 301,484 21,270 15,624
3 301,063 21,270 15,578
4 301,989 21,270 15,674
5 299,389 21,270 15,648
6 300,450 21,270 15,639
7 303,207 21,270 15,647
8 302,774 21,270 15,719
9 299,842 21,270 15,636
10 299,170 21,270 15,645
11 299,679 21,270 15,578
12 301,368 21,270 15,587
13 299,711 21,270 15,640
14 300,913 21,270 15,641
15 299,371 21,270 15,704
16 302,509 21,270 15,655
17 298,846 21,270 15,702
18 298,680 21,270 15,613
19 300,609 21,270 15,630
20 302,608 21,270 15,624
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6.2 TAGGERS

We use the tagger based on the Markov model strategy ([Mirovsky, 1998],
Sect. 3.4.1). In the sequel, we will refer to the MM tagger trained on the orig-
inal training set (train_0.dat) as the original MM tagger (or tagger TOasnr)
and to the MM tagger trained on the bagged version of the training set as
the bagged MM tagger (or tagger T[1-9][0-9]arar); for instance, the Markov
model tagger TH,s,s is trained on the bagged training set train_5.dat.

6.3 MM TAGGERS ERROR ANALYSIS

6.3.1 TAc LEVEL ERRORS

Table 6.2 displays not only the tagging accuracy of all (21) MM taggers we
work with, but also the total number of errors on the tag and the subtag
levels. Reading across the first line, the table shows that the tagging accu-
racy of the original MM tagger is 91.53% (= 2,540 words from 29,972 were
tagged incorrectly); at the same time each incorrectly assigned tag averages
out at almost two mistagged MC's. In the case of the original MM tagger it
means 4,872 mistagged MCs.

The original MM tagger is the best one when comparing tagger accura-
cies on the tag level and the accuracies of the bagged taggers range from
90.75% to 91.26% . It is an optimistic observation that the difference in
performance between the original tagger and any single bagged tagger is
not extremely high. Also, the difference in tagging accuracy among the 20
bagged taggers is really very small (<0.5).

As has been said above, a combination of classifiers can increase the sys-
tem performance if classifiers entering the combination are mutually com-
plementary (i.e. they produce different types of errors). Tables 6.3, 6.4
and 6.5 provide CRs of MM taggers'. As the original tagger has the highest
tagging accuracy, the numbers in the first line are low with regard to the
others. That is understandable because the highest tagging accuracy means
the lowest number of errors. All complementary rates are non-zero numbers
and thus we can conclude that bagged taggers are somehow complementary
and that there is a reasonable chance to get a higher tagging accuracy by
combining taggers.

1FOI‘ example, CR(TOMM, TSMM = 12.32%), CR(T].OMM, T].QMM = 17.24%)
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TAGGER | Accuracy (%) # OF TAG # OF SUBTAG
LEVEL ERRORS | LEVEL ERRORS
TOp 11 91.53 2,540 4,872
Tlym 90.75 2,771 5,259
T20r0m 90.98 2,704 5,168
T3rm 90.81 2,753 5,204
T4 90.97 2,707 5,147
TS 91.17 2,647 5,096
T6 11 91.06 2,678 5,084
TTum 91.01 2,693 5,180
T8rras 90.89 2,729 5,257
T9rrar 90.83 2,747 5,199
T10m 1 91.05 2,681 5,086
T1lpm 90.96 2,709 5,237
T12m 1 90.98 2,703 5,161
T13m M 91.09 2,670 5,049
T14 1 90.75 2,771 5,198
T150 01 91.08 2,673 5,115
T163 1 91.02 2,691 5,169
T17 0w 91.01 2,694 5,194
T18 1 90.91 2,724 5,176
T19 0 1 90.94 2,715 5,221
T20s 11 91.26 2,620 5,084

Table 6.2: Accuracy of the MM taggers
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| T0aras [ T1arar | T20ens | T3ars | Tdarar | T5aras | T6ars | T7arar | T80 | TOnr0 |

TOrm 0.00 9.92 | 11.65 | 9.69 | 11.02 | 11.69 | 10.39 | 12.28 | 12.32 | 10.39

Tlmam || 17.43 | 0.00 | 19.45 | 16.82 | 18.33 | 18.44 | 1833 | 19.92 | 18.80 | 18.40
T2apn || 17.01 | 17.46 | 0.00 | 17.71 | 18.16 | 18.75 | 18.20 | 19.27 | 18.53 | 17.23
T3mwm || 16.67 | 16.27 | 19.18 | 0.00 | 18.34 | 18.45 | 18.27 | 19.22 | 18.38 | 17.62
T4rn || 16.51 | 16.40 | 18.25 | 16.96 | 0.00 | 18.10 | 17.55 | 17.55 | 17.25 | 17.44
Tdmm || 15.26 | 14.62 | 17.00 | 15.19 | 16.24 | 0.00 | 16.96 | 17.26 | 16.66 | 15.64
T6aras || 15.01 | 15.50 | 17.40 | 15.98 | 16.65 | 17.92 | 0.00 | 17.51 | 16.47 | 16.09
T7un || 17.27 | 17.60 | 1894 | 17.42 | 17.12 | 18.68 | 17.97 | 0.00 | 19.61 | 17.71
T8arns || 18.40 | 17.55 | 19.27 | 17.66 | 17.92 | 19.16 | 18.03 | 20.67 | 0.00 | 19.13
T || 17.15 | 17.69 | 18.53 | 17.44 | 18.64 | 18.71 | 18.20 | 19.33 | 19.66 | 0.00
T10nrn || 16.30 | 16.45 | 18.39 | 16.71 | 18.58 | 17.61 | 17.31 | 18.05 | 18.02 | 18.05
T1lmw || 16.39 | 1568 | 19.27 | 17.09 | 17.46 | 18.60 | 17.53 | 18.86 | 18.79 | 17.76
T12mn || 16.28 | 16.24 | 19.13 | 16.35 | 18.02 | 18.28 | 17.61 | 18.76 | 17.94 | 16.57
T13mmMm || 16.32 | 15.28 | 17.75 | 156.73 | 17.34 | 17.60 | 17.15 | 19.10 | 17.04 | 16.74
T14nar || 17.72 | 17.79 | 19.60 | 17.39 | 18.15 | 20.28 | 18.73 | 20.17 | 18.19 | 18.55
T15mnm || 15.60 | 16.54 | 17.92 | 16.12 | 16.50 | 17.66 | 17.36 | 18.44 | 17.99 | 17.06
T16amn || 16.91 | 16.20 | 18.51 | 15.87 | 17.43 | 17.58 | 17.13 | 18.69 | 18.06 | 17.32
T17mm || 15.40 | 15.26 | 16.52 | 16.74 | 17.71 | 17.89 | 16.82 | 17.82 | 17.85 | 17.37
T18mn || 17.07 | 17.58 | 18.58 | 16.48 | 17.80 | 19.38 | 17.55 | 19.53 | 17.66 | 17.58
T19mm || 16.61 | 16.54 | 18.53 | 16.65 | 17.20 | 17.38 | 17.53 | 19.04 | 18.23 | 16.65
T20nn || 156,92 | 16.15 | 16.15 | 16.18 | 16.53 | 17.79 | 17.40 | 18.17 | 17.33 | 16.95

Table 6.3: Complementary rates (%): part I
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| T1000¢ | P10 0000 | T12000 [ T18 0000 | 140000 | T15 011 |

TOprar || 11.65 | 10.83 | 10.91 | 10.98 | 10.24 | 11.18
Tlpas || 19.16 | 17.47 | 18.30 | 18.37 | 17.79 | 19.49
T2par || 19.08 | 19.12 | 19.16 | 18.79 | 17.60 | 18.86
T3par || 18.89 | 1842 | 17.87 | 18.27 | 16.85 | 18.56
T4prar || 19.36 | 17.40 | 18.14 | 18.47 | 16.22 | 17.55
Toprar || 16.55 | 16.70 | 16.55 | 16.89 | 16.55 | 16.85
T6prar || 17.21 | 16.58 | 16.84 | 17.40 | 15.91 | 17.51
T7arar || 18.42 | 1838 | 18.46 | 19.79 | 17.86 | 19.05
T8nar || 19.46 | 19.38 | 18.72 | 18.83 | 16.93 | 19.68
T9prar || 20.02 | 18.89 | 1791 | 19.08 | 17.84 | 19.29
T10ar2s| 0.00 18.39 | 17.75 | 18.02 | 17.01 | 18.76
T11p7) 19.23 | 0.00 18.05 | 18.01 | 1742 | 18.97
T12p0r) 18.42 | 17.87 | 0.00 19.05 | 17.46 | 18.50
T13arasr|| 17.68 | 16.82 | 18.05 0.00 15.77 | 17.68
T14prar| 19.70 | 19.27 | 1949 | 18.84 | 0.00 19.78
T15par| 1852 | 17.88 | 17.58 | 17.77 | 16.84 | 0.00
T16arar| 17.61 | 17.58 | 18.17 | 17.91 | 17.43 | 18.10
T17par) 18.08 | 16.78 | 17.59 | 17.22 | 15.52 | 18.26
T18par| 1791 | 18.28 | 19.49 | 18.47 | 16.45 | 18.32
T18par] 18.38 | 18.27 | 18.05 | 18.12 | 16.76 | 18.45
T20pspr|| 16.95 | 16.87 | 17.29 | 17.21 | 16.34 | 17.37

Table 6.4: Complementary rates (%): part II
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| T16000¢ | 717000 | T18 010 | T19 0004 [ T200101

TOprpr || 11.97 | 10.28 | 11.06 | 10.87 | 13.27
Tlpas || 18.62 | 17.61 | 18.98 | 18.22 | 20.71
T2par || 1890 | 16.83 | 17.97 | 18.20 | 18.75
T3prar || 17.76 | 18.53 | 17.36 | 17.80 | 20.23
T4prpr || 1792 | 18.10 | 17.29 | 16.96 | 19.21
Tdarar || 16.21 | 16.43 | 17.04 | 15.26 | 18.62
T6apas || 16.73 | 16.32 | 16.13 | 16.39 | 19.19
TTma || 1875 | 17.79 | 18.60 | 18.38 | 20.39
T8arar || 19.20 | 18.91 | 17.81 | 18.65 | 20.63
T9par || 19.00 | 1897 | 18.27 | 17.62 | 20.79
T10pp7] 17.31 | 17.68 | 16.60 | 17.34 | 18.84
T11prpr|| 1812 | 17.24 | 17.83 | 18.09 | 19.60
T12prpr| 18.53 | 17.87 | 18.87 | 17.68 | 19.83
T13arar|| 17.27 | 16.48 | 16.82 | 16.74 | 18.76
T14prpr|| 19.81 | 17.86 | 17.86 | 18.44 | 20.89
T15prpr|| 17.85 | 17.62 | 16.76 | 17.17 | 19.00
T16aar| 0.00 17.69 | 16.50 | 17.09 | 18.91
T17par| 17.78 0.00 16.93 | 16.82 | 18.75
T18xrar|| 17.51 | 17.84 | 0.00 18.91 | 20.56
T18par| 17.83 | 17.46 | 18.64 | 0.00 | 20.11
T20prpr|| 16.72 | 16.45 | 17.40 | 17.21 0.00

Table 6.5: Complementary rates (%): part III
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6.3.2 SuBTAG LEVEL ERRORS

Tagging test data by the original tagger and by the 20 bagged taggers, we
obtain 20+1 tagged versions of the test data. At the point of error analysis,
we are interested just in the incorrectly tagged words. We convert the set
of all incorrectly assigned tags into 6-position strings - ABCDEF - in or-
der to have for each tagged version of test data (20+1) a more comfortable
data format and thus to be able to analyse varied kinds of errors. A string
ABCDEF contains the following values:

A tagger_output_P0S # tagged part of speech
of the word

B truth_P0S # annotated part of speech
of the word

C position_of mistagged_ MC # 1...15

D tagger_output-MC # tagged value of MC
in the given position

E truth.MC # annotated value of MC

in the given position

F  word_order_in_testdata # word position in the test data

Using the regular expression syntax, we can formulate various kinds of
queries to obtain an error-related statistics. For instance, if we are interested
in case (5th position) errors of words tagged as a noun (N) we can express
it as N.5..[0-9]1%; if we are interested in all cases where masculine animate
(M) adjective (A) is tagged as masculine inanimate (I) adjective (A), then
we search for AASIM[0-9] *.

Let us formulate a regular expression (using the defined format) “match-
ing” the errors over subtag POS (i.e. incorrect POS subtag in the first posi-
tion). The corresponding regular expression is . [ACDIJNPRTVX]1. . [0-9]x.
Table 6.6 displays the evaluation of this expression for original and bagged
taggers. Reading across the third line, Table 6.6 shows that the bagged
tagger T2,,5s mistagged adjectives 46 times, numerals 47 times, adverbs 20
times, interjection once, mistagged conjunctions 12 times, nouns 70 times,
etc. Totally, the bagged tagger T2,/3s mistagged MC part of speech of
362 words (last column).

Typically, we calculate the tagging accuracy of taggers on the tag level.
On the subtag level, we are interested in the error rates on each particular
MC. The columns in Tables 6.9 and 6.10 are marked by MC variables (to-
tally, 13 MC's, see above) and each table box displays the error rate of the
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original /bagged tagger on the given MC. For instance, the error rate of the
tagger T20p/37 on gender is 2.52%. The column marked by POS contains
not only the error rate on the part of speech category but the number of
words with incorrectly tagged subtag P0OS as well. Obviously, these num-
bers are the same as the numbers in Table 6.6 in the column marked by ).
Even now it is certain that M(Cs case, number and gender are the most
problematic categories; the error rates on them are by far the highest ones.

Again, in terms of the 6-position string format, the regular expression
AA3..[0-9]* matches strings describing the situation when an adjective is
tagged as an adjective but case (of adjective) is mistagged. Using regular ex-
pressions like this (i.e. part of speech of word is correct, but some of MC's
are incorrect), we show the results of their evaluation in Tables B.1 - B.10
(Appendix B)? which confirm the already known fact that morphological
categories case, number and gender belong to the most problematic Czech
morphological categories (from the point of view of morphology). Their high
error rates bring about the question whether their complementary rates are
high as well. Tables C.1 - C.9 (Appendix C) give the answers.

Tables C.1 - C.3 display case CRs which are mostly greater than 70%;
this sounds encouragingly high. number CRs in the Tables C.4 - C.6 are
overall smaller in comparison with case and gender CRs. However, number
CRs average out at more than 50% which is from the point of view of tagger
combination a reasonably high number as well. Like case CRs, gender CRs
in Tables C.7 - C.9 are very close to the limit of (on average) 70%.

The percentages in the previous tables look very optimistic. In this
connection, we are interested in mutual erroneousness of M(Cs. The infor-
mation® in Table 6.11 must be read so that original MM tagger assigned
wrong P0S,SubP0S,g,n,c,a values (all at once) to 99 words or wrong n,c
values to 332 words. The original MM tagger mistagged 2,540 words. Using
data such as these, we can again confirm the fact that the case, number
and gender belong to the most often mistagged MC's. Also, it is necessary
to remark that case, number and gender errors often “go” together.

6.4 COMBINATION

It is customary to convert the output of taggers (not only the errors, see
above) into a more “comfortable” format. The formalism chosen is explained
below.

*We present only those MCs which are included in the inflection (in the course of Czech
AMA) of the given part of speech.
3We list those situations that occur more than 10 times.
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TAGGER || A | C | D

TOn s 44 | 42 | 25
Tl 48 | 46 | 25
T20p 0 46 | 47 | 20
T3 44 | 47 | 23
T4rrm 43 | 43 | 25
THarnr 50 | 42 | 24
TOrr0s 44 | 44 | 24
TTrvm 49 | 47 | 25
T8rrnr 52 | 53 | 27
TIp 49 | 46 | 21
T10pas || 45 | 44 | 25
T11par || 49 | 45 | 22
T12p0s || 47 | 43 | 25
T13par || 43 | 45| 21
T14pas || 47 | 46 | 23
T15ps || 46 | 46 | 23
T16p0s || 48 | 49 | 23
T17ps || 50 | 48 | 23
T18yar || 54 | 49 | 21
T19p0r || 51 | 47 | 25
T20p0r || 45 | 47 | 22

JIN|P|R|T|V |X]| >
12 1 68 | 86 | 18 | 40 | 15 | 11 || 362
1317119120 |39 |17 |12 || 383
12 170 | 90 | 24 | 38 | 17 | 11 || 376
13 168 |90 |20 38|17 | 10 || 371
12 168 |91 12038 |20| 9 || 370
13|72 |86 |23 39|16 | 11 | 377
13 | 68 | 87 | 15| 42 | 17 | 10 || 365
12 170 | 88 |22 | 37 | 18 | 10 || 379
12 |70 [ 87 | 20 | 38 | 17 | 8 || 385
14 |71 |8 | 17 |42 | 15| 9 || 370
12 |71 |88 |22 |42 |15 | 9 | 374
12 175192 121 |44 |20 |10 | 391
13170 |90 | 27 | 38 | 16 | 11 || 381
14 1 66 | 90 | 17 | 40 | 15 | 10 || 362
12 167 |94 121 |43 |16 | 8 || 378
13169 (9222|3620 | 8 || 376
12171 19412335 |18 | 8 || 382

8
9

13169 |93 | 21|41 |17 384
1317093193815 382
12176 | 90 | 21 | 39 | 17 | 11 || 390
12 172194120 |39 |17 | 11 | 381

S G e T e S e N o e

Table 6.6: Number of incorrectly tagged part of speech

A C D J N >
# of part of || 3,914 | 1,439 | 1,818 | 7 | 1,847 | 10,203 | 19,228
speech in
test data

Table 6.7: Number of particular part of speech classes in test data (adjectives
(A), numerals (C), adverbs (D), interjections (I), conjunctions (J), nouns

(N))
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P R T A% X >
# of part of || 2,200 | 3,378 | 143 | 4,278 | 745 || 10,744
speech in
test data

Table 6.8: Number of particular part of speech classes in test data (pronouns
(P), prepositions (R), particles (T), verbs (V), unknowns (X))

Taccer | P0s  [swpos| g | n | ¢ |
TOmar || 362 ] 121 [ 131 [ 2.45] 2.60 | 6.89
Tluar || 383 | 128 | 1.38 | 2.64 | 2.80 | 7.50
T2 || 376 | 125 | 1.37 | 2.67 | 2.77 | 7.29
T3ma || 371|124 | 1.35 | 2.62 | 2.81 | 7.46
Tdpp || 370 | 123 || 1.35 | 2.56 | 2.74 | 7.40
Touar || 377 | 126 | 1.36 | 2.61 | 2.77 | 7.16
T6uar || 365 | 1.22 || 1.32 | 2.59 | 2.71 | 7.26
TTum | 379|1.26| 1.38 |2.55]|2.74 | 7.38
T8uar | 385|128 1.39 |2.64|2.81 | 7.45
T || 370 | 123 || 1.34 | 2.59 | 2.79 | 7.52
T10npa || 374 | 1.25 || 1.35 | 2.52 | 2.68 | 7.34
Tllpas || 391 | 130 | 142 | 2.63 | 2.72 | 7.39
T12uas || 381 | 127 | 1.37 | 2.54 | 2.76 | 7.39
T13par || 362 | 121 | 1.32 | 2.54 | 2.66 | 7.25
Tldpar || 378 | 126 | 1.37 | 2.62 | 2.69 | 7.51
T15umn || 376 | 125 | 1.35 | 2.57 | 2.68 | 7.31
T16pas || 382 | 127 | 1.39 | 2.60 | 2.67 | 7.33
T17uar || 384 | 128 | 1.39 | 2.59 | 2.80 | 7.29
T18uas || 382 | 127 | 1.39 | 2.57 | 2.69 | 7.39
T19n0a || 390 | 1.30 | 1.40 | 2.66 | 2.75 | 7.37
T20us || 381 | 127 | 1.38 | 2.52 | 2.69 | 7.15

Table 6.9: MM taggers: error rates (%) over particular morphological cate-

gories (part I)
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TAGGER H possg ‘ possn ‘ ) ‘ t ‘ d ‘ a ‘ v ‘ s ‘
TOr 0.04 0.01 |0.21]0.22] 0.29 | 0.66 | 0.22 | 0.15
T1pnr 0.03 0.00 | 0.25 | 0.25] 031 0.70 | 0.25 | 0.15
T20mr 0.04 0.01 |0.24|0.24 | 0.29 | 0.68 | 0.24 | 0.15
T3rmm 0.04 0.01 |0.24|0.24 | 030 | 0.68 | 0.24 | 0.15
T4 0.04 0.01 |0.24 024|029 | 0.67 | 0.24 | 0.15
Tovm 0.04 0.01 |0.24 023|031 |0.67 | 0.23 | 0.13
T6r s 0.04 0.01 |0.22|0.24 | 031|067 ]| 0.24 | 0.15
T7am 0.04 0.01 |0.26 | 0.26 | 0.31 | 0.68 | 0.26 | 0.15
T8mm 0.04 0.01 |0.25]0.26| 032 0.68 | 0.26 | 0.15
T9rm 0.04 0.01 |0.24 024|030 067 |0.24 | 0.13
T10ar0s 0.04 0.01 |0.22]0.21] 031 0.66 | 0.21 | 0.15
T11pras 0.05 0.02 |0.26 | 0.25 | 032 | 0.71 | 0.25 | 0.15
T12p0r 0.04 0.01 |0.23]0.23]0.32]| 0.68 | 0.23 | 0.15
T13 s 0.04 0.01 |0.22 |0.23 | 030 | 0.67 | 0.23 | 0.16
T14p 0 0.04 0.01 |0.24|0.24 | 030 | 0.68 | 0.24 | 0.15
T15mm 0.03 0.00 | 0.23|0.26 | 031 | 0.67 | 0.26 | 0.15
T16 v 0.04 0.01 |0.24|0.26 | 032 | 0.70 | 0.26 | 0.15
T17 001 0.05 0.02 |0.24 | 025|031 |0.71]0.25]|0.15
T18 s 0.04 0.01 |0.24 024033070 0.24 | 0.15
T19pm 0.04 0.01 |0.24 025|031 |0.68 | 0.25 | 0.15
T20p1 01 0.04 0.01 |0.25]0.26 | 0.31 | 0.67 | 0.26 | 0.15

Table 6.10: MM taggers: error rates (%) over particular morphological cat-
egories (part IT)
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‘# OF WORDSHN—TUPLES OF MISTAGGED MCs

10
12
13
14
23
32
46
o7
93
99
102
128
232
332
1189

POS
POS
POS
POS

SubPOSgcptda
SubPOS cptda
SubPOS gnctda
SubPOS gn c d

SubP0S d a

POS

g
POS

g
POS

B 0@ @8 B

SubP0S

n

SubP0S ¢
n o

SubPOS gn c a

Table 6.11: Mutual erroneousness of morphological categories in the test
data tagged by the original MM tagger
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For each word (in a position p) in the tagged test data, we construct on
the tag level a sorted set 3T, of 3-tuples [n;, t;, p] where n; is the number
of taggers that posited the tag t; for a word in the position p. The given set
is in the order of n; so that ny > ngp > ng > ... Be T, (|T| = |3T}|) set of
all different tags posited by N taggers for a word in the position p. Then

Ty
n; = N.

i=1
Further, it is necessary also to consider the version of the test data tagged
by the original tagger. That is why we construct a set of pairs [tg,, p].
Each pair [ty ,, p/ provides an information saying that the original tagger
disambiguates a word in the position p in the test data by the tag f,.
Consequently, for a word in the position p in the test data, there are two
input arguments for the combination on the tag level: the set 87, and the
pair [top, p/.

For a combination on the subtag level, more input arguments come into
play. Besides 3T}, [top, p/, we work with a set 3ST§, of 3-tuples [my, 1, st;]
and a set 4ST), of 4-tuples [my, 1}, st;, Ty}, my < N,y < |3Ty|, |Ti| < |3Ty|.
To create a set 35T}, we use the information expressed in the set 37). Each
set 35T}, relates to a word in the position p and to a subtag in the position
i (7 goes from 1 to 15, see above). To find the elements (3-tuples) of a set
38 TZ, we must look at tags in the set 37}, determine all M(C values in the
position 7, and keep the counts that say how many times (r;) MC value st
was observed in 87, and how many taggers (m;) posit this value. Set 35 T;,
= {[m1, r1, sti],[mo, ro, sto], ... } is generated first in the order of r; so
that Al Z T 2 T3 >

. ; if r, = r,, then the set is generated in order of my
decreasingly.

The first three elements of each 4-tuple in a set 45 Té, are generated by the
same process as the 357, elements. In addition, there is one more element
T; for each 3-tuple [my, r;, st;]. For each value st; of the i-th subtag, we are
interested in tags which contain the value st; in the i-th position. All these
tags (numbered in the scope of 35 T;,) are the elements of the set Tj.

For instance, 20 (N=20) bagged MM taggers return four different tags
for the word “co” in the position 647 (p=647) in the test data, i.e.

T647 = {Db ) J, ) PQ 4 ) TT } Tag
Db---emmmmeeee- is posited by 1 bagged MM tagger, tag J,------------- by two
bagged MM taggers, tag PQ--4-------—-- by four bagged MM taggers and tag
TT--mm- by thirteen bagged MM taggers. Given this information, we
get the set 3T47 = {[13, TT--m-mmmmmm- , 647], [4, PQ--4---------- , 647],[2, J-
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———————————— , 647], [1, Db-------—----—-) 647]}. Obviously, 1+2+4+13=20. The
original MM gives the pair [PQ--4---------- , 647].

On the subtag level, 38T, , = {[13,1,T],[4,1,P],[2,1,J],[1,1,D]}, 38T%,, =
{[13717T]’[4717Q]’[2717’]’[1a17b]} and so on; 4ST§47 = {[20’4a'7{t17t27t37t4}]}a
4ST§47 = {[20545'1{171,t2,t3,t4}]}a 4ST§47 = {[16535',{t11t3at4}]1 [4ala4a{t2}]}ﬂ
etc.

6.4.1 VOTING STRATEGIES ON THE TAG LEVEL

Algorithm No.1 - plurality voting (Fig. 6.1) The basic idea of
the plurality (simple) voting is as natural as one would expect: let n be a
number of different taggers which operate over the same text. Then, for
the currently tagged word wj;, the taggers assign m different tags (n > m)
Diff Tags = {t},?,...,t™}. Consequently, for each element (tf ,j =1.m) of
Diff_Tags set we are able to count the number (¢) of taggers which assigned

to the given word the tag t]. Then, we assign to the given word w; such a
tag tf for which vote the plurality of the taggers, i.e. ¢¥ > ¢/,j = 1...m and
j # k. If there appear more such tags, then it is necessary to formulate a
further criterion according to which we select just one tag. In case of five
input taggers, there are totally seven different vote distributions - 5:0, 4:1,
3:2, 3:1:1, 2:1:1:1, 2:2:1, 1:1:1:1:1*. We can uniquely select the winning tag
for the first five vote distributions. For the remaining two vote distributions
(2:2:1, 1:1:1:1:1), we can apply a specific criterion: choose such tag candidate
from a set of tag candidates as the winner® for which the best tagger within
a set of taggers engaged in voting process votes; randomly choose a tag
candidate for taggers with the same tagging performance.

To illustrate this given criterion, let us suppose (we assume the ratio
2:2:1) that for a tag tg the tagger with tagging accuracy 91% and tagger
with accuracy 92% vote; for a tag t¥ tagger with tagging accuracy 89.5%
and tagger with accuracy 90% vote. Then, since the tagger with tagging
accuracy 92% is the best one (within a set of voting taggers), the tag tg is
the winner of voting.

According to the way we define the set 87}, the most “popular” tag is
an element of the first 3-tuple.

4Using the formalism desribed above, we mention the corresponding set of different
tags returned by five taggers and the corresponding number of votes for each ratio: 5:0
— Diff_Tags = {t}}, ¢! = b5; 4:1 — Diff Tags = {t1,t?}, ¢! =4, ¢® = 1; 3:2 — Diff_ Tags =
{t},t2}, ¢! =3, ¢® = 2; 3:1:1 - Diff Tags = {t;,t7,t2}, c' =3, =1, =1; 2:1:1:1 -
Diff Tags = {t;,t7,t3,t1}, ¢t =2, ¢* =1, =1, ¢* = 1; 2:2:1 - Diff Tags = {t}, 7,3},
ct=2,¢=2, ¢ =1; 1:1:1:1:1 - Diff Tags = {t},t2,t3,t1,t5}, ' =1, =1,2 =1, ¢!
=1,c =1

5There exist two candidates for the ratio 2:2:1 and five candidates for the ratio 1:1:1:1:1.

83



procedure Plurality_Voting(3T,)

begin
return(ty);
end

Figure 6.1: Plurality voting

Algorithm No.2 - plurality voting driven by the original tagger
(Fig. 6.2) As the performance of the original tagger is higher than the
performance of the bagged taggers, it is reasonable to include the original
tagger into the combination step as well. On the other hand, the most
“popular” tag need not to be the right one. One way to select a tag that
was not chosen by a plurality of taggers is to give preference to the original
tagged output because of its highest performance. Thus, if a tag in the
second 3-tuple in 37T}, is the same as the tag which the original tagger gives
we prefer it.

procedure Plurality_Voting_Driven_T0q aras (3Tp, [top,p]);
begin

if ny == ny then return(t;)
else if to == ty, then return(ts)
else return(t;);
fi
i
end

Figure 6.2: Plurality voting driven by the original tagger

Algorithm No.3 - plurality voting driven by the original tagger
and by the parameter C (Fig. 6.3) We modify slightly the idea of
plurality voting driven by the original tagger in the sense of tuning the
decisions based on the plurality votes according to a parameter C. The
parameter C goes from 1 to N (N is equal to the number of input taggers,
see above); if the number of plurality votes for a given tag is greater than C
we prefer the most “popular” tag without regard to the tag posited by the
original tagger. Else, we follow the idea of the algorithm No. 2.

6.4.2 VOTING STRATEGIES ON THE SUBTAG LEVEL

Algorithm No.4 - plurality voting on the subtag level (Fig. 6.4)
First, we do not take into account the truths about M(C's case, number and
gender. In addition, we tag each subtag independently without regard to
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procedure Plurality_Voting_Driven_TO0g a7 -C(3Tp, [top,p], C);
begin
if n; > C then return(t;)
else
if to ==ty then return(ty)
else return(t);
fi
fi

end

Figure 6.3: Plurality voting driven by the original tagger and a parameter

C

the subtag context. The assignment of a value® st to the i-th subtag variable
is driven by two criteria: (a) how many times a value st appears in the set
3T, (numbers r; in 3ST§,); (b) how many taggers posit a value st (numbers
m; in 3ST)); if we cannot decide according to the criterion (a) which value is
selected, then we use the criterion (b). In compliance with the way in which
the set 3ST;) is constructed, it is not difficult to find the “winning” value.
Unfortunately, the given strategy of plurality voting applied on subtags can
lead to a selection of a meaningless tag.

procedure Plurality_Voting Subtag Level();
begin

FTlag:=“";

fori=1to =15do

FTag := FTag * Eval(3ST});

od

return(FTag);

proc Eval(3ST}) =

return(sty).

end

Figure 6.4: Plurality voting on subtag level

Algorithm No. 5 (Fig. 6.5) The prior analyses have shown as prob-
lematic the MCs case, number and gender, which we now tag in a way
conditioned by mutual dependence. The remaining M(C's are tagged accord-
ing to the algorithm No. 4. By the algorithm No.4 we find the output case

5The list' of all potential values of i-th subtag is determined by 3-tuple members st; in
the set 35T,.
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value’ stJ. Next, we know tags (T2) which have in the 5th position the
value st>. The selection of the output number value st4, is driven by the
algorithm No. 4 as well and the set of all potential values is limited to the
values not only in the tags with the given value, but also in the tags from the
set T?; in other words, members of T2 N Th,. Finally, the output gender
value st,f is determined by algorithm No. 4 and the intersection of sets T2,
T4, and T,f. Using this strategy, at least the combinations of case, number
and gender values make sense, i.e. corresponds to the output of MA.

Let us take an example from our test data to illustrate the core ideas of
the algorithms No. 4 and No. 5 more explicitly. The word “srovnatelné” in
the position 11 annotated as AAIP1----A1---- is totally (N = 20) tagged
by three different tags. Then, the set 3T;; contains three elements: 37T,
= {[17, AANSI----Al-—, 11], [2, AATP1-—Al-—, 11], [1, AAFP1---Al---,
11]}. We observe a trade-off between a neuter (N), a masculine inanimate (I)
and a feminine (F) adjective in the position corresponding to a gender (3rd
position), and a singular (S) and a plural (P) adjective in the 4th position.
Sets 3ST%, covering this kind of information contain the following elements:
3ST¢, = {[17,1,N],[2,1,1],[1,1,F]}, 3STf1 = {[3,2,P],[17,1,S]}. Similarly,
sets 4STY, = {[17,1,N,{t1}],[2,1,L,{t2}],[1,1,F,{t3}]}, 4STf1 = {[3,2,P,{t2,
t3}],[17,1,S,{t1}]}. In addition, 3STJ, = {[20,3,1]}, 4STY, = {[20,3, 1,
{t1,t2,t3}]}. Let us first trace the procedure Plurality_Voting_ Subtag_Level.
The individual steps are expressed in Table 6.11.

Then, we trace the procedure Plurality_Voting_Subtag_Level_cgn only for
i = 8,4,5. For the other steps, see Table 6.12.

Algorithm No. 4 tags the input word by the tag AANP1----A1---- and
algorithm No. 5 by the tag AAIP1----A1----, which is the correct one.

6.5 DISCUSSION OF THE RESULTS

Discussing the results we obtained we should answer the following questions:

1. Why bagging? Bagging is effective in cases where small variations
in the training data result in significant differences in the resulting
classifiers. If training is relatively insensitive to small training data
differences, then the N resulting classifiers will not be significantly
different, and therefore combining these classifiers will not give any
significant improvement over a single classifier. For our first bagging

"To distinct case, number and gender 3/4-tuples, we add as the exponent numbers 5,
4, and 3, respectively.
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1 |r1|r9|k|OUTPUT VALUE
113 A
203 A
31|11 N
4121 P
513 1
6|3 -
713 -
813 -
913 -
10| 3 A
11(3 1
12(3 -
13(3 -
143 -
153 -

Table 6.12: Procedure Plurality_Voting_Subtag_Level - example

1||r1 Ty T N Ty ||rg] To |T NTo||OUTPUT VALUE T
53 |{t1,to,ta}|{ts,ta,t3} 1 {t1,to,ta}
42| Ttaits} | Ltosts) | 1|{t:}] 0 P {ta,t3)
3 {t1} 0 |11t} {t2) I {t2}

Table 6.13: Procedure Plurality_Voting_Subtag_Level_cgn - example
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experiment on Czech, we took as the original classifier the Collins
parser retrained for Czech (Sect. 5.2.2). The positive results obtained
have provided us the hope for the bagging experiment on Czech with
the MM tagger as the original classifier.

In order to compare the results obtained with Czech bagging experi-
ments applied on the problem of parsing, we consider the union of all
pairs [tag, word position in test data] given by the output of the 20
bagged taggers applied on the test data and keep all tags posited by
at least one bagged tagger. We get the number of correctly tagged
words by summing the “correct” numbers in the column marked “cor-
rect/incorrect” in Table 6.15 with regard to the number of taggers
that posited the given pairs. For example, 18 bagged taggers agree
on 450 tags from which 289 are assigned correctly and 161 assigned
incorrectly. As the number of bagged taggers the output tags of which
agree decreases (the second column), tagging accuracy on correspond-
ing tags decreases as well (the last column). The unbalanced output
is created by keeping all pairs that are posited by more than the half
of the bagged classifiers (see above). As we work with 20 bagged
taggers, the precision of unbalanced output is 91.80%. Keeping the
pairs posited by 20 bagged taggers, we get precision 95.96% and the
pairs posited by at least one tagger have the precision 83.80% (see
Tab. 6.14).

. (In)Dependence of bagged taggers? According to the motivation given

in Sect. 5.1, only a combination of the independent classifiers working
with the accuracy greater than 50% can be successful. The Comple-
mentary Rate (CR, Sect. 5.3) represents a quantitative measure of the
taggers (in)dependence. All the input taggers (original and bagged)
are dependent (Tab. 6.3 and Tab. 6.4); the CRs(original tagger, bagged
tagger)s are lower than the CRs(bagged tagger, bagged tagger). The
bagged tagger CRs lie within the limits 15%-20%, i.e. on average, ev-
ery sixth word token is tagged by two bagged taggers differently. On
the contrary, the CRs(original tagger, bagged tagger) lie within the
limits 9%-13%, i.e. on average, every ninth word token is tagged by
the original and bagged taggers differently. Since the average inde-
pendence of the bagged parsers on Czech was 7.1% (the percentage of
dependencies that were output by Parser 1 and not by Parser 2), which
is less than in our case, we could expect an improvement through the
voting of the taggers (since the voting of bagged and original parsers
achieved an improvement).
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3. Why no improvement? The balanced combination methods are rep-
resented by algorithms No.1 - No.5. The tagging accuracies of these
methods (Tables 6.16, 6.17) do not reach the tagging accuracy of the
original tagger. In detail, the results of the tag level algorithms (Ta-
ble 6.16) are better than the results of the subtag level algorithms.
As the MM tagger works with tags on the tag level, it is understable
that the strategy of the subtag level algorithms is slightly different in
comparison with the MM strategy. All chosen tag level strategies or
subtag level strategies are affected by the lack of the tag/subtag con-
text information. In algorithm No.5, we attempt at least partially to
include the context information into the combination. We split the set
of subtags into 13 subtag subsets {P0S},{SubP0S},{g,n,c}, {possg},
{possn},{p}.{t},{d},{a},{v}, {x1}, {x2} and {s}. Each subset was
processed independently on the others and without any context in-
formation. Only the processing of the subset {g,n,c} takes at least
partially the advantage of the subtag context.

We see that the unbalanced method gives significantly better results
than the balanced method. But neither the unbalanced nor the bal-
anced method achieves an improvement over the original tagger in
comparison with the successful bagging on parsing.

Summing up the basic bagging parameters, we discuss the following
numbers:

e number of bagged parsers/taggers: 18 vs. 20
o average dependence of bagged parsers/taggers: 7.1% vs 17.5%
e the level of performance of bagged parsers/taggers: 76% vs. 90%

e number of unique dependencies/tags output by bagged parsers/taggers:
100K vs. 34K

Given the first three parameters, we can hope for the success of the
bagging on tagging. But, there were approximately 100K unique de-
pendencies output by the 18 bagged parsers. Approximately, 40%
of these dependencies were output by all 18 bagged parsers; for the
bagged taggers, there were approximately 34K of unique tags output
by the 20 bagged taggers and approximately 78% of these tags were
output by all 20 bagged taggers. The “weak” robustness of the bagged
tagger system (34K vs. 100K, 78% vs. 40%) is probably the reason
why the bagging on tagging does not work so well as on the parsing.
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# OF TAGS POSITED |PRECISION(%) |RECALL(%) |F-MEASURE(%)
AT LEAST X TAGGERS

z=1 83.80 95.29 89.18
z=11 91.80 91.12 91.45
z =20 95.96 85.00 90.15

Table 6.14: Accuracy of combined bagged taggers

# OF TAGGERS | # OF POSITED | CORRECT/ TAGGING
TAGS INCORRECT | ACCURACY (%)
20 26,551 25,476/1,075 95.95
19 661 454/207 68.66
18 450 289/161 64.22
17 359 211/148 58.77
16 348 196/152 56.32
15 366 199/167 54.37
14 284 144/140 50.70
13 274 138/136 50.36
12 226 95/131 42.04
11 226 107/119 47.35
10 267 114/153 42.70
9 229 88/141 38.43
8 237 99/138 37.08
7 300 111/189 37.00
6 317 114/203 35.96
5 391 127/264 32.49
4 396 109/287 27.53
3 488 140/348 28.69
2 611 152/459 24.88
1 1,010 197/813 19.50

Table 6.15: Tagging accuracy versus the number of MM taggers positing a
tag
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TAGGER/ PARAMETERS # OF TAG | #OF SUBTAG TAGGING
STRATEGY LEVEL LEVEL ACCURACY
ERRORS ERRORS (%)

TO M - 2,540 4,872 91.53

T200 11 - 2,620 5,084 91.26

Alg. No.1 N=20 2,573 4,972 91.42
T1aram-T200

Alg. No.1 N=21 2,569 4,963 91.43
TOrram-T20p0s s

Oracle T1yrv-T200m 0 - - 95.29

Oracle TOrra-T20 01 01 - - 95.29

Alg. No.2 | 2,570 4,929 91.41

Alg. No.3 C=9 2,573 4,971 91.41

Alg. No.3 C=10 2,570 4,968 91.43

Alg. No.3 C=11 2,567 4,958 91.44

Alg. No.3 C=12 2,572 4,949 91.42

Alg. No.3 C=13 2,572 4,944 91.42

Alg. No.3 C=14 2,569 4,932 91.43

Alg. No.3 C=15 2,575 4,936 91.41

Table 6.16: Results of the tag level algorithms
TAGGER/ PARAMETERS # OF TAG | #OF SUBTAG TAGGING
STRATEGY LEVEL LEVEL ACCURACY
ERRORS ERRORS (%)

Alg. No4 N=20 2,611 4,954 91.29
T1arm-T20p0s s

Alg. No.4 N=21 2,600 4,929 91.33
TOap-T200 01

Alg. No.5 N=20 2,600 4,966 91.33
T1ara-T200 0r

Alg. No.5 N=21 2,588 4,939 91.37
TOara-T200 a1

Table 6.17: Results of the subtag level algorithms
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procedure Plurality _Voting_Subtag Level_cgn();
1=1,T : setof int;

begin
FTag ="
while ; <= 15 do
if == 3 then
FTag = FTag * Eval_cgn(4ST?,4ST,,45T);
i+ =2
else
FTag = FTag * EV&](3ST$);
fi
1+ +;
od
return(FTag);
proc Eval_cgn(4ST;’, 4STI§, 4STp5 ) =
int ¢, g,n;
¢ = Eval MCLi j(3ST?, 1);
T =17

FSTags = st?;
n = Eval MC_i(4ST,));
FSTags = stﬁ x FSTags;
g = Eval MC_i(4ST});
FSTags = stg x F'STags;
return(FSTags).
proc Eval MCLi j(35T},j) =
return(j).
proc Eval_MC_i(4ST;) =
empty =1,7 = 1;
while (not empty) do
if |T; N T|| == 0 then j + +
else empty = 0;
fi
od
T=TnNTy
return(Eval _MC_i_j (BSTIf,j)).
end

Figure 6.5: Plurality voting on subtag level employing context information
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CHAPTER 7

ORIGINAL COMBINATION OF CZECH TAGGERS

Motivated by the experiments with the combination of original English tag-
gers, we performed an experiment of the simple (plurality) voting combi-
nation of the original Czech taggers trained on the Czech Tagged Corpus
(CTC) and the Prague Dependency Treebank (PDT).

7.1 ORIGINAL TAGGERS TRAINED ON CTC

Tab. 3.29 in Chapter 3 above shows that the taggers trained on CTC
based on the different tagging strategy have comparable results (except
the Hlinsko experiment). Tab. 7.1 presents concrete values of the com-
plementary rates of the mentioned taggers. Naturally, as the Prague ex-
periment achieves the best results relative to the other experiments the
CRs(Prague,[Hlinsko|Maridnsk3|Baltimore|Washington]) are smaller than the
other CRs. On the other hand, the Hlinsko experiment gives the worst re-
sults, i.e. produces the highest number of errors and CRs(Hlinsko,[Prague|
Marianskd|Baltimore|Washington]) are the highest ones.

We first included five (Hlinsko, Prague, Maridnska, Baltimore, Washing-
ton) taggers into a simple voting procedure’. We expected no magic results
especially because of the lower quality of the Hlinsko experiment. Then, we

1Our voting strategy is strictly directed by the criterion specified in Sect. 6.4.1.

Hlinsko | Prague | Maridnskd | Baltimore | Washington
Hlinsko 0 52.24 50.90 49.55 43.05
Prague 11.62 0 12.03 26.56 22.41
Maridnska 11.34 14.47 0 28.74 25.91
Baltimore 16.97 34.69 35.06 0 10.70
Washington 14.19 36.82 38.18 18.24 0

Table 7.1: Complementary rates (%) of original Czech taggers trained on
CTC
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excluded the less ¢

‘productive” taggers Hlinsko, Maridnskd, Washington. As
the Prague tagger gives results with the highest tagging accuracy (81.38%)
(we take it as the baseline tagger) and the tagging accuracy of the combina-
tion reaches 81.99%, we achieve the improvement of 0.61% over the baseline
tagger. Detailed analysis of vote distributions (Tab. 7.3) allowed us to take
the next step in direction of better overall accuracy. For the word forms
with the vote distribution 1:1:1, the rule-based tagger Baltimore gives the
best accuracy; thus, we prefer a tag determined by the Baltimore tagger in

case of the 1:1:1 vote distributon.

7.2 ORIGINAL TAGGERS TRAINED ON PDT

Similarly to the taggers trained on CTC, the taggers trained on PDT (the
experiments EXP_CZ, MM _CZ,; and MM_CZj;, see Tab. 3.29) present mu-
tually comparable results; even, the complementary rates (Tab. 7.2) are
higher than the ones presented in Tab. 7.1. Despite the higher tagging ac-
curacies and the higher complementary rates, the plurality voting of the
EXP and MM taggers did not bring about non-zero a positive change of the
overall tagging accuracy. Thus, we analyzed the quantitative statistics of
vote distributions in detail in Tab. 7.3. Most of all, we concentrated on the
cases of the 2:1 vote distribution most of all. Taking into the consideration
the different methodologies of the input taggers it is no wonder that the 2:1
vote distributions MM taggers vs. EXP or RB tagger are the most frequent
out of all possible 2:1 vote distributions. For instance, 2.141 word forms
were tagged (1.249 word forms incorrectly, 892 word forms correctly) by the
vote distribution MM _CZ;,;, MM_CZ; (same tag) vs. EXP_CZ (different
tag). The significant success of the voting Prague, Maridnska:Baltimore in
comparison with the failure of the voting MM_CZ,;, MM_CZy; : EXP_CZ
is probably caused by the higher accuracy of the taggers Prague, Maridnska
over the tagger Baltimore in comparison with the higher accuracy of the
EXP_CZ over the taggers MM _CZy,;, MM_CZp;. To take advantage of the
high complementary rates of the taggers trained on the PDT, we should use
the context-based combination method; i.e. we have to locate the contexts
within which the EXP tagger works accurately than the MM taggers and
on the other hand, the context within which the MM taggers works more
accurately than EXP tagger.
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| EXP.CZ | MM_CZ4ys | MM_CZ,,

EXP_CZ 0 47.09 41.58
MM_CZy; 50.91 0 12.13
MM_CZy; 52.19 22. 50 0

Table 7.2: Complementary rates (%) of original Czech taggers trained on
PDT

corpus CTC | PDT

test file 1.294 | 29.972

# of word tokens

vote 3:0 1.014 | 26.721

distributions correct 939 | 25.892
incorrect 75 829
2:1 225 3.073

correct 114® | 1.542°b
incorrect | 111¢ | 1.531¢

1:1:1 55 178

correct 25¢ 1417

incorrect 30 37
TA (oracle) 87.48 | 96.13

“Maridnska, Baltimore:Prague 14, Prague, Maridnska:Baltimore 79,
Prague, Baltimore:Maridnska 21

"MM_CZ4,;, MM _CZy;:EXP_CZ 892, MM_CZ;,;, EXP_CZ:MM_CZj; 430,
EXP_CZ, MM_CZy;:MM _CZ;,; 220

“Maridnskd, Baltimore:Prague 12, Prague, Maridanskd:Baltimore 75,
Prague, Baltimore:Maridnska 24

MM _CZqpi, MM_CZy;:EXP_CZ 1.249, MM_CZ¢,;, EXP_CZ:MM_CZy; 101,
EXP_CZ, MM _CZp;:MM_CZy,,; 181

“Prague 7, Marianskd 1, Baltimore 17

fEXP_CZ 62, MM_CZtri 63, MM _CZ,; 16

Table 7.3: The vote distributions
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CHAPTER 8

MORE “PDT-LIKE” LANGUAGE RESOURCES

Czech Tagged Corpus (CTC, Sect. 3.1.2)) is an annotated corpus containing
about 600K word tokens. The format of CTC is very simple: each word
together with its CTC tag occupies one separate line (see Tab. 8.1). As 600K
word tokens are not a negligible amount of morphologically annotated texts,
we have decided to convert CTC into the Prague Dependency Treebank
(PDT) format (which is SGML-based, words are annotated by the positional
tags and the inner format corresponds to SGML coding). To get a “new
coat” of the CTC, we have to undertake several steps during which we
obtain various intermediate corpora:

CTC®r4s 4t only words from the CTC stripped of their CTC tags
CTCur% 4 CTCY in the SGML coding

CT%T # CTC;;’(%MS morphologically analyzed

CTCP? 4 the CTC in original format, the tags of which

# are mapped into the "new” positional tags
C’TC;%5 # CTCP% automatically converted in SGML format
CTCpat # CTC in the PDT format - final version
Tables 8.1, 8.2 and 8.3 provide the samples from the particular corpora using
the example

... budu vyjadfovat v decibelech stav ...
. (I) will express  in decibels state ...

8.1 MAPPING THE CTC TAGS INTO THE POSITIONAL TAGS

The CTC tag set was designed without paying too much attention to AMA
because the procedure of AMA had not been completed at that time. As
we plan to include the CTC into the PDT, the tags must correspond to
the positional tag system of the MA. Table 8.4 shows a mapping from the
CTC tags into the positional tags. As the number of MCs included in the
positional tag system is higher than that in the CTC tag system, we “fill
in” just positions (values) corresponding to the known MCs from the CTC
tagset. The meaning of particular MC variables is explained in Tab. 3.1.
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CTC | cTowerss | ey
budu X budu <f>budu
vyjadiovat VTA | vyjadiovat || <f>vyjadifovat
v Rv \ <f>v
decibelech  NIP6 || decibelech | <f>decibelech
stav NIS4 | stav <f>stav

Table 8.1:

The samples from the corpora CTC, CTCY% and CTCwI s

pdt

cTemm | CTCPos
<f>budu<MMI>byt<MMt>VB-S---1F-A A--- budu XXemmmmmmmmemem
<f>vyjadrovat<MMI>vyjadfovat <MMt>Vf-------- A---- vyjadfovat ~ VB-S---1F-AA---
<f>v<MMI>v<MMt>RR--4---------- <MMt>RR--6---------- v
<f>decibelech<MMI>decibel <MMt>NNIP6----- A---- decibelech

<f>stav< MMI>stav® <MMt>NNIS1----- A---- stav

<MMt>NNIS4-----A—--
<MMlI>stavet? <MMt>Vi-S---2--A-—--
<MMI>stavit® <MMt>Vi-S---2-- A----
<MMI>st4t% <MMt>VmYS----—A----

“a state - in nominative, accusative case
b0 build, to construct - imperative form
°to drop in - imperative form

to betide - archaic present transgressive of perfective verb

Table 8.2: The samples from the corpora CTCP’ and CTC™"

pdt
CTCast | CTCpar
<f>budu<1l>byt<t>VB-S---1F-AA--- <f>budu<I>byt<t>VB-S---1F-AA---
<f>vyjadtovat<1>vyjadiovat <t >Vf-------- A---- <f>vyjadrovat<l>vyjadiovat<t>Vf-------- A----
<f>v<MMI>v<MMt>RR~-4-----m---- <I>v<I>V<t>RRA-6----------

<MMt>RR-6-mmmmme
<f>decibelech<1>decibel<t>NNIP6----- A
<f>stav<l>stav<t >NNIS4----- A-—-

<f>decibelech<1>decibel<t >NNIP6----- A
<f>stav<l>stav<t>NNIS4----- A----

Table 8.3: The samples from the corpora CTC%@5
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‘ CTC TAG H POSITIONAL TAG H DESCRIPTION ‘
Ngnc NNgnc---------- noun
NZ XX-mmmmmmmmeme- abbreviation
‘ Agncda H AAgnc----da---- H adjective regular; ‘
VTa Voo a---- verb: infinitive
VWnPsga Vegn------ a---- verb: transgressive present
VWnMsga Vmgn------ a---- verb: transgressive past
VpnAMmga Vpgn---XR-aA--- verb: past participle, active
VpnPMmga Vsgn---XX-aP--- verb: past participle, passive
VpnsPmga VB-n---pP-aA--- verb: indicative,
present tense
VpnsFmga VB-n---pF-aA--- verb: indicative,
future tense
VpnstRga Vi-n---p—a---- verb: imperative
PPfnc PP-nc--f------- personal pronoun I/you
PP3gnc PPgnc--3------- personal pronoun he/she/it
PRginic3gons || PSginicgong3d------- pronoun possesive 3rd person
PRgin1cfgang || PSginic-nof--—----- pronoun possesive
1st, 2nd person
PSgnc P8gnc---------- reflexive possesive pronoun
PEc P7-X¢-----—--- pronoun reflexive se
PDgnca PDgnc--------—-- pronoun demonstrative
Oda H Dg------ da---- H adverb ‘
SS B conjunction (subordinating)
SP B conjunction (coordinating)
Cgnc Clgnc---------- numeral, basic
‘ Rpreposition H RR-------meem-- H preposition ‘
F I interjection
‘ K H g H particle ‘
‘ T_SB H Lt H sentence boundary ‘
‘ TIP H Litmm e H punctuation ‘
‘ X H XX H unknown ‘

Table 8.4: Mapping CTC tags into the positional tags
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8.2 FroM CTC 10 CTCpyt

A simple mapping of CTC tags into the positional tags is not sufficient, so

that we have to check positional tags in the CTCP? relative to the output

of the AMA - CTCg- A 5-step procedure was formulated to merge and

to process the information coming from the corpora CTCP** and CTC "

in order to get the final corpus CTC,q. The steps can be characterized as

follows:

. Processing of morphologically unambiguous words in CT%T. The

words with unambiguous morphological analysis are annotated by this
procedure. We do not take the CTCyp,s annotation into account.

Processing of morphologically ambiguous words in CT%T. To express
the closeness (or identity) of two tags, we decided to define a distance
metric. The most straightforward distance metric is the one given
in equation (8.1), where A and B are the tags to be compared, and
d(a;,b;) is the distance between the values of the i-th subtag in a tag
with n subtags (in our case n = 15).

D(A,B) _ Zgl 5((1,1,[)1) (5(&1,[)1) > —1 (81)

-1 (5(&1,[)1) =-1

Distance between two subtags is measured using equation(8.2):

0 a; =b,
(S(Gi,bi) =41 ay 75 bi, i=2...n (82)
-1 ay 75 bi, i=1

Evaluation of ambiguities in CTC‘;%.

. Manual and automatic resolution of ambiguities in CTC‘;%.

Evaluation of manual and automatic resolution of ambiguities.

Given the input example, we illustrate each step separately:
Step 1 For the unambiguous word budu, vyjadrovat, decibelech the AMA

provides just a single tag (see the first column in the Table 8.2). The SGML

100



More “PDT-like” Language Resources

markup <MMI> and <MM¢t> for lemmas and tags produced by AMA be-
comes the SGML markup <1> and <t> for annotated lemma and tag (see
the second column in the Table 8.3).

Step 2 For the ambiguous word v the AMA provides two different tags
and for the word stav five different tags. Let A denote the tag from CTCP%®
and B denote the tag from CTCJF". To express the closeness of two tags, we
distinguish the equality of part of speech values. If the part of speech values
are identical, the chosen metric D(A,B) expresses the number of different
MC values in A and B. Otherwise we assume that A and B are totally
different (D(A, B) = —1). We select from the list of tags provided by AMA
such tag which has the minimal distance from the corresponding CTC tag.
If there are more tags with the same minimal distance we keep all of them.

lemma ‘

v D(RR. , RR~-4 ) =
D(RR--------=---- , RR--6------—--- ) =

stav D(NNIS4---------- , NNIS1--—--A-—-—) =
D(NNIS4---------- , NNIS4-----A----) =1

stavét | D(NNIS4----—--- , Vi-S---2--A----) =-1

stavit | D(NNIS4----—-—-- , Vi-S---2--A----) =-1

stat D(NNIS4---------- , VmYS------ A-) =41

Step 3 After the 2nd step the word v remains ambiguous. The explana-
tion is clear - the prepositions are annotated as “R” followed by the particu-
lar preposition (e.g. “Rv”) in the course of CTC. According to the mapping
strategy (Tab. 8.4), each preposition is mapped into the tag RR-------------
. We cannot deduce the case information directly from the prepositional
CTC tags. Thus, we can conclude that all prepositional tags provided by
AMA have the same distance from the CTC tag of the given word and we
cannot resolve the prepositional ambiguity in the 2nd step.

Totally, 60% of words in the corpus CTCg;' are ambiguous. Passing
through the 2nd step we decrease the percentage of ambiguous words to
9.7% out of which 51% are ambiguous prepositions.

Step 4 The ambiguities which remain in the CTC;gf are resolved by two
simultaneous procedures - manual and automatic. We formulate a list of
templates for automatic resolution, for instance the prepositional template:

if NextWord is NOUN or ADJECTIVE or PRONOUN or NUMERAL then
PrepositionCase = NextWordCase.
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Step 5 The manual resolution eliminates the ambiguous words totally.
On the other hand, we are not able to cover all ambiguous cases in tem-
plates. Comparing the manual and automatic resolution of those ambigui-
ties on which the templates are aimed, we can improve the quality of manual
disambiguation.

We illustrate the step 5 on the text originally containing 1,458 ambiguous
words (out of which 815 ambiguous prepositions). The automatic template

if NextWordCase € {1,2,3,4,5,6,7} then PrepositionCase = Next Word Case

concentrates only on the prepositional ambiguities. Using this template
we decrease the number of ambiguous words to 727 (i.e. we resolve 731
prepositional ambiguities); 84 prepositions remain ambiguous and 9 prepo-
sitions are disambiguated differently by automatic and manual procedures.
Using the given prepositional template we cannot resolve the situations when
the preposition is followed by an ambiguous word or by a non-ambiguous
word with X-value of case. The following figure gives the idea of discrepan-
cies between manual and automatic resolution of prepositional ambiguities.

errors times

incorrect manual disambiguation 4

prepositional template doesn’t express

the given sentence situation 3
incorrect tagging of CTC 1
spelling error 1

The revision of manual resolution with regard to the evaluation of the
given discrepancies provides final corpus CTCp;.
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CHAPTER 9

CONCLUSIONS

Corpus-based approaches (as one of the corpus linguistics’ topics) provide a
new way to use information coming from the primary language resources -
texts or speeches.

This thesis is aimed at a corpus-based solution of Czech tagging (using
supervised training). The presence of a Czech annotated corpus® and the
experience learned through the training of taggers operating on English have
encouraged us to find out how useful are the corpus-based approaches for the
task of Czech language tagging. From a historical point of view, the Czech
tagging experiments are the first Czech (even Slavic language) corpus-based
experiments of any kind. In our research, we had to carry out first an
extensive data preparation stage before we reached the experimental stage.

The data preparation stage has a very specific position - it is really
needed?, it is very time-consuming, but nobody asks about the details®.
The crucial thing is that we needed the total amount of morphologically
annotated Czech data to be comparable with the size of the English data on
which comparable experiment have been carried, namely the corpus referred
to as the Wall Street Journal.

In the experiment stage, thanks to the morphologically annotated Czech
corpora, we could dive into the corpus-based tagging experiments. Dur-
ing the first series of experiments, we have applied the Markov model and
rule-based strategies to Czech. We should keep in mind that these tagging
strategies are language-independent; the only language-dependent factor is
the training corpus. As we were changing the tag set from the most detailed
(thousands of tags) into a set containing mainly the part of speech informa-
tion (tens of tags) the results were getting closer and closer to the results
for English*. Taking into account only the tagging accuracy criterion, the
best Czech result reached the level of 96%. However, the post-tagging ap-
plications may recquire not only the part of speech information, but may

! Albeit not directly suitable for our methods.

2Since we have used supervised training methods

3We refer to the process of annotation, not the theoretical background.

4All tagging experiments performed on English work with 96-97% tagging accuracy.

103



need a more detailed morphological information. Therefore, we could not
stop here, we had to try to improve the results on the full tag set, which
were below 94% both for the Markov model as well as the Exponential tag-
ger. The error analysis suggested that the Markov model and Exponential
taggers have the character of partially complementary classifiers.

The tagging strategies used are based on different algorithms. Are the
errors produced by the taggers different as well? If yes, there is a chance to
get better results by a combination of the taggers’ output. Using the plu-
rality voting as a combination method of the rule-based and Markov model
taggers trained on the CTC, we got better results going beyond the point
82.69 % (81.38% — 82.69 %). Along with this improvement, we should re-
mark that the improvement on this level of accuracy is not as significant as
we have noticed when doubling the training corpus. The combination of the
Exponential and Markov model taggers trained on the Prague Dependency
Treebank by means of the plurality voting strategy did not bring any gain
over the baseline Exponential tagger. This illustrates the situation that the
relatively high complementary rate between tagger errors does not necessar-
ily imply that there is anything to be gained by tagger plurality voting. To
take advantage of the high complementary rates, it is necessary to employ
a context-based combination, i.e to locate the contexts more “suitable” for
the Exponential tagger and the contexts more “suitable” for the Markov
model taggers.

Still, How to improve the given results further? Given the partial suc-
cess of the plurality voting procedure, we applied it (and its variants) to
combine Markov model taggers trained on partially different data produced
by the so-called bagging procedure. The results have demonstrated that the
Markov model methodology is not so heavily sensitive to the character of
training data as we would wish®. More significantly, we have not noticed
improvement of the tagging accuracy.

Since we wished to apply our results on languages other than Czech, we
have adhered only to language-independent methods throughout this thesis.
However, as the results show only small or no improvement, we believe that
it is time to include language-dependent characteristics.

The next attempt to improve tagging accuracy should be driven by a
context-dependent combination of taggers. Then, we should move from the
language-independent ideas to the language-dependent ideas: we propose to
start with the modification of the Czech positional tag set (we have been
inspired here by the linguistic analysis in [Sgall, 1959]). All experiments

®Le., the error complementary rates were relatively low (about 18%)
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Conclusions

performed confirmed the highest error rate on the morphological categories
case, gender and number; thus, we will separately merge those values of
morphological categories case, gender, number that lead to an ambiguity
into the one single case or gender or number value. Table 9.1 demonstrates
a possible merging of the ambiguous case values. In addition to the basic
seven case values, we add six more case values a through fas a disjunction
of basic values; for instance, the ambiguity of the word forms in the vocative
and in the nominative will be expressed e.g. by the case value a. The third
column of the table specifies “restrictions” on the values of the part of speech
and other MCs which are covered by the given case ambiguity. In fact, we
have already used this technique from the beginning e.g. for the gender
of active past participle verb forms intuitively knowing that this category
might cause trouble; having done an error analysis now, we can target the
affected categories much more effectively.

Given the proposed tag set modifications, the number of all possible
tags as a whole increases, but the average number of tags for a given word
form decreases. The ambiguity connected with the new case, gender and
number values will then have to be resolved on the higher language levels
of language analysis (syntactic, semantic). In other words, we will resolve
(hopefully with high accuracy) as much ambiguity as we can at the tagging
level, but no more.
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case DESCRIPTION | RESTRICTIONS
VALUES
a 5 or 16 [APC]***[15]**********7
NN*[DP][15]**********8
b 1 or 410 [ANC]*N[M]***********H
[AN]*F[DP][14]**********12

c 4 or 214 [AN]*¥MS[24]***15

d 4 or 716 A*FS[47]**********17

e 6 or 218 A**P[QG]**********lQ

f 6 or 32! NN[FM]S[36]*rxsssssr22

Table 9.1: The ambiguity of the particular case values

Svocative or nominative

"adjective, pronouns, numerals in nominative or vocative

8nouns, dual or plural, nominative or vocative

nouns, neuter, singular or dual or plural, nominative or vocative

10y 0minative or accusative

adjectives or nouns or numerals, neuter, nominative or accusative
123djectives or nouns, femininum, dual or plural, nominative or accusative
13adjec‘cives or nouns, masculine inanimate, singular, nominative or accusative
“accusative or genitive

15adjectives or nouns, feminine, singular, genitive or accusative
18accusative or instrumental

17adjectives, feminine, singular, accusative or instrumental

Blocative or genitive

9adjectives, plural, genitive or locative
20n0uns, feminine, dual, genitive or locative
ocative or dative
*nouns, feminine or masculine animate, singular, dative or locative
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APPENDIX A

PENN TREEBANK TAG SET

Ol W

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

CC
CD
DT
EX
Fw

IN

JJ

JIR

JJS
LS
MD
NN
NNS
NP
NPS
PDT
POS
PP
PP$
RB
RBR
RBS
RP
SYM

Coordinating conjunction
Cardinal number
Determiner

Existential “there”

Foreign word

Preposition or
subordinating conjunction
Adjective

Adjective, comparative

Adjective, superlative
List item marker
Modal

Noun, singular or mass
Noun, plural

Proper noun, singular
Proper noun, plural
Predeterminer
Possessive ending
Personal pronoun
Possessive pronoun
Adverb

Adverb, comparative
Adverb, superlative
Particle

Symbol
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26.
27.
28.
29.

30.

31.

32.

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

TO
UH
VB
VBD
VBG

VBN

VBP

VBZ

WDT

WP

WP$
WRB

o
Interjection
Verb, base form
Verb, past tense
Verb, gerund or
present participle

Verb, past participle

Verb, non-3rd person
singular present

Verb, 3rd person singular
present

Wh-determiner

Wh- pronoun

Possessive wh-pronoun
Wh-adverb

Pound symbol

Dollar symbol
Sentence-final punctuation
Comma

Colon, semi-colon

Left bracket character
Right bracket character
Straight double quote
Left open single quote
Left open double quote
Right close single quote
Right close double quote
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APPENDIX B

SUBTAG LEVEL ERRORS PRODUCED BY MM
TAGGERS ON PARTICULAR PART OF SPEECH

‘ Tagger H POS ‘ SubP0S ‘ g ‘ n ‘ c ‘ possg ‘ possn ‘ d ‘ a ‘ S ‘
TO 16 16 258 | 182 | 434 0 0 16 | 2|0
T1 18 18 280 | 196 | 468 0 0 18 3]0
T2 15 15 297 | 186 | 446 0 0 15110
T3 17 17 283 | 204 | 477 0 0 171 11]0
T4 18 18 282 | 202 | 478 0 0 18120
TH 17 17 282 194 | 452 0 0 171110
T6 21 21 285 181 | 458 0 0 2112 (0
T7 19 19 276 | 205 | 468 0 0 19 |20
T8 20 20 289 | 190 | 477 0 0 201110
T9 18 18 288 | 196 | 486 0 0 181210
T10 20 20 273 | 187 | 460 0 0 201 310
T11 21 21 276 | 175 | 454 0 0 200 2 (0
T12 19 19 281 197 | 465 0 0 19120
T13 18 18 279 | 180 | 456 0 0 18 3]0
T14 17 17 292 | 194 | 468 0 0 171 11]0
T15 20 20 282 | 188 | 469 0 0 201110
T16 22 22 292 185 | 468 0 0 22 11 (0
T17 19 19 279 | 196 | 458 0 0 19 110
T18 18 18 287 | 181 | 469 0 0 18110
T19 21 21 286 | 196 | 446 0 0 21 110
T20 21 21 274 | 187 | 441 0 0 21 110

Total number of adjectives in test data: 3,914

Table B.1: MM taggers: errors on adjectives

115



116

| Pos [ subPos | g [ n | ¢ | s
3 3 21 | 7 | 45 0
3 3 22 | 7 | 56 0
4 4 23 | 6 | 46 0
4 4 17 | 8 | 48 0
2 2 21 6 | 52 0
4 4 20 | 6 | 38 0
0 0 19 | 7 | 44 0
2 2 22 | 7 | 46 0
1 1 16 | 7 | 44 0
3 3 23 | 7 | 49 0
1 1 19 | 6 | 51 0
3 3 24 | 8 | 48 0
2 2 21 | 7 | 50 0
1 1 17 | 7 | 52 0
2 2 26 | 7 | 51 0
3 3 21 | 7 | 52 0
3 3 20 | 5 | 53 0
2 2 23 | 6 | 47 0
3 3 16 | 8 | 39 0
4 4 22 | 8 | 52 0
2 2 23 | 7 | 46 0

Total number of numerals in test data: 1,439

Table B.2: MM taggers: errors on numerals



Subtag Level Errors Produced by MM Taggers on Particular Part of Speech

| Pos | subPos | 4 | a |

w0

74 97 16 | 9 1
7 102 18 | 11 1
73 97 18 | 12 1
72 98 19 | 12 1
71 94 16 9 1
76 99 17 | 10 1
71 97 15 8 1
73 98 14| 7 1
70 91 14| 7 1
72 94 15 8 1
71 94 15 8 1
74 98 16 | 9 1
76 99 17 | 10 1
76 101 17 | 10 1
73 97 17 | 10 1
72 96 15 8 1
75 10 19 | 12 1
7 101 17 | 10 1
s 104 18 | 11 2
72 95 16 | 9 1
74 97 15 8 1
Total number of adverbs in test data: 1,818

Table B.3: MM taggers: errors on adverbs
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| Pos | SubP0S

o
[e=)

O O O O O O O O O O o o oo o o o o o
O O O O O O O O O O O o o o o o o o o

0 0

Total number of interjections in test data: 7

Table B.4: MM taggers: errors on interjections
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Subtag Level Errors Produced by MM Taggers on Particular Part of Speech

| Pos | SubPOS
49 49
51 51
51 51
49 49
50 50
49 49
48 48
50 50
51 51
50 50
53 53
51 51
50 50
47 47
54 54
48 48
48 48
53 53
51 51
54 54
53 53
Total number of conjunctions in test data: 1,847

Table B.5: MM taggers: errors on conjunctions
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POS‘SubPOS‘g‘n‘c‘a‘s‘

122 122 248 | 390 | 1120 | &4

125 125 252 | 416 | 1206 | 88
123 123 252 | 411 | 1179 | 85
119 119 256 | 406 | 1189 | 84
124 124 246 | 403 | 1181 | &4
131 131 255 | 410 | 1163 | 91
124 124 252 | 408 | 1175 | 87
123 123 240 | 389 | 1184 | 85
134 134 264 | 426 | 1209 | 91
123 123 245 | 422 | 1215 | 87
128 128 244 | 400 | 1185 | 90
133 133 263 | 407 | 1204 | 93
122 122 242 | 405 | 1196 | 84
121 121 256 | 405 | 1184 | 83
123 123 255 | 394 | 1212 | 88
125 125 249 | 400 | 1167 | 86
122 122 247 | 392 | 1161 | 85
127 127 251 | 410 | 1185 | 91
121 121 249 | 407 | 1205 | 82
129 129 255 | 409 | 1185 | 91
120 120 239 | 402 | 1154 | &4

=N N R e e e e s = = N |

Total number of nouns in test data: 10,203

Table B.6: MM taggers: errors on nouns



Subtag Level Errors Produced by MM Taggers on Particular Part of Speech

‘POS‘SubPOS‘ g ‘ n ‘ c ‘possg‘possn‘p‘

86 93 102 131 224 1 1 1
87 94 119 141 242 1 1 1
90 100 114 | 148 | 252 3 3 3
87 95 118 | 138 | 252 2 2 2
89 100 110 144 | 245 2 2 2
88 97 117 | 149 | 241 1 1 1
86 92 114 | 147 | 254 1 1 1
92 101 112 145 | 244 2 2 2
86 97 112 154 | 245 1 1 1
85 96 109 | 142 | 239 2 2 2
89 98 115 141 250 4 4 4
88 100 109 | 143 | 246 4 4 4
93 101 104 | 144 | 242 2 2 2
85 95 105 | 136 | 233 2 2 2
88 97 104 | 133 | 243 2 2 2
91 97 108 | 139 | 242 0 0 0
90 99 110 142 | 252 1 1 1
88 98 107 | 147 | 240 3 3 3
89 97 105 | 133 | 231 2 2 2
89 96 118 | 143 | 258 2 2 2
86 96 103 | 136 | 235 3 3 3
Total number of pronouns in test data: 2,123

Table B.7: MM taggers: errors on pronouns
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| Pos | subPOs c

7 7 147
7 7 169
11 11 163
11 11 169
7 7 166
7 7 155
7 7 152
7 7 168
8 8 158
10 10 170
10 10 163
8 8 156
9 9 160
9 9 155
9 9 171
9 9 163
11 11 161
7 7 151
9 9 167
8 8 165
9 9 160
Total number of prepositions in test data: 3,455

Table B.8: MM taggers: errors on prepositions



Subtag Level Errors Produced by MM Taggers on Particular Part of Speech

| Pos | SubP0S

©
©

O 00 © 00 © 00 00 © 00 © © N ©
© 00 © 00 © W W I © W © © 3 ©

—
o
[
(==}

© © NN
© © N N

9 9

Total number of particles in test data: 143

Table B.9: MM taggers: errors on particles

123



‘POS‘SubPOS‘g‘n‘p‘t‘a‘v‘

67 67 5 | 8 | 47 | 61 | 40 | 61
77 77 7196 | 56 | 68 | 44 | 68
73 73 5192 | 49 | 66 | 43 | 66
72 72 7198 | 51 | 64| 44 | 64
71 71 5 |8 | 48 | 65 | 43 | 65
69 69 5189 | 51 | 63 | 37 | 63
70 70 5 | 8 | 47 | 65 | 43 | 65
79 79 7196 | 55 | 70 | 46 | 70
78 78 7|8 | b4 | 72 | 47 | T2
73 73 5 | 8 | 53 | 66 | 41 | 66
65 65 5 | 8 | 46 | 59 | 37 | 59
76 76 6 | 98 | 52 | 67 | 44 | 67
72 72 6 | 8 | 49 | 62 | 44 | 62
68 68 7190 | 47 | 64 | 44 | 64
73 73 7196 | 51 | 66 | 43 | 66
70 70 6 | 87 | 50 | 68 | 42 | 68
77 7 6 | 93 | 51 | 70 | 49 | 70
75 75 6 | 97 | 51 | 68 | 45 | 68
76 76 592 | 54 | 68 | 46 | 68
7 7 6 | 8 | 54 | 70 | 43 | 70
79 79 8 |95 | 54 | 71|47 | 71
Total number of verbs in test data: 4,278

Table B.10: MM taggers: errors on verbs
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Subtag Level Errors Produced by MM Taggers on Particular Part of Speech

| Pos | SubP0S

(=]
(=]

B O O b Ot Ot O OO O O O DY O OO DY O O
B O O b Ot Ot O OO O Ot O OY O TOUOY O O O

5 5

Total number of unknowns in test data: 745

Table B.11: MM taggers: errors on unknowns
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APPENDIX C

CASE, NUMBER AND GENDER
COMPLEMENTARY RATES

H TOmm ‘T]-MM ‘TZMM ‘T3MM ‘T4MM ‘T5MM ‘T6MM ‘T7MM ‘TSMM ‘TgMM ‘
TOr 0.00 | 77.23 | 75.68 | 79.07 | 62.79 | 81.59 | 62.35 | 66.76 | 69.33 | 75.24
Tlarar || 79.10 | 0.00 | 78.03 | 86.62 | 83.10 | 91.77 | 86.84 | 86.26 | 83.41 | 84.17
T2 || 77.03 | 77.39 | 0.00 | 86.09 | 79.68 | 88.38 | 81.56 | 86.64 | 84.71 | 91.90
T3mnm || 80.68 | 86.54 | 86.40 | 0.00 | 85.82 | 86.40 | 79.83 | 83.23 | 83.23 | 90.47
T4 || 65.36 | 82.86 | 79.97 | 85.70 | 0.00 | 88.68 | 71.18 | 74.02 | 69.10 | 82.27
T5ma || 82.29 | 91.38 | 88.16 | 85.83 | 88.30 | 0.00 | 83.27 | 89.28 | 87.47 | 85.79
T6arnr || 64.29 | 86.40 | 81.48 | 79.27 | 70.63 | 83.50 | 0.00 | 75.97 | 69.21 | 82.67
T7amm || 68.97 | 86.02 | 86.79 | 83.04 | 73.95 | 89.60 | 76.35 | 0.00 | 73.09 | 81.95
T8mwm || 71.65 | 83.30 | 85.04 | 83.21 | 69.32 | 87.95 | 70.00 | 73.35 | 0.00 | 86.61
T9vm || 77.34 | 84.21 | 92.15 | 90.55 | 82.57 | 86.47 | 83.28 | 82.31 | 86.74 | 0.00
T10nmar || 71.97 | 82.05 | 88.91 | 84.23 | 80.33 | 89.82 | 73.60 | 75.10 | 84.60 | 77.15
T11lapar || 60.16 | 78.23 | 83.51 | 81.07 | 66.67 | 86.86 | 73.08 | 73.17 | 69.56 | 82.70
T12par || 77.28 | 75.84 | 76.74 | 80.67 | 81.48 | 88.35 | 76.65 | 82.07 | 81.39 | 91.37
T13nma || 81.09 | 73.00 | 77.41 | 89.60 | 85.56 | 91.21 | 85.42 | 88.59 | 83.85 | 85.60
T14pma || 73.33 | 80.09 | 87.69 | 87.38 | 80.93 | 91.82 | 78.98 | 81.29 | 77.51 | 80.40
T15mam || 72.01 | 90.96 | 85.21 | 86.39 | 74.61 | 80.41 | 72.24 | 80.00 | 77.81 | 79.50
T16amas || 85.07 | 81.34 | 83.57 | 85.89 | 86.80 | 86.21 | 85.62 | 86.66 | 85.39 | 86.57
T17ma || 64.82 | 80.38 | 79.73 | 82.48 | 75.66 | 87.42 | 69.53 | 73.19 | 75.43 | 83.49
T18ma || 78.70 | 80.60 | 72.79 | 84.16 | 84.93 | 86.37 | 80.10 | 81.05 | 83.66 | 90.48
T19ma || 76.15 | 83.76 | 91.58 | 91.00 | 78.28 | 87.96 | 81.86 | 80.23 | 82.71 | 71.36
T20ma || 60.99 | 83.06 | 78.11 | 81.15 | 74.29 | 86.93 | 73.26 | 72.47 | 73.36 | 87.68

Table C.1: MM Taggers: case complementary rate: part I



\ HT10MM\T11MM \T12MM \T13MM\T14MM\T15MM\

TOpmar || 70.11 | 57.27 | 75.63 | 80.09 | 70.93 | 70.30
Ty || 82.44 | 78.57 | 76.21 | 73.90 | 80.08 | 91.20
T2p0r || 88.83 | 83.30 | 76.43 | 77.53 | 87.32 | 85.17
T3mar || 84.48 | 81.26 | 80.86 | 89.89 | 87.30 | 86.67
T4par || 80.47 | 66.71 | 81.51 | 85.84 | 80.65 | 74.92
Ty || 89.56 | 86.44 | 87.98 | 91.10 | 91.43 | 80.01
T6pmar || 73.30 | 72.61 | 76.24 | 85.43 | 78.26 | 72.06
T7mar || 7521 | 73.13 | 82.04 | 88.78 | 80.96 | 80.19
T8 || 84.82 | 69.82 | 81.55 | 84.28 | 77.34 | 78.24
T9pmar || 77.69 | 83.02 | 91.53 | 86.12 | 80.44 | 80.09
T10par|| 0.00 | 81.96 | 84.73 | 85.10 | 75.56 | 83.05
T1lpar| 82.07 | 0.00 78.14 | 83.15 | 77.10 | 77.46
T12pp0r| 84.82 | 78.14 | 0.00 79.58 | 86.36 | 84.64
T13p0s|| 84.91 | 82.84 | 79.21 0.00 | 84.68 | 91.86
T14prpr|| 76.09 | 77.47 | 86.58 | 85.20 | 0.00 | 83.47
T15par|| 82.97 | 77.21 | 84.47 | 91.92 | 83.01 0.00
T16ppr]| 91.35 | 84.84 | 77.20 | 81.70 | 88.35 | 81.98
T17pa|| 78.50 | 71.59 | 81.43 | 87.60 | 71.36 | 74.89
T18nar|| 86.06 | 84.34 | 73.06 | 81.45 | 87.86 | 85.88
T19par|| 74.66 | 81.72 | 90.09 | 88.19 | 76.24 | 74.75
T20m || 79.65 | 66.03 | 81.71 | 86.89 | 75.64 | 77.37

Table C.2: MM Taggers: case complementary rate: part 11
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Case, Number and Gender Complementary Rates

| T16 3000 | T17 0000 | T180rar | T197 07 [ T2000 01 |

TOmar || 84.11 | 62.74 | 77.13 | 74.47 | 59.50
Tlpa || 8177 | 80.92 | 80.88 | 84.04 | 83.86
T2ppr || 83.48 | 79.73 | 72.40 | 91.49 | 78.54
T3pa || 86.14 | 82.87 | 84.30 | 91.10 | 81.93
T4par || 86.92 | 76.00 | 84.93 | 78.35 | 75.15
Tbaprar || 85.88 | 87.19 | 85.93 | 87.60 | 86.95
T6aar || 85.48 | 69.39 | 79.73 | 81.57 | 73.67
T7pa || 86.75 | 73.50 | 81.00 | 80.24 | 73.32
T8y || 85.62 | 75.95 | 83.79 | 82.89 | 74.43
T9ua || 86.92 | 83.99 | 90.64 | 71.93 | 88.29
T10pps| 91.37 | 78.65 | 85.96 | 74.56 | 80.19
T1lpar|| 84.96 | 71.95 | 84.33 | 81.75 | 67.12
T12p0|| 77.37 | 81.66 | 73.04 | 90.11 | 82.29
T13par|| 81.51 | 87.53 | 81.09 | 87.99 | 87.07
T14pr|| 88.62 | 72.18 | 88.04 | 76.67 | 76.80
T15pa|| 81.92 | 74.93 | 85.71 | 74.52 | 77.85
T16ps] 0.00 | 84.43 | 76.88 | 83.52 | 83.93
T17pma || 84.35 | 0.00 | 83.62 | 83.94 | 71.73
T18par|| 77.08 | 83.84 | 0.00 | 90.48 | 84.30
T19par|| 83.62 | 84.12 | 90.45 | 0.00 | 86.20
T20p || 83.53 | 71.16 | 83.76 | 85.77 | 0.00

Table C.3: MM Taggers: case complementary rate: part 111
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H TOras ‘TlMM ‘T2MM ‘T?’MM ‘T4MM ‘T5MM ‘T6MM ‘T7MM ‘TSMM ‘TQMM ‘

TOr M 0.00 | 42.54 | 43.83 | 58.23 | 45.50 | 46.66 | 37.40 | 51.93 | 52.96 | 54.76
Tlmwm || 46.72 | 0.00 | 55.42 | 55.66 | 55.66 | 64.96 | 51.37 | 61.38 | 58.28 | 69.01
T2nnr || 47.29 | 54.89 | 0.00 | 69.36 | 59.47 | 61.88 | 54.52 | 61.52 | 60.55 | 64.41
T3mam || 61.36 | 55.77 | 69.80 | 0.00 | 64.68 | 72.53 | 57.67 | 67.54 | 69.20 | 76.46
T4nns || 48.42 | 54.74 | 59.12 | 63.87 | 0.00 | 65.69 | 54.01 | 55.23 | 55.11 | 71.29
Toamnr || 49.94 | 64.54 | 61.88 | 72.14 | 65.98 | 0.00 | 56.69 | 66.34 | 71.17 | 53.92
T6rn || 40.10 | 49.82 | 53.63 | 56.21 | 53.51 | 55.84 | 0.00 | 58.92 | 53.26 | 63.22
T7mnm || 54.45 | 60.54 | 61.14 | 66.75 | 55.18 | 66.02 | 59.32 | 0.00 | 63.70 | 64.43
T8 || 56.53 | 58.43 | 61.16 | 69.24 | 56.18 | 71.62 | 54.87 | 64.61 | 0.00 | 75.06
T9nn || 57.89 | 68.90 | 64.71 | 76.32 | 71.77 | 54.31 | 64.23 | 65.07 | 74.88 | 0.00
T10amnr || 43.46 | 52.80 | 48.69 | 63.39 | 58.41 | 58.78 | 47.07 | 61.64 | 63.64 | 61.39
T11amar || 51.97 | 52.46 | 59.71 | 61.18 | 49.88 | 63.76 | 55.90 | 53.44 | 59.09 | 62.90
T12mur || 57.56 | 58.65 | 67.35 | 52.48 | 62.39 | 71.10 | 61.06 | 63.85 | 65.54 | 71.46
T13nmwr || 45.29 | 55.568 | 57.47 | 63.61 | 53.20 | 61.48 | 52.45 | 60.23 | 57.34 | 59.22
T14ps || 45.85 | 55.14 | 58.74 | 63.82 | 53.16 | 61.21 | 54.15 | 59.48 | 59.73 | 67.41
T15npn || 56.11 | 63.84 | 67.21 | 72.44 | 58.98 | 53.37 | 59.35 | 65.34 | 67.08 | 50.75
T16npas || 63.08 | 62.70 | 59.82 | 71.71 | 70.84 | 55.19 | 58.57 | 68.71 | 68.59 | 51.94
T17mnr || 44.29 | 54.29 | 55.24 | 64.40 | 54.29 | 60.83 | 52.50 | 60.48 | 60.48 | 68.81
T18nmar || 41.51 | 50.19 | 55.02 | 61.83 | 48.33 | 57.37 | 50.56 | 55.89 | 62.45 | 66.17
T19mar || 72.78 | 78.01 | 80.32 | 71.45 | 75.82 | 66.10 | 74.73 | 82.26 | 82.75 | 67.56
T20nras || 42.63 | 51.05 | 53.41 | 64.06 | 57.37 | 60.72 | 51.80 | 57.37 | 60.97 | 60.10

Table C.4: MM Taggers: number complementary rate: part I
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Case, Number and Gender Complementary Rates

HTIOMM \T11MM \T12MM\T13MM\T14MM \T15MM\

TOmar || 41.65 | 49.74 | 54.88 | 43.96 | 43.83 | 54.76
Tlpa || 54.83 | 53.87 | 59.24 | 57.81 | 56.85 | 65.44
T2par || 50.30 | 60.43 | 67.43 | 59.11 | 59.83 | 68.28
T3y || 65.04 | 62.43 | 53.27 | 65.52 | 65.28 | 73.72
T4par || 59.37 | 50.36 | 62.17 | 54.62 | 54.01 | 59.98
Tbuyar || 60.07 | 64.41 | 71.17 | 62.97 | 62.24 | 54.89
T6aar || 47.72 | 55.84 | 60.39 | 53.38 | 54.49 | 59.90
T7pa || 62.48 | 53.84 | 63.58 | 61.39 | 60.17 | 66.14
T8y || 65.32 | 60.45 | 66.15 | 59.62 | 61.40 | 68.65
TOua || 62.92 | 63.88 | 71.77 | 61.12 | 68.54 | 52.75
T10p|| 0.00 | 61.64 | 60.52 | 55.42 | 54.67 | 65.50
T1lpa|| 62.16 | 0.00 | 59.71 | 50.12 | 50.61 | 65.48
T12p0 || 61.67 | 60.34 | 0.00 | 62.27 | 65.42 | 73.88
T13pas]| 55.08 | 49.06 | 60.85 | 0.00 51.82 | 64.74
T14pa|| 54.89 | 50.19 | 64.56 | 52.42 | 0.00 64.19
T15p || 65.46 | 64.96 | 73.07 | 64.96 | 63.97 | 0.00
T16p0s] 59.70 | 63.70 | 67.83 | 63.58 | 64.83 | 54.82
T17pmam|| 59.05 | 53.93 | 61.19 | 57.98 | 47.02 | 64.29
T18pa|| 50.68 | 57.62 | 59.98 | 55.51 | 51.92 | 63.57
T19par|| 78.25 | 77.40 | 66.83 | 75.21 | 76.55 | 66.71
T20pmam || 52.04 | 53.66 | 59.98 | 54.40 | 50.06 | 68.28

Table C.5: MM Taggers: number complementary rate: part I1
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132

| T16 0007 | T17000 | T18r0r | T1907 07 [ T200001 |

TOnar | 62.08 | 39.85 | 39.33 | 71.21 | 40.49
Tlya | 64.48 | 54.23 | 52.00 | 78.43 | 52.92
T2y || 61.28 | 54.64 | 56.21 | 80.46 | 54.64
T3umar || 73.13 | 64.45 | 63.38 | 72.06 | 65.52
T4 || 71.65 | 53.28 | 49.27 | 75.79 | 58.15
T5uar || 56.82 | 60.31 | 58.50 | 66.34 | 61.76
T6uar || 59.29 | 50.92 | 50.92 | 74.42 | 52.15
T7ma || 69.55 | 59.56 | 56.64 | 82.22 | 58.10
T8y || 70.19 | 60.57 | 64.01 | 83.14 | 62.59
T9nar || 54.07 | 68.66 | 67.34 | 68.06 | 61.48
T10x | 59.90 | 57.16 | 50.44 | 77.71 | 51.81
T1lpya| 64.37 | 5246 | 57.99 | 77.15 | 54.05
T12xy| 68.92 | 60.58 | 60.94 | 66.99 | 60.94
T13s|| 63.49 | 55.71 | 54.96 | 74.40 | 53.83
T14p| 65.18 | 44.86 | 51.92 | 76.08 | 50.06
T15xa | 54.99 | 62.59 | 63.34 | 65.84 | 68.08
T16as| 0.00 | 67.46 | 65.46 | 66.83 | 61.83
T17ma| 69.05 | 0.00 | 49.17 | 77.02 | 52.86
T18y | 65.80 | 47.09 | 0.00 | 75.84 | 49.07
T19y | 67.80 | 76.55 | 76.31 | 0.00 | 77.28
T20n | 6221 | 50.93 | 49.07 | 76.83 | 0.00

Table C.6: MM Taggers: number complementary rate:

part ITI



Case, Number and Gender Complementary Rates

H TOr s ‘TlMM ‘T2MM ‘T3MM ‘T4MM ‘T5MM ‘TGMM ‘T7MM ‘TSMM ‘TgMM ‘

TOr M 0.00 | 65.03 | 60.41 | 77.69 | 62.18 | 78.64 | 55.92 | 75.24 | 67.76 | 62.86

Tluw || 6747 | 0.00 | 74.30 | 84.43 | 73.67 | 89.49 | 79.87 | 83.54 | 72.78 | 75.06
T2an || 63.58 | 74.59 | 0.00 | 83.10 | 67.33 | 89.61 | 72.59 | 86.11 | 70.21 | 81.73
T3 || 79.11 | 84.33 | 82.80 | 0.00 | 80.00 | 88.15 | 74.65 | 88.66 | 81.02 | 89.55
T4an || 63.80 | 72,92 | 66.02 | 79.56 | 0.00 | 88.28 | 73.18 | 83.07 | 59.38 | 83.07
Tdamnm || 79.90 | 89.37 | 89.37 | 88.09 | 88.48 | 0.00 | 84.38 | 96.54 | 84.64 | 79.26
T6rmn || 5819 | 79.48 | 71.74 | 74.32 | 73.42 | 84.26 | 0.00 | 80.77 | 68.39 | 75.74
T7mm || 76.15 | 82.96 | 85.45 | 88.34 | 82.96 | 96.46 | 80.47 | 0.00 | 81.39 | 84.14
T8 || 70.04 | 72.82 | 69.91 | 81.16 | 60.56 | 84.83 | 69.03 | 82.05 | 0.00 | 81.54
T9nmn || 64.86 | 74.65 | 81.21 | 89.45 | 83.27 | 79.15 | 75.80 | 84.43 | 81.21 | 0.00
T10mnm || 75.40 | 84.13 | 80.03 | 97.35 | 88.49 | 94.58 | 81.61 | 67.46 | 92.06 | 75.66
T11mnm || 63.83 | 69.04 | 66.62 | 77.03 | 63.71 | 85.15 | 71.07 | 77.41 | 59.01 | 81.98
T12mm || 59.74 | 67.89 | 72.37 | 75.39 | 70.66 | 87.37 | 62.37 | 81.71 | 73.16 | 76.45
T13mm || 68.20 | 67.67 | 70.17 | 84.49 | 70.96 | 83.44 | 73.72 | 90.80 | 67.94 | 69.91
T14pmn || 82.06 | 79.77 | 90.33 | 95.80 | 92.49 | 96.56 | 80.41 | 72.39 | 88.17 | 82.19
T15mMm || 66.93 | 81.19 | 75.62 | 82.88 | 74.58 | 82.36 | 59.14 | 81.19 | 72.37 | 72.63
T16nxns || 83.18 | 85.75 | 82.54 | 90.89 | 82.03 | 95.89 | 76.77 | 77.15 | 78.56 | 89.73
T17mm || 60.65 | 74.71 | 68.26 | 80.90 | 78.32 | 87.35 | 61.03 | 76.00 | 73.68 | 76.77
T18mn || 64.85 | 77.56 | 70.17 | 73.28 | 67.70 | 87.29 | 68.22 | 79.51 | 77.82 | 73.80
T19mn || 84.34 | 85.34 | 83.83 | 96.24 | 79.70 | 92.98 | 85.84 | 76.32 | 82.71 | 82.58
T20nas || 79.87 | 91.26 | 82.65 | 89.54 | 85.17 | 92.72 | 78.15 | 72.05 | 81.72 | 85.30

Table C.7: MM Taggers: gender complementary rate: part I
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\ HT10MM\T11MM \T12MM \T13MM\T14MM\T15MM\

TOprar || 74.69 | 61.22 | 58.37 | 67.07 | 80.82 | 65.31
Tlpas || 84.81 | 69.11 | 69.11 | 68.86 | 79.87 | 81.65
T2pma || 81.10 | 67.08 | 73.72 | 71.59 | 90.49 | 76.47
T3mar || 97.45 | 76.94 | 76.18 | 84.97 | 95.80 | 83.18
T4y || 88.67 | 62.76 | 70.96 | 71.22 | 92.32 | 74.48
Tomar || 94.75 | 85.02 | 87.71 | 83.87 | 96.54 | 82.59
T6rar || 82.06 | 70.58 | 63.10 | 74.19 | 80.13 | 59.35
T7ma || 67.76 | 76.67 | 81.78 | 90.83 | 71.56 | 81.00
T8par || 92.41 | 59.17 | 74.21 | 69.15 | 88.24 | 73.07
T9par || 76.32 | 81.72 | 76.96 | 70.53 | 81.98 | 72.84
T10par]| 0.00 | 91.40 | 86.24 | 85.32 | 72.88 | 85.98
T11prar|| 91.75 0.00 | 67.77 | 70.56 | 87.94 | 75.76
T12p0s| 86.32 | 66.58 | 0.00 74.61 | 85.39 | 70.00
T13mam|| 85.41 | 69.51 | 74.64 | 0.00 | 81.34 | 80.29
T14prpr]| 73.92 | 87.91 | 85.88 | 81.93 | 0.00 | 85.11
T15pma|| 86.25 | 75.23 | 70.43 | 80.54 | 84.82 | 0.00
T16aar|| 83.70 | 78.43 | 78.43 | 85.37 | 79.33 | 75.87
T17par|| 82.71 | 65.55 | 69.68 | 73.55 | 72.52 | 69.42
T18nar|| 80.42 | 71.98 | 71.21 | 77.17 | 83.66 | 76.91
T19xar|| 80.83 | 82.21 | 86.97 | 81.70 | 77.69 | 87.22
T20pns|| 80.66 | 77.35 | 82.78 | 85.43 | 74.30 | 80.79

Table C.8: MM Taggers: gender complementary rate: part I1
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Case, Number and Gender Complementary Rates

| T16 30 | T17 000 | T180rar | T1907 07 | T20000s |

Tl
T3pm
T4nrmr
Tonmm
T6 s
T7 pmm
T8pm
TIrm
T10a s
T11pmr
T12, 0
T13p 0
T14 p 01
T150 0
T16 001
T17mm
T18pr s
T19p 0
T200 M

82.18
85.95
82.98
90.96
81.77
95.90
76.65
76.67
78.89
89.70
83.20
78.68
77.89
85.02
79.52
75.62
0.00
78.58
83.66
77.19
78.28

58.50
75.19
69.21
81.15
78.12
87.45
61.03
75.62
74.21
76.83
82.28
66.12
69.08
73.06
72.90
69.26
78.69
0.00
69.39
89.35
77.75

63.13
78.10
71.21
73.76
67.58
87.45
68.39
79.29
78.38
74.00
80.03
72.59
70.79
76.87
83.97
76.91
83.83
69.55
0.00
83.83
79.87

82.99
85.19
83.85
96.18
78.91
92.83
85.42
75.23
82.55
82.11
79.76
81.98
86.32
80.81
77.35
86.77
76.64
89.03
83.27
0.00
77.88

79.32
91.65
83.60
89.94
85.42
92.96
78.71
72.35
82.55
85.71
80.69
78.30
82.89
85.95
75.32
81.19
78.95
78.32
80.29
79.07
0.00

Table C.9: MM Taggers: gender complementary rate: part III
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