

Proceedings of the

Eighth International Workshop on

Treebanks and Linguistic Theories

4-5 December 2009

Milan, Italy

Editors:

Marco Passarotti

Adam Przepiórkowski

Savina Raynaud

Frank Van Eynde

Copyright ©2009 by the individual authors. All rights reserved.

Published by
EDUCatt
Ente per il Diritto allo Studio Universitario dell’Università Cattolica
Largo Gemelli 1, 20123 Milano - tel. 02.72342235 - fax 02.80.53.215
e-mail: editoriale.dsu@unicatt.it (produzione); librario.dsu@unicatt.it (distribuzione)
web: www.unicatt.it/librario
ISBN: 978-88-8311-712-1

Cover illustration: a cloister of the Catholic University, Milan. Photo by Marco Passarotti.

Preface

The Eighth International Workshop on Treebanks and Linguistic Theories

(TLT8) was held at the Catholic University of the Sacred Heart in Milan

(Italy) on 4-5 December 2009 (see http://tlt8.unicatt.it). This

was the first time that it has been held in Italy. Dates and locations of the

previous workshops are provided in a separate section.

Since its first edition in 2002, TLT has provided a forum for discussion of

methods and tools for the design, creation and exploitation of treebanks and

the linguistic theories acting as their background. Today, treebanks are

essential resources both for data-driven approaches to natural language

processing and for linguistic research. Indeed, while treebank data are

frequently exploited for tasks in computational linguistics such as grammar

induction and the training of NLP tools, in linguistic research they can be

used in order to refine and improve pre-corpus linguistic theories.

Furthermore, large-scale data annotation allows for empirically evaluating the

accuracy of a grammar and revising it on the basis of evidence.

Recently, many treebank projects for less-resourced languages have begun.

The increasing spread of such treebanks benefits from the exploitation of

tools and methods developed over the years for many similar projects for

other languages. The language-independent status of these methods and tools

has indeed allowed their re-usability (or easy adaptation) to many different

languages. This has eased and sped up the process of creation and

dissemination of treebanks for less-resourced languages. Another growing

research direction is the development of parallel treebanks, which are vital

resources for machine translation and comparative studies.

The call for papers for TLT8 requested for unpublished, completed work. 30

submissions were received, 25 for full papers, 5 for poster presentations. The

submissions were authored by researchers from 19 different countries in

America, Asia and Europe. Each submission was evaluated by three

reviewers.

The Programme Committee consisted of 24 members (including the 4 co-

chairs) from 14 different countries. They all worked as reviewers. Based on

III

their scores and the comments they provided on the content and quality of the

papers, 15 papers and 4 posters were accepted for presentation and

publication, which corresponds to an acceptance rate of 63.3%. The accepted

submissions cover a wide range of topics related to both long-standing and

new treebanks, reporting on aspects of their construction, querying,

exploitation and evaluation. As requested in the call for papers, this edition

puts a particular emphasis on projects aiming to compile representative

treebanks for less-resourced, ancient and/or dead languages.

Completing the programme are the invited lectures by Roberto Busa SJ

(Catholic University of the Sacred Heart, Milan) and Eva Hajičová (Charles

University, Prague, Czech Republic). There is a connection between the

research work of the two invited speakers thanks to the ongoing project of the

Index Thomisticus Treebank (at the Catholic University in Milan), whose

annotation guidelines were designed according to those of the Prague

Dependency Treebank.

Following in the tradition of TLT’s recent editions, a co-located event was

also organised (see http://tlt8.unicatt.it/framenet.htm).

This one-day event, preceding TLT8, was devoted to the FrameNet project

and conceived as a masterclass and talk by Charles J. Fillmore (in the

morning) followed in the afternoon by a workshop with seven oral

presentations (peer-reviewed) on research concerning FrameNet and related

linguistic and corpus topics. The organization of this co-located event arose

from the consideration that, while the FrameNet team has begun to annotate

some texts as a demonstration of how frame semantics can contribute to text

understanding, no FrameNet-annotated large corpus is currently available,

and FrameNet data are systematically biased by the criteria for the selection

of the examples adopted to describe the frame semantics of target words.

Therefore, a closer collaboration between FrameNet and annotated corpora

(especially, treebanks) is now required for at least two reasons: (a) during the

procedure of syntactic annotation, FrameNet data can help with consistency

and can supply motives in support of annotation choices; (b) annotated

corpora provide further evidence for FrameNet data, allowing lexicographers

to ground their decisions on a wider variety of examples. Thus, the aim of

this workshop was to put people who are involved in treebank development,

management and exploitation into contact with the FrameNet project.

Words of gratitude and acknowledgement are due to the local organizers and

hosts, the ‘Servizio Formazione Permanente’ and the CIRCSE Research

Centre, which took the initiative of organizing TLT8.

We also gratefully mention the financial support received from Fondazione

IBM Italia (www.fondazioneibm.it), Vega Informatica

(www.vega.it), Banca Mediolanum (www.bancamediolanum.it)

and DAMA (www.ricamificiodama.it; many thanks for the beautiful

IV

merchandising). The TLT8 logo was designed by Nicola Tibiletti: we thank

him very much.

TLT8 was endorsed by CLARIN (www.clarin.eu/) and FLaReNet

(www.flarenet.eu/), and held under the patronage of the Departments

of Philosophy, and Linguistic Sciences and Foreign Literatures at the

Catholic University of the Sacred Heart.

The TLT8 Co-Chairs

Marco Passarotti, Catholic University of the Sacred Heart, Milan, Italy

Adam Przepiórkowski, Polish Academy of Sciences, Warsaw, Poland

Savina Raynaud, Catholic University of the Sacred Heart, Milan, Italy

Frank Van Eynde, University of Leuven, Belgium

V

Programme Committee

Chairs:

Marco Passarotti, Catholic University of the Sacred Heart, Milan, Italy

Adam Przepiórkowski, Polish Academy of Sciences, Warsaw, Poland

Savina Raynaud, Catholic University of the Sacred Heart, Milan, Italy

Frank Van Eynde, University of Leuven, Belgium

Members:

David Bamman, USA

Eckhard Bick, Denmark

Igor Boguslavsky, Russia

Gosse Bouma, the Netherlands

Aoife Cahill, Germany

Stephanie Dipper, Germany

Dan Flickinger, USA

Anette Frank, Germany

Eva Hajičová, Czech Republic

Dag Haug, Norway

Erhard Hinrichs, Germany

Julia Hockenmaier, USA

Anna Kupść, France

Anke Lüdeling, Germany

Yosuke Miyao, Japan

Simonetta Montemagni, Italy

Petya Osenova, Bulgaria

Victoria Rosén, Norway

Manfred Stede, Germany

Marco Tadić, Croatia

VI

Organizing Committee

Chair:

Marco Passarotti, Catholic University of the Sacred Heart, Milan, Italy

Members:

Aldo Frigerio

Savina Raynaud

Paolo Ruffolo

Piero Slocovich

Daniela Viviani

Alessandra Zanoli, all Catholic University of the Sacred Heart, Milan, Italy

VII

Proceedings of previous TLT

workshops and invited speakers

E. Hinrichs & K. Simov (eds.), Proceedings of the First Workshop on

Treebanks and Linguistic Theories, Sozopol (Bulgaria), September 20-

21, 2002. v + 274 pages.

 http://www.bultreebank.org/Proceedings.html.

J. Nivre & E. Hinrichs (eds.), Proceedings of the Second Workshop on

Treebanks and Linguistic Theories, Växjö (Sweden), November 14-15,

2003. Växjö University Press. 232 pages.

 Invited speakers: Thorsten Brants (Google Inc.), Stephan Oepen (U. of

Oslo).

S. Kübler, J. Nivre, E. Hinrichs & H. Wunsch (eds.), Proceedings of the

Third Workshop on Treebanks and Linguistic Theories, Tübingen

(Germany), December 10-11, 2004. Eberhard Karls Universität

Tübingen, Seminar für Sprachwissenschaft. vi + 203 pages.

 Invited speakers: Collin Baker (ICSI, Berkeley), Fred Karlsson (U. of

Helsinki).

 Publication of selected papers in: E. Hinrichs & K. Simov (eds.),

Treebanks and Linguistic Theories. Special Issue of the Journal on

Research on Language and Computation. Vol. 2, Nr. 4, 2004.

M. Civit, S. Kübler & M.A. Martí (eds.), Proceedings of the Fourth

Workshop on Treebanks and Linguistic Theories, Barcelona (Spain),

December 9-10, 2005. Universitat de Barcelona, Publicacions i

Edicions. 220 pages.

 Invited speakers: Frank van Eynde (U. Leuven), Manfred Pinkal (U. of

the Saarland).

J. Hajič & J. Nivre (eds.), Proceedings of the Fifth Workshop on Treebanks

and Linguistic Theories, Prague (Czech Republic), December 1-2,

2006. Univerzita Karlova v Praze, Ústav Formální a Aplikované

Lingvistiky. 258 pages.

 Invited speakers: Gosse Bouma (U. of Groningen), Martha Palmer (U.

of Colorado at Boulder).

VIII

K. De Smedt, J. Hajič & S. Kübler (eds.), Proceedings of the Sixth

International Workshop on Treebanks and Linguistic Theories, Bergen

(Norway), December 7-8, 2007. Northern European Association for

Language Technology Proceedings Series, Vol. 1. viii + 218 pages.

 http://dspace.utlib.ee/dspace/handle/10062/4476.

 Invited speakers: Erhard Hinrichs (U. of Tübingen), Julia Hockenmaier

(U. of Illinois).

F. van Eynde, A. Frank, K. De Smedt & G. van Noord (eds.), Proceedings of

the Seventh International Workshop on Treebanks and Linguistic

Theories, Groningen (The Netherlands), January 23-24, 2009.

Landelijke Onderzoekschool Taalwetenschap, Occasional Series. 197

pages.

 Invited speakers: Robert Malouf (San Diego State U.), Adam

Przepiórkowski (Polish Academy of Sciences).

IX

Contents

From Punched Cards to Treebanks: 60 Years of Computational

Linguistics

Roberto Busa SJ 1

From Prague Structuralism to Treebank Annotation

Eva Hajičová 3

An Ownership Model of Annotation: The Ancient Greek

Dependency Treebank

David Bamman, Francesco Mambrini and Gregory Crane 5

Finalising Multiword Annotations in PDT

Eduard Bejček, Pavel Straňák and Jan Hajič 17

Converting a Dependency Treebank to a Categorial Grammar

Treebank for Italian

Johan Bos, Cristina Bosco and Alessandro Mazzei 27

Dynamic Propbanking with Deep Linguistic Grammars

António Branco, Sara Silveira, Sérgio Castro, Mariana Avelãs,

Clara Pinto and Francisco Costa

39

Annotation of Selected Non-dependency Relations in a Dependency

Treebank

Kristýna Čermáková, Lucie Mladová, Eva Fučíková and Kateřina

Veselá

51

Dependency Annotation for Learner Corpora

Markus Dickinson and Marwa Ragheb 59

Linguistically Motivated Parallel Parsebanks

Helge Dyvik, Paul Meurer, Victoria Rosén and Koenraad De

Smedt

71

XI

Clausal Coordinate Ellipsis and its Varieties in Spoken German: A

Study with the TüBa-D/S Treebank of the VERBMOBIL Corpus

Karin Harbusch and Gerard Kempen 83

Dependency Annotation of Wikipedia: First Steps Towards a

Finnish Treebank

Katri Haverinen, Filip Ginter, Veronika Laippala, Timo Viljanen

and Tapio Salakoski

95

Treebank Analysis and Search Using an Extracted Tree Grammar

Seth Kulick and Ann Bies 107

A Declarative Formalism for Constituent-to-Dependency Conversion

Torsten Marek, Gerold Schneider and Martin Volk 119

Selectional Preferences from a Latin Treebank

Barbara McGillivray 131

Annotation Quality Checking and Its Implications for Design of

Treebank (in Building the Prague Czech-English Dependency

Treebank)

Marie Mikulová and Jan Štěpánek 137

TEI P5 as an XML Standard for Treebank Encoding

Adam Przepiórkowski 149

MaJo - A Toolkit for Supervised Word Sense Disambiguation and

Active Learning

Ines Rehbein, Josef Ruppenhofer and Jonas Sunde 161

An English Dependency Treebank à la Tesnière

Federico Sangati and Chiara Mazza 173

Towards English-Czech Parallel Valency Lexicon via Treebank

Examples

Jana Šindlerová and Ondřej Bojar 185

Building a Large Machine-Aligned Parallel Treebank

Jörg Tiedemann and Gideon Kotzé 197

Cross-Lingual Projection of LFG F-Structures: Building an

F-Structure Bank for Polish

Alina Wróblewska and Anette Frank 209

XII

From Punched Cards to Treebanks:
60 Years of Computational Linguistics

Roberto Busa SJ

Catholic University of the Sacred Heart, Milan, Italy
E-mail: roberto.busa@unicatt.it

Abstract

I will cover some of the main stages of my projects in Computational Linguistics
through 60 years, from their very beginning after World War II to the Internet era,
including my most recent works on 'Lessico Tomistico Biculturale' and the
syntactic annotation of data in the 'Index Thomisticus' Treebank project. The talk
will describe how and why the idea of electronic data processing in literary and
linguistic analysis came to my mind at first, remembering my meeting with Mr.
Thomas Watson at IBM and his decision to fund the realization of 'Index
Thomisticus' since 1949. I will describe how meticuolous is the research
methodology in linguistics which is imposed by (and thanks to) the use of
computers. Through the years, I applied this methodology to more than 20
different languages (starting from Latin) and to many fields of Computational
Linguistics, such as semiautomatic lemmatization, machine dictionaries, textual
typology, methods of treatment of different alphabets etc.

1

From Prague Structuralism
to Treebank Annotation

Eva Haji�ová

Charles University in Prague, Czech Republic
Institute of Formal and Applied Linguistics
E-mail: eva.hajicova@mff.cuni.cz

Abstract

When contemplating about the relationships between treebanking and linguistic
theory, we believe it is useful to look a little bit further back and to consider (also)
the roots of linguistic science rather than to restrict the attention to the theoretical
aspects of what might be viewed as contemporary theoretical developments. In
our contribution, we focus on three tenets of the structural and functional
approach of the Prague School of Linguistics as reflected in the writings of
Praguian linguists of the classical period, namely (i) the concept of markedness
and the opposition of the core and periphery of language system, (ii) the
functional viewpoint, and (iii) the frequently assumed distinction between the
“grammatical” and “semantic” structure of the sentence, with the emphasis on the
underlying syntactic relations with the verb as the nucleus. These three aspects are
discussed both in their original, fundamental treatments as well as in view of the
possibility and usefulness of their application to treebank annotation on different
layers. In this connection, such questions are posed as what linguists (be they
theoretically, computationally, or corpus- oriented) have expected to get from
treebank annotation, in which respects these expectations have been met and in
which we have failed or at least temporarily failed, which blind alleys we have
fallen in on the way, which unexpected problems we have encountered. In the
end, we will consider what we assume can(not) be done without treebanking (tree
representations) and we will try to summarize what the treebanks are good for in
spite of all the limits, insufficiencies or even (temporary) failures.

3

An Ownership Model of Annotation: The Ancient

Greek Dependency Treebank

David Bamman, Francesco Mambrini and Gregory Crane
The Perseus Project, Tufts University

Abstract

We describe here the first release of the Ancient Greek Dependency Treebank

(AGDT), a 190,903-word syntactically annotated corpus of literary texts in-

cluding the works of Hesiod, Homer and Aeschylus. While the far larger

works of Hesiod and Homer (142,705 words) have been annotated under

a standard treebank production method of soliciting annotations from two

independent reviewers and then reconciling their differences, we also put

forth with Aeschylus (48,198 words) a new model of treebank production

that draws on the methods of classical philology to take into account the per-

sonal responsibility of the annotator in the publication and ownership of a

“scholarly” treebank.

1 Introduction

Data-driven research in linguistics relies on the existence of a large body of texts

that have been annotated on several linguistic levels. For modern languages like

English, these tend to be comprised of genres like newswire; for Latin, Greek,

and other historical languages, our observations are based on a smaller but more

heavily studied canon. An article from the Wall Street Journal is certainly more

representative of how native English speakers actually speak than Homer’s epic

Iliad is for ancient Greeks, but the Iliad has been a focused object of study for

almost 3,000 years, with schoolchildren and tenured professors alike scrutinizing

its every word, annotating its syntax, semantics and other linguistic levels either

privately in the margins of their books or as published commentaries.

Recent scholarship has seen the rise of a number of treebanks for historical

languages over the past few years, including Middle English [11], Early Modern

English [10], Old English [22], Medieval Portuguese [18], Ugaritic [24], Latin

[1, 15] and several Indo-European translations of the New Testament [8]. The long

history of philological research on the individual texts that constitute these works

highlights what is perhaps the greatest difference between syntactically annotated

corpora for modern languages and those for historical ones – while ambiguity is of

course present in all language, the individual ad hoc decisions that annotators make

5

in resolving syntactic ambiguity when creating modern treebanks have, for heavily

studied Classical and other historical texts, been debated for centuries; disserta-

tions and entire careers have been made on the study of a single work of a single

author. Since over two thousand years separate us from the time when Greek and

Roman authors were writing, Classical texts also have additional confounding fac-

tors which bring this debate to new levels – not simply the interpretation of the text

as it appears to us, but what actually constitutes that text itself.

In creating an annotated corpus of a language for which no native speakers exist

(and for which we subsequently cannot rely on native intuitions), we are building

on a mountain of prior scholarship that has shaped our fundamental understanding

of the text. In order to accommodate this level of scholarly debate on a basic level

of annotation, we describe here a new mode of treebank production – what we are

terming a “scholarly” treebank. Just as every critical edition and commentary bears

the mark and reputation of its author, including the cultural context in which it was

written, every act of annotation is here associated with the individual who created

it. By stressing such ownership, we hope to transform the act of treebanking from

an anonymous practice into a mode of scholarly publication.

The aim of this paper is twofold: we present the first release of the Ancient

Greek Dependency Treebank (AGDT), containing 190,903 words of Ancient Greek

annotated under a dependency grammar, and describe how it can form the core of

scholarly treebanks to come.

2 The Ancient Greek Dependency Treebank

Ancient Greek is a highly inflected language with a considerable degree of variabil-

ity in its word order. Even the comparatively simpler texts of Homer manifest a

high degree of non-projectivity, where constituents themselves are broken up with

elements of other constituents, as in the dependency graph shown in figure 1, where

an arc drawn from ��̃��� (“rage”) to ������̃	
 (“Achilles”) crosses that drawn from

the root of the sentence to ���
� (“sing”).1 This flexibility has encouraged us to

base our annotation style on the dependency grammar used by the Prague Depen-

dency Treebank [6] for Czech (another non-projective language), which has since

been widely adopted by a number of annotation projects for other languages, in-

cluding Arabic [7] and Modern Greek [16]. Since Latin and Ancient Greek are

so closely related, our specific guidelines have been built as an extension of those

used for the Latin Dependency Treebank [1] and the Index Thomisticus [15].

2.1 Annotation

The efficient annotation of Ancient Greek is hindered both by the fact that no na-

tive speakers exist and that the texts we have available are typically highly stylized

1See Nivre [13] for a formal definition of projectivity.

6

Figure 1: ��̃��� ����� ��	
����
��� ������̃�� (“Sing, goddess, of the rage of

Achilles, the son of Peleus”), Homer, Iliad 1.1. Arcs are drawn from heads to their

dependents.

in nature. This difficulty and the ability of a sentence to present multiple valid syn-

tactic interpretations has an impact on both annotation speed and inter-annotator

agreement. While the Penn Treebank can report a productivity rate of between 750

and 1000 words per hour for their annotators after four months of training [21]

and the Penn Chinese treebank can report a rate of 240-480 words per hour [3],

our annotation speeds are significantly slower, ranging from 97 words per hour to

211, with an average of 124. Since we preserve the individual streams of anno-

tation from all annotators, we can calculate inter-annotator accuracy (IAA) mea-

sures for the treebank in its entirety. Table 1 presents three such measures drawn

from [5]: attachment score (ATT), label score (LAB) and labeled attachment score

(LABATT), each one being the average annotator accuracy compared to the final

corrected data. While our ATT of 87.4% approaches the 91.5% and 89.2% reported

by the CATiB Arabic Treebank [5], our LAB and LABATT scores are lower, aver-

aging 85.3% and 80.6%, respectively.

ATT LAB LABATT

Hesiod, W&D 85.1% 85.9% 79.5%

Homer, Iliad 87.1% 83.2% 79.3%

Hesiod, Odyssey 87.5% 85.7% 80.9%

Total 87.4% 85.3% 80.6%

Table 1: Average inter-annotator accuracy in terms of attachment (ATT), label

(LAB) and labeled attachment (LABATT) scores.

The backgrounds of the annotators range from advanced undergraduate stu-

dents to recent PhDs and professors, with the majority being students in graduate

programs in Classics. To help provide reading support for more efficient annota-

tions, we have embedded our annotation interface within a larger digital library

that presents the Greek source text to be annotated along with contextualizing sec-

ondary publications such as translations, commentaries, and references in dictio-

naries. In addition to an initial training period, annotators are actively engaged

7

in new learning by means of an online forum in which they can ask questions of

each other and of project editors; this allows them to be kept current on the most

up-to-date codifications to the annotation guidelines while also helping bring new

annotators up to speed. In the “standard” model of production, every sentence is

annotated by two independent annotators and the differences are then reconciled

by a third. This reconciliation (or “secondary” annotation as it is encoded in the

XML release) is undertaken by a more experienced annotator/editor, typically a

PhD with specialization in the particular subject area (such as Homer).

As figure 2 illustrates, all annotations are publicly released with the usernames

of the primary and secondary annotators (which are then also associated with real

names and institutional affiliations). By publicly acknowledging authorship, we

are making our first steps toward an ownership model for annotation (more fully

discussed below) and hope to provide a means for students, both graduate and un-

dergraduate alike, to engage in the act of scholarly research and produce scientific

data that can be useful to the wider Classics community.

Figure 2: XML fragment from the AGDT (Homer, Odyssey 2.1).

2.2 AGDT 1.0

Using this model, we have annotated a total of 190,903 words from three different

authors (Hesiod, Homer and Aeschylus), as distributed in table 2.

In addition to the index of its syntactic head and the type of relation to it, each

word is also annotated with the lemma from which it is inflected and its morpho-

logical code (a composite of nine different morphological features: part of speech,

person, number, tense, mood, voice, gender, case and degree). All of the files have

been freely released under a Creative Commons license.2

For the works of Homer and Hesiod, we have followed the standard production

method of soliciting annotations from two different annotators and then reconciling

the differences between them. Aeschylus, whose textual tradition is much more

fragmentary, has presented an ideal case for annotation as a scholarly treebank.

2All treebank data can be found at: http://nlp.perseus.tufts.edu/syntax/treebank/.

8

Method Author Work Sentences Words

Standard Hesiod Works and Days 446 6,214

Homer Iliad 2,470 37,223

Odyssey 6,417 99,268

Scholarly Aeschylus Agamemnon 809 9,796

Eumenides 521 6,376

Libation Bearers 572 6,563

Persians 478 6,223

Prometheus Bound 589 7,045

Seven Against Thebes 478 6,206

Suppliants 518 5,989

Total: 13,298 190,903

Table 2: AGDT 1.0 composition by work.

3 Scholarly Treebanks

Linguistic annotation projects have, of necessity, long focused on the creation of

the single-best annotation, enforcing agreement between annotators even in cases

of ambiguity. This approach works well for generic text such as newswire (where

the value lies not in any individual sentence but rather in the aggregation of many)

but breaks down when the objects of annotation are themselves the focus of schol-

arly debate. In these cases we must provide a means for encoding multiple anno-

tations for a text and allowing scholars who disagree with a specific annotation to

encode their disagreement in a quantifiable form.

For historical texts especially, scholarly disagreement can be found not only

on the level of the correct syntactic parse, but also on the form of the text itself.

These two levels are not completely isolated from each other, since it is often a

scholar’s understanding of the meaning of the text – i.e., what it should say – that

informs their decisions about its reconstruction (i.e., what it actually did say). The

need for this reconstruction is due to the process of textual transmission. We do not

have a copy of Plato’s Apology in his own hand; what we have instead is a series of

manuscripts, one copied from the other, with errors introduced into each generation

by the process of hand-copying by medieval scribes. This manuscript transmission

allowed the work of the author to survive, but resulted in a considerable alteration

of the text. Modern critical editions attempt to reconstruct the original text by a

systematic comparison of that manuscript tradition.

As the product of scholarly labor, a critical edition displays the text as it is re-

constructed by an editor; it is thus an interpretative hypothesis whose foundations

lie on the methods of textual criticism. A scholarly treebank may be defined by

analogy as a syntactically annotated corpus that again reflects an interpretation of

a single scholar, based not only on the scholar’s philological acumen but also on an

inevitable degree of personal taste and opinions that are culturally and historically

9

determined. A scholarly treebank thus distances itself from the notion that linguis-

tic annotations can be absolute; when dealing with non-native historical languages

especially, a syntactic interpretation of a sentence is always the interpretation of an

individual and therefore subject to debate.

3.1 Aeschylus

We have decided to treat the corpus of Aeschylus’ plays as the first example of a

scholarly treebank due to the difficulty (even by Classical standards) of its textual

tradition. The historical position of this author (ca. 525 BCE – ca. 456 BCE)

may partly account for this complexity. Classical authors established him as the

true founder of tragedy,3 the poet who took a genre that was already characterized

by a high degree of linguistic diversity and complexity and transformed it from its

humble and rustic origins into a sublime form of poetry.

When Ancient Greek literature was rediscovered in Western Europe in the Re-

naissance, the difficulty of reading Aeschylus (along with all other Classical texts)

was increased by the errors that inevitably intruded into the text during the process

of copying. Out of a whole corpus that included between 70 and 90 tragedies, a

canon of seven plays traditionally attributed to Aeschylus was chosen most likely

in late antiquity to be copied integrally (a number of fragments of other works

also survived independently).4 Of these, only three (Prometheus Bound, Persians
and Seven Against Thebes) have been preserved by a group of manuscripts large

enough to assure a good transmission, and two (Libation Bearers and Suppliants)

survive only in one single manuscript (and its copies), the Laurentianus 32.9. Start-

ing from this controversial evidence, a vast number of scholars, beginning from the

first printed edition of 1518, have undertaken the enterprise of giving justice to the

complex poetry of the author and amending the text of all errors [12]. The main

bibliographic catalogue for Aeschylus lists no less than 127 editions of the seven

plays for the years 1518-1974, counting also the major reissues [23, 633-35]; if we

include the separate editions of the single tragedies or of the trilogy (the Oresteia),

the count rises exponentially.

3.2 Example: Agamemnon 176-8

One example (Ag. 176-8) may give an idea of how this complex history affects

the practical task of treebanking. In a pivotal passage of the so-called “Hymn to

Zeus” in the Agamemnon, the chorus voices for the first time in the play a theo-

logical vision that will dominate the whole Oresteia: the rule of “learning through

suffering” as the means by which Zeus instructs the mortals to wisdom. Smyth’s

3Cf. Dioscorides (3rd century BCE), Tragicorum Graecorum Fragmenta, Testimonium 163 [17,

107-8].
4The conflicting ancient evidence on the number of plays attributed to Aeschylus in antiquity is

collected by Radt [17].

10

[20] edition5 of the Greek text reads:

��� �����̃�� 	����
� �
��
[the . to be wise . mortals . putting on ...]

������ ��� ����� �����
[... the way . the . through suffering . learning]

����� ������ ������
[establishing . authoritatively . hold]

The precise meaning of the passage is subject to debate (see below), but a basic

translation is: “[Zeus] ... who put men on the path of wisdom, who established that

the law ‘learning through suffering’ shall be in force.”

Though the formula ����� ����� (“learning through suffering”) is both quoted

and commented upon in many general introductions to the theater of Aeschylus (it

was even quoted by Robert F. Kennedy in his speech on the assassination of Martin

Luther King Jr. [9]), both the text and syntactic interpretation of the sentence are

highly controversial.

For instance, we may note at once that the second masculine accusative article

��� (l. 177: ��� ��� �����, “the one establishing”) is a modern conjecture proposed

by Schütz [19] and subsequently accepted by many followers, including Smyth

above [20]. In contrast, all the manuscripts of the Agamemnon unanimously read

a dative neuter article (��) that is morphologically licensed to modify the dative

noun ����� instead (“the suffering”).

This conjecture of Schütz is directly related to a question of syntactic inter-

pretation. There is a fundamental ambiguity in the relationship between the two

participles �
������ (“put on the way”) and ����� (“establish”). Is it apposition

(Zeus is the god that “put the men on the path of wisdom, i.e., the one who estab-

lished the law”) or subordination (“Zeus gave wisdom to men by establishing the

law”)? Whichever interpretation we choose, the article with ����� is rather diffi-

cult to understand. This inherent ambiguity on several levels has led the three most

recent commentaries on the play – Fraenkel [4], Denniston-Page [14] and Bollack

[2] – to adopt three very different solutions based on their own weighing of the

philological evidence, each resulting in a markedly different syntactic tree. Fig-

ures 3 and 4 present these three trees annotated under a dependency grammar, and

illustrate the variety of interpretations that have been argued in print for just this

one sentence alone.6

5A digital version of this edition is available at: http://www.perseus.tufts.edu/hopper/.
6The different interpretations are, of course, reflected also in different translations or paraphrases.

Fraenkel (1950): “it is Zeus who has put men on the way to wisdom by establishing as a valid law

By suffering they shall win understanding” [4]; Denniston-Page (1957): “he who set men on the path

to understanding, who laid down the law, ‘learning through suffering’, to hold good” [14]; Bollack

(1981): “de celui qui a ouvert aux mortels le penser, posant qu’ils tiendraient principalement leur

savoir par la souffrance” (“of the one who opened the way of thinking for mortals, by establishing

that chiefly by their suffering they will have their knowledge”) [2].

11

ὁδώσαντα
putting on the way

OBJ ExD0 SBJ ExD1 PRED

τὸν
the

ATR

βροτοὺς
mortals

OBJ

φρονεῖν
be wise
OBJ

θέντα
establishing

ADV

,
AuxX

ἔχειν
hold
OBJ

μάθος
learning

SBJ

πάθει
through suffering

ATR

τῷ
the

ATR

κυρίως
authoritatively

ADV

,
APOS ExD0 SBJ ExD1 PRED

ὁδώσαντα
putting on the way

OBJ AP

τὸν
the

ATR

βροτοὺς
mortals

OBJ

φρονεῖν
be wise
OBJ

θέντα
establishing

OBJ AP

τὸν
the

ATR

ἔχειν
hold
OBJ

μάθος
learning

SBJ

πάθει
through suffering

ATR

κυρίως
authoritatively

ADV

Figure 3: Trees of Fraenkel (left) and Denniston-Page (right) for Ag. 176-8.

ὁδώσαντα
putting on the way

OBJ ExD0 SBJ ExD1 PRED

τὸν
the

ATR

βροτοὺς
mortals

OBJ

φρονεῖν
be wise
OBJ

θέντα
establishing

ADV

,
AuxX

ἔχειν
have
OBJ

πάθει
through suffering

ATR

κυρίως
chiefly
AuxZ

τῷ
the

ATR

μάθος
learning

OBJ

Figure 4: Bollack’s tree for Ag. 176-8.

3.3 A Critical Treebank of Aeschylus

The variety of textual and syntactic interpretations for just these three lines of

Aeschylus begins to point out the shortcomings of a standard treebank production

model for texts of ongoing scholarly debate. While distributing the task of annota-

tion across two independent annotators and then reconciling their differences does

help remove any single annotator’s personal bias from the final annotated corpus,

for these texts what we want is exactly that – the quantified decisions of a single

individual (whether Fraenkel, Denniston-Page, Bollack, or some other scholar),

along with the sense of ownership and personal responsibly that attend such work.

In this, the scholarly practice of annotation is practically indistinguishable from the

creation of a critical edition of a text and attendant commentary.

For the complete works of Aeschylus, we have created a treebank based on the

12

work of a single scholar following these philological principles. As in the creation

of critical editions of texts, each syntactic annotation is created in consultation with

the current state of Aeschlyean criticism; the resulting work stands as a contribution

to that ongoing body of research. In total, the scholarly treebank amounts to 48,198

words (3,965 sentences) from 7 different plays and is included in the public release

of AGDT 1.0 (see Figure 2). Figure 5 displays a fragment of that data – unlike the

canonically produced texts of Homer and Hesiod, where a consensus is established

among three individuals, this work here is the sole responsibility of the scholar

who created it and remains that scholar’s published interpretation of the text.

Figure 5: XML fragment from the AGDT (Aeschylus, Ag. 121).

4 Conclusion

By focusing on authorship in the release of the AGDT, we hope to drive future

research in two directions. First, by publicly releasing the data with citable attribu-

tions of ownership, we hope to provide the core around which other interpretations

of the data can be layered – a scholar who disagrees with a single annotation de-

cision need not start from scratch to contribute a new annotation, but can simply

build on the existing data and change only the elements subject to debate. As the

example from Agamemnon 176-8 from above clearly shows, Classical texts very

often license multiple syntactic interpretations, and providing a quantified record

of how these multiple interpretations differ can only help drive future research.

Second, by publicly acknowledging the creator of the annotation, we hope to

promote the act of treebanking as a scholarly publication no different than a critical

edition or commentary. In so doing, we hope to engage a much wider audience in

the creation of syntactically annotated data for historical languages – not only the

corpus and computational linguists who have typically promoted them, but Classi-

cists as well, for whom treebanking is simply a quantified form of the traditional

scholarship that has been conducted for centuries.

13

5 Acknowledgments

Grants from the Alpheios Project (“Building a Greek Treebank”), the Andrew W.

Mellon Foundation (“The CyberEdition Project: Workflow for Textual Data in Cy-

berinfrastructure”) and the National Endowment for the Humanities (PR-50013-

08, “The Dynamic Lexicon: Cyberinfrastructure and the Automated Analysis of

Historical Languages”) provided support for this work.

References

[1] David Bamman and Gregory Crane. The Latin Dependency Treebank in a

cultural heritage digital library. In Proceedings of the Workshop on Language
Technology for Cultural Heritage Data (LaTeCH 2007), pages 33–40, Prague,

2007. Association for Computational Linguistics.

[2] Jean Bollack and Pierre Judet de La Combe. L’Agamemnon d’Eschyle: le
texte et ses interprétations. Presses universitaires de Lille, Lille, 1981.

[3] Fu-Dong Chiou, David Chiang, and Martha Palmer. Facilitating treebank

annotation using a statistical parser. In Proceedings of the First International
Conference on Human Language Technology Research HLT ’01, 2001.

[4] Eduard Fraenkel. Aeschylus. Agamemnon. Clarendon Press, Oxford, 1950.

[5] Nizar Habash and Ryan Roth. CATiB: The Columbia Arabic Treebank. In

Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages 221–

224, Suntec, Singapore, 2009. Association for Computational Linguistics.

[6] J. Hajič. Building a syntactically annotated corpus: The Prague Dependency

Treebank. In E. Hajičová, editor, Issues of Valency and Meaning. Studies in
Honor of Jarmila Panevová. Prague, Charles University Press, 1998.

[7] J. Hajič, O. Smrž, P. Zemánek, J. Šnaidauf, and E. Beška. Prague Arabic de-

pendency treebank: Development in data and tools. In Proc. of the NEMLAR
Intern. Conf. on Arabic Language Resources and Tools, 2004.

[8] D.T.T. Haug and M.L. Jøhndal. Creating a Parallel Treebank of the Old Indo-

European Bible Translations. In Proceedings of the Second Workshop on
Language Technology for Cultural Heritage Data (LaTeCH 2008), 2008.

[9] Robert F. Kennedy. Statement on the assassination of Martin Luther King,

Indianapolis, Indiana, April 4, 1968.

[10] A. Kroch, B. Santorini, and L. Delfs. Penn-Helsinki Parsed Corpus of Early

Modern English. http://www.ling.upenn.edu/hist-corpora/ppceme-release-1,

2004.

14

[11] A. Kroch and A. Taylor. Penn-Helsinki Parsed Corpus of Middle English, 2nd

edition. http://www.ling.upenn.edu/hist-corpora/ppcme2-release-2/, 2000.

[12] Monique Mund-Dopchie. La survie d’Eschyle à la Renaissance. Éditions,
traductions, commentaires et imitations. Peeters, Louvain, 1984.

[13] Joakim Nivre. Constraints on non-projective dependency parsing. In EACL.

The Association for Computer Linguistics, 2006.

[14] Denys Page. Aeschylus Agamemnon. Edited by the late John Dewar Dennis-
ton and Denys Page. Clarendon Press, Oxford, 1957.

[15] Marco Passarotti. Verso il Lessico Tomistico Biculturale. La treebank

dell’Index Thomisticus. In P. Raffaella and F. Diego, editors, Il filo del
discorso. Intrecci testuali, articolazioni linguistiche, composizioni logiche,

pages 187–205. Roma, Aracne Editrice, 2007.

[16] Prokopis Prokopidis, Elina Desipri, Maria Koutsombogera, Harris Papageor-

giou, and Stelios Piperidis. Theoretical and practical issues in the construc-

tion of a Greek dependency treebank. In In Proceedings of the 4th Workshop
on Treebanks and Linguistic Theories (TLT), pages 149–160, 2005.

[17] Stefan Radt. Tragicorum Graecorum Fragmenta. Vol. III: Aeschylus. Vande-

hoeck und Ruprecht, Göttingen, 1985.

[18] Vitor Rocio, Mário Amado Alves, J. Gabriel Lopes, Maria Francisca Xavier,

and Graça Vicente. Automated creation of a Medieval Portuguese partial

treebank. In Anne Abeillé, editor, Treebanks: Building and Using Parsed
Corpora, pages 211–227. Kluwer Academic Publishers, 2003.

[19] Christian Gottfried Schütz. Commentationum in Aeschyli Agamemnon libel-
lus I. Jena, 1780.

[20] Herbert Weir Smyth. Aeschylus. With an English Tranlsation. Loeb Classical

Library. Harvard University Press, Cambridge, 1922.

[21] Ann Taylor, Mitchell Marcus, and Beatrice Santorini. The Penn Treebank:

An overview. In Anne Abeillé, editor, Treebanks: Building and Using Parsed
Corpora, pages 5–22. Kluwer Academic Publishers, 2003.

[22] Ann Taylor, Anthony Warner, Susan Pintzuk, and Frank Beths. York-

Toronto-Helsinki Parsed Corpus of Old English Prose, 2003.

[23] André Wartelle. Bibliographie d’Eschyle et de la tragédie grecque 1518-
1974. Les Belles Lettres, Paris, 1978.

[24] Petr Zemánek. A treebank of Ugaritic: Annotating fragmentary attested lan-

guages. In Proceedings of the Sixth Workshop on Treebanks and Linguistic
Theories (TLT2007), pages 213–218, Bergen, 2007.

15

Finalising Multiword Annotations in PDT

Eduard Bejček and Pavel Straňák and Jan Hajič

Charles University in Prague, Institute of Formal and Applied Linguistics
Malostranské náměstí 25, 118 00 Praha, Czech Republic

E-mail: {bejcek,stranak,hajic}@ufal.mff.cuni.cz

Abstract

We describe the annotation of multiword expressions and multiword named

entities in the Prague Dependency Treebank. This paper includes some statis-

tics of data and inter-annotator agreement. We also present an easy way to

search and view the annotation, even if it is closely connected with deep syn-

tactic treebank.

1 Introduction

The units of tectogrammatical layer of the Prague Dependency treebank should

not be just words but lexemes. Essential for this improvement is annotation of

multiword expressions. Its goal is to identify the multiword lexemes that should

become single tectogrammatical nodes in future.

As there was a lack of such annotated data, the project Bejček, Straňák, and

Schlesinger (2008) started four years ago. In this project (usually) two annota-

tors have been reading the newspaper texts from PDT 2.0 (see Hajič et al., 2006),

searching for multiword expressions in it, and annotating them. They have concen-

trated on both multiword named entities (NEs) and multiword lexemes. The aim

of the project was to develop reliable training data for further research and to im-

prove the state of “t-nodes” in the trees of PDT (see below in Section 1.1 about

PDT). As a side effect, the lexicon of multiword lexemes was created, entries have

been inserted into it and existing ones have been corrected throughout the whole

annotation process.

Now the project is near the end. What was our approach, what are the results,

are there any interesting outputs?

The paper starts with a few words about the corpus we used and the existing an-

notation we both use and enhance. The second section is about our annotation and

the approach we chose. Section 3 brings overview of the annotation done, various

types of inter-annotator agreement etc. At the end we report on the technical as-

pects of releasing the data, and how it can be used, which is work in progress.

17

1.1 PDT

The Prague Dependency Treebank 2.0 (Hajič, 2005) includes rich annotation on

a deep syntactic level of almost 50,000 sentences (for details on this “tectogram-

matical layer” see Mikulová et al., 2006). On this layer, each node should corre-

spond to one lexeme, but this is not the case now: multiword expressions (MWEs)

are still represented by several nodes each.

As mentioned above, our goal is to integrate MWEs like “New York City”,

“computational linguistics” or “kick the bucket” each into one joint node in a syn-

tactic tree (with a meaning “NE: place”, “lexicon entry: 39485 [gloss: science

branch]” and “lexicon entry: 13985 [synonym: die]”, respectively).

The advantage of the existing syntactic annotation of our source text was the

possibility of preannotation and consistency checking. That could be done because

all instances of the same MWE should have the same tree structure.1

2 The Way of Annotation

In this section, we introduce very briefly our project. Much more information can

be found in Bejček and Straňák (2009).

Both multiword NEs and lexemes – if multiword – are called MWEs in this

paper. Assigning the type of the MWE itself (such as a particular lexicon entry)

is of little importance comparing to the fact, that it is found and its boundaries are

marked. To create a typology of NEs (or phrasemes) is not our aim. Our effort leads

to simple annotation guidelines for annotators; concrete labels are just an aid for

further classification. Thus we adopt nine main types of NEs from Ševčíková et al.

(2007)2 (such as person name, name of a place, address etc.) and use more than

5,000 lexicon entries for other lexemes (such as phrasemes, non-compositional or

non-substitutable collocations).3 These lexicon entries have been collected from

three lexicons and the set has been extended by annotators. Thereby the lexicon

called SemLex was developed.

For the majority of time, we had two annotators, who annotated the same texts

in parallel. (Overall, we had five annotators during the time as it can be seen in

Table 2, but that is not crucial.) However, when we had enough data for inter-

annotator agreement evaluation, we stopped parallel annotations (only with an oc-

casional testing parallel document). The amount of data annotated in parallel can

be seen in Table 1. By now, 85 % of the whole data is annotated.

1There are some marginal cases where the structure is not exactly the same. These differences

will hopefully disappear in future, perhaps in PDT 3.0.
2This typology (with embedded types) was used for manual annotation of a corpus (Kravalová

et al., 2009).
3The main simple criterion was “principle of compositionality”—whether it could be disassem-

bled to parts that compose the meaning; if not, it should be in the lexicon. The second one is “substi-

tutability of a part”—i.e. the possibility to substitute its component words with synonyms. Then we

have annotation guidelines and meetings, where problems are solved.

18

amount of parallel annotations in nodes in % of PDT

three annotators 464 14.7 %

two annotators 1201 38.1 %

one annotator 1044 33.1 %

total 2709 85.8 %

total by at least two annotators 1665 52.8 %

PDT t-layer 3156 100 %

Table 1: The amount of single, double and triple parallel annotations.

For preannotation of the text we use Czech_geo_named_ent_recognizer and

Czech_named_ent_SVM_recognizer from the Tecto-MT framework (Žabokrtský

et al., 2008). These find some NEs. We also use external preannotation of phrasemes

provided by our colleague (see Hnátková (2002)).

2.1 GUI

We developed a tool for our task, a GUI for annotators. Although we actually anno-

tate the nodes in the trees in the background, we need to show only plain sentence

to annotators. For each syntactic tree, the surface sentence is generated and every

annotator’s operation on it is converted back into the nodes and saved. In addi-

tion, as the subtree forming just annotated expression is identified, all the other

occurrences of that subtree can be found in the neighbourhood automatically. That

assists annotators with their manual work. Annotators are also allowed to view,

modify and extend the SemLex in the same GUI.

This tool can be used for any annotations of treebank, where the annotated trees

are better viewed as plain text.

2.2 Merging SemLexes

An annotator works off-line. Also their SemLex is modified off-line. Therefore the

longer the annotation proceeds the more their SemLexes differ. Then we need to

merge SemLexes and return the new one back to them for further annotation. The

process described bellow is for two annotators.

First, we merge all entries that could be merged automatically. That means

either entries that were the same in both SemLexes, or entries that were inserted

into just one of the SemLexes.

Second, conflicting entries are delegated to third annotator who decides the

correct forms. For this task we use a modal editor.4 That means an editor with one

mode for typing a text (which we disable) and other for macro executing. Macro

invocation could be very simple—we use only one key for each operation. These

are the reasons why we use a modal editor for manual merging.

4Vim in our case, http://www.vim.org/.

19

We put all conflicting lexicon entries into a file, each as a simple list of its

values, and provided a syntax highlighting for the editor. Where there are more

values (i.e. a conflict), we show all of them in a warning colour. We prepare some

simple macros for the editor, such as “go to next conflict”, “choose first value”,

“insert a comment” etc. and disable the option of typing in the text. When the

conflict is resolved, the warning colour disappears. It confirmed that it is very fast

to create and very simple and safe to use.

Third, the decisions from the third annotator were imported back into the Sem-

Lex and added to merged entries from the first step. After that, the annotated data

are modified to correspond with the new SemLex.

3 Statistics

All statistics presented in this section are calculated for all our users. They didn’t

annotate the same data, though, as can be seen in Table 2. This table also shows the

ratio of PDT annotated by each of them.

annotator\part PDT amount

#1 • • 2.7 %

#2 •••••••• •••••••• 55.0 %

#3 ••••••••••••••• ••• • •• 67.2 %

#4 •• • ••• • •• 21.2 %

#5 •••• ••• 13.4 %

Table 2: Annotated parts and the ratio to the whole PDT per each annotator.

The annotated parts of PDT slightly differ,5 but the overall characteristic stays.

There is very similar usage of NEs across all annotators6 in the Table 3.

Besides nine types of NEs, the annotators use approximately 8,000 of SemLex

entries; some of them 100×,7 third of them only once. Since there is no straight

borderline stating whether an occurrence is a NE or shether it should be marked as

a SemLex entry, the agreement has to be evaluated together for NEs and SemLex

entries.

5For example after a changeover from one newspaper to another.
6Only annotator #1 evidently differs, but this one annotated only less than 3 % of PDT.
7Foremost lexicon entries are “state budget”, “annual meeting”, “environment”, “join stock com-

pany” etc.

20

annotator #1 #2 #3 #4 #5

address - 0.4 % 0.1 % 0.6 % 0.7 %

biblio - 0.1 % 0.2 % - 0.0 %

foreign 0.2 % 0.7 % 0.5 % 1.0 % 0.6 %

institution 9.7 % 22.6 % 19.4 % 24.1 % 21.7 %

location 6.2 % 6.1 % 8.4 % 8.5 % 12.3 %

object 30.6 % 10.3 % 14.2 % 16.1 % 14.7 %

other 3.2 % 13.1 % 16.3 % 10.9 % 15.6 %

person 38.2 % 30.9 % 32.0 % 30.9 % 26.5 %

time 12.1 % 15.9 % 8.8 % 7.8 % 7.8 %

All NEs 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

Table 3: Usage of named entities by particular annotators

3.1 Weighted Kappa Agreement

Because of the complicated character of our annotations,8 we use weighted kappa

for inter-annotator agreement in Table 4.

annotators #1 #2 #3 #4 #5

#1 * 0.61 - - -

#2 0.61 * 0.56 0.21 -

#3 - 0.56 * 0.55 0.73

#4 - 0.21 0.55 * 0.70

#5 - - 0.73 0.70 *

Table 4: Pairwise weighted kappa.

3.2 Agreement with “is_name_of_person” in PDT

There is an attribute called is_name_of_person in PDT, which is though as-

signed automatically. Figure 5 shows the agreement with our annotation. The cor-

responding value should be “named entity: person” and it is in 86 % of nodes.

There are three reasons, why the value does not correspond:

• The name of the person is not multiword. The connection of two is_name-
_of_persons was not marked in PDT, therefore the dependency edge be-

tween two such nodes may or may not create a MWEs; they could be names

8Firstly, the annotations are assigned to nodes, which are in m:n mapping to words. Secondly, two

annotators happen to annotate differently although their annotations have non-empty intersection.

Thirdly, some MWEs fall into more than one category, like phraseme and a name of an institution at

the same time.
9Such node was annotated, but not as “person”. The name of person could be part of a name of

institution or even part of some multiword lexeme.

21

Annotators PDT

t-node annotated as Ratio

NE “person” nothing 4.5 %

other9 is_name_of_person 2.3 %

nothing is_name_of_person 6.9 %

NE “person” is_name_of_person 86.3 %

Table 5: The agreement between the PDT attribute is_name_of_person and

named entity “person”.

of two people as well. One such example is “Pucciniho Turandot” (Puccini’s

Turandot), which is the name of the composer and the name of the title char-

acter of his opera.

• The name of the person is a part of another MWEs. In that case, only the

larger one should be annotated. For example, there is a name of person in

“Pěvecký recitál Petera Dvorského” (Peter Dvorský’s Choral Recital), but it

is an object as a whole.

• There is a mistake in our annotation (or in PDT, theoretically).

There are some others annotations in PDT (namely FPHR, DPHR, IDPH, and

CPHR10), which are significant for us. These disagreements will be checked and

mistakes will be repaired—either automatically, or manually.

4 Publication of the Data

As PDT is stored in the PML format (Pajas and Štěpánek, 2005), we also use PML

for our annotations. That allows us to store the data as a stand-off annotation in so

called “s-files” separately from the rest of PDT annotations. The MWEs found in

each document are saved in a file linked with other files in PDT containing all the

other annotations of this document as well as the surface sentences. (See Figure 1.)

This format allows us to show annotations in editor and viewer TrEd (Pajas and

Štěpánek, 2008). It can present any part of the annotation in easily comprehensible,

uncluttered way. User may choose to show or hide many detailed information about

every word in the sentence (or node in the tree). There is also PML-TQ extension

in TrEd, which allows a user to ask the queries in an easy user-friendly way. The

queries are translated into SQL and evaluated by the database server containing

treebanks. The resulting trees can be displayed either in TrEd, or on the web page

using SVG. An example of a query is in Figure 2. Another query (in Figure 3)

combines more layers of annotation.

Our complete data will be released under PDT licence within several months.

10These are “foreign phrase”, “dependent part of a phraseme”, “identification structure”, and “co-

pula verbonominal predicate”, respectively.

22

w-layer

m-layer

a-layer

t-layer s-layer

SemLex

Figure 1: One document is stored in five interlinked files with links also to SemLex.

We will release the s-files themselves, which are very simple XML files, as

well as scripts to merge the s-files with PDT to enable searching via PML-TQ

and displaying the trees in TrEd. Export to CoNLL format (Hajič et al., 2009)

will be also provided. CoNLL format is a simple table, which enables the data

to be directly processed by many statistical tools. The GUI for annotators will be

released as well.

Figure 2: This query searches for all

annotated MWEs, such that it consists

of the phrase “stát v . . . ” or “stát na

. . . ” (meaning “stand in/at/on” as well as

“hold ground”, “keep sentinel”, “tiptoe”

etc.).

Figure 3: A query searching for a NE

of a place containing the word “náměstí”

(square) and at least one other word.

23

5 Conclusion

Identification of MWEs moves the Prague Dependency Treebank towards better

separation of tectogrammatical lemmas from the morphological lemmas and thus

closer to the Functional Generative Description (Sgall et al., 1986), i.e. the theoret-

ical framework the PDT was built upon. In future, this work will help to produce

such PDT t-layer, where all units will correspond to whole NEs or lexemes (and so

some of them will be multiword).

We employed several different methods to optimise the annotation both in

terms of speed and precision. We will continue further refinements of tectogram-

matical lemmas before the next release of the treebank.

Acknowledgement

This work has been supported by grant 1ET201120505 of Grant Agency of the

Academy of Science of the Czech Republic, and grants GAUK 4307/2009 and

GAUK 4200/2009 of the Grant Agency of Charles University in Prague.

References

Eduard Bejček, Pavel Straňák, and Pavel Schlesinger. Annotation of multiword

expressions in the prague dependency treebank. In IJCNLP 2008 Proceedings
of the Third International Joint Conference on Natural Language Processing,

pages 793–798, 2008. 1

Eduard Bejček and Pavel Straňák. Annotation of multiword expressions in the

prague dependency treebank. Language Resources and Evaluation, 43(3), 2009.

2

Jan Hajič. Insight into Slovak and Czech Corpus Linguistics, chapter Complex

Corpus Annotation: The Prague Dependency Treebank, pages 54–73. Veda

Bratislava, Slovakia, 2005. ISBN 80-224-0880-8. 1.1

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara,

Maria Antònia Martí, Lluís Màrquez, Adam Meyers, Joakim Nivre, Sebas-

tian Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu, Nianwen Xue, and

Yi Zhang. The CoNLL-2009 shared task: Syntactic and semantic dependencies

in multiple languages. In Proceedings of the 13th Conference on Computational
Natural Language Learning (CoNLL-2009), June 4-5, Boulder, Colorado, USA,

2009. 4

Jan Hajič, Jarmila Panevová, Eva Hajičová, Jarmila Panevová, Petr Sgall, Petr Pa-

jas, Jan Štěpánek, Jiří Havelka, and Marie Mikulová. Prague Dependency Tree-

bank 2.0, 2006. Published by Linguistic Data Consortium, Philadelphia, PA,

USA. 1

24

Milena Hnátková. Značkování frazémů a idiomů v Českém národním korpusu

s pomocí Slovníku české frazeologie a idiomatiky. Slovo a slovesnost, 2002. 2

Jana Kravalová, Magda Ševčíkov á, and Zdeněk Žabokrtský. Czech named entity

corpus 1.0, 2009. 2

Marie Mikulová, Alevtina Bémová, Jan Hajič, Eva Hajičová, Jiří Havelka,

Veronika Kolářová, Lucie Kučová, Markéta Lopatková, Petr Pajas, Jarmila

Panevová, Magda Razímová, Petr Sgall, Jan Štěpánek, Zdeňka Urešová,

Kateřina Veselá, and Zdeněk Žabokrtský. Annotation on the tectogrammati-

cal level in the prague dependency treebank. annotation manual. Technical Re-

port 30, ÚFAL MFF UK, Prague, Czech Rep., 2006. 1.1

Petr Pajas and Jan Štěpánek. A Generic XML-Based Format for Structured Lin-

guistic Annotation and Its Application to Prague DependencyTreebank 2.0.

Technical Report TR-2005-29, ÚFAL MFF UK, Prague, Czech Rep., 2005. 4

Petr Pajas and Jan Štěpánek. Recent advances in a feature-rich framework for

treebank annotation. In Donia Scott and Hans Uszkoreit, editors, The 22nd In-
ternational Conference on Computational Linguistics - Proceedings of the Con-
ference, volume 2, pages 673–680, Manchester, UK, 2008. The Coling 2008

Organizing Committee. ISBN 978-1-905593-45-3. 4

Magda Ševčíková, Zdeněk Žabokrtský, and Oldřich Krůza. Zpracování pojmen-

ovaných entit v českých textech (treatment of named entities in czech texts).

Technical Report TR-2007-36, ÚFAL MFF UK, Prague, Czech Republic, 2007.

2

Petr Sgall, Eva Hajičová, and Jarmila Panevová. The Meaning of the Sen-
tence in Its Semantic and Pragmatic Aspects. Academia/Reidel Publ. Comp.,

Praha/Dordrecht, 1986. 5

Zdeněk Žabokrtský, Jan Ptáček, and Petr Pajas. TectoMT: Highly modular MT sys-

tem with tectogrammatics used as transfer layer. In ACL 2008 WMT: Proceed-
ings of the Third Workshop on Statistical Machine Translation, pages 167–170,

Columbus, OH, USA, 2008. Association for Computational Linguistics. ISBN

978-1-932432-09-1. 2

25

Converting a Dependency Treebank to a Categorial

Grammar Treebank for Italian

Johan Bos

Bologna, Italy

bos@meaningfactory.com

Cristina Bosco

Università Torino

bosco@di.unito.it

Alessandro Mazzei

Università Torino

mazzei@di.unito.it

Abstract
The Turin University Treebank (TUT) is a treebank with dependency-based

annotations of 2,400 Italian sentences. By converting TUT to binary con-

stituency trees, it is possible to produce a treebank of derivations of Combi-

natory Categorial Grammar (CCG), with an algorithm that traverses a tree in

a top-down manner, employing a stack to record argument structure, using

Part of Speech tags to determine the lexical categories. This method reaches

a coverage of 77%, resulting in a CCGbank for Italian comprising 1,837 sen-

tences, with an average length of 22,9 tokens. The CCGbank for English has

proven to be a useful tool for developing efficient wide-coverage parsers for

semantic interpretation, and the Italian CCGbank is expected to be an equally

useful linguistic resource for training statistical parsers.

1 Introduction

Treebanks have played an important role in the development of robust parsers ex-

ploring statistical methods to achieve wide coverage. The key example in this tra-

dition is the Penn Treebank [10], a large collection of English sentences taken from

the Wall Street Journal annotated with syntactic structures. The aim of this article

is to present the first version of an Italian treebank based on categorial grammar,

translated from an existing manually crafted dependency-based treebank [4]. We

focus on the various translation steps required to achieve a high-quality treebank.

Our treebank is based on CCG, combinatory categorial grammar [12], a lexi-

calised grammar formalism encoding all non-local dependencies in its lexical cat-

egories. A further motivation for using CCG is its transparency between syntac-

tic categories and semantic types, providing an ideal platform for automatically

building formal semantic representations [2]. Other treebanks based on categorial

grammar have been developed in the past, of which the English CCGbank [7] de-

rived from the Penn Treebank [10] is the prime example. The English CCGbank

27

has proven to be a useful resource for training robust parsers [6], and we follow its

design as closely as possible.

For automatically deriving Italian categorial grammar, previous work on has

been carried out by [1], who provide a method for translating TUT dependency

structure to derivations of type-logical grammar, but only for a relatively small set

of examples with low structural complexity, producing a lexicon of 1,909 words

based on 400 derivations with an average of two categories per words. Even though

our work is similar in spirit, we also deal with more complex cases extending the

coverage considerably.

2 Background

2.1 The Turin University Treebank (TUT)

The starting point of our conversion in CCG is TUT, the Turin University Tree-

bank1. This Italian treebank currently includes 2,400 sentences corresponding to

around 72,150 tokens. This annotated corpus consists of three parts: 1,100 sen-

tences from newspaper texts (mainly from La Stampa and La Repubblica), 1,100

sentences from the Italian Civil Law Code, and 200 sentences from the Italian sec-

tion of the JRC-Acquis corpus.2

The development of TUT has its roots in a dependency-based annotation fol-

lowing the major principles of Word Grammar [8]. Central to this is a notion of

argument structure described by a rich set of grammatical relations that can include

three components: morpho-syntactic, functional-syntactic, and semantic informa-

tion [3]. The TUT annotation process includes automatic POS tagging and parsing

[9], completed with a set of automatic and manual correctness and consistency

checks.

To promote applications of TUT, several efforts have been directed to automat-

ically converting the treebank into other formats. Among these are bracketed la-

belling known from the Penn Treebank [10], as well as the Xbar-like format called

Constituency TUT (henceforth ConsTUT), which forms an important step in con-

verting TUT to CCG. These mappings to other formats have not only increased

the comparability with other existing linguistic resources, but also improved the

quality of the annotated material. Even though the size of TUT is relatively small

compared to the Penn Treebank, the EVALITA 2009 shared task on parsing showed

that dependency parsers trained on TUT are close to the state-of-the-art [5].

2.2 Combinatory Categorial Grammar (CCG)

CCG is a lexicalised theory of grammar in which all syntactic dependencies are

encoded in the lexical categories [12]. The version of CCG that we adopt is based

on the English CCGbank [7], comprising a set of CCG derivations derived from

1See http://www.di.unito.it/~tutreeb/, [4].
2See http://langtech.jrc.it/JRC-Acquis.html.

28

the Wall Street Journal texts from the Penn Treebank [10]. The basic categories

are s (sentence), n (noun), pp (prepositional phrase), np (noun phrase) and t
(text). Functor categories are composed out of the basic categories with the help of

slashes indicating order and position of arguments: a functor category α\β yields

a category α when it finds an argument of category β on its left, and a functor

category α/β yields a category α when it finds an argument of category β on its

right. We follow the convention introduced in CCGbank and associate the category

s with a feature indicating sentence mood or aspect of verb phrases (Fig. 1).

tutta balcanica
------[lex] ----[lex]

aria (n\n)/(n\n) n\n
--[lex] ------------------[fa]

questa vicenda un’ n n\n
--[lex] --[lex] --[lex] ---------------------------[ba]

In np/n n tira np/n n
-----------[lex] ------------[fa] ---[lex] ------------------------------------[fa]
(s:dcl/s:dcl)/np np s:dcl/np np
------------------------------[fa] --[fa]
s:dcl/s:dcl s:dcl .
--[fa] --[lex]
s:dcl t\s:dcl
--[ba]
t

Figure 1: CCG derivation for In questa vicenda tira un’ aria tutta balcanica.

To combine categories deriving new categories, CCG is equipped with a small

set of combinatory rules and a couple of non-combinatory rules. The combinatory

rules combine two categories and produce a new one. They comprise forward ap-

plication (>), backward application (<), forward and backward composition (>B

and <B), forward and backward substitution (>S and <S), their crossing variants,

and generalised versions of the composition rules. All of these rules have a di-

rect semantic interpretation, and give expressive power that go beyond context free

grammars [12].

The non-combinatory rules consist of the type-raising and type-changing rules.

They are unary rules, mapping a single category into a new one. The type-raising

rules (>T and <T) change an argument in a functor in a systematic way. The

type-changing rules are used for covering elliptical expressions, such as pro-drop,

adjective-like participles, and determinerless noun phrases.

3 Method

We take as input a set of sentences in the TUT dependency format. These are first

mapped onto constituency trees, then transformed into binary trees, and finally

converted into CCG derivations.

3.1 From Dependency Structures to Constituency Trees

ConsTUT is a constituency-based annotation with constituents decorated by TUT

relations. In ConsTUT trees each terminal category X corresponds to a node (i.e.

29

token) of a TUT tree, and projects into non-terminal nodes which represent inter-

mediate (Xbar) and maximal (XP) projections of X, following Xbar theory [11].

Each node is classified as either head (h), argument (a), or modifier (m). To illus-

trate this projection of categories, consider for instance the adverb tutta in Fig. 2.

This adverb projects on ADVbar and then on ADVP, as the ConsTUT tree in Fig. 3

shows.

tira

In un’

questa

.

PREP-RMOD-LOC+METAPH

PREP-ARG

END

VERB-

SUBJ

vicenda

aria

DET+INDEF-ARG

DET+DEF-ARG

tutta

balcanica

ADJC+QUALIF-RMOD

ADVB+QUANTIF-RMOD

Figure 2: TUT A-6, In questa vicenda tira un’ aria tutta balcanica.

Further following Xbar theory, the distinction between arguments and modi-

fiers is structurally marked. Arguments, usually closer to their head, are daughters

of intermediate projections and sisters of terminal categories. Modifiers, on the

other hand, are both sisters and daughters of intermediate projections. Schemati-

cally, this can be viewed as: [XP (Xbar (Xbar (X)(ARG)) (MOD))].

The conversion algorithm from TUT to ConsTUT is adapted from [13], who

employed it for the conversion of dependency structures in Penn Treebank style

phrase structures, i.e., constituents featuring a minimal projection strategy. The

input of our algorithm are ordered dependency trees, that is projective structures

where dependents of the same head are ordered according to their positions in the

sentence. Explicit marking of null elements can occur to resolve cases of non-

projectivity too. The output of the algorithm are constituency trees applying a

maximal projection strategy.

The main information that is present in a constituency tree, but not in a depen-

dency tree, is the type of non-terminal nodes (e.g. NP, VP and S). Therefore, the

major goal of the algorithm is to recover the types of phrases that each node of the

dependency tree projects. In other words, the task here is to find the expansions in

constituency terms of the grammatical category of terminal nodes, which have to

be annotated as non-terminal nodes in the constituency trees. The trees also con-

tain Part of Speech (POS) tags on terminal nodes, using a simplified tagset of that

used in TUT [3].

Grammatical categories can interact in dependency trees. To build a corre-

sponding constituency tree, one needs to know how one can represent this inter-

30

h(S
a(DP-SUBJ*[533])
h(Sbar

h(VP
h(Vbar

m(PP-RMOD-LOC+METAPH
h(PREP 1/In)
a(DP-ARG

h(Dbar
h(ADJ~DE 2/questa)
a(NP-ARG

h(Nbar
h(NOU~CS 3/vicenda))))))

h(Vbar
h(VMA~RE 4/tira)
a(DP-EXTRAPOSEDSUBJ*533

h(Dbar
h(ART~IN 5/un’)
a(NP-ARG

h(Nbar
h(Nbar h(NOU~CS 6/aria))
m(ADJP-RMOD

m(ADVP-RMOD
h(ADVbar h(ADVB 7/tutta)))

h(ADJbar
h(ADJ~QU 8/balcanica)))))))))))

m(PUNCT-END 9/.))

Figure 3: ConsTUT tree for In questa vicenda tira un’ aria tutta balcanica.

action in constituency terms, that is, how grammatical categories and their pro-

jections combine in constituency structure. This is governed by language specific

constraints, depending on the types of modifiers and arguments that a head can take

and their positions related to the head itself. All this information is encoded in a

look-up table that the converter exploits.

3.2 From Constituency Trees to Binary Trees

The lexical categorisation algorithm, which is last in the pipeline, requires binary

trees (trees with at most two branches) as input. The syntactic analyses of Con-

sTUT are represented by n-ary trees, but not necessarily binary trees (see Fig. 3).

Given the distinction between head, modifier and argument, there are four possible

kinds of trees (Fig. 4).

. . . .
/ \ / \ / \ / \

H/ \M M/ \H H/ \A A/ \H
/ \ / \ / \ / \
.

Figure 4: Possible binary sub-trees.

To map a tree with n (n > 2) branches into a tree with n − 1 branches, we

select a HEAD-X or X-HEAD sequence from the ordered list of branches (where X

31

is ARG or MOD), and replace it by a new branch marked by HEAD forming a binary

tree of the two selected branches. This process is iterated for each node until it

is completely binary. The procedure is illustrated for a ternary tree mapped to a

binary tree in Figure 5.

.
. H/ \
/|\ . \
/ | \ => / \ \

H/ |X \ H/ \X \
/ | \ / \ \
.

Figure 5: Producing binary trees.

This is a general rule — there are specific rules that cover awkward cases such

as punctuation. At this stage we also deal with Italian “definite prepositions” such

as sulla, which are contractions of a preposition and a definite article. In Con-

sTUT these appear as two different nodes (PREP and ART-DE) in the tree, related

to each other by co-indexing. These two nodes are mapped onto a newly marked

node (DEFPREP) in order to distinguish it from ordinary prepositions in the cate-

gorisation process.

3.3 From Binary Trees to Categorial Grammar Derivations

The categorisation algorithm takes a binary constituency tree as input and produces

a CCG derivation. The core of the algorithm is based on “pure” categorial gram-

mar, using only forward application (>) and backward application (<) of the set

of combinatory rules. In a nutshell, the algorithm proceeds as follows: it traverses

the binary input tree in a top-down fashion, starting with the root node. The fi-

nal values for the categories for the nodes, however, are generated via a bottom-up

strategy, determined by the POS tags. The algorithm makes use of a stack on which

it pushes the categories of arguments encountered in the binary tree. The elements

of the stack determine the lexical categories of heads.

There are four general rules that deal with the standard cases in Fig. 4, which

can be overridden by more specific rules to cover special linguistic constructions,

such as punctuation or coordination. First consider the two modifier cases, where

the algorithm produces a CCG derivation for the head first. Suppose this yields

category X, then we make the category for the modifier X\X in the HEAD-MOD

case, introducing the backward application rule (<). The MOD-HEAD case forms a

mirror image of this mapping, yielding the category X/X for the modifier by virtue

of the forward application rule (>). Note that, in both cases, nothing is altered to

the value of the stack (S); it is just passed on when translating HEAD (Fig. 6).

In the HEAD-ARG and ARG-HEAD cases, the argument is analysed first. The

resulting category is pushed on the stack (plus its direction: \ or /). Suppose that

the translation of ARG yields the category Y, then the HEAD-ARG case maps to a

32

.
/ \

ccg(H/ \M ,S)
/ \

T1 T2

⇒
ccg(T1,S) ccg(T2,[])
--------- ----------

X X\X
-----------------------<

X

.
/ \

ccg(M/ \H ,S)
/ \

T1 T2

⇒
ccg(T1,[]) ccg(T1,S)
---------- ---------

X/X X
------------------------>

X

Figure 6: The modifier case for translating binary trees to CCG.

forward application rule with X/Y being the category for the head constituent. The

ARG-HEAD case is a mirror image of the HEAD-ARG translation rule. Here we

introduce the backward application rule with X\Y being the category for HEAD,

and the category produced for ARG is pushed onto the stack. This is illustrated by

Fig. 7.

.
/ \

ccg(H/ \A ,S)
/ \

T1 T2

⇒
ccg(T1,push(/Y,S)) ccg(T2,[])
------------------ ----------

X/Y Y
------------------------------>

X

.
/ \

ccg(A/ \H ,S)
/ \

T1 T2

⇒
ccg(T2,[]) ccg(T1,push(\Y,S))
---------- ------------------

Y X\Y
-------------------------------<

X

Figure 7: The argument case for translating binary trees to CCG.

These four general rules are used in traversing the binary tree in a top-down

fashion. Once a leaf node is reached, the lexical categories are determined, which

in turn provide information to determine the values of the non-lexical categories

encountered earlier. The mapping from a leaf node to a lexical CCG category

depends on whether it is playing the role of head, argument, or modifier. A leaf

node of type MOD is either of the form X/X or X\X, where X is already determined

by the head using either the HEAD-MOD or MOD-HEAD rule. In the case of ARG,

the lexical category is determined by the assigned Part of Speech in TUT (see

Table 2). For HEAD we follow the same strategy as for ARG, but we resort to the

stack to determine the number and direction of arguments. The features introduced

on the category s are shown in Table 1.

33

Passive sentences are marked in ConsTUT by empty argument nodes marked

as logical subject of a verb phrase. These are pushed onto the stack as were they or-

dinary arguments. However, when generating a lexical category for a verb phrase,

the feature chosen for s will be pss when a logical subject is a member of the

stack. Coordination is dealt with by giving conjunctors the category (X\X)/X,

where X can be any category.

Finally, a post-processing procedure deals with empty nodes, clitics, normali-

sation of accents, and certain kinds of punctuation. Empty nodes, such as Italian

pro-drop, introduce type-changing rules in the CCG derivation. Verbal clitics are

explicitly marked as arguments combined with an application rule. Opening and

closing parentheses and quotes are given categories (X/p)/X and X\(X/p), respec-

tively, where X can be any category. We also normalize the accents post-processing

step, since TUT allows for distinct ways of encoding Italian accents.

4 Results

Recall that the conversion process from TUT dependencies to CCG derivations

forms a pipeline of three components. These conversion steps are all performed

automatically, and hence prone to errors. Reasons for failure in the conversion are

complex cases of coordination, clitics, verbal structures, or elliptical phrases. In

part these can and will be dealt with in future, revised versions of the treebank, by

adding more specific transformation rules to the algorithm.

In Table 3 we report coverage of the conversion process by the number of well-

formed trees that we obtain as output after each processing step. The civil law

corpus yields the highest coverage, probably because it is a part of TUT containing

many relatively short sentences, with less complex, legal language. This claim is

confirmed by looking at the length of the sentences in the three corpora: the news-

paper corpus has an average length of 24.04 (19,355 tokens on 807 sentences), the

civil law corpus 20.97 (18,766 tokens on 896 sentences), and the JRC-Acquis cor-

Table 1: Features on category s (verb phrases and sentences).

Part of Speech Lexical Category Description
VMA-GE s:ger gerund

VMA-PA s:pap past participle

VMA-PE s:prp present participle

VMA-RE s:dcl present

VMA-IN s:inf infinitive

VMA-IP s:imp imperative

s:adj adjective phrase

s:pss passive

s:ynq yes/no-question

s:whq wh-question

34

Table 2: Mapping from POS tags to lexical categories.

Part of Speech Lexical Category Description
VMA s main verb

VMO s modal verb

VAU s auxiliary verb

ART np article

PRDT np pre-determiner

PRO np pronoun

PRO-PO np, n possessive pronoun

NOU n, np common noun

ADJ s:adj\np, n/n, n\n adjective

PREP pp, X/X, X\X preposition

NUMR n, np numeral

PUNCT-END t punctuation

CONJ X conjunction

pus 29.08 (3,839 tokens on 132 sentences). Hence, it is likely that the JRC-Acquis

corpus produces a high number of mistakes because the sentences are significantly

longer. Moreover, this corpus is only recently been added to TUT, and as a conse-

quence still contains a number of syntactic constructions that are not yet covered

by the dependency to constituency conversion step.

Table 3: Number of trees in the three corpora after each processing step.

Corpus TUT → ConsTUT → Bin → CCG
Newspaper 1,100 → 890 → 827 → 807 (73%)

Civil Law 1,100 → 993 → 909 → 898 (82%)

JRC-Acquis 200 → 147 → 133 → 132 (66%)

The total number of different lexical categories generated for all three corpora

is 1,152, of which 627 occur more than once. For comparison, the English CCG-

bank hosts 1,286 different lexical categories, of which 847 occur at least twice [7].

The ten most frequent categories are shown in Table 4, and the average number of

categories per token is 1.66.

Since one of the aims of the Italian CCGbank is to produce statistical language

models, an important question to ask is whether the size of the treebank is large

enough for this purpose. The size of TUT is relatively small compared to the size

of the Penn Treebank, but it would be helpful to estimate the required size of a

CCGbank as developing annotated tree structures is a costly business. We can’t

completely answer this question, but what we can do, is look at the number of

different categories produced for each corpus to get a rough idea.

We do this in Table 5, where we show the number of different categories, as

well as the number of different POS-category pairs. We also computed these values

35

Table 4: Frequency of the ten most common categories.

Category Newspaper Civil Law JRC-Acquis Total
n 4,477 4,572 904 9,953

np/n 1,807 1,658 345 3,810

(n\n)/n 1,228 1,050 288 2,566

n\n 1,254 932 365 2,551

pp/n 707 945 255 1,907

t\s:dcl 720 593 122 1,435

np 604 645 50 1,299

n/n 706 377 128 1,211

n/pp 279 359 142 780

s:dcl/s:dcl 297 248 52 597

with (+) and without (−) features on these categories. As the table shows, the

numbers differ substantially, clearly caused by the size of the respective corpora.

Next, we investigated the relation between the number of lexical categories and the

size of the treebank. A treebank with a good coverage would show an emerging

plateau in the number of categories by an increase of the number of sentences

considered.

Table 5: Number of POS and categories of the three corpora.

Newspaper Civil Law JRC-Acquis Total
CAT (−) 541 411 188 714

CAT (+) 841 657 291 1,154

POS+CAT (−) 826 640 277 1,121

POS+CAT (+) 1,121 876 362 1,576

As Fig. 8 shows, the growth of categories is clearly decreasing, yet rising. This

is caused in part by the small size of the treebank, but we think it is also due to

the absence of forward and backward (crossed) composition rules in the categori-

sation algorithm implemented so far. Adding such combinatory rules for specific

but common linguistic structures is part of future work, as is abstracting over mod-

ifier and conjunction categories, to gain a further reduction of distinct lexical cate-

gories [7]. The current version of the Italian CCGbank is released under a creative

commons license via http://www.di.unito.it/~tutreeb/CCG-TUT/
in various formats: the derivations printed in human-readable format (as in Fig. 1),

derivations printed as Prolog terms, or as token-POS-category tuples.

Acknowledgements We thank Jason Baldridge, James Curran, Leonardo Lesmo,

Malvina Nissim, and Mark Steedman for their comments on earlier versions of this

paper and their feedback on the Italian CCGbank.

36

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200 1400 1600 1800

N
um

be
r o

f c
at

eg
or

ie
s

Number of sentences

POS+CAT(+)

POS+CAT(-)

CAT(+)

CAT(-)

Figure 8: Growth of lexical categories with respect to number of sentences.

References

[1] R. Bernardi, A. Bolognesi, C. Seidenari, and F. Tamburini. Learning an italian

categorial grammar. In R. Rossini Favretti, editor, Frames, Corpora, and
Knowledge Representation, pages 185–200. 2008.

[2] J. Bos. Wide-Coverage Semantic Analysis with Boxer. In J. Bos and R. Del-

monte, editors, Semantics in Text Processing. STEP 2008 Conference Pro-
ceedings, volume 1 of Research in Computational Semantics, pages 277–286.

College Publications, 2008.

[3] C. Bosco. A grammatical relation system for treebank annotation. PhD thesis,

University of Torino, 2004.

[4] C. Bosco, V. Lombardo, D. Vassallo, and L. Lesmo. Building a Treebank

for Italian: a Data-driven Annotation Schema. In Proc. 2nd Int. Conf. on
Language Resources and Evaluation, pages 99–105, Athens, 2000.

[5] C. Bosco, S. Montemagni, A. Mazzei, V. Lombardo, F. Dell’Orletta, and

A. Lenci. Evalita’09 parsing task: comparing dependency parsers and tree-

banks. In Proceedings of EVALITA 2009, Reggio Emilia, 2009.

[6] S. Clark and J.R. Curran. Parsing the WSJ using CCG and Log-Linear Mod-

els. In Proceedings of the 42nd Annual Meeting of the Association for Com-
putational Linguistics (ACL ’04), Barcelona, Spain, 2004.

[7] J. Hockenmaier. Data and Models for Statistical Parsing with Combinatory
Categorial Grammar. PhD thesis, Univ. of Edinburgh, 2003.

37

[8] R. Hudson. Word Grammar. Blackwell, Oxford and New York, 1984.

[9] L. Lesmo. The rule-based parser of the NLP group of the university of Torino.

Intelligenza Artificiale, IV(2):46–47, 2007.

[10] M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz. Building a Large An-

notated Corpus of English: The Penn Treebank. Computational Linguistics,

19(2):313–330, 1993.

[11] A. Radford. Syntactic theory and the structure of English. A minimalist ap-
proach. Cambridge University Press, 1997.

[12] M. Steedman. The Syntactic Process. The MIT Press, 2001.

[13] F. Xia. Automatic grammar generation from two different perspectives. PhD

thesis, University of Pennsylvania, 2001.

38

Dynamic Propbanking with Deep Linguistic

Grammars

António Branco, Sara Silveira, Sérgio Castro, Mariana Avelãs,
Clara Pinto and Francisco Costa

University of Lisbon
http://nlx.di.fc.ul.pt

Abstract

In the development of annotated corpora with deep linguistic represen-

tations, the category to be assigned to each markable (i.e. the fully fledged

grammatical representation of each sentence) is so complex that it cannot be

safely constructed manually and the annotation cannot be performed without

some supporting application, viz. a computational grammar. This paper dis-

cusses and present solutions for the adaptation of deep linguistic grammars

as supporting tools in the construction of dynamic propbanks. It reports on

the results of an experimental study with a pilot application of this approach

to propbanking. Estimated scores for inter-annotator agreement and for de-

velopment effort are presented.

1 Introduction

Stochastic parsers rely on the availability of annotated corpora both for their train-

ing and their evaluation. Such corpora may encompass linguistic information of

varying level of complexity, ranging from relatively shallow representation of syn-

tactic constituency (e.g. Penn treebank [12]) to deep representation of fully fledged

grammatical analysis that includes advanced semantic representation (e.g. Red-

woods HPSG treebank [14]).

The expected trend is that the corpora supporting grammatical analysis will

be language resources bearing an increasingly sophisticated linguistic information

(Treebanks, PropBanks, LogicalFormBanks, . . .). This is in line with the trend

observed in natural language processing in general, where annotated corpora that

have been developed address issues well beyond the initial part-of-speech level,

including issues from the realm of semantics (e.g. corpora annotated with coref-

erence links [11]) and from the realm of discourse (e.g. corpora annotated with

dialogue acts tags [7]).

To develop corpora that are annotated with deep linguistic representations, the

fully fledged grammatical representation to be assigned to each sentence is so com-

39

plex and so specific that it cannot be reliably crafted manually piece by piece and

the annotation cannot be performed without some supporting application. Such

annotation environment has to integrate at least a computational grammar to con-

struct representations that cannot be done by hand, and a user interface to display

the parses available and to allow the annotator to selected one of them (e.g. the

[incr tsdb()] application [13]).

Propbanks are treebanks whose trees have their constituents labeled with se-

mantic role tags. In other words, propbanks are annotated corpora that result from

the extension of the annotation associated to the sentences in treebanks by means of

an extra set of tags for semantic roles. The seminal work in this area is due to [15]

and the semantic roles adopted for arguments were ARG1, . . . , ARG4, while the

semantic roles used to classify modifiers include tags such as LOC, TMP, MNR,

etc.

The construction of propbanks thus offers a new area for the application of deep

linguistic grammars to the development of language resources. It also presents

specific challenges that need to be addressed.

While word sense disambiguation is a task of semantic categorization for words,

propbanking can be seen as a task of semantic categorization for phrases. At their

core, tasks of semantic categorization involve semantic ambiguity resolution and

deep linguistic grammars are known not to be the most suitable approach to handle

semantic categorization tasks. Moreover, any deep linguistic grammar that might

be used to support (at least the initial stages of) the construction of a propbank

could not rely on stochastic models that would allow it to resolve semantic role

assignment, as the training data needed to obtain these models are the materials

that are being constructed with the help of the grammar.

An immediate move to ponder would be to extend the grammar so that the

different parse trees it produces for a given sentence have their constituents labeled

with the different possible semantic roles. The task of propbanking would then

be similar to the task of treebanking. The human annotator would go through the

parse forest generated and select the appropriate tree, with the appropriate semantic

roles in the appropriate constituents. However, this turns out not to be a practically

viable option as it would induce an exponential explosion of the size of the parse

forest and would severely hurt the efficiency of the grammar.

An alternative to this one-step approach is a two-phase approach. In a first

phase, the grammar is used to get at the correct tree for the sentence at stake. Once

that representation is selected, in a second phase, its phrases are tagged by the

human annotator. This is a scenario that avoids the explosion of the parse forest that

would result from the one-step approach. And very importantly, this is a scenario

that still allows exploring the contribution of the grammar for propbanking to the

maximum extent possible without spurious overgeneration.

The grammar can be used not only to construct the underlying syntactic tree but

also to advance the assignment of semantic roles: if its deep linguistic representa-

tion is “deep” enough to include the predicate-argument structure of the sentence,

the grammar can be used to correctly assign the role labels for its constituents that

40

are arguments, viz. ARG1 to ARGn. By the same token, it can be used to iden-

tify the phrases that are modifiers, and hence to automatically select only those

constituents that still need to be further manually inspected and specified for their

semantic role.

In this paper we report on the adoption of this approach to propbanking and

describe the solutions we developed in order to construct a propbank based on a

deep linguistic grammar. This involved using an existing deep linguistic grammar

and using available tools for the creation of dynamic treebanks, that accommodate

the fact that the grammar may evolve and its output may be altered and refined.1

Accordingly, in this paper we will also describe the solutions developed for the con-

struction of a dynamic propbank that is supported by a grammar that may evolve

and be refined along time.

Section 2 reports on the adaptation of a deep linguistic grammar to the task

of semi-automatic propbanking and of the tool for dynamic treebanking. In Sec-

tion 3, we describe the annotation environment developed to assist in the manual

completion of a dynamic propbank. Section 4 describes a pilot experimental study

of the practical viability of this environment, and Section 5 presents the concluding

remarks.

2 Semantic role tagging by the grammar

The deep linguistic grammar used for semi-automatic propbanking was LXGram

[5, 6, 4, 3]. This grammar is developed under the grammatical framework of

HPSG-Head-Driven Phrase Structure Grammar [16, 17] and uses MRS-Minimal

Recursion Semantics [10] for the representation of meaning. Its implementation is

undertaken with the grammar development environment LKB-Linguistic Knowl-

edge Builder [9] and the LinGO Grammar Matrix version 0.9 [2] was used as the

initial code upon which the grammar is being built.

The evaluation and regression testing of this grammar is done via the applica-

tion [incr tsdb()] [13] that works in tandem with the LKB. Once the sen-

tences are parsed, they are manually disambiguated using this profiling environ-

ment, which can then be used to export into text files several views of the syntactic

and the semantic analyses obtained by the grammar (e.g. parse trees, feature struc-

tures and semantic representations).

As this is an HPSG grammar, there are no explicit categories like Sentence,

Noun Phrase, etc. in the grammatical representation. Instead there are feature

structures that describe and stand for such categories. The LKB environment,

however, has a visualization device for grammatical representations that permits

to display tree views where these categories can be made to appear. There are

specific configuration files for this device where it can be stated what feature struc-

tures should be mapped to what symbols that appear in the nodes of the syntax

1We are using the notion of “dynamic” annotation of corpora (for treebanking, propbanking, etc)

in the sense worked out for the Redwoods Treebank in [14].

41

tree displayed. For instance, a constituent with a HEAD feature of the type verb
and a SUBJ feature with the empty list as its value is categorially a sentence, and

it is possible to configure the visualization device for the corresponding tree node

to appear with the label S. This is the key facility we explored in this grammar

development environment to make semantic role labels appear in the appropriate

constituents in the parse tree.

Some of the semantic role labels that are used in PropBank can be obtained

from features that describe the semantics of the sentence, namely those used to tag

the subject and the complements of predicators, ARG1 to ARGn.

For instance, a verb that is associated to a semantic relation whose first argu-

ment is that verb’s subject will comply with a constraint like the following:

⎡
⎢⎢⎢⎣SYNSEM|LOC

⎡
⎢⎢⎢⎣

CAT|VAL|SUBJ

〈[
LOC|CONT|HOOK|INDEX 1

]〉

CONT|RELS

{[
ARG1 1

]}
⎤
⎥⎥⎥⎦
⎤
⎥⎥⎥⎦

This is the underlying piece of information that can be used to assign semantic

role labels. Although this piece of information is visible in the feature structures

for predicators, it is not visible in the feature structures for the actual phrases that

are to be labeled. For this reason, the grammar was expanded with an extra feature

(ROLE-LABEL) marking the semantic role label of constituents. In this example,

with this sort of verbs, another constraint was added:

⎡
⎢⎢⎢⎢⎢⎢⎣

SYNSEM|LOC

⎡
⎢⎢⎢⎢⎢⎢⎣

CAT|VAL|SUBJ

〈⎡
⎣LOC

[
ROLE-LABEL arg1
CONT|HOOK|INDEX 1

]⎤⎦〉

CONT|RELS

{[
ARG1 1

]}

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

A quite straightforward way to include such semantic role labels in the output

tree is by simply adjusting the mapping from feature structures to node labels in

the visualization device so that the information contained in the semantic represen-

tations is rendered visible in the tree exported.

For the sake of illustration, Figure 1 presents an example of a parse tree ex-

ported. All constituents have a category label. The relevant constituents also have

a tag describing their syntactic function (SJ for subject, DO for direct object, IO for

indirect objects, OBL for oblique complements, PRD for predicative, M for modi-

fier), separated from the category label by a dash. Also separated by a dash, a third

tag describes the semantic role that can be obtained from the semantic representa-

tions derived by the grammar, ARG1,. . . , ARGn for subcategorized arguments, M

for modifiers.

The ARG1,. . . , ARGn tags are similar to the same tags used in PropBank, but

note that PropBank starts at ARG0 whereas we start at ARG1. The M is here a

portmanteau tag that covers all semantic roles that are possible for modifiers. It

corresponds to PropBank tags like LOC, TMP, MNR, etc. As mentioned above,

producing these more specific tags by the grammar is not practically viable. Our

approach to propbanking consists in manually refining the M tag in a second phase,

that is described in the next section.

42

(S (PP-M-M (P (Para))
(S (NP-SJ-ARG1 (D-SP (a))

(N (delegação)))
(VP-C (V (evitar))

(NP-DO-ARG2
(D-SP (um))
(N’ (N (conflito))

(AP-M-M (A (armado))))))))
(S (PP-M-M (P (em))

(NP-C (N (Maio))))
(S (NP-SJ-ARG1 (D-SP (a))

(N (ONU)))
(VP (V’ (V’ (V (enviou))

(ADVP-M-M (ADV (rapidamente))))
(NP-DO-ARG2 (N (tropas))))

(PP-OBL-ARG3
(P (para))
(NP-C (D-SP (a))

(N (fronteira))))))))

Figure 1: Parse tree exported from [incr tsdb()] and decorated with seman-

tic role labels. The sentence translates into “For the delegation to avoid an armed

conflict, in May the UN quickly sent troops to the border”.

3 Completing semantic role tagging

After the propbanking is advanced in a first phase by the grammar, a completion

step follows that consists in the manual specification of the occurrences of the

portmanteau tag M in terms of one of the semantic roles available for modifiers in

the tagset, LOC, TMP, MNR, etc.

Before proceeding with the descritpion of the second phase of the propbank-

ing, it is worth noting that for the two step annotation methodology we are reporting

on, there is nothing essential in the usage of the HPSG framework, the LKB de-

velopment environment or an MRS semantic representation. Any deep linguistic

grammar is suitable to support the first, automatic phase described in the section

above provided it delivers deep enough representations, that include at least the

semantic roles for arguments.

Turning now to the second phase of the propbanking, this manual annotation is

prepared by two tools. A converter from trees into an annotation format compatible

with the annotation interface, and a reverser tool for the symmetric operation.

A third tool is also necessary to support the construction of a dynamic Prop-

bank. The development of this annotated corpus is based on a computational gram-

mar which is itself likely to be under development or refinement and to evolve. It

should thus be expected that a sentence that received a certain analysis under ver-

sion n of the grammar may receive a different tree under the subsequent version

n+1. This change in grammatical analysis is likely to have an impact on the an-

notation produced with the support of the grammar in version n and previously

stored in the Propbank. Therefore, a third tool is necessary to support this dynamic

43

Figure 2: Annotation interface

propbanking.

These tools are described in the next subsections.

3.1 Exporting trees to and from an annotation interface

The annotation interface is based on a basic yet very efficient and powerful enough

technology in view of the manual task it is aimed at supporting. A set of sentences

to be annotated is presented in a spreadsheet file, with each sentence in a different

sheet. The constituents that need to be tagged are displayed in the first column,

each constituent in a separate cell. The semantic role labels that were assigned by

the grammar are displayed in the second column, aligned with the corresponding

constituents. The third column is left blank and its cells in the lines with M in

the second column offer a drop down menu from which it is possible to pick the

semantic role label with which to specify M.

These spreadsheets are created by the converter tool that takes as input an ex-

ported version of the sentences treebanked with [incr tsdb()]. For each suite

of treebanked sentences, a spreadsheet is created with as many sheets as sentences

in that suite. If a given sentence happens not to have received a parse, its sheet

only contains its identification number and that sentence. If in turn the sentence

received a parse in the treebank, its tree is processed and for each node with a syn-

tactic function that ends in -SJ, -DO, -IO, -M, -OBL, or -PRD, a new line in the

sheet is printed.

The sentences that have a parse, i.e. whose propbanking needs to be finalized,

are identified by a designated format for the name of the sheets containing them.

The annotator only needs to look for those sheets with the name in that format,

since only there actual annotation is required to be performed.

As mentioned above, each line has cells automatically filled in, and others to be

filled in by the annotator. Each line includes cells with (A) the syntactic category

and grammatical function, (B) the semantic role assigned by the grammar, (C)

the “level two” of the semantic annotation—the cell to be filled in by the human

annotator—, (D) the constituent being tagged, (E) the annotator’s observations—

44

(S (PP-M-PNC (P (Para))
(S (NP-SJ-ARG1 (D-SP (a))

(N (delegação)))
(VP-C (V (evitar))

(NP-DO-ARG2
(D-SP (um))
(N’ (N (conflito))

(AP-M-PRED (A (armado))))))))
(S (PP-M-TMP (P (em))

(NP-C (N (Maio))))
(S (NP-SJ-ARG1 (D-SP (a))

(N (ONU)))
(VP (V’ (V’ (V (enviou))

(ADVP-M-MNR (ADV (rapidamente))))
(NP-DO-ARG2 (N (tropas))))

(PP-OBL-ARG3
(P (para))
(NP-C (D-SP (a))

(N (fronteira))))))))

Figure 3: Parse tree after manual role labeling. Newly introduced tags are -PNC,

-PRED, -TMP and -MNR.

free text by the annotator––, and finally (F-G) the begin and the end positions of

that phrase in the sentence.

When the propbanking is finalized, the sentences are reverted to the original

tree representation, now extended with the newly assigned tags for the semantic

roles of modifiers.

This operation is ensured by a reverting tool. This tool parses the data in the

sheets of the spreadsheet and, guided by the information in the last column of the

sheets on the initial and final position of the phrase, recombines the information

stored there with the original information about the parse tree of the sentence. The

outcome is a set of restored sentence trees like the one displayed in Figure 1 with

the only difference that now level 2 tag M does not occur in them, as in Figure 3.

Each one of its occurrences in the original tree generated by the grammar was

replaced by the tag with which it was manually specified.

Note that this annotation interface is very flexible and permits to accommodate

tagsets other than the one adopted here, which replicates the tagset of the English

PropBank in [15]. It permits to specify not only the modifiers with sub-semantic

roles LOC, TMP, MNR, etc., but also the arguments with sub-semantic roles like

AGENT, PATIENT, EXPERIENCER, etc. One just needs to add extra drop down

menus with the required range of tags in the third column cells of the lines already

containing the ARG1,..., ARGn tags.

This is thus an annotation interface that can very easily be adapted for arbi-

trarily complex, multi-layer hierarchical tagsets of semantic role labels, including

those that may be extended and get more complex along the development of refined

versions of the propbank.

45

3.2 Supporting the construction of a dynamic propbank

An annotated corpus whose construction is based on a grammar that evolves with

time has a dynamic nature. As the grammar gets extended or refined in each new

version, the composition of the corpus is likely to evolve as well. For instance,

some sentences that got a parse with a previous version n and were annotated with

that parse may have no parse in version n+1; sentences that received a parse with

version n of the grammar may have that parse tree altered in version n+1; and sen-

tences that had no parse with version n may receive a parse in version n+1. As the

grammar evolves, sentences may thus be dropped from the annotated corpus, may

have their annotation changed, or new sentences may enter the annotated corpus.

Of course, many annotated sentences in the treebank will be kept unchanged in the

new versions.

Given the annotation environment adopted for propbanking, in order to mini-

mize the manual effort spent, the two cases that are important to handle in a version

n+1 of the propbank (supported by version n+1 of the grammar) are the case of

the sentences that have their parse trees changed and the case of the new anno-

tated sentences that entered the treebank. For the remaining propbanked sentences,

whose annotation was not altered, they just need to be automatically transfered

from version n to version n+1 of the propbank.

To support this dynamic propbanking, a tool was developed that performs the

required comparisons between the annotated sentences in version n of the prop-

bank and the outcome of version n+1 of the grammar applied over the pool of the

sentence to be propbanked. Moreover, it singles out the sentences that need to re-

ceive the attention of the human annotators and transfers the remaining annotated

sentences from version n to version n+1.

This comparator tool receives as input the spreadsheets Sn, of the previous ver-

sion of the propbank, and the spreadsheets Sn+1, generated on the basis of version

n+1 of the grammar. For each pair of spreadsheets containing the same suite of

sentences, every sentence will be checked.

If a sentence maintains its parse tree from version n to version n+1, its prop-

bank annotation will be maintained and transfered from Sn to Sn+1. Thus, the

annotators do not have to re-annotate these sentences.

If in turn a sentence did not have a parse in version n and received a parse

in version n+1, its sheet is signaled in the spreadsheet by means of a designated

format for its name. Also, if a sentence receives a parse tree in version n+1 that is

different from the parse tree in Sn, its sheet is also signaled. Additionally, for the

sake of documentation, the parse tree and its semantic role labels in Sn are copied

into Sn+1 to a position in the corresponding sheet below the new parse tree whose

propbanking is to be completed by the annotator.

46

4 Propbanking with a deep linguistic grammar

The practical viability of the propbanking environment just described was tested in

a pilot experimental study. In this study, this environment was used to propbank

807 sentences (5,457 tokens overall; longest sentence with 34 words), extracted

from a corpus of newspaper texts with a total of 350 Ktoken and 12 Ksentence [1].

This is an annotated corpus accurately annotated with part-of speech and morpho-

logical information and these annotations were used to help constrain the grammar

search space.

The propbanking was performed under the annotation methodology consist-

ing in a double blind annotation followed by adjudication. The annotation was

produced by two annotators, who hold a degree in the Humanities with formal

training in Linguistics and who have more than one year of experience in corpus

development and treebanking. The adjudication was done by a third element of the

team, who holds a degree in Linguistics and was the main coder of the grammar

used.

The 807 sentences (5,457 tokens) were propbanked in 10 hours by the anno-

tators, without any previous period of adaptation to the task in this study. This

indicates that a rate of at least 80 sentences (550 tokens) propbanked per hour

can be expected, provided these sentences had been previously treebanked in this

overall environment for corpus development. A propbank with a typical size of 1

Mtoken could thus be expected to be produced out of a deep linguistic treebank in

about 2,000 hours, with an estimated 100 person month of effort for a double blind

annotation with adjudication.

This study also allowed getting a first indicative assessment of the level of

reliability of the data produced by the annotators, before adjudication, that can

be expected for a proposition bank produced under this methodology. The inter-

annotator agreement coefficient used was Cohen’s κ coefficient [8], calculated by

the formula

κ =
Ao − Ae

1 − Ae

where Ao is the observed agreement, and Ae is the expected agreement. Ex-

pected agreement is the sum of the expected agreement for every tag, where the

expected agreement for each tag is the probability of the two annotators to as-

sign that tag by chance. The probability of one annotator assigning a given tag by

chance is the proportion of items actually assigned by that annotator with that tag.

The score for the inter-annotator agreement was 0.77 for an observed agree-

ment of 0.83 and an expected agreement of 0.27, calculated over a total number of

334 assigned tags (tokens).

5 Conclusions

Annotated corpora tend to include increasingly sophisticated linguistic informa-

tion. When developing treebanks with deep linguistic representations, the linguis-

47

tic information to be associated with each sentence is so complex that it cannot be

safely done manually and the annotation has to rely on some computational gram-

mar supporting it. In this paper we discussed how to extend the utilization of deep

linguistic grammars as supporting tools also for the annotation of propbanks.

In order to explore the contribution of the grammar for propbanking to the

maximum extent possible without hurting its efficiency, the propbanking environ-

ment studied was based on two phases. In a first phase, the grammar is used to

treebank the sentence. As the grammatical representations produced by the gram-

mar already include predicate-argument structures, this information was explored

to annotate the argument phrases with the semantic role labels ARG1,. . . ,ARGn
for arguments. In a second phase, the parse trees were converted to an interface

format that singled out the modifier phrases, whose propbanking still needs to be

completed by the human annotators.

As the grammar is typically an application that will be extended and refined

over time, the propbanking environment needs to be prepared to support the con-

struction of a dynamic propbank. This is achieved with the help of a comparison

tool that permits drawing the attention of the annotators only for the sentences

newly entered in the treebank.

This propbanking environment was tested in a preliminary experimental study.

In this study, though the annotators and the adjudicator were performing their tasks

for the very first time, without previous substantial training that could be gathered

after continued work, the results of this pilot study were very promising. They

suggest that, provided human annotators have been sufficiently exercised over a

large enough portion of corpus, this environment will support the propbanking of

over 80 sentences per hour and permits to expect a reliable level of inter-annotator

agreement, that will rise over 0.77 in terms of the κ coefficent. A corpus with

a large size of 1 Mtoken could thus be expected to be produced out of a deep

linguistic treebank with less than 100 person month of annotation effort with a

double blind annotation methodology.

References

[1] Florbela Barreto, António Branco, Eduardo Ferreira, Amália Mendes,

Maria Fernanda Nascimento, Filipe Nunes, and João Silva. Open resources

and tools for the shallow processing of portuguese: the TagShare project. In

Proceedings of the 5th International Conference on Language Resources and
Evaluation (LREC 2006), 2006.

[2] Emily M. Bender, Dan Flickinger, and Stephan Oepen. The Grammar Matrix:

An open-source starter-kit for the development of cross-linguistically consis-

tent broad-coverage precision grammars. In John Carroll, Nelleke Oostdijk,

and Richard Sutcliffe, editors, Procedings of the Workshop on Grammar En-
gineering and Evaluation at the 19th International Conference on Computa-
tional Linguistics, pages 8–14, Taipei, Taiwan, 2002.

48

[3] António Branco and Francisco Costa. Accommodating language variation

in deep processing. In Tracy Holloway King and Emily M. Bender, edi-

tors, Proceedings of the Grammar Engineering Across Frameworks Work-
shop (GEAF07), pages 67–86, Stanford, 2007. CSLI Publications.

[4] António Branco and Francisco Costa. Self- or pre-tuning? deep linguistic

processing of language variants. In ACL 2007 Workshop on Deep Linguistic
Processing, pages 57–64, Prague, Czech Republic, June 2007. Association

for Computational Linguistics.

[5] António Branco and Francisco Costa. A computational grammar for deep

linguistic processing of portuguese: LXGram. In Technical Reports Series.

University of Lisbon, Department of Informatics, 2008.

[6] António Branco and Francisco Costa. LXGram in the shared task ”compar-

ing semantic representations” of STEP2008. In Johan Bos and Rodolfo Del-

monte, editors, Semantics in Text Processing, pages 299–314, London, 2008.

College Publications.

[7] Jean Carletta, Amy Isard, Stephen Isard, Jacqueline C. Kowtko, Gwyneth

Doherty-Sneddon, and Anne H. Anderson. The reliability of a dialogue struc-

ture coding scheme. Computational Linguistics, 23(1):13–32, 1997.

[8] Jacob Cohen. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20(1):37–46, 1960.

[9] Ann Copestake. Implementing Typed Feature Structure Grammars. CSLI

Publications, Stanford, 2002.

[10] Ann Copestake, Dan Flickinger, Ivan A. Sag, and Carl Pollard. Minimal

Recursion Semantics: An introduction. Journal of Research on Language
and Computation, 3(2–3):281–332, 2005.

[11] Lynette Hirschman, Patricia Robinson, John Burger, and Marc Vilain. Au-

tomating coreference: The role of annotated training data. In Proceedings of
AAAI Spring Symposium on Applying Machine Learning to Discourse Pro-
cessing, 1997.

[12] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-

ing a large annotated corpus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330, 1993.

[13] Stephan Oepen and John Carroll. Parser engineering and performance pro-

filing. Natural Language Engineering, 6(1):81–98, 2000. (Special Issue on

Efficient Processing with HPSG).

49

[14] Stephan Oepen, Kristina Toutanova, Stuart Shieber, Christopher Manning,

Dan Flickinger, and Thorsten Brants. The LinGO Redwoods treebank: Moti-

vation and preliminary applications. In Proceedings of the 19th International
Conference on Computational Linguistics (COLING 2002), pages 1253–7,

Taipei, Taiwan, 2002.

[15] Martha Palmer, Dan Gildea, and Paul Kingsbury. The proposition bank:

A corpus annotated with semantic roles. Computational Linguistics, 31(1),

2005.

[16] Carl Pollard and Ivan Sag. Information-Based Syntax and Semantics, Vol. 1.

CSLI Publications, Stanford, 1987.

[17] Carl Pollard and Ivan Sag. Head-Driven Phrase Structure Grammar. Chicago

University Press and CSLI Publications, Stanford, 1994.

50

Annotation of Selected Non-dependency
Relations in a Dependency Treebank

Kristýna �ermáková, Lucie Mladová, Eva Fu�íková, Kate�ina Veselá

Charles University in Prague
Institute of Formal and Applied Linguistics

E-mail: {cermakova, mladova, fucikova, vesela}@ufal.mff.cuni.cz

Abstract
The following paper has two aims. First, it introduces a procedure of
a manual annotation of selected linguistic phenomena across a large-scale
dependency treebank of English. The method was designed to provide
higher consistency of annotated data, and so higher credibility of the
treebank. Second, the first expert task completed by means of this method is
being described – the annotation of rhematizers and discourse connectives
and their modifiers, i.e. annotation of some non-dependency relations in
a dependency approach.

1 Motivation
Disagreements between annotators’ judgments in corpora annotation are
a disturbing factor in the machine training. Nevertheless, they represent an
important indicator of functionality of the used approach; they localize
theory deficiencies, and are also useful for finding interesting language
phenomena.

Prior to the first release of the Prague English Dependency Treebank
(PEDT) [2], a set of control scripts was established to increase consistency of
the annotated data. Since the PEDT adopted its annotation scheme and
guidelines from its Czech “mother treebank” – the Prague Dependency
Treebank (PDT) [7], we expected some of the repeated disagreements to be
caused by different treatment of language-specific phenomena in the two
corpora, and therefore to be solved by adding new, language-specific
annotation rules. Hence, the most frequent disagreements in PEDT were
identified, analyzed, and rectified through additional manual annotation. The
control scripts revealed that the divergences had been partly a matter of
capturing conventions; partly they were difficult linguistic issues that
required deeper linguistic knowledge. The former was handled by
introducing automatic changes [8], and the latter was solved by the
development of a new annotation method, the so called expert annotation. In
this paper, we offer the description and evaluation of this specific manual
annotation procedure.

51

2 Prague English Dependency Treebank
The Prague English Dependency Treebank (PEDT) represents the English-
language part of the Prague Czech-English Dependency Treebank (PCEDT,
[1]). PCEDT is a parallel corpus developed by Czech linguists primarily for
the purpose of experiments in machine translation with a special emphasis on
dependency-based (structural) translation. PCEDT and therefore also PEDT
are based on the long-standing Praguian linguistic tradition and the
Functional Generative Description of language (FGD) [6], adapted for the
current computational linguistics research needs. The first publicly released
version PEDT 1.0 [2] comprises annotation of approximately 25% of all
approximately 49 000 sentences from Penn Treebank III – the Wall Street
Journal section.

Wall Street Journal texts in PEDT are manually annotated on the
tectogrammatical layer which represents underlying syntactic structure and
captures semantic relations. The tectogrammatical layer annotation
comprises dependency structure in the form of a dependency tree, including
semantic labeling (the so called functors), valency annotation, and some
coreference relations. Currently, routine annotation proceeds (approximately
50% of the data have already been annotated), and annotation principles are
refined. The goal of the project is to annotate the entire PTB III – WSJ.
Simultaneously with the annotation of English data, Czech translations are
annotated giving rise to the parallel PCEDT.

3 Annotation of Specific Phenomena
The standard manual annotation of the tectogrammatical layer in PEDT
proceeds since late 2006 on the dependency-converted tree structures. The
division of the data into the original WSJ sections is preserved, with each
annotator receiving one section at a time to be examined tree by tree. The
inter-annotator agreement is measured regularly on a subset of
simultaneously annotated data. For the two main attributes in the treebank,
i.e. structure and functor, the agreement ranges from to 81 to 91% (functor)
and 90 to 96% (structure) with a slight rising tendency.

A specific procedure was proposed to solve especially problematic
syntactic issues, such as the treatment of some of the non-dependency edges
described further in Section 4 of this paper. First, the nature of the problem
was identified; second, the PEDT was scanned and sentences with the
occurrence of the problematic phenomenon (problematic lexemes, phrases or
functors) were selected and located into filelists. Particular questionable parts
(nodes of the trees) within the filelists were highlighted in the annotation tool
(see Figure 1) [4], and finally, “expert” annotators trained for the given
linguistic task examined the filelists across all corpus sections. Where
possible, correct analysis was pre-annotated automatically, for instance the
correct lemmatization of typically unambiguous multiword expressions such
as as a result, for example or in other words.

52

Figure 1: A highlighted node for the expert annotation in the tree editor TrEd

4 Non-dependency Relations in PEDT
Based on the tradition of FGD, PEDT is a dependency corpus. However, it is
able to convey various non-dependency relations by means of non-
dependency edges which are established to represent primarily parataxis and
some other specific relations. In our specific phenomena annotation, we
focused on the problematic non-dependency edges that are used to capture
proposition modifiers (expressions with a lesser degree of integration into the
syntactic structure, such as modal and attitude markers, focusing and additive
expressions, etc.). In PEDT, these are roughly reflected by nodes with the
semantic role of:

- expressions referring to preceding contexts (PREC),
- rhematizers (RHEM),
- conjunction modifiers (CM),
- and marginally attitude (ATT).

Nodes with the functor (semantic label) PREC function as discourse
connectives. Basic forms of these linking expressions are adverbials
(consequently), particles (yet), some prepositional phrases (in addition), and
paratactic connectives (therefore). From the point of view of traditional
English grammars [5], they are partly homonymous with verbal
complements, most often with temporal and spatial ones. If they assist in
connecting paratactically conjoined elements, they are usually assigned the
functor for conjunction modifiers (CM).

The nodes with the functor RHEM function as rhematizers, i.e.
expressions whose function is to signal the topic-focus articulation categories
in a sentence, namely the communicatively most important categories – the

53

focus and contrastive topic [3], and their scope is indicated by a non-
dependency edge. Rhematizers, e.g. even, just, solely, exactly, precisely,
only, alone, merely, simply, especially, particularly, in particular resemble
adverbials but they differ from them by their ability to modify not only a
verb and adjective but also a syntactic noun. Additive expressions such as
too, also, again, equally, similarly, likewise, as well, in addition rank
sometimes among rhematizers although their function is primarily
connective.

The first specific phenomena annotation completed throughout the PEDT
is the annotation of the described semantic groups, mainly PREC and
RHEM.

5 Rhematizers and Discourse Connectives in
PEDT

In this section, we describe some of the repeatedly occurring problems
concerning non-dependency edges from the linguistic point of view. Within
the group examined, there is a huge functional homonymy among various
uses of the same lexical unit. Sometimes, only a larger context and its
analysis from the point of view of topic-focus articulation and/or discourse
structure are needed to interpret the function of a particle or adverbial
correctly. However, in certain cases, even with substantial background
knowledge, an unambiguous solution is not to be found. For our annotation it
was crucial to distinguish between the cases in which the given expression
had its original adverbial meaning (i.e. there was a proper dependency
relation), and the cases in which it functioned otherwise (i.e. as a node with a
non-dependency edge).

5.1 Rhematizers and Extent Adjuncts
One of the most disputed problems is the homonymy of expressions with the
semantic component of extent in their meaning. If they express the extent or
degree, they are interpreted as extent adjuncts, e.g. (1a). But, if the
interpretation allows also the “primarily” meaning, as possibly in (1b), it can
be treated both as a syntactic member with the semantic role of extent or as
a focalizing element.

 (1a) He has cancelled numerous campaign appointments and was largely
inaccessible to the media until the stock story broke.

(1b) The enormous inflation over the past 30 years was largely due to
monetary policy.

Another problematic group is represented by “typical” rhematizers, e.g. (2a).
However, it should be noted that if such “typical” rhematizers modify
a numeral or another quantitative expression, e.g. (2b) they act precisely like
regular extent modifiers without a rhematizing function, cf. (2c):

(2a) We invited only friends.
(2b) We invited only five friends.

54

(2c) We invited exactly five friends.

In (1b) and (2b), both interpretations are correct depending on the point of
view of the analysis. Yet, for the purpose of semantic labeling in PEDT,
a uniform rule for such cases had to be established. Therefore, (1b) was
treated as a rhematizer and (2b) as an adjunct of extent.

5.2 Rhematizers and Discourse Connectives
Rhematizers relate to a smaller or larger part of a clause, i.e. they can have
a narrower or wider scope. Rhematizers with a narrow scope are easy to
recognize, the only problematic usage of rhematizers in English is their
position right before the verb, e.g. (3a), and (3b). With regard to the
preceding context, annotators are able to distinguish between a narrow scope,
e.g. (3a) and a wide scope of the rhematizer, e.g. (3b). Hence, only a larger
context can help determine the scope of the rhematizer, and recognize
whether the rhematizer relates to elements that precede and/or follow in the
surface word order.

Further, if the rhematizer has an additive meaning and stands before the
verb as in (3b), it can coincide with the function of a discourse connective.
Discourse connectives, unlike rhematizers, relate always to two arguments,
they connect two text spans. When a sentence-initial also is separated by
a comma, it is treated always as a discourse connective (3c). The difference
between (3b) and (3c) is considered formal, not semantic. Therefore, also in
(3b) can be treated both as a rhematizer (RHEM) and a discourse connective
(PREC) with equal validity. The type of sentences as in (3b) caused major
problems in the expert annotation, also because of its high frequency in the
treebank texts.

(3a) Crude oil for November delivery edged up by 16 cents a barrel to
$ 20.75 a barrel. Heating oil prices also rose.

(3b) The complex restructuring transforms London-based WCRS from
primarily a creator of advertising into one of Europe’s largest buyers of
advertising time and space. It also creates a newly merged world-wide
ad agency controlled by Eurocom.

(3c) The company said a drop in activity in the powerboat industry reduced
sales volume at its two marine-related operations. Also, the company
said its commercial products operation failed to meet forecasts.

6 Inter-annotator Agreement
Three annotators who also have long-term experience with standard
annotation of PEDT were trained for the specific task, and they annotated
approx. 3000 problematic structures each. 515 structures were annotated by
all three of them as a set of data for IAA measurement. The measurement
itself is derived from the basic IAA measurement script for standard
annotations [8], and it proceeds roughly as follows: Within the set of nodes
either highlighted or touched by any of the three trained annotators,
agreement regarding four attributes was computed between each pair of

55

annotators. The attributes are the following: structure (parent node),
functor, tectogrammatical lemma of the node, and a/aux.rf, i.e. links to the
lower layer of surface syntax. The results are summed up in the Table 1.

Attribute/
Annotator pair Structure Functor T-lemma A/aux.rf

A x B 91.2% 91.1% 98.9% 96.2%
B x C 90.6% 89.6% 98.9% 92.7%
C x A 92.1% 89.3% 99.1% 93.6%

Table 1: IAA Measurement for specific phenomena annotation in the PEDT

In terms of expert annotation as such, the results can be considered
satisfactory. They show that the method applied supported a unified
approach to the phenomenon of focusing and additive expressions. The
results are slightly higher for the same two annotator pairs compared to their
recent results in standard, much more complex annotation. They also prove
that the most difficult task for annotators (both in standard and specific
phenomena annotation) is the agreement in functor. To sum up, before the
implementation of the expert annotation, the most frequent instances of inter-
annotator disagreement were caused by the lack of precise guidelines which
allowed more interpretations. In the expert annotation, such disagreements
occur extremely rarely.

7 Conclusion and Future Work
Our specific annotation proved to be an effective solution of the annotation
of complicated phenomena. It eliminates mistakes, and simultaneously does
not inhibit the standard annotation from proceeding. We were able to refine
more than 9000 sentences, which is approx. 19% of the treebank. As we
expected, the problematic issues examined such as the distinction between
the rhematizing, discourse linking and simply adverbial function of
homonyms or defining the scope of a rhematizer are too complex to be
currently successfully resolved merely by automatic annotation.

The new annotation method demonstrated a significant difference
between English and Czech not only in terms of standard word order
principles (as is generally known) but also in terms of rhematizer positioning
principles. On the one hand, English word order is largely determined by
grammatical principles and as such it displays less flexibility than Czech
word order. On the other hand, rhematizer positioning in English is far more
flexible than it is in Czech. The data concerned in the specialized annotation
show that English (unlike Czech) is able to place rhematizing expressions on
the border between the topic and focus notwithstanding their distance (in the
linear surface word order) from the focus proper, i.e. the informationally
most weighted element. Anyway, it was not the surface position but the
scope of pre-verbal rhematizers that was most problematic issue even for
trained annotators.

56

Based on the positive results of the fist specific phenomena annotation,
another run is in preparation which will focus on the annotation of
complicated comparative structures.

8 Acknowledgements
The research this paper is based upon was supported by the following grants:
GAUK 103609, GA201/09/H057, GA405/09/0729, MŠMT �R LC536, and
EU – Companions.

References
[1] �mejrek, Martin, Jan Cu�ín, Ji�í Havelka, Jan Haji�, and Vladislav

Kubo�. 2005. Prague Czech-English Dependency Treebank. In EAMT
2005 Conference Proceedings, p. 73–78.

[2] Haji�, Jan et al. 2009. Prague English Dependency Treebank 1.0,
Software or data, Institute of Formal and Applied Linguistics, Charles
University in Prague.

[3] Haji�ová, Eva, Barbara Partee Hall, and Petr Sgall. 1998. Topic-focus
articulation, tripartite structures, and semantic content. Boston: Kluwer
Academic Publishers.

[4] Pajas Petr, Št�pánek Jan. 2008. Recent Advances in a Feature-Rich
Framework for Treebank Annotation. In The 22nd International
Conference on Computational Linguistics – Proceedings of the
Conference, Manchester, p. 673–680.

[5] Quirk, Randolph, Sidney Greenbaum, Geoffrey Leech, Jan Svartvik.
2004. A Comprehensive Grammar of the English Language. London:
Longman.

[6] Sgall, Petr, Eva Haji�ová, and Jarmila Panevová. 1986. The Meaning of
the Sentence in Its Semantic and Pragmatic Aspects. Prague: Academia.

[7] Šindlerová, Jana, Lucie Mladová, Josef Toman, Silvie Cinková. 2007. An
Application of the PDT-Scheme to a Parallel Treebank. In: NEALT
Proceedings Series, Vol. 1, Proceedings of the 6th International
Workshop on Treebanks and Linguistic Theories, Bergen, Norway, p.
163-174.

[8] Toman, Josef. 2009. Automatická anotace angli�tiny na tektogramatické
rovin� (Automatic Annotation of English on the Tectogrammatical
Layer). Master’s thesis. Charles University in Prague.

57

Dependency Annotation for Learner Corpora

Markus Dickinson

Indiana University
Bloomington, IN 47405

E-mail: md7@indiana.edu

Marwa Ragheb

Indiana University
Bloomington, IN 47405

E-mail: mragheb@indiana.edu

Abstract

Building from the CHILDES dependency annotation scheme and on inter-

language POS annotation, we describe a syntactic annotation scheme devel-

oped for the data of second language learners. We encode subcategorization

frames and underlying dependencies, in addition to the usual surface depen-

dencies. The annotation scheme is relatively independent of language and

can be mapped to learner errors.

1 Introduction and Motivation

A prominent area of research in the collection of corpora containing the language

of second language learners has been in annotating so-called errors (see, e.g.,

Granger, 2003). This helps further studies in computer-assisted error analysis and

develop technology for detecting learner errors, but does not address more general

properties of learner language, such as fluency and complexity (e.g., Pendar and

Chapelle, 2008), stage of acquisition (e.g., Pienemman, 1998), or even basic fea-

tures such as tense and aspect (e.g., Wulff et al., 2009). There is thus a need for

annotated data which more generally supports second language acquisition (SLA)

research.

What needs to be described is interlanguage, the in-progress language of learn-

ers which is a linguistic system in its own right, without focusing on errors. Díaz-

Negrillo et al. (2009) annotate interlanguage part-of-speech (POS) properties, but,

as far as we know, no one has syntactically annotated interlanguage. This is despite

the fact that there is much work on automatically detecting learner syntactic errors

(see, e.g., Vandeventer Faltin, 2003).

59

At the same time, any such annotation effort would ideally also be useful to

the computational linguistics community. To accurately parse learner data, it is

desirable to have a collection of sentences with proper annotation for evaluation. To

that end, we describe work in developing an annotation scheme to encode syntactic

relations in learner language.

2 Background

2.1 POS annotation of learner data

Díaz-Negrillo et al. (2009) address the notion of part-of-speech (POS) annotation

for interlanguage, distinguishing three types of evidence needed to capture it: 1)

stem/lexicon lookup, 2) morphological cues, and 3) word distribution. Because

a learner does not always use a word in a native way, these pieces of evidence

can conflict, and thus a POS annotation scheme which conflates all three, such as

one developed for native language, cannot properly annotate learner language. For

instance, in (1) (=(15) in Díaz-Negrillo et al. (2009)), there is a mismatch in the

word’s morphology (past tense) and its distribution (past participle).

(1) it has grew up a lot specially after 1996

While this serves as an excellent starting point, only POS annotation is ex-

plored, and this is done by examining an error-annotated corpus and seeing what

POS information is necessary to account for the different error types. We start in

the opposite direction, assuming no error annotation, and we develop a syntactic

dependency annotation scheme for learner language.

2.2 Parsing of learner data

Although learner corpora have not generally been annotated with syntax, there is

much work on syntactically parsing learner data (e.g., Vandeventer Faltin, 2003), to

detect and diagnose ill-formed structures, such as non-agreement between a subject

and a verb. For example, Menzel and Schröder (1999) use weighted constraints

to derive dependency structures for learner language, and constraints which are

violated are used to recover error information about the sentence. The sentence

is robustly parsed, so the resulting dependency structure in some sense captures

interlanguage.

However, it is not clear what exactly the surface syntax is encoding, as the

parse is based on a model of native language. Further, it is unlikely that surface

dependencies (or constituencies) capture the full set of syntactic facts employed by

a learner. We return to these issues in section 4.1 after outlining general properties

of our annotation scheme, including POS.

60

3 Annotation Scheme

For our pilot annotation, we use a collection of essays, from learners of different

levels, from the early 1990s. The learners watched a short cartoon (Tin Toy) and

were asked to discuss what happened. Examining this data has revealed several

major theoretical issues for annotating second language data, which we outline in

this paper.

3.1 General principles

In developing an annotation scheme, we followed several general guiding princi-

ples. The first principle is to annotate the language as is, i.e., annotate only what is

there. We want to make as few claims as possible about what the intended meaning

of the learner is, aiming only at an adequate description of the learners’ interlan-

guage, from which researchers can draw their own conclusions. Thus, we do not

posit empty elements or corrected forms, and errors do not exist directly in the

corpus (though, see section 5). Further, since we build from previous annotation

schemes, if a particular tag requires us to infer properties about the learner which

we cannot possibly know, we prefer to adjust the annotation scheme.

Secondly, we try to give the learner the benefit of the doubt. For example, in

(2), it is not entirely clear how the learner is trying to use fraid. We mark it as

being a predicate, with toy as its subject, and do not attempt to posit any particular

non-native properties, such as marking (a)fraid as a verb.1

(2) The toy fraid.

Since we stay as close to the original text as possible, we do not resegment

run-on sentences. However, since these sentences have multiple syntactic roots

(see section 4.2), they can easily be divided into smaller units.

3.2 Basic annotation

To make the corpus maximally useful for searching, we include lemma information

for each word. This normalizes a word across all its realizations, including spelling

mistakes. As we will see, it also allows us to capture properties akin to the stem

information in Díaz-Negrillo et al. (2009).

We then annotate the corpus using the SUSANNE tagset (Sampson, 1995), as

it distinguishes properties potentially of interest for SLA research, e.g., transitive

and intransitive verbs, countable and uncountable nouns, and definite and indefinite

articles. We have split the POS annotation into two parts, however. Namely, we

have one POS tag to refer to the linguistic form of a word, which generally refers

to its morphological features, and another POS tag to refer to the syntactic use of

a word. This is essentially the same as the distinction between morphological and

1We still capture the fact that the text is non-native by encoding an empty subcategorization list,

as with any other predicative (with or without a copula); see section 4.3.

61

distributional evidence in Díaz-Negrillo et al. (2009). In example (3), for instance,

makes has the morphological form of 3rd person singular present tense (VVZt),

but, in its position following can, its use is as a baseform verb (VV0t).

(3) Tin Toy can makes different music sound.

We leave a tag underspecified if it is not clear how the token is being used, as

we can see for the word sound in (3). The form is clearly singular (NN1c), but the

learner may be using this form as either a singular or plural noun (NN1c or NN2).

Therefore, the use tag is underspecified (NN).

Where we differ from Díaz-Negrillo et al. (2009) is in not encoding a stem
tag. This is potentially problematic, as the discrepancies between the inherent

stem properties and the morphology account for realizations such as choiced in (4)

(=(9) in Díaz-Negrillo et al. (2009)). However, we have recourse to the lemma

information, which is essentially a stem lookup. One possibile solution in this

particular case is to make the lemma choose (instead of choice), with the form and

use tags as participles.

(4) . . . to be choiced for a job . . .

New & redefined tags We have had to make some changes to the tagset to ac-

count for learner language. Firstly, we use compound tags for words which have

been merged. In (5), for instance, we have the POS use tag of AT1+NN1c for

adram, which seems to be a blend of a drum.

(5) The tin toy had adram and a acordion.

Secondly, in the interest of underspecification, we have added some tags. With

verbs, for instance, there are contexts where more than one tense is possible, as in

(6). In this case, we do not know the specific POS use of follow; we only know that

it is tensed.2 The SUSANNE tagset specifies particular tense properties (e.g., D

for past tense); to bypass making this decision, we define an underspecified VVTt,

where T stands for a tensed verb.

(6) The child follow him.

3.3 Annotation format

We annotate the corpus with the standard CoNLL format, as in figure 1, which

allows for dependency relations (Buchholz and Marsi, 2006). Thus far, we have

described columns 1-5 (id, word, lemma, form POS, use POS); the remaining

columns are described in the next section.

2The context of the video can help disambiguate some learner ambiguities, but the annotation

scheme is necessary in cases where it cannot.

62

1 Tin tin NP1x NP1x _ 2 MOD _ _
2 Toy toy NP1x NP1x _ 4 SUBJ _ _
3 can can VMo VMo _ 4 AUX _ _
4 makes make VVZt VV0t <SUBJ, AUX, OBJ> 0 ROOT _ _
5 different different JJ JJ _ 7 MOD _ _
6 music music NN1u JJ _ 7 MOD _ _
7 sound sound NN1c NN _ 4 OBJ _ _
8 . . YF YF _ 4 PUNCT _ _

Figure 1: Example CoNLL format

4 Dependency Relations

4.1 Capturing interlanguage syntax

We mark dependency relations between words, as this annotation captures many

grammatical properties relevant to language acquisition, such as agreement of mor-

phosyntactic features (e.g., Parodi, 2000) and argument structure (e.g., Mellow,

2008). It is also multi-lingual, making the scheme adaptable for use with other

languages and readily available for dependency parsing (see, e.g., Buchholz and

Marsi, 2006). Furthermore, encoding dependencies can be done more quickly than

with constituencies.

Orthogonal to the decision to encode dependency relations, however, we must

ask what types of evidence need to be brought to bear on learner language. What

evidence determines the syntactic usage of a word, especially when that usage may

be non-native? Consider, for instance, the constructed example (7). We know He
in (7a) is the subject because of the morphological case marking of nominative,

and the syntactic distribution indicates that nominals preceding verbs are possible

subjects.

(7) a. He wants to save his life.

b. Him wants to save his life.

We thus want to consider distributional evidence in encoding syntactic prop-

erties. Languages vary in to what degree distribution is determined by word order

and to what degree by morphological markings. For English, we place a greater

emphasis on word order, or positional, information for determining grammatical re-

lations, for a few reasons. First, English case marking is very deficient, found only

on pronouns. Secondly, with a solid POS platform, morphological discrepancies

are largely already accounted for: in (7b), for instance, we have a accusative POS

form with a nominative POS use. Thirdly, as we will see below, when the morphol-

ogy conflicts with the word order, this can be accounted for via other means. The

syntactic distributional evidence we propose to use is essentially what is encoded

by a surface dependency annotation scheme.

63

As a second piece of evidence, we need to consider inherent lexical properties

of a word. Consider the difference between the constructed examples (8a) and

(8b): in both cases, couch is acting as an object of the verb. The difference is in

the subcategorization properties of the two verbs: owns selects for a subject and

object (<SUBJ,OBJ>), while snores only selects for a subject (<SUBJ>). While

words can be ambiguous in their subcategorization frames, there is generally only

one acceptable for a given sentence.

(8) a. He owns a couch.

b. He snores a couch.

Consider now the real learner example in (9). The word dull (assuming its in-

tended form doll) is ambiguous: it could be an object of escape (with a missing

subject), or it could be the subject in the wrong location. By biasing the distribu-

tional evidence towards positional information, we can say that dull is an object,

but it seems like the learner simply misplaced the subject.

(9) . . . escape the dull [doll]

One could underspecify the dependency labels (e.g., Carroll et al., 2003)—

e.g., ARG instead of SUBJ/OBJ—but the issue is really that of putting together

a complete argument structure for this verb. Giving the learner the benefit of the

doubt, they have all the elements to form a well-formed semantic meaning from this

sentence (cf. the doll escaped). There is a notion of what we will call underlying
dependencies to account for. Using the argument structures and semantics of the

words in the sentence as evidence, all the argument slots can reasonably be filled.

This is in line with approaches mapping to underlying functor-argument structures

(e.g., Sgall et al., 2004; Kromann, 2003).

In example (9), for instance, the underlying dependency of dull is as a subject

of escape, even though the surface dependency is an object. A dull (doll) is an

acceptable syntactic and semantic argument of escape, and so this is the relation

we want if the goal is to be able to create a syntactically and semantically well-

formed structure.

Underlying dependencies are useful not only for encoding learner ambiguities,

but also long-distance dependencies. Given the generally-held assumption that

each word has only one head in a dependency graph, surface dependencies cannot

capture every relationship. Consider the constructed example (10a), for instance.

Here, the verb owns is in a relative clause, with its subject immediately on the

left. The verb is transitive, however, with its object left-dislocated, and surface

dependencies do not account for this. This is a crucial piece of information, when

one considers an intransitive verb such as snores, as in (10b), where both verbs

have a long-distance object (couch).

(10) a. The couch that he owns burned.

b. The couch that he snores burned.

64

One final piece of evidence is that of collocations, where one word selects an-

other. In (11), for example, interest collocationally restricts the range of following

prepositions, making the string interest with sound non-native.

(11) The baby had no more interest with the tin toy.

4.2 Encoding distributional (surface) dependencies

With the CoNLL format, it is straightforward to encode surface dependencies:

columns 7 and 8 mark the head of each word and the relationship. The surface

dependency tree for figure 1, for example, is shown in figure 2.3

Figure 2: Example dependency tree

The scheme used to mark these relations is the one used for the CHILDES

database of first language learners (Sagae et al., 2004, 2007). This was chosen

because it was developed for language “in progress,” and it encodes fairly specific

grammatical relations, a total of 37 relations. Furthermore, if needed, the scheme

can be mapped to a scheme which allows for underspecification of grammatical

relations (Carroll et al., 2003).

New & redefined labels Despite the usefulness of the CHILDES annotation

scheme, we have had to make some minor alterations. For example, we have added

a label APPOS, to account for appositions, such as in (12), where and is an APPOS

dependent of things.4

(12) thir are two things besaid the Toy, raings and string of beads.

3We use MaltEval (Nilsson and Nivre, 2008) for displaying trees.
4In coordinate structures, and is the head, a decision we follow for convenience.

65

Secondly, we have clarified the use of X and C before various labels (SUBJ,

COMP, PRED, JCT). According to the documentation,5 C indicates a finite clause

and X a non-finite clause, which usually corresponds to C clauses having a subject

and X not. In our data, however, a subject sometimes accompanies a non-finite

verb or there might be no verb, so neither label technically fits the data we have. In

(13), for example, save is some type of COMP of want, but it is not clear what its

finiteness properties are.

(13) ... he want save his life.

We therefore re-define X and C categories, to focus on the presence or absence

of subjects: C indicates the presence of a subject and X the absence. This is more

straightforward to determine in English learner data than verb tense, and our goal

is to make as few decisions as possible. This definition also seems to be in line

with the intention of the annotation scheme (see the discussion of XCOMP parser

errors in Sagae et al., 2007, sec. 5).6

Underspecifying information A full decision cannot always be made for the

dependency graph. In (14), for example, we find the extraneous word at, and it is

not clear where to put it in the dependency tree. In such cases, we attach the word

to the virtual root and assign it no dependency label.

(14) He begins to walk and at to run.

4.3 Encoding subcategorization

We encode subcategorization frames in slot 6 of the CoNLL files, a spot for “other

syntactic and morphological features.” This is encoded as a list of dependency

relations, e.g., <SUBJ, OBJ>. The only encoded elements are selected arguments

and not adjunct dependents. If a word selects for nothing, we use ‘_’ to indicate an

empty list (<>).

Since cases are ambiguous, we encode the closest possible match. For the
toys, for example, the subcategorization value of toys is <DET>, while in the

bare NP toys, it is _. When a case is not clear, we give the learner the benefit of

the doubt. For instance, in (15) (=(3)), the subcategorization for sound could be

either <DET> or _, depending on if the learner intended to use a singular or plural

noun. We label it _, with the number discrepancy already accounted for with POS

(form=NN1c, use=NN).

(15) Tin Toy can makes different music sound.

5http://www.cs.cmu.edu/~sagae/childesparser/childes-annotation.
pdf

6This is a fairly English-specific decision and would need to be adapted for languages which drop

subjects; similar, consistent solutions can likely be found.

66

4.4 Encoding underlying dependencies

To encode underlying dependencies, we have decided only to encode those re-

lations which are not already encoded at the surface level. Any relation already

encoded as a surface relation is also interpreted as an underlying relation; if a rela-

tion covers the same pair of words as the surface syntax does, then the underlying

relation overwrites the surface one (see (9)).

We encode this information in column 10 of the CoNLL files, using a list of

pairs of head positions and relations. We cannot encode a single-headed depen-

dency tree structure, as with surface relations, since a word may have several heads.

For example, in (16), I serves as the subject of three different verbs, illustrated in

figure 3: the surface subject of hope (7) and the underlying subject of do (9) and

enjoy (12). The effect of this is also that the subcategorization lists for those verbs

can be seen to be saturated.

(16) Now the only thing I hope to do is to enjoy him very well . . .

1 Now now RTo RTo _ 10 JCT _ _
2 the the AT AT _ 4 DET _ _
3 only only JBy JBy _ 4 MOD _ _
4 thing thing NN1c NN1c <DET> 10 SUBJ _ <9,OBJ>
5 that that CST CST _ 7 CPZR _ _
6 I I PPIS1 PPIS1 _ 7 SUBJ _ <(9,SUBJ),(12,
7 hope hope VV0t VV0t <SUBJ, XCOMP> 4 CMOD _ _
8 to to TO TO _ 9 INF _ _
9 do do VD0 VD0 <SUBJ, INF, OBJ> 7 XCOMP _ _
10 is be VBZ VBZ <SUBJ, XPRED> 0 ROOT _ _
11 to to TO TO _ 12 INF _ _
12 enjoy enjoy VV0t VV0t <SUBJ, INF, OBJ> 10 XPRED _ _
13 him he PPHO1m PPHO1m _ 12 OBJ _ _
14 very very RG RG _ 15 JCT _ _
15 well well RR RR _ 12 JCT* _ _

Figure 3: A CoNLL example with underlying dependencies

Encoding all underlying dependencies in a single list preserves the CoNLL

format. However, this can easily be mapped to a more principled representation,

such as DeccaXML (Boyd et al., 2007), to allow multiple heads.

4.5 Encoding collocations

Collocational knowledge is encoded by affixing an asterisk to the relevant depen-

dency relation when words are used non-natively. This allows us simply to mark

awkward collocations without having to develop a robust theory of them. In fig-

ure 3 above, for example, we can see a slightly unnatural-sounding collocation of

enjoy well, marked as a JCT* relation.

67

5 Mapping to errors

Our goal has to been to annotate learner language as it appears, but, to maximize

the utility of the corpus, we want to be able to map our representation to one which

is also useful for developing error detection systems or the study of learner errors

(see, e.g., Ellis, 1994). We thus sketch here how mismatches between annotation

levels point to errors.7

Form tag �= Use tag As mentioned previously, discrepancies between form and

use POS tags can point to non-native usage. In (17), for example, crawl is form-

annotated as VV0i (baseform verb) and, in this context, use-annotated as VVDi

(past tense).

(17) A baby crawl around the room . . .

Surface �= Underlying dependencies With both surface and underlying depen-

dencies, we can identify those positions which conflict. For example, in (18), baby
is marked as the surface object (OBJ) of apparer; the same positions have an un-

derlying dependency of subject (SUBJ), however, pointing to some type of misuse.

The issue here might be with word order or with argument structure; by annotat-

ing the layers separately, we point to the error without having to draw a particular

conclusion about its nature.

(18) Then to apparer a baby.

Subcategorization �= Underlying dependencies Since the subcategorization lists

indicate which arguments are selected for by a word, we can compare the list of

potential arguments against those that are actually realized. We must check against

the underlying dependents, not the surface dependents, because only in the under-

lying dependents do we find long-distance relations. This will capture sentences

with missing, extra, or wrong arguments, as all are mismatches. An example of a

missing argument is given in (19) (=(13)), where the infinitival to is missing. In

this case, the subcategorization value of save is <SUBJ, INF, OBJ>, yet only the

SUBJ and OBJ are realized (he and life, respectively).

(19) ... he want save his life.

To fully detect these errors, we have to know which types of dependents are

arguments and which are adjuncts. For example, a JCT (adjunct) relation is a

legitimate dependent of verbs, but is not selected. This has been clear-cut so far

and can be ensured by splitting any ambiguous categories into separate argument

and adjunct subcategories.

7We use the term error for any non-native usage, but ascribe it no theoretical status.

68

Limitations Currently, there are some aspects of learner language that we do

not deal with, or in only limited ways. Anomalous word orders of adjuncts, for

example, are not treated by our scheme.8 In (20), for instance, the placement of

now is odd. Currently, we mark such cases very cursorily, simply by adding a +
sign on the dependency label (e.g., JCT+).

(20) He can’t see now nothing.

Secondly, we do not handle semantic and pragmatic anomalies. In (21) (=(16)),

for instance, enjoy should have probably been something like entertain. If it results

in an anomalous argument structure, we will catch some of these errors indirectly,

but otherwise we do nothing to mark them.

(21) Now the only thing I hope to do is to enjoy him very well . . .

6 Summary & Outlook

We have introduced a new annotation scheme capturing dependency relations for

learner language. Specifically, we saw the need for encoding subcategorization

frames and what we have termed underlying dependencies, in addition to the usual

surface dependencies. We also needed to make clear exactly what distributional

properties surface dependencies relate to. This scheme allows us to encode learner

language as it appears, but also allows the annotation to be mapped to errors.

The next steps are straightforward, starting with continuing to annotate our

pilot data, refining the annotation scheme as needed, e.g., splitting up argument

and adjunct labels and fleshing out word order issues. This process will be well-

documented, leading to a set of guidelines, and we will also test inter-annotator

agreement. We are now collecting new data which can be released publicly (so

researchers can study, e.g., the most frequent mistakes).

Acknowledgements

We wish to thank Kathleen Bardovi-Harlig, Rex Sprouse, and Detmar Meurers for

useful discussion, as well as three anonymous reviewers and the IU Computational

Linguistics discussion group.

References

Boyd, A., Dickinson, M., and Meurers, D. (2007). On representing dependency

relations – insights from converting the german tigerdb. In Proceedings of TLT
2007, pages 31–42, Bergen, Norway.

Buchholz, S. and Marsi, E. (2006). Conll-x shared task on multilingual dependency

parsing. In Proceedings of CoNLL-X, pages 149–164, New York City.

8For argument word order, see the discussion on surface and underlying dependencies.

69

Carroll, J., Minnen, G., and Briscoe, T. (2003). Parser evaluation: Using a gram-

matical relation annotation scheme. In Abeillé, A., editor, Treebanks: Building
and using syntactically annoted corpora, chapter 17, pages 299–316. Kluwer

Academic Publishers, Dordrecht.

Díaz-Negrillo, A., Meurers, D., Valera, S., and Wunsch, H. (submitted, 2009).

Towards interlanguage POS annotation for effective learner corpora in SLA and

FLT.

Ellis, R. (1994). The Study of Second Language Acquisition. Oxford University

Press, Oxford.

Granger, S. (2003). Error-tagged learner corpora and CALL: A promising synergy.

CALICO Journal, 20(3):465–480.

Kromann, M. T. (2003). The danish dependency treebank and the underlying lin-

guistic theory. In Proceedings of TLT-03.

Mellow, J. D. (2008). The emergence of complex syntax: A longitudinal case study

of the esl development of dependency resolution. Lingua, 118(4):499 – 521.

Menzel, W. and Schröder, I. (1999). Error diagnosis for language learning systems.

ReCALL, pages 20–30.

Nilsson, J. and Nivre, J. (2008). MaltEval: An evaluation and visualization tool for

dependency parsing. In Proceedings of LREC-08, Marrakech.

Parodi, T. (2000). Finiteness and verb placement in second language acquisition.

Second Language Research, 16(4):355 – 381.

Pendar, N. and Chapelle, C. (2008). Investigating the promise of learner corpora:

Methodological issues. CALICO Journal, 25(2):189–206.

Pienemman, M. (1998). Language Processing and Second Language Develop-
ment: Processability theory. John Benjamins.

Sagae, K., Davis, E., Lavie, A., MacWhinney, B., and Wintner, S. (2007). High-

accuracy annotation and parsing of childes transcripts. In Proceedings of the
Workshop on Cognitive Aspects of Computational Language Acquisition, pages

25–32, Prague.

Sagae, K., MacWhinney, B., and Lavie, A. (2004). Adding syntactic annotations

to transcripts of parent-child dialogs. In Proceedings of LREC-04, Lisbon.

Sampson, G. (1995). English for the Computer: The SUSANNE Corpus and Ana-
lytic Scheme. Clarendon Press, Oxford.

Sgall, P., Panevová, J., and Hajičová, E. (2004). Deep syntactic annotation: Tec-

togrammatical representation and beyond. In Proceedings of the HLT-NAACL
2004 Workshop: Frontiers in Corpus Annotation, pages 32–38, Boston.

Vandeventer Faltin, A. (2003). Syntactic error diagnosis in the context of computer
assisted language learning. Thèse de doctorat, Université de Genève, Genève.

Wulff, S., Ellis, N. C., Roemer, U., Bardovi-Harlig, K., and LeBlanc, C. (2009).

The acquisition of tense-aspect: Converging evidence from corpora and telicity

ratings. The Modern Language Journal, 93(3):354–369.

70

Linguistically Motivated Parallel Parsebanks

Helge Dyvik♠, Paul Meurer♥,

Victoria Rosén♠♥, and Koenraad De Smedt♠♥

♠University of Bergen, Sydnesplassen 7, N-5007 Bergen (Norway)
♥Uni Digital, Allégaten 27, N-5007 Bergen (Norway)

{dyvik |paul.meurer |victoria |desmedt}@uib.no

Abstract

Parallel grammars and parallel treebanks can be a useful method for studying

linguistic diversity and commonality. We use this approach to study how ar-

guments to similar predicates are realized across languages. To that end, we

formulate formal principles for aligning at phrase and word levels based on

translational correspondences at predicate-argument level. A first version of

a new tool for creating, storing, visualizing and searching treebank alignment

at different levels has been constructed.

1 Introduction

A central concern within theoretical linguistics is the discovery of unifying patterns

behind language diversity. Our aim is to study linguistic diversity and commonality

through the use of parallel grammars and parallel treebanks. By parallel grammars

we mean grammars for different languages constructed according to common prin-

ciples, as in the ParGram project [3]. When parallel grammar writing is anchored

in a common Lexical-Functional Grammar (LFG) framework with theory-imposed

constraints [1], differences in grammatical analyses across languages are likely to

reflect real differences between languages, rather than accidentally different de-

scriptive strategies among grammarians.

A parallel treebank is a syntactically and possibly semantically analyzed par-

allel corpus, aligned not only on the word and sentence levels, but also on interme-

diate levels. Parallel treebanks, in which translationally corresponding phrases are

linked, are a valuable (and still rare) resource, for example for research on innova-

tive combinations of memory-based and knowledge-based machine translation.

Parallel treebank construction is a recently established and rapidly developing

field, and it already includes experiments in automatic phrase alignment, notably

Samuelsson and Volk [11]. Some problems arise from the fact that the syntactic

structures in the treebanks to be aligned sometimes reflect different principles of

analysis. Whereas Samuelsson and Volk’s method starts from n-gram alignment

71

(i.e. from the identification of translational correspondences between strings of

words) to support phrase alignment, we want to explore the opposite direction:

starting from correspondences between predicate-argument structures in a pair of

sentence-aligned and tentatively word-aligned monolingual treebanks constructed

from the two sides of a parallel (translational) corpus, we derive alignments at

the phrase and word levels. In particular, we want to pursue the following hy-

pothesis: On the basis of monolingual treebanks constructed from a parallel cor-
pus by means of parallel grammars, it will be possible to achieve automatic word
and phrase alignment with significantly higher precision and recall than hitherto
achieved through other means.

In an LFG analysis a given f-structure (functional structure) is typically asso-

ciated with more than one node in the c-structure (constituent structure). A set of

nodes projecting the same f-structure is said to constitute a functional domain. As-

suming an alignment of subsidiary f-structures, we expect that automatic phrase

alignment can be achieved by alignments among the nodes in the functional do-

mains of corresponding f-structures, according to criteria spelled out in 3.2 below.

Further assuming that the c-structures are organized according to common prin-

ciples, the aligned phrasal categories are expected to be typologically informative.

Our aim is to test these assumptions on typologically diverse languages: Norwe-

gian, Dutch, Tigrinya and Georgian. Maximal c-structure diversity is guaranteed

by the fact that these languages are spread out on the configurationality continuum

— the configurational languages Norwegian and Dutch are at one end, and the free

word order language Georgian is at the other [7], with Tigrinya in between [8].

In the current phase of our research, we are testing this approach on test suites

especially constructed to bring out differences among the languages in the map-

ping of arguments to syntactic functions. Below we discuss the principles of our

methodology, we propose formal alignment principles, and we present the first

version of a tool that is unique in that we create, store, visualize and search corre-

spondences between multiple languages at two syntactic levels, c- and f-structure,

through a Web interface.

2 Methodology

An LFG-based parsebanking approach [9] is extended to multiple languages. The

LFG framework is used because it is a substantial theory about the class of possible

human languages, and not just a tool for grammatical description. While the basic

projection formalism for codescription in LFG allows a wide range of c-structures

to be associated with the same f-structure, and vice versa, including pairings that

are implausible linguistically, recent LFG research has proposed strong universal

constraints on the possible relationship between the two kinds of structures, imply-

ing empirical claims about the limits of possible variation among languages.

A central contribution to this research is Bresnan’s development of a theory of

constraints on the relationship between c-structures and f-structures [1]. By basing

72

our grammars on Bresnan’s proposals we intend to extend the notion of parallel

grammars from just considering f-structure, as in ParGram, to encompassing c-

structure as well. A consequence of adopting such common principles is that we

will approach a situation where phrase-structural differences between analyses of

translationally corresponding sentences will reflect genuine differences among the

languages, and not just arbitrarily different principles of analysis among grammar-

ians.

A fundamental task of a grammatical theory is to account for the way in

which form and meaning are linked in natural languages, for example showing

how phrases in a sentence pick out the participants and their roles (agent, patient,

beneficiary etc.) in described situations. Within LFG, the link between syntactic

phrases and participant (or argument) roles is mediated by an inventory of syn-

tactic functions like SUBJ, OBJ, OBJth, OBL, XCOMP, etc.; this can be seen as a

formalized version of well-known concepts from traditional grammar. There are

cross-linguistic constraints on the way in which the arguments of a given predicate

are mapped to syntactic functions in the f-structure, and there is a body of research

that attempts to establish what these constraints are. The developing theory, Lexical

Mapping Theory (LMT) [2, 6], has had to be continually revised as the number of

typologically diverse languages investigated has increased. Tigrinya and Georgian

raise different non-trivial problems for the application of LMT and hence provide a

challenging and fruitful basis for approaching the questions of universal constraints

on argument linking.

A multilingual parallel treebank provides information about the set of syntactic

functions which is crosslinguistically available for a given argument. Our hypoth-

esis is that LMT will allow the derivation of (possibly underspecified) informa-

tion about the semantic role of an argument from such sets of alternative syntactic

functions that can realize it. In a sense, semantic roles would then be labeled by

their sets of alternative syntactic expressions in a way analogous to how alterna-

tive translations express the semantic properties of words in the Semantic Mirrors

approach [5]. If the hypothesis is confirmed, this would be a highly interesting re-

sult both theoretically and practically. Our parallel treebank will provide a unique

opportunity to approach these hypotheses, and similar ones, on a solid empirical

basis.

3 Alignment principles

3.1 The intuitive notions

Parallel corpora are traditionally aligned on the sentence and word levels. On the

sentence level, the default expectation is that all source sentences are aligned to

one or (more rarely) more than one target sentence, and vice versa. Only com-

plete sentence-formed omissions or additions in the translations lead to unaligned

sentences.

On the word level, on the other hand, a source word is ideally aligned to a

73

reached and the word-level alignment is stable and one-to-one.

3.2 Phrase alignment based on parallel LFG analyses

In an LFG analysis, the argument structure properties of a phrase Ph are expressed

in the value of PRED in the f-structure F which Ph ‘projects’ by the mapping func-

tion φ (see [4], ch. 4), in conjunction with other properties of F . The value of PRED

is always a ‘semantic form’. Let L(Pr) be the lexical expression of the predicate

Pr in a semantic form Pr〈ARG1 . . .ARGn〉.1 Furthermore, let P(ARGi) be the pred-

icate in the semantic form of the f-structure to which ARGi is argument-linked,2 let

P(ADJ) be the predicate in the semantic form of an adjunct ADJ,3 and let F−φ be

the set of c-structure nodes projecting the f-structure F .

A source f-structure FS is said to ‘correspond’ to a target f-structure FT if

FS and FT have partially or fully corresponding PRED-values such that PREDS =
PrS〈ARG1S . . .ARGnS〉 and PREDT = PrT 〈ARG1T . . .ARGmT 〉, where

(i) the number of arguments n and m may or may not differ,

(ii) there is LPT-correspondence between L(PrS) and L(PrT),

(iii) for each ARGiS, there is LPT-correspondence between L(P(ARGiS)) and ei-

ther some L(P(ARG jT)) or some L(P(ADJT)) of an ADJT in FT , and, con-

versely,

(iv) for each ARGiT , there is LPT-correspondence between L(P(ARGiT)) and ei-

ther some L(P(ARG jS)) or some L(P(ADJS)) of an ADJS in FS,

(v) the LPT-correspondences can be aligned one-to-one, and

(vi) there is no adjunct ADJ in FS such that L(P(ADJ)) is word-aligned with a

target node projecting an f-structure outside FT , and vice versa for adjuncts

in FT .

This includes the special case when FS and FT have fully corresponding PRED-

values PREDS = PrS〈ARG1S . . .ARGnS〉 and PREDT = PrT 〈ARG1T . . .ARGnT 〉,
where

(i) the PRED-values have the same number of arguments ARG1 . . .ARGn,

(ii) there is LPT-correspondence between L(PrS) and L(PrT),

1Example: In the f-structure for the sentence John sleeps, the semantic form is ‘sleep〈(↑ SUBJ)〉’,
and L(sleep) is the word form sleeps.

2Example: In the semantic form ‘sleep〈(↑ SUBJ)〉’ from the previous footnote, ARG1 is argument-

linked to the SUBJ, whose semantic form is ‘John’, which is hence the value of P(ARG1). The value

of L(P(ARG1)), then, is the word form John.
3Since the PRED-value of an adjunct may be supplied by a preposition, this definition must be

sharpened to pick out the semantic form of the OBJ of the preposition in such cases. Thus, if ADJ is

the f-structure of an adjunct on the table, P(ADJ) would be the semantic form ‘table’.

75

(iii) for every i, 1≤ i≤ n, there is LPT-correspondence between L(P(ARGiS)) and

L(P(ARGiT)),

(iv) the LPT-correspondences can be aligned one-to-one, and

(v) there is no adjunct ADJ in FS such that L(P(ADJ)) is word-aligned with a

target node projecting an f-structure outside FT , and vice versa for adjuncts

in FT .

Unlike this special case, the general case does not ensure meaning equivalence

between the corresponding f-structures, since it allows corresponding arguments to

occur in different orders in the semantic forms. This leaves the degree of semantic

equivalence between translationally corresponding complex expressions to some

extent open as an empirical question, and also exempts grammar writers from the

requirement of achieving completely uniform cross-linguistic criteria for argument

ordering, both of which freedoms we consider desirable.

In cases of null pronominal arguments, L(P(ARGi)) is undefined, since there

is no lexical expression of the argument. In such cases we assume that the require-

ment of LPT-correspondence is satisfied if there is a corresponding argument or

adjunct in the other language (according to the other criteria above) which is either

also a null pronominal argument or has a lexical expression which is not aligned

with anything else.

In cases where a source f-structure corresponds to more than one target f-

structure, or vice versa, the alternatives are ranked according to (i) the closeness

of the correspondence (the special case above being closer than cases involving

adjuncts, for example), and (ii) the occurrence vs. non-occurrence of the corre-

sponding f-structures within corresponding embedding f-structures, where cases

of corresponding embedding structures take priority.

Once corresponding f-structures have been identified according to the criteria

above, all and only the word-alignment links which are in accordance with the f-

structure correspondences are kept. In particular, this limits the alignment of nouns

with pronouns (including null pronominals) to those cases which are motivated by

the surrounding argument structures.

Now phrase alignment can be defined based on the correspondence relation be-

tween source and target f-structures and the concomitant word alignments. The set

of nodes given by F−φ constitutes a functional domain within the c-structure. All

nodes within a functional domain are alignment candidates. However, we clearly

cannot link all nodes in a source functional domain F−φ
S to all nodes in the cor-

responding target functional domain F−φ
T . The reason is that as we move down-

wards in the functional domain along the head path in the c-structure, we may leave

behind sister nodes contributing arguments and adjuncts to the shared f-structure

(e.g. a subject NP as we move from the S mother to the VP daughter). But aligned

nodes should only dominate corresponding material. Furthermore, in cases of long-

distance dependencies there may be such contributing nodes that are not dominated

within the functional domain at all. Hence, for a source node nS, we need to make

76

sure that we only align it with such target nodes nT that dominate corresponding

material (we do not align a source VP which does not dominate the subject NP with

a target S dominating the translation of the source subject, even though the source

VP and the target S project corresponding f-structures).

Given two corresponding f-structures FS and FT , this can be done by the fol-

lowing procedure. For every node nS in F−φ
S and every node nT in F−φ

T , find the

set LL(nS) of linked lexical nodes dominated by nS (i.e., lexical nodes which are

word-aligned with something in the target string), and find the set LL(nT) of linked

lexical nodes dominated by nT . Align nS and nT if and only if LL(nS) and LL(nT)
are non-empty, all the nodes in LL(nS) are aligned with nodes in LL(nT), and vice

versa.

Notice that these definitions leave open the possibility that the source or the

target phrase may contain material, such as further adjuncts (but not further argu-

ments), not corresponding to anything in the target or source, respectively. Given

the frequency of additions and omissions in translations, we need that latitude.

4 The parallel treebanking tool

4.1 Functionality

To help our scientific exercise, we have built initial extensions of the LFG PARSE-

BANKER [10] to support parallel parsebanking. To our knowledge, there is no prior

tool that adequately allows the creation, storage, visualization and search of transla-

tional correspondences at multiple levels of structure in parallel treebanks through

a Web interface. We briefly describe its current functionality.

Since we currently do not have the bilingual resources required for the auto-

matic performance of the initial tentative word alignment between our languages,

the alignment of f-structures and words is presently done manually. The tool allows

us to do this for corresponding sentences by dragging the index of a subsidiary

source f-structure onto the index of the corresponding target f-structure. The align-

ment information is stored in a database as an additional layer. We envision doing

this automatically in the future.

The procedure for the subsequent alignment of c-structure nodes presented in

3.2 is implemented in the tool, taking the manually aligned f-structures, with their

concomitant word-alignments, as input.

4.2 Examples

We will illustrate by means of a few examples. In the screenshots in Figures 1–3

the Norwegian and Georgian subsidiary f-structures4 have been aligned manually

according to the criteria given in 3.2. The f-structure correspondences are shown

in the indices on the substructures: an index of the form n→m tags structure

4The f-structures are shown in ‘PREDs-only mode’, i.e., many grammatical features, irrelevant to

present purposes, have been suppressed.

77

n and indicates that it is aligned with structure m. The automatically derived c-

structure alignments are shown by the curved lines. Nodes which share alignments

are connected by heavy lines, and the alignment is marked only on the top member

of such a set in order not to clutter up the representation unnecessarily. Dotted lines

indicate distinct functional domains.

While Norwegian, like English, expresses the beneficiary either as an oblique

prepositional phrase or an NP in a double object construction, Georgian only offers

the latter possibility. A simple example of an alignment of the two constructions is

provided in 1.

(1) (a) Georg
George

ga
gave

en
a

bok
book

til
to

Katarina.
Catherine

‘George gave a book to Catherine.’

(b) gia-m
George-ERG

ek. a-s
Catherine-DAT

c. ign-i
book-NOM

misca.
he-gave-it-to_her

‘George gave Catherine a book.’

Figure 1: Screenshot of two-level alignment for Example 1

In Figure 1, the Norwegian SUBJ is aligned with the Georgian SUBJ (since

the Norwegian SUBJ is unified with the TOPIC, the latter is also aligned with the

Georgian SUBJ), the Norwegian OBJ is aligned with the Georgian OBJ, and the

Norwegian OBL-BEN is aligned with the Georgian OBJth. As a consequence of

the last-mentioned alignment the c-structure nodes PPtil and PROPP are aligned.

Furthermore, we may notice that the two grammars happen to have the three argu-

ments of give in different orders in the semantic forms, but this does not prevent

alignment according to the criteria in 3.2.

Example 2 shows a case where an adjunct in Norwegian corresponds to an

argument in Georgian.

78

(2) (a) Også
Also

på
on

denne
this

konvolutt-en
envelope-DEF

stod
stood

navn-et
name-DEF

hennes.
her

‘Her name was on this envelope, too.’

(b) am
this-DAT

k. onvert.-sa-c
envelope-DAT-too

mis-i
her-NOM

saxel-i
name-NOM

ec. era.
it-was-written.

‘Her name was on this envelope, too.’

Figure 2: Screenshot of two-level alignment for Example 2

In the Norwegian f-structure in Figure 2, the TOPIC is identical with a mem-

ber of ADJUNCT, and the OBJ of this shared value is aligned with OBJloc in the

Georgian f-structure. As a result, the Norwegian DP under PP and the Georgian

DP under IP are aligned.

A Norwegian-Georgian example involving a long-distance dependency (topi-

calization) in Norwegian, but not in Georgian, is shown in 3.

(3) (a) Georg
George

antar
assume

jeg
I

du
you

mener.
mean.

‘George I assume you mean.’

(b) vpikrob,
I-assume-it,

rom
that

gias
George-DAT

gulisxmob.
you-mean-him

‘I assume you mean George.’

In the Norwegian c-structure in Figure 3, the nodes ROOT, IP, PERIOD, I’, Vfin
(the upper one), S and VPmain belong to the same functional domain, project-

ing the entire f-structure. Still, the nodes I’, S and VPmain do not enter into any

79

Figure 3: Screenshot of two-level alignment for Example 3

alignment because they do not dominate the word Georg, while the latter is word-

aligned with a word dominated by the Georgian nodes ROOT, IP, Ibar (the upper

one) and S, which would have been the alignment candidates.

On the other hand, the Norwegian nodes CPnullc, Ssub2, VPfin and Vfin (the

lower one) are aligned with the Georgian nodes Ibar, I and V (the lower ones). The

latter nodes dominate a verb (gulisxmob, ‘you-mean-him’) expressing the second

person subject by inflection, while no overt pronoun in the sentence corresponds to

the Norwegian second person pronoun du, which is therefore unaligned. Hence the

criteria are satisfied for aligning both the Norwegian phrase du mener and the single

verb mener with the phrase nodes dominating the single Georgian verb gulisxmob;

see 3.2 on the treatment of lexically unexpressed PREDs like ‘pro’.

However, the same Norwegian nodes CPnullc, Ssub2, VPfin and Vfin are not
aligned with the Georgian nodes CPsub and IPfoc, although the latter belong to the

same functional domain as the nodes Ibar, I and V below them. The reason is that

CPsub and IPfoc dominate the name form gias, whose Norwegian word-alignment

partner Georg is not dominated by CPnullc, Ssub2, VPfin or Vfin.

4.3 Search

The LFG Search tool [10] is being extended with a parallel search mode. For

aligned sentence pairs, certain c-structure nodes and f-structure nodes (that is, sub-

sidiary f-structures) will be aligned. To make alignment relations searchable, an

alignment relation has been introduced as shown in Example 4.

(4) #s >>> #t

80

This relation holds if #s is instantiated by a node in the source c- or f-structure,

#t is instantiated by a node in the target c- or f-structure, and those nodes are

aligned.

Thus, the query in Example 5 will match all aligned pairs of analyses in a

Norwegian-Dutch parallel treebank where a source c-structure lexical node jente is

aligned with a target c-structure lexical node meisje.

(5) #s:"jente" >>> #t:"meisje"

An alignment relation can of course be part of a more complex query expres-

sion, as Example 6 illustrates. This query will find examples, like Example 2, where

an argument is aligned with an adjunct, that is, aligned f-structures f1 (instantiat-

ing #f1) and f2, where a subsidiary argument f-structure s1 in f1 is aligned with a

subsidiary adjunct f-structure s2 in f2: 5

(6) #f1 >ARG #s1 & #f2 >(ADJ $) #s2

& #f1 >>> #f2 & #s1 >>> #s2

In a parallel treebank a single sentence in one language may correspond to mul-

tiple sentences in another. This can be handled on the overview Web page where

manual alignment is implemented using drag and drop.

5 Conclusion

In this paper we have introduced the theoretical and methodological starting points

for a linguistically motivated parallel treebanking approach that includes formal

criteria for alignment. Rooting phrase alignment in correspondences at the level of

predicate-argument structure within a parsebanking method which is both empiri-

cally founded and formally constrained offers a new approach to the study of the

syntax-semantics interface across languages.

In the long run, this might open a new route to discovering language universals

in this area, but currently we are only starting to explore this approach on a small

number of typologically diverse languages. We have reported on the construction

of a tool, a first prototype of which is operative and is being tested on test suites.

Our work on alignment needs refinement and testing. We are also extending and

testing the grammars in an integrated parsebanking approach and intend to move

towards parsebanking of naturally occurring texts.

5‘>ARG’ is an abbreviation for ‘>(SUBJ | OBJ | ... | PREDLINK)’, that is, the set of governable

grammatical functions, ‘$’ is the set-membership operator, and the expression ‘#f2 >(ADJ $) #s2’

matches all pairs of f-structures f2, s2 where s2 is a member of the set constituting the value of

ADJUNCT of f2.

81

References

[1] Joan Bresnan. Lexical-Functional Syntax. Blackwell, Malden, MA, 2001.

[2] Joan Bresnan and Lioba Moshi. Object asymmetries in comparative Bantu

syntax. Linguistic Inquiry, 21(2):147–185, 1990.

[3] Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and

Christian Rohrer. The Parallel Grammar project. In Proceedings of COLING-
2002 Workshop on Grammar Engineering and Evaluation, Taipei, Taiwan,

2002.

[4] Mary Dalrymple. Lexical Functional Grammar, volume 34 of Syntax and
Semantics. Academic Press, San Diego, CA, 2001.

[5] Helge Dyvik. Translations as a semantic knowledge source. In Proceedings
of The Second Baltic Conference on Human Language Technologies, pages

27–38, Tallinn, 2005. Institute of Cybernetics at Tallinn University of Tech-

nology, Institute of the Estonian Language.

[6] Anna Kibort. Extending the applicability of Lexical Mapping Theory. In

Miriam Butt and Tracy Holloway King, editors, Proceedings of the LFG ’07
Conference, pages 250–270. CSLI Publications, Stanford, 2007.

[7] Paul Meurer. A computational grammar for Georgian. In Proceedings of the
Seventh International Tbilisi Symposium on Language, Logic and Computa-
tion, Tbilisi, Georgia, 2007.

[8] Nazareth Amlesom Kifle. Differential object marking and topicality in

Tigrinya. In Miriam Butt and Tracy Holloway King, editors, Proceedings
of the LFG ’07 Conference, pages 5–25. CSLI Publications, Stanford, 2007.

[9] Victoria Rosén, Koenraad De Smedt, Helge Dyvik, and Paul Meurer.

TREPIL: Developing methods and tools for multilevel treebank construc-

tion. In Montserrat Civit, Sandra Kübler, and Ma. Antònia Martí, editors,

Proceedings of the Fourth Workshop on Treebanks and Linguistic Theories
(TLT 2005), pages 161–172, 2005.

[10] Victoria Rosén, Paul Meurer, and Koenraad De Smedt. LFG Parsebanker: A

toolkit for building and searching a treebank as a parsed corpus. In Frank

Van Eynde, Anette Frank, Gertjan van Noord, and Koenraad De Smedt, ed-

itors, Proceedings of the Seventh International Workshop on Treebanks and
Linguistic Theories (TLT7), pages 127–133, Utrecht, 2009. LOT.

[11] Yvonne Samuelsson and Martin Volk. Automatic phrase alignment: Using

statistical n-gram alignment for syntactic phrase alignment. In Koenraad

De Smedt, Jan Hajič, and Sandra Kübler, editors, Proceedings of the Sixth
Workshop on Treebanks and Linguistic Theories, pages 139–150, 2007.

82

Clausal Coordinate Ellipsis and its Varieties in Spoken
German: A Study with the TüBa-D/S Treebank

of the VERBMOBIL Corpus

Karin Harbusch Gerard Kempen

University of Koblenz-Landau Max Planck Institute
Computer Science Department for Psycholinguistics

Koblenz, Germany Nijmegen, The Netherlands
harbusch@uni-koblenz.de gerard.kempen@mpi.nl

Abstract

Grammar rules for Clausal Coordinate Ellipsis (CCE) are based
nearly exclusively on linguistic judgments (intuitions). For German,
the extent to which grammar rules based on this type of empirical
evidence generate all and only CCE structures that populate text cor-
pora, has only been explored with the TIGER treebank of written
newspaper text. How well these rules fit spoken German is unknown.
In this paper, we study the applicability of judgment-based CCE rules
to spontaneously spoken German by means of the TüBa-D/S tree-
bank, which is based on dialogues for appointment scheduling and
travel planning from the VERBMOBIL project. The judgment-based
CCE rules are shown to hold nearly equally well for spoken as for
written text: The proportion of deviations from the rules are virtually
identical—less than 3% of the utterances/sentences that include a
clausal coordination (compared to about 1% in the TIGER treebank).
Moreover, the relative frequencies in VERBMOBIL of four main
CCE types distinguished in the literature reveal a pattern that resem-
bles the pattern observed in CGN2.0, the Corpus of Spoken Dutch.

1 Introduction
Coordinating conjunctions often license syntactic constituents to be elided
from one conjunct if they have a (nearly) identical counterpart in another
conjunct. Example (1), taken from the TüBa-D/S treebank, exhibits “for-
ward” elision of viertel vor zwölf könnte combined with “backward” elision
of abholen. The presumed ellipsis sites are indicated by dots. At those sites,

1 TüBa-D/S contains 38,228 sentences with about 380,000 word tokens (Stegmann et al. [16])

collected in the VERBMOBIL project (see Wahlster [21]). Here, a sentence refers to a com-
plete dialogue turn by a speaker and thus often consists of several main clauses. The dialogue
partners schedule appointments and set up traveling plans. In the following, we refer to the
TüBa-D/S as the “VERBMOBIL” treebank in order to avoid confusion with the TüBa-D/Z
treebank (Hinrichs et al. [7]) which is a corpus of German newspaper texts currently compris-
ing about 22,000 sentences taken from the Wissenschafts-CD of “die tageszeitung”—
henceforth called the “TAZ” treebank.

83

the elliptical conjuncts may be said to BORROW overtly mentioned counter-
parts from the parallel conjunct. The example also illustrates a particularity of
spoken language, namely underreduction with respect to backward elision of
Sie ‘you’ from the first conjunct. (Without this Sie, we would analyze the
example as a coordination of NPs rather than as clausal coordination.)
(1) Viertel vor zwölf könnte ich Sie … oder … mein Fahrer Sie abholen

Quarter to twelve could I you or my chauffeur you up-pick
‘Quarter to twelve, I could pick you up or my chauffeur could do so’

Grammar rules for CLAUSAL COORDINATE ELLIPSIS (CCE) are based
nearly exclusively on linguistic judgments (intuitions). In Harbusch & Kem-
pen [3], we investigated how well a set of judgment-based rules aiming to
generate all CCE varieties in German is obeyed in written language. For the
TIGER treebank of newspaper texts (Brants et al. [1]), we reported 99% ac-
curacy. How well spoken language fits these rules is not known. In the fol-
lowing, we present a qualitative and quantitative study of CCE in the
VERBMOBIL (TüBa-D/S) treebank of spoken German dialogues. To antici-
pate one of the main results, the judgment-based CCE rules accord with more
than 97% of the CCE tokens. However, the error types overlap only partly
with CCE errors in written German.

 The paper is organized as follows. In Section 2, we present an overview of
the main types of CCE and spell out the rule set proposed by Kempen [9] and
Harbusch & Kempen [5]. In Section 3, we briefly describe corpus studies on
coordinate structures in German, Dutch and English reported in the literature.
In Section 4, we present our study on CCE in the VERBMOBIL treebank.
Moreover, we compare the German results to English and Dutch findings.
Finally, in Section 5 we draw some conclusions and mention a desideratum
for future work.

2 The Main CCE Types and How to Generate Them

In the linguistic literature on coordinate syntactic structures (for overviews,
see van Oirsow [19]; Steedman [14]; Sag et al. [14]; te Velde [17]; and Kem-
pen [9]), one often distinguishes four main types of coordinate ellipsis: �

• GAPPING, with three special variants called LONG DISTANCE GAPPING
(LDG), SUBGAPPING, and STRIPPING,

• FORWARD CONJUNCTION REDUCTION (FCR),
• BACKWARD CONJUNCTION REDUCTION (BCR; also known as Right Node

Raising or RNR), and
• SUBJECT GAP WITH FINITE/FRONTED VERB (SGF).

2We do not deal here with the elliptical constructions known as VP Ellipsis, VP Anaphora and

Pseudogapping because they involve the generation of pro-forms instead of, or in addition to,
the ellipsis proper. For example, John laughed, and Mary did, too—a case of VP Ellipsis—,
includes the pro-form did. Nor do we account for recasts of clausal coordinations as coordi-
nate NPs (e.g., changing John likes skating and Peter likes skiing into John and Peter like
skating and skiing, respectively). Presumably, such conversions involve a logical rather than
syntactic mechanism.

84

Table 1. Clausal coordinate ellipsis (CCE) types as specified by Harbusch & Kempen
[5]. Column 1 mentions the names of the CCE types and in brackets their abbrevia-
tions. Column 2 illustrates the CCE types in terms of English examples. The distinc-
tions apply to German as well. Column 3 summarizes the elision conditions we apply
in our study. Struck-out text represents borrowings.

CCE
type

Examples Elision conditions

Gapping
(g)

(2) Ulf lives in Leipzig and
 his children liveg in Ulm

Lemma identity of Verb &
contrast of remnants

LDG
((g)+g)

(3) My wife wants to buy a car and
 my son wantsg [to buy]gg a motorcycle

Gapping conditions in a
superclause

Sub-
gapping

(sg)

(4) The driver was killed and
 the passengers weresg severely
 wounded

Gapping conditions & VP
remnant in second con-
junct

Strip-
ping (str)

(5) Mare lives in Narva and
 her children [live in Narva]str too

Gapping conditions &
only one non-Verb rem-
nant

FCR (f) (6) Since a year, Kees lives in Aam and
 [since a year, Kees]f works in Edam
(7) Tokyo is the city [where Ota lives and

wheref Kusuke works]S

Wordform identity &
left-peripherality (within
clause boundaries) of
major clausal constituents

BCR (b) (8) John wrote one articleb and
 Mary edited two articles.
(9) Anja arrived before three [o’clock]b

and
 Maria arrivedg after four o’clock

Lemma identity & right-
peripherality, possibly
disregarding major con-
stituent boundaries

SGF (s) (10) Into the wood went the hunter and
 [the hunter]s shot a hare

Form-identical Subject &
first conjunct starting with
Verb/Modifier/Adjunct &
FCR applied if licensed

As summarized in column 3 of Table 1, all forms of Gapping are character-
ized by elision of the posterior member of a pair of lemma-identical Verbs.
The position of this Verb need not be peripheral but is often medial, as in (2)
through (5), and (9).3 Every non-elided constituent (remnant) in the posterior
conjunct should pair up with a constituent in the anterior conjunct that has the
same grammatical function but is not coreferential.4 Stated differently, the
members of such a pair are CONTRASTIVE—in (2): the Subjects Ulf vs. his
children, and the locative Modifiers in Leipzig vs. in Ulm. Notice that al-
though the two tokens of my in (3) occupy comparable positions in the two
conjuncts, it is not possible to elide one of them because all CCE construc-

3 In our definitions of CCE types, we restrict ourselves to coordinations encompassing two

conjuncts, called anterior (first, left) and posterior (second, right), respectively.
4 In the following, we distinguish three identity relationships between constituents in coordi-

nated conjuncts: lemma identity, wordform identity and coreferentiality. For lemma identity,
only the lexical entries (‘syntactic words’) of the constituents have to be identical; wordform
identity requires, in addition, identity of their morphological features. Coreferential constitu-
ents refer to the same discourse entity or entities, irrespective of whether or not they include
the same lemmata.

85

tions except BCR respect major constituent boundaries. On the other hand,
were in (4) can be elided from the posterior conjunct although it has no word-
form-identical (but only a lemma-identical) anterior counterpart.

In LDG, the remnants originate from different clauses (more precisely:
from different clauses that belong to the same SUPERCLAUSE; a superclause is
a hierarchy of finite or nonfinite clauses that do not include a subordinating
Conjunction—with the possible exception of the topmost clause). In (3), my
son belongs to the main clause but a motorcycle to the infinitival complement
clause. In SUBGAPPING, the posterior conjunct includes a remnant in the form
of a nonfinite complement clause (VP; severely wounded in (4)). In
STRIPPING, the posterior conjunct is left with one non-Verb remnant, often
supplemented by a sentential Adverb such as too or not.

In FCR, elision affects the posterior token of a pair of left-peripheral strings
consisting of one or more wordform-identical major constituents. In (6), the
posterior tokens of since a year, Kees and where, respectively, belong to such
pairs and are eligible for FCR.

BCR is almost the mirror image of FCR as it deletes the anterior member of
a pair of right-peripheral lemma-identical word strings (o’clock in (9)); how-
ever, BCR may elide part of a major constituent—e.g. only the part article of
the Direct Object in (8) and o’clock of the temporal Modifier before three
o’clock in (9). In addition, it requires only lemma identity (cf. example (8)).

SGF can elide the Subject of the posterior conjunct—always a main
clause—when in the anterior conjunct the wordform-identical Subject fol-
lows the finite Verb (Subject-Verb inversion). Elision of the posterior Subject
cannot be due to FCR since the anterior Subject is not left-peripheral. Fur-
thermore, the initial constituent of an anterior SGF conjunct should NOT be an
argument. This is illustrated by the ill-formed ellipsis in example (11) where
a Complement clause opens the anterior conjunct. (In well-formed SGF case
(10), the initial constituent is an Adjunct.)5
(11) *Das Examen bestehen will er und ers kann auch

 The exam to-pass wants he and can too
 ‘He wants to pass the exam and will be able to as well’

3 Previous Corpus Work on CCE in German, Dutch and English
In a recent paper (Harbusch & Kempen [3]), we analyzed the incidence of
clausal coordination and coordinate ellipsis in the TIGER treebank. TIGER
contains 50,474 syntactically annotated sentences originating from a German
newspaper corpus. Almost 43% of them (21,506 sentences include a coordi-
nate structure of any type, and 7,194 sentences (33% of the latter) contain at
least one clausal coordination. In total, 4,020 TIGER sentences contain at

5We also subsume under the heading of SGF cases like (i), where the anterior conjunct is a

conditional subordinate clause. See Höhle [8] and Reich [13] for discussion of the affinity
between this structure and SGF as defined here.

 (i) ja, dann reicht es ja, wenn wir ungefähr um neun losfahren würden und wir würden dann
 mittags dort ankommen

‘OK, then it suffices if we would leave at nine and would arrive there in the afternoon’

86

least one CCE token, distributed over the four main CCE types as follows:
2545 cases of FCR (63%), 678 Gapping tokens (17%), 384 SGF cases (10%),
and 413 BCR tokens (10%).6 Of these, 99% percent obey the rules of Table
1. Only some 40 sentences violate a borrowing rule but were judged at least
marginally acceptable. These sentences embody four borrowing (elision)
patterns that may be characterized as ‘fringe deviations’ from the intuition-
based coordinate ellipsis rules: overreduction, peripherality violations by
little words, peripherality violations by content words or word groups, and
sloppy gapping.

For Dutch, we conducted a comparative study of CCE in written and spo-
ken language ([4][6]). We explored the ALPINO treebank (van der Beek et
al. [18]) consisting of 7,153 manually annotated syntactic structures from a
newspaper corpus, and CGN2.0 (van Eerten [19]) with about 130,000 spoken
sentences or dialogue turns from more than ten different domains. In written
Dutch, the percentage of elliptical versions within the set of all clausal coor-
dinations is three times higher than in spoken Dutch: 34% versus 11% (Har-
busch & Kempen [4]). In each of the treebanks, Gapping and FCR together
covers 92% of the CCE cases (with the remaining 8% more or less evenly
distributed among SGF and BCR). However, the distribution of FCR and
Gapping in the two Dutch treebanks differs widely. Whereas in written
clausal coordinations Gapping accounts for only 10% of the CCE cases (with
a large majority of 82% embodying FCR), in spoken clausal coordinations
the incidence of Gapping is much higher: 31% (leaving 61% for FCR). These
numbers are comparable to those observed in the German written and spoken
corpora (the latter are reported in the next Section).

In two corpus studies into the incidence of CCE in spoken and written Eng-
lish, Meyer [12] and Greenbaum & Nelson [2] found that in written clausal
coordinations, the proportion of elliptical versions is about twice as high as in
spoken coordinations.

These findings suggest that there may be substantial cross-linguistic simi-
larities, at least as far as the Germanic languages are concerned, with respect
to the frequencies of CCE and CCE types in spoken texts and in written texts.

4 Clausal Coordinate Ellipsis in the VERBMOBIL Treebank
After an outline of the methodology of the corpus study, we report on the
accuracy of the elision rule set and the error classes found in the
VERBMOBIL corpus. Finally, we compare our frequency results to the find-
ings for Dutch and English reported in the previous Section.

6In a quantitative study into the German TAZ treebank, Zinsmeister [22] found 8,133 sen-

tences (37% of the total number of sentences) that include a coordination of syntactic con-
stituents of any type (marked by the edge label KONJ). She only reports one number dealing
with CCE types: 83 sentences with SGF—i.e about 1% of all coordinations. This percentage
is comparable to the proportion of SGF cases in TIGER: the 384 cases we observed there,
make up less than 2% of the total number of coordinations.

87

4.1 Methodological Issues

The VERBMOBIL treebank is encoded in the same manner as the TAZ cor-
pus (Hinrichs et al. [7]) but rather differently from TIGER (see Lemnitzer &
Zinsmeister [11], page 82, for a comparison of the tag sets).

In TIGER, coordinate elisions are explicitly marked by SECONDARY
EDGES, i.e. edges that run from the root node of a remnant—a borrowed
string—to the root node of the structure that borrows the remnant as a child
node. The edge label indicates the grammatical function that the borrowed
remnant fulfils in the borrowing structure. These encodings enable the com-
position of search queries that automatically retrieve CCE structures (by
means of TIGERSearch; König & Lezius [10]). Moreover, they support semi-
automatic classification of CCE types and verification of the elision rules.

Secondary edges do not occur in VERBMOBIL trees. Therefore, we manu-
ally inspected all clausal coordinations for CCE, classified them for CCE
type, and marked all rule violations. Additionally, we accessed and checked
all dialogue turns from which the CCE tokens originate and ruled out any
false alarms generated by the search queries. This procedure enabled us to
compare the frequency data for written text in TIGER with the frequencies of
spoken text in VERBMOBIL.

The VERBMOBIL frequency counts proceeded in two steps. First, we col-
lected all clausal coordinations consisting of one or more incomplete con-
juncts—incomplete in the sense that some constituent(s) seemed to be miss-
ing. Utterances that we judged to be ill-formed due to a self-correction by the
speaker, like sentence (12), were left out of consideration. This also happened
to over 100 cases which include a left-dislocated constituent followed by a
resumptive pro-form—das ‘that’ in (13)—, which one could tentatively ana-
lyze as opening the posterior conjunct of an asyndetic coordination, with
deletion of a right-peripheral string in the first conjunct, as in BCR.
(12) da hat da hätte ich auch Zeit
 then have then would-have I too time
 ‘then I would have time as well’
(13) aber siebzehnter, achtzehnter ginge das ginge .
 ‘but seventeenth, eighteenth that would-be-possible’

We also ruled out all cases, which we judged to result from plausible con-
ceptual inference rather than from borrowing licensed by a coordinating con-
junction. In (14), the Adverb ‘then’ probably modifies not only the anterior
but also the posterior conjunct. However, the absence of does not render the
second conjunct incomplete. Hence, we classified (14) as a well-formed case
of FCR with borrowing of the Personal Pronoun ‘we’ only. (For details re-
garding conceptual inference, see Harbusch & Kempen [3].)
(14) wir fliegen dann am elften und wir bleiben für zwei Tage
 ‚‘we fly then on-the eleventh and stay for two days’

Importantly, we only considered structures that do not allow an alternative
analysis as a nonclausal coordination of NPs, PPs, APs, etc. For instance,
sentences (15) and (16) were discarded due to the possibility of analyzing

88

them as PP-coordination (instead of as a combination of BCR and FCR—cf.
example (1)). Importantly, however, just as in our TIGER study, we included
nonclausal coordinations into the CCE counts if the posterior conjunct fol-
lows the clause-final Particle or Verb of the anterior conjunct—see (17) and
(18) for an illustration. In the classification of CCE types, we group them
together with the Stripping variant of Gapping.

To prevent a misunderstanding, whenever a VERBMOBIL utterance of the
type discussed here had been encoded explicitly either as a discontinuous
structure or as Stripping/Gapping, we adopted this choice. (In (17), PP nach
Hannover was encoded as an extraposed part of the NP headed by Reise; and
und zwar was encoded as a discourse marker rather than as a syntactic node.)
However, very often the encodings left the choice between discontinuous
structure vs. Stripping/Gapping open.
(15) dann sage ich meiner Sekretärin [wegen der Bahnkarten und wegen dem

Hotel]PP Bescheid
 ‘Then I’ll inform my secretary about the tickets and about the hotel’
(16) ich war schon ein paar Mal [in Hannover und zwar in dem Hotel Loc-

cumer-Hof]PP
 ‘I was already a few times in Hannover, namely in hotel Loccumer-Hof’
(17) ich habe eine Reise vor, und zwar nach Hannover
 I have a trip in-mind namely to Hannover
(18) schauen wir noch, ob wir noch ins Theater gehen oder in ein Kino
 look we also whether we also to-the theater go or to a cinema
 ‘let’s also look whether we go to the theater or to a cinema’

In the second step, we classified the CCE tokens according to CCE type.
Like in our TIGER study, when a sentence embodies several CCE construc-
tions, we counted each of them separately. Recall that, in VERBMOBIL,
sentence numbers were assigned to entire dialogue turns, which often include
several (main) clauses. Sentence (19), for example, features two FCR cases,
actually borrowing different left-peripheral strings.
(19) wenn ich da nicht da wäre und wennf er in meinem Büro sitzen würde

und wenn erf Däumchen drehen würde
 ‘if I wouldn’t be in and he would sit in my office and kick his heels’

When a CCE instance could be ranged under more than one type, we fol-
lowed the encodings the TIGER treebank as much as possible. For cases like
(20), for instance, we chose the FCR analysis although the sentences can be
viewed as nonelliptical coordinations of infinitival clauses.
(20) Oder möchten Sie sparen und möchten Sie das Doppelzimmer nehmen?
 ‘Or would you like to save money and take a double room?’

Finally, while carrying out these steps, we sometimes needed to ‘clean up’
the sentence materials, for instance, to remove interjections or to insert words
that were missing for reasons clearly unrelated to coordinate ellipsis. In (21),
the Subject NP Sie ‘you’ seems to be missing after the second token of wenn
‘if’. (Given this reconstruction, the sentence is analyzed as a Stripping variant
of Gapping.) In (22), the speaker interrupts the PP headed by zwischen ‘be-

89

tween’, inserts a series of editing terms and interjections (the string between
vertical bars), and resumes with vielleicht ‘perhaps’ and a revised PP. We
disregarded the string between bars and interpreted the sentence as Gapping,
with a contrast between sehr gut ‘very well’ and vielleicht on the one hand,
and between the original and the revised dates on the other.
(21) wenn Sie möchten, wenn (Sie) sich vielleicht das Museum-für-

Hamburgische-Geschichte ansehen oder wenn (Sie) sich die Kunsthalle,
die neu eröffnet worden ist ansehen
‘If you like, if (you) visit the historical museum of Hamburg or the art
gallery which has just reopened’

(22) sehr gut passen würde es mir zwischen siebten Mai und || nee, ach doch
das ist doch nicht gut das ist gar || vielleicht passen würde es mir zwi-
schen dem achten Juni und elften Juni
‘very well would suit me between the 7th of May and || no, oh yeah, this
is not good, this is even || perhaps between the 8th and 10th of June’

4.2 CCE Error Types in the VERBMOBIL Treebank

We found 3,713 VERBMOBIL sentences (or rather dialogue turns) with at
least one clausal coordination (including asyndetic ones). This set includes
1,314 sentences (35%) with at least one CCE token. (See the next Subsection
for the frequencies of the individual CCE types.) In the remainder of this
Section, we concentrate on two questions: How well does spoken language
obey the elision rules of Section 2, compared to written language? And to
what extent do the error types observed in spoken language overlap with
those seen in written language?

In VERBMOBIL, we identified 35 CCE tokens that violated a judgment-
based CCE rule. That is, less than 3% of the sentences was ill-formed—a
proportion not substantially different form the 1% deviations we reported
earlier for written German. We find this somewhat surprising, given that spo-
ken language is supposed to be more error-prone than written language: The
speaker is under higher time pressure, has no external memory, and cannot
easily hide away editing actions from the audience. On the other hand, the
conceptual and grammatical structure of spoken sentences tends to be much
simpler than that of written sentences (cf. average sentence length).

Of the 35 CCE error tokens, only a minority could be ranged unequivocally
under the error classes we distinguished in Harbusch & Kempen [3]. We
classified 13 tokens as OVERREDUCTIONS. In errors of this type, the elision
process cuts into a major clause constituent functioning as remnant, with the
consequence that only part of the remnant survives. In Stripping/Gapping
example (23), the speaker failed to repeat Fahrschein ‘ticket’ in the posterior
conjunct (in addition to deleting the Prepositon aus ‘leaving’ at the end of the
PP). In (24), also classified as Stripping/Gapping, the Preposition+Article ins
was left out in front of Schauspiel ‘theater play’.

90

(23) … ob es möglich ist einen Fahrschein von Dammtor aus zu
 whether it possible is a ticket from Dammtor leaving to

 bekommen und nicht vom Hauptbahnhof
 get and not from main-station
‘... whether it is possible to get a ticket leaving from Dammtor and not
one leaving from main station’

(24) vielleicht könnten wir ins Theater gehen, Schauspiel, oder in eine Oper
 maybe can we to-the theater go play or to an opera

 ‘maybe we can go to the theater, the playhouse or the opera’
Another error class we had dubbed SLOPPY GAPPING: The verb elided from

the posterior conjunct is used with a subcategorization frame different from
that of its counterpart in the anterior conjunct. For instance, the Verb werden
‘be’ is used as passive Auxiliary in one clausal conjunct and as a copula Verb
in another. In VERBMOBIL, we found 4 coordinations that arguably feature
this type of error. In (25), mögen ‘like’ functions first as modal Verb, then as
transitive Verb. In the anterior conjunct of (26), mögen is used as intransitive
Verb; the posterior conjunct requires the modal Verb mögen.
(25) weiß nicht, in die Oper möchte ich grade nicht gehen, oder ins Konzert,

aber vielleicht irgendwas kleines gemütliches Treffen
‘don’t know, I wouldn’t like to go to the opera or to a concert, but per-
haps something small, (a) cosy meeting’

(26) und ich möchte dann schon am fünfzehnten noch mal schnell ins Büro
und schauen was sich da so angesammelt hat
‘and then already on the 15th I’d like (to go) quickly into the office and
look what has been piling up there’

In both overreduction and sloppy gapping, the speaker presumably does not
accurately take into account the constraints imposed by the syntactic shape of
the anterior conjunct.

Of the two remaining error classes (peripherality violations by little words,
or by content words or word groups), we could not find a single unequivocal
instance in VERBMOBIL. However, in 18 dialogue turns we spotted a mixed
bag of other imperfections. In (27), for instance, the Particle zurück ‘back’
does not have a contrastive counterpart; prefixing fahren with Particle hin
‘away’ would have made for a perfect Gapping structure. In (28), an FCR
case gone awry, the right conjunct needs an initial adverbial modifier like da
‘there’ but the left conjunct only has the Subject NP das ‘that’ on offer.
(27) ich würde also gern am am Montag vormittags fahren und
 I would thus gladly on-the on-the Monday morning travel and
 am Freitag nachmittags zurück ...

 on-the Friday afternoon back
 ‘I’d like to travel Monday morning and (come) back Friday afternoon’

(28) das ist direkt am Hauptbahnhof und kostet das Einzelzimmer
 that is directly at-the main-station and costs the single-room
 einhundert und neunundzwanzig Mark.

 one-hundred and twenty-nine Mark
 ‘that is directly at the main station and (there) a single room is 129 DM’

91

Quite a few dialogue turns consist mainly of utterances in telegram style.
We classified some 25 exemplars as clausal coordinations if at least one of
the conjuncts includes a finite verb. In the majority of those coordinations
(some asyndetic), the clause-initial topic position of both conjuncts is empty:
‘topic drop’; cf. (29) and (30). As the fillers of both topic positions are identi-
cal, we provisionally assume that the anterior filler is reconstructed from
context, and that the posterior filler is borrowed from the—then recon-
structed—anterior filler. If correct, this entails that we need not classify these
cases as CCE errors but as legal CCEs.
(29) startet Bonn Hauptbahnhof um acht Uhr fünfundvierzig und kommt an

 leaves Bonn main-station at 8 hour 45 and arrives
 in Hannover Hauptbahnhof um zwölf Uhr vier
 in Hannover main-station at 12 hour 4

(30) liegt zentral, hat Hallenbad und Fitneßraum
 is located centrally has indoor-pool and fitness-room

4.3 CCE Frequencies in the VERBMOBIL Treebank, and Comparison
with Other Studies

At the end of Section 3, we hypothesized that the CCE frequencies in spoken
and written German, Dutch and English texts would exhibit similar patterns.
The evidence obtained from the VERBMOBIL corpus supports this hypothe-
sis. In all three languages, the proportion of CCE sentences within the total
set of coordinated clauses is substantially higher in the spoken than in the
written modality.

Table 2 shows the relative frequencies in German and Dutch of the four
CCE types we distinguish. It reveals striking within-modality and within-
language similarities. In the spoken modality, the incidence of Gapping is
higher than in written language, mainly at the expense of FCR. In the German
treebanks, BCR and SGF are well represented (in particular SGF) whereas in
the Dutch corpora they live a somewhat marginal existence.
Table 2. Relative frequencies of the four types of CCE, expressed as percentages of
the total set of sentences exhibiting CCE.

Spoken language Written language
CCE type VERBMOBIL

(German)
CGN 2.0
(Dutch)

TIGER
(German)

ALPINO
(Dutch)

GAPPING 33 31 17 10
FCR 55 61 63 82
BCR 1 3 10 5
SGF 11 5 10 3

5 Discussion
We investigated to which extent Grammar rules for Clausal Coordinate Ellip-
sis, which are nearly exclusively based on linguistic judgments (intuitions),
hold for spoken German. We followed the lead of a similar study conducted
recently with the TIGER treebank for written German, using the TüBa-D/S

92

treebank, which is based on dialogues for appointment scheduling and travel
planning from the VERBMOBIL project. After having presented a set of
judgment-based CCE rules for four main CCE types distinguished in the lit-
erature, we showed that these rules fit spoken text nearly equally accurately
as written text: The proportions of utterances deviating from the rules are
very similar—less than 3% of the spoken sentences that include a clausal
coordination, compared to about 1% of the written sentences in the TIGER
treebank. However, the rule violations in the spoken corpus turned out to be
of a rather different nature than those in the written corpus. Furthermore, we
found that the relative frequencies in VERBMOBIL of the four main CCE
types reveal a pattern that strongly resembles the patterns observed in the
CGN2.0 treebank, the Corpus of Spoken Dutch.

We conclude not only that parsers and generators for spoken German can
rely on the intuition-based rule systems for CCE, in particular rules such as
described in Section 2 above, but also that their performance can profit from
measures that allow for the fringe deviations observed in Section 4.

In future work we hope to provide a psycholinguistic explanation for the
frequency/error patterns obtained in the present study and its predecessors.

References
[1] Brants, S., Dipper, S., Eisenberg, P., Hansen-Schirra, S., König, E., Lezi-

us, W., Rohrer, C., Smith, G. and Uszkoreit, H. (2004). TIGER: Lin-
guistic Interpretation of a German Corpus. Research on Language and
Computation, 2, 597-620.

[2] Greenbaum, S. and Nelson, G. (1999). Elliptical clauses in spoken and
written English. In: Collins, P. and Lee, D. (Eds.). The clause in English.
Amsterdam: Benjamins.

[3] Harbusch, K. and Kempen, G. (2007). Clausal coordinate ellipsis in
German: The TIGER treebank as a source of evidence. In: Proceedings
of the 16th Nordic Conference of Computational Linguistics (NODALIDA
2007), Tartu, Estonia.

[4] Harbusch, K. and Kempen, G. (2009a). A treebank study of clausal coor-
dinate ellipsis in spoken and written language. In: Proceedings of the
15th Annual Conference on Architectures and Mechanisms of Language
Processing (AMLaP2009), Barcelona, Spain. �

[5] Harbusch, K. and Kempen, G. (2009b). Generating clausal coordinate
ellipsis multilingually: A uniform approach based on postediting. In:
Proceedings of the 12th European Workshop on Natural Language Gen-
eration (ENLG 2009), Athens, Greece.

[6] Harbusch, K. and Kempen, G. (2009c). Incremental sentence production
inhibits clausal coordinate ellipsis: A comparison of spoken and written
language. In: Proceedings of the Workshop on Incrementality in Verbal
Interaction, Bielefeld.�

93

[7] Hinrichs, E., Kübler, S., Naumann, K., Telljohann, H. and Trushkina, J.
(2004). Recent Developments in Linguistic Annotation of the TüBa-D/Z
treebank. In: Proceedings of the Third Workshop on Treebanks and Lin-
guistic Theories (TLT04), Tübingen.

[8] Höhle, T.N. (1990). Assumption about asymmetric coordination in Ger-
man. In: Mascaró, J. and Nespor, M. (Eds.), Grammar in Progress: Glow
Essays for Henk van Riemsdijk, 221–235. Dordrecht: Foris.

[9] Kempen, G. (2009). Clausal coordination and coordinate ellipsis in a
model of the speaker. Linguistics, 47, 653-696.

[10] König, E. and Lezius, W. (2003). The TIGER language: A Description
Language for Syntax Graphs, Formal Definition. Tech. Rep. IMS, Uni-
versity of Stuttgart.

[11] Lemnitzer, L. and Zinsmeister, H. (2006). Korpuslinguistik: Eine Ein-
führung. Tübingen: Narr Studienbücher.

[12] Meyer, C.F. (1995). Coordination Ellipsis in Spoken and Written
American English. Language Sciences, 17, 241-169.

[13] Reich, I. (2008). From discourse to ‘‘odd coordinations’’: On asymmet-
ric coordination and subject gaps in German. In: Fabricius-Hansen, C.
and Ramm, W. (Eds.), ‘Subordination’ versus ‘coordination’ in sentence
and text: A cross-linguistic perspective. Amsterdam: Benjamins.

[14] Sag, I.A., Wasow, T. and Bender, E.M. (2003). Syntactic Theory: A
formal introduction. Stanford CA: CSLI publications [Second�Edition.]

[15] Steedman, M. (2000). The syntactic process. Cambridge MA: MIT
Press.

[16] Stegmann, R., Telljohann, H. and Hinrichs, E. (2000). Stylebook for the
German Treebank in Verbmobil. Saarbrücken: DFKI Rep. 239.

[17] te Velde, J.R. (2006). Deriving Coordinate Symmetries. Amsterdam:
Benjamins.

[18] van der Beek, L., Bouma, G., Malouf, R. and van Noord, G.-J. (2002).
The Alpino Dependency Treebank. In: Computational Linguistics in the
Netherlands CLIN 2001. Amsterdam: Rodopi.

[19] van Eerten, L. (2007). Over het Corpus Gesproken Nederlands. Ne–
derlandse Taalkunde, 12, 3, 194-215.

[20] van Oirsow, R.R. (1987). The syntax of coordination. London: Croom
Helm.

[21] Wahlster, W. (Ed.) (2000). Verbmobil: Foundations of�Speech-to-
Speech Translation. Berlin: Springer.

[22] Zinsmeister, H. (2006). Treebank Data as Linguistic Evidence? Coordi-
nation in TüBa-D/Z. Pre-Proceedings of the International Conference on
Linguistic Evidence, Tübingen.

94

Dependency Annotation of Wikipedia:
First Steps Towards a Finnish Treebank

Katri Haverinen,1,3 Filip Ginter,1 Veronika Laippala,2
Timo Viljanen,1 Tapio Salakoski1,3

1Department of Information Technology,
2Department of French studies

3Turku Centre for Computer Science (TUCS)
20014 University of Turku, Finland

first.last@utu.fi

Abstract

In this work, we present the first results obtained during the annotation of
a general Finnish treebank in the Stanford Dependency scheme. We find
that the scheme is a suitable syntax representation for Finnish, with only mi-
nor modifications needed. The treebank is based on text from the Finnish
Wikipedia, ensuring its free distribution and broad topical variance. To as-
sess the suitability of Wikipedia text as the basis of a treebank, we analyze its
grammaticality and find the quality of the language surprisingly high, with
97.2% of the sentences judged as grammatical. The treebank currently con-
sists of 60 fully annotated articles and is freely available.

1 Introduction

Treebanks are among the most crucial resources for the development of natural
language processing (NLP) methods. There exist a number of national treebanks
for a variety of languages, including widely used and studied ones, such as English,
as well as languages spoken by comparatively smaller populations, for example
Slovene. For Finnish, no such treebank currently exists, considerably restricting the
possibilities for NLP research for this language. To address this obvious deficiency,
we have commenced an effort to develop the first Finnish language treebank and,
in this paper, present the first results of this project.

The source of text for the treebank is the Finnish Wikipedia. One of its major
advantages is that it is released under a free license, enabling the distribution of the
resulting treebank at no cost and with no copyright issues. Apart from offering a
great topical variety, the text is written collaboratively by a number of authors and
thus also reflects a number of different personal writing styles. Since there is little

95

prior work on Wikipedia-based treebanking, we assess the grammaticality of the
language and thus, to some extent, its suitability for a source of treebank text.

The annotation scheme of the treebank is the well-known Stanford Dependency
(SD) scheme which was designed specifically for NLP applications [1, 10]. The
Finnish treebank is the first general language corpus annotated natively in the SD
scheme. Since the scheme was originally designed for English, we discuss its
applicability to Finnish as part of the results presented in this paper. In particular,
we show that only minor modifications to the scheme are necessary. The choice of
the scheme follows a recent substantial interest in the application of dependency
schemes in general and the numerous successful applications of the SD scheme
specifically [8, 10, 12].

Among the most important application areas for treebanks is the induction and
evaluation of statistical parsers. For instance, a number of national treebanks for
diverse languages such as Catalan, English, and Japanese have been used in the
recent CoNLL’09 shared task [2] to develop and evaluate multilingual statistical
parsers, thus greatly benefiting the NLP research for these languages. Indeed, one
of the primary motivations for this work is to provide a similar opportunity for
Finnish NLP research. This motivation has affected both the choice of the scheme
and the target size of the corpus, as will be discussed later.

2 Related work

As stated earlier, there is no publicly available treebank of general Finnish. The
only treebank we are aware of is that of Haverinen et al. [4] who have applied the
SD scheme to Finnish intensive care nursing narratives, producing a treebank of
1019 sentences. This treebank, however, is not publicly available due to patient
privacy issues.

Also other NLP resources for Finnish are scarce. The only broad-coverage
full syntactic parser for Finnish is the closed source commercial parser Connexor
Syntax.1 Other NLP tools, particularly targeted at morphological analysis, in-
clude FinTWOL and FinCG,2 a morphological analyzer and a Constraint Grammar
parser which resolves morphological ambiguity [5, 6], both commercial products.
In addition, a rule-based parser has been developed by Laippala et al. [7], partic-
ularly targeting the language used in nursing narratives in a Finnish intensive care
unit. This parser is, however, restricted to the very specific vocabulary and syntax
typical for this domain.

Apart from the nursing narrative corpus of Haverinen et al., there is a sec-
ond treebank with SD as its native annotation scheme, BioInfer [13]. It is an
English-language corpus of 1100 sentences from research article abstracts focus-
ing on protein-protein interactions. In addition to these two corpora, any treebank

1http://www.connexor.eu
2http://www.lingsoft.fi

96

annotated in the Penn Treebank [9] scheme can be automatically converted to the
SD scheme using the method and tools3 of de Marneffe and Manning [10].

3 Adaptation of the SD scheme to Finnish

In this section, we introduce our modifications to the Stanford Dependency scheme.
Sections 3.2 and 3.3 discuss Finnish-specific adjustments, while Sections 3.4 through
3.7 consider more general modifications. Due to space limitations, the original SD
scheme will only be discussed briefly, and the reader is referred to the work of de
Marneffe and Manning [1] for a thorough description.

3.1 The Stanford Dependency scheme

In the SD scheme, the syntactic structure of a sentence is represented as a directed
graph of labelled dependencies. The latest scheme version [1] defines 55 hierarchi-
cally arranged dependency types, capturing both syntactic and semantic relations.
There are four different representation variants, in which different sets of depen-
dencies are present. In the basic variant, used in the current annotation, the analyses
are trees and generally include only syntactic dependencies. Other variants define a
number of additional, semantically motivated dependency types that are present in
addition to the basic syntactic dependencies. These variants thus result in non-tree
structures that may even contain directed cycles.

The scheme is designed to be application-oriented and has indeed proved its
usefulness in a number of NLP methods (for an extensive list, see the review by de
Marneffe and Manning [10]). These successful applications have also contributed
to our decision of using the scheme in this work, as has the encouraging observa-
tion that the SD scheme would seem to be suitable at least for clinical Finnish, as
reported by Haverinen et al. [4].

Haverinen et al. adapted the SD scheme to clinical Finnish by introducing sev-
eral new dependency types that address the most common Finnish syntactic struc-
tures that the SD scheme could not naturally represent: inflected nominal modifiers,
adpositional phrases, and certain passive structures (for details, see [4]). These
modifications apply with no further changes also to general Finnish, and, in the
following, we discuss our additional adaptations of the scheme.

3.2 Genitive objects

In Finnish, a noun with a verb counterpart or a nominalization of a verb can have an
object, called the genitive object. This resembles the English phenomenon where
a gerundial noun takes an object in front of it, as in ship building, except that the
genitive case is not used in the English structure. In English, nominal pre-modifiers

3http://nlp.stanford.edu/software/lex-parser.shtml

97

such as the above are considered syntactic compounds and are marked nn in the SD
scheme.

On the surface, genitive objects are identical to possessive modifiers, both be-
ing nominal pre-modifiers in the genitive case. There is, however, a clear semantic
difference between these two. For instance, the possessive interpretation of laivan
rakentaminen (ship+genitive building) would mean that the ship itself is doing the
building, whereas the genitive object interpretation would mean that the ship is be-
ing built. In order to maintain this semantic distinction, it is necessary to establish
a new dependency type, gobj, for genitive objects.

3.3 Finnish copulas

The SD scheme reserves a special treatment for copula structures: the predicative
of a copular clause is the head and the copular verb its dependent. In all other cases,
the finite verb acts as the head. This is motivated from a multilingual point of view,
as not all languages have an overt copular verb. Further, particularly in telegraphic
style, the copular verb can often be omitted even in those languages that do. This
treatment of copula structures, however, requires an exact definition of the class of
copular verbs and predicatives.

The SD scheme uses a list of English copular verbs defined in the Penn Tree-
bank, including, among others, to be, to resemble and to become. According to
Finnish Grammar [3, §891], the only Finnish copular verb is olla (to be), and
all clauses with olla as the main verb can be classified as copular. This includes
clauses where the predicative is inflected in a local case, such as Paketti on Oulusta
(The_package is from_Oulu). However, if a structure such as this one is accepted
as copular, a sentence with several possible predicatives, such as Paketti on Oulusta
ystävältäni (The_package is from_Oulu from_my_friend) can easily be formed.
Such a structure has no obvious dependency representation in the SD scheme, since
the clause would have two head words. Another problem related to the predicative
cases is that of distinguishing the copular verb olla (to be) and other, non-copular
verbs that take as their argument a noun inflected in the same case as the argu-
ment of the verb olla. Consider, for example, olla laulajana (to_be singer+essive),
toimia laulajana (to_act as_singer+essive) and työskennellä laulajana (to_work
as_singer+essive). All three examples have the same surface syntactic structure,
yet for instance the third example is certainly not a case of copula.

To avoid the class of copulas becoming unnecessarily broad, and syntactically
and semantically diverse, we only allow nominative and partitive cases for noun
and adjective predicatives, which permits us to restrict copular structures to those
that include the only Finnish copular verb, olla. In addition to nouns and adjectives,
for instance adverbs and even full clauses can act as predicatives. Our solution,
including our use of the separate copula subject type, nsubj-cop, is similar to that
in the clinical treebank of Haverinen et al., although some of the most problematic
cases do not occur in the clinical language. For an illustration of our analysis of
Finnish copula structures, see Figure 1.

98

He
Hän

may
saattaa

today
tänään

be
olla

ill
sairas

.

.

<cop punct><aux
<advmod

<nsubj−cop

He may be ill today .

<cop advmod>
<aux punct>

<nsubj

Figure 1: Finnish copula structures (left) as compared to those of English (right).
Note that the copula acts as the head for the possible auxiliary which can sometimes
cause non-projective structures. Also note the use of the nsubj-cop dependency
type.

Jokinen
Jokinen

did_not
ei

anymore
enää

return
palannut

to_Lahti
Lahteen

;
;

he
hän

moved
muutti

in_summer
kesällä

to_Oulu
Ouluun

.

.

<advmod nommod> <nsubj nommod>
<neg punct> nommod>

<nsubj conj>
punct>

Figure 2: Implicit clausal coordination. The example sentence could be translated
as “Jokinen did not return to Lahti anymore; he moved to Oulu in the summer.”

3.4 Independent clause coordination

Independent clauses can be coordinated without a conjunction, as in Lapset pyöräilivät
kouluun; aikuiset ajoivat töihin (The children cycled to school; the adults drove to
work). The SD scheme analyzes such implicit coordination as parataxis and defines
the corresponding dependency type. We, however find these structures function-
ally and semantically similar to explicit coordinations and thus also annotate them
similarly. This is particularly natural in the SD scheme which analyzes conjunc-
tions as mere dependents of the first coordinated element, making implicit and ex-
plicit coordinations differ only in the presence or absence of this single dependent.
The parataxis type is then reserved for other types of parataxis such as reporting
clauses. In this respect the scheme also diverts from that used by Haverinen et al.,
who defined a separate dependency type, sdep, for implicit clause coordination.
Our analysis is illustrated in Figure 2.

3.5 Infinite clausal complements

The original SD scheme does not distinguish between finite and infinite clausal
complements, but uses the type ccomp for both. For instance, in the structures
Sanoin, että pallo katosi (I_said that the_ball disappeared) and Estin palloa ka-
toamasta (I_prevented the_ball from_disappearing), the complements että pallo
katosi (that the_ball disappeared) and palloa katoamasta (the_ball from_disappearing)
would both be analyzed as ccomp in the original SD scheme. The iccomp depen-
dency type enables the distinction of these two structures, which would otherwise
not be possible without morphological information that, currently, is not present in
the treebank.

99

Gods
Jumalat

celebrate
juhlivat

by_night
öisin

is
on

Donna
Donna

Tartt’s
Tarttin

first_work
esikoisteos

.

.

<nsubj advmod> <name <poss punct>
<name <cop

<nsubj−cop

Figure 3: Jumalat juhlivat öisin (Gods celebrate by night) is a named entity with
an inner syntactic structure and is thus given a full syntactic analysis, including
the correct head word. Donna Tarttin is only marked as a multi-word unit with no
further analysis. The technical dependency name is used to delimit named entity
boundaries.

3.6 Named entities

Multi-word named entities, such as names of people, cities, books, and movies,
are frequent in general language. These elements are problematic in a number
of ways: often, but not always, they lack an obvious inner syntactic structure,
despite consisting of several words, as for example Carl Gustaf Emil Mannerheim,
or they may also be in another language, like Västra Finnholmen. An example
of a name that does have a complex inner structure and is in Finnish would be
the name of the book Taistelu sosiaaliturvasta — ammattiyhdistysväen toiminta
sosiaaliturvan puolesta 1957–1963 (in English The battle for social security —
trade union members’ actions for social security 1957–1963).

All multi-word names are annotated as single units whose rightmost word acts
as the head in the dependency tree. In addition, Finnish names that do have an inner
syntactic structure are given a full dependency annotation and their correct head
word is identified (see Figure 3 for an illustration). This approach thus leaves open
two options for treating Finnish named entities with inner structure. One possibility
is to discard the annotation of the inner structure and consequently treat the named
entities as single units. The other alternative is to preserve these entities as subtrees
in the syntactic structure. The choice will likely be application-dependent.

3.7 Gapping and fragments

Gapping, a form of ellipsis where a governing element is omitted to avoid repetition
while its dependents are not, poses an annotation problem. For instance, in minä
söin jäätelöä ja sinä salaattia (I ate ice cream and you salad), the elided verb is
necessary to construct a tree that correctly reflects the meaning of the sentence.
A similar case is that of fragments, such as Presidentti Kiinaan (The President to
China), where the head word of the clause is absent.

In order to be able to construct an analysis for such cases, we insert a null token
into the sentences to represent the missing head word. In the case of gapping, where
the antecedent of the elided element is present earlier in the sentence, we further
include a semantic dependency, ellipsis, to relate the antecedent and the null token.
In the case of fragments, no antecedent is present in the sentence and consequently

100

President
Presidentti

null
null

for_official_visit
valtiovierailulle

to_China
Kiinaan

.

.

<nsubj nommod>
nommod>

punct>

In_Turku
Turussa

was_visited
tutustuttiin

town_house
kaupungintaloon

and
ja

in_Helsinki
Helsingissä

null
null

opera
oopperaan

.

.

<nommod nommod> <nommod nommod>
cc>

conj>
ellipsis>

punct>

Figure 4: Null tokens in the case of fragments (top) and gapping (bottom). Note
the semantic dependency ellipsis. The fragment sentence could be translated as
“The President for official visit to China” and the ellipsis sentence as “The town
house was visited in Turku and the opera in Helsinki.”

the ellipsis dependency is not used. Figure 4 illustrates the usage of null tokens.
Note that the null tokens are only used to stand for missing governors. Conse-

quently, other elements that do not generally act as governors in the SD scheme,
such as missing copula verbs and auxiliaries, are not represented by null tokens,
neither are other forms of ellipsis.

4 Construction of the Treebank

In this section, we describe the ongoing work on the Finnish dependency treebank
itself.

4.1 Treebank text

In constructing the treebank, we use randomly selected articles from the Finnish
Wikipedia. All articles that do not exceed 75 sentences are annotated in their en-
tirety, excluding parts that do not have enough syntactic structure to annotate, such
as bulleted lists of single words, section headings and figure captions. Longer ar-
ticles are truncated at 75 sentences, to keep the treebank from becoming biased
towards a single article topic.

Currently, we have completed the annotation of 60 articles, comprising 711
sentences and 10217 tokens, of which 8801 are non-punctuation. Thus, on aver-
age, one article is 11 sentences long and one sentence contains 14 tokens. The
length of articles varies substantially — the longest article in the currently anno-
tated part is 61 sentences long, while the shortest contains only one sentence. Out
of all sentences in the treebank, 27 (3.8%) are non-projective. For comparison,
Haverinen et al. report the proportion of non-projective sentences in the clinical
treebank to be 2.9%. The currently existing annotation, subject to further changes,
is available at http://bionlp.utu.fi/fintreebank.html to illustrate

101

the annotation scheme.

4.2 The Annotation process

In our annotation work, we use a custom annotation tool, which will be made pub-
licly available together with the treebank. It includes the basic abilities necessary
for dependency annotation, along with search abilities and the possibility to mark a
dependency for later discussion, or label a sentence as dubious or ungrammatical.

We have started the annotation process by first annotating 562 sentences (47
articles) in trial annotations. Each sentence was first annotated by one annotator
and the annotation was then jointly inspected by the whole group. Authoritative
decisions were made for all problematic cases found at this stage, and the already
existing annotation was modified as necessary to ensure its consistency.

After the trial annotations, full double annotation has been started. That is, each
sentence is first independently annotated by two annotators and all differences are
then jointly resolved. The decisions made at this double annotation stage lean on
the authoritative decisions made after the trial annotations. The current number of
double annotated sentences is 149 (13 articles). Due to the currently small number
of these sentences, we do not report an inter-annotator agreement at this stage, as
this figure would not be representative. Inter-annotator agreement in the double an-
notation will be measured regularly throughout the annotation process to estimate
the annotation quality and will be reported with the final release of the corpus.

5 Characteristics of Wikipedia text

The text in Wikipedia articles is sometimes thought to be of poor quality with re-
spect to grammaticality. To determine some properties of the Wikipedia language,
we have conducted a small-scale analysis of the currently annotated sample, esti-
mating the proportion of spelling and grammar errors.

We assess the amount of spelling errors in the text by manually inspecting all
words that FinTWOL,4 a broad-coverage morphological analyzer, failed to recog-
nize. Of the 1034 (10.1% of all tokens) unrecognized tokens, only 6 (0.6�) were
obvious misspellings, the remaining being most commonly names, foreign words,
numerical expressions, untypical punctuation symbols, abbreviations, etc.

To estimate the level of ungrammaticality in the Wikipedia text, each sentence
was assessed independently by three native speaker annotators, and marked gram-
matical, questionable or ungrammatical. All sentences not judged grammatical
by at least two of the three annotators were further manually analyzed to deter-
mine the type of error they contained. The results of this manual analysis are
given in Table 1. The vast majority of sentences, 691 out of 711 (97.2%), were
judged grammatical by at least two annotators; 627 (88.2%) were judged gram-
matical unanimously. Further, 18 sentences (2.5%) were judged questionable and

4http://www.lingsoft.fi

102

Mistake type Frequency
Fragment 6
Relative clause error 4
Compound error 3
Translation error, anglicism or colloquial 6
Inflection error 2
Coordination error 2
Total 23

Table 1: Results of the manual analysis of grammar errors. Note that the total num-
ber of errors is greater than the total number of ungrammatical and questionable
sentences, as some sentences had more than one error in them.

2 (0.3%) ungrammatical. Out of the 20 sentences not judged grammatical, only
one was downright incomprehensible. Fragments are among the most common
cases judged questionable or ungrammatical, as are translation errors, anglicisms
and colloquial language.

In general, many sentences judged as questionable were colloquial rather than
strictly erroneous. Examples of such colloquial structures, which would in some
contexts be judged ungrammatical, can be a sizeable asset for example when build-
ing a parser targeting text produced by non-professional writers. To conclude, we
find the overall quality of the Wikipedia text, in terms of grammaticality and correct
spelling, clearly acceptable.

6 Conclusions and future work

In this paper, we have presented first results of an ongoing effort to build a tree-
bank of the Finnish language. First, we demonstrate that the Stanford Dependency
scheme is applicable to general Finnish with only minor modifications. Many of
these modifications have previously been introduced by Haverinen et al. [4] who
applied the SD scheme to Finnish nursing narratives. Second, we assess the gram-
maticality of the Finnish Wikipedia language and find it, maybe somewhat sur-
prisingly, clearly acceptable. In addition to the obvious benefit that Wikipedia text
is freely available under an open license, it may also be an asset for a number of
real-world applications that the language found in the articles can be colloquial and
is not necessarily produced by professional writers. Currently, the treebank con-
sists of 60 fully annotated articles, comprising of 711 sentences. The annotation is
available at http://bionlp.utu.fi/fintreebank.html.

The primary goal of the project is to create a freely available treebank large
enough for the induction of a broad-coverage statistical parser as well as the de-
velopment of natural language processing methods in general. The first and most
important future work direction is thus naturally to increase the size of the corpus.

103

Currently, we aim at annotating roughly 10,000 sentences, that is, about 140,000
tokens, a treebank size shown to be sufficient to induce an accurate statistical parser
for a number of languages [11]. The performance and learning curve of the induced
parser and other NLP methods that use the treebank will help to determine its final
size.

A second, more long-term direction is to further enhance the annotation of
the treebank by providing a layer of more detailed semantic analysis, for example
using an SD scheme variant that also includes semantically oriented dependency
types. In this layer, it would also be possible to deepen the annotation of ellip-
tic structures by marking also omission of non-head elements. This will require
further modifications to the SD scheme which does not prescribe any treatment of
ellipsis. Thirdly, the possibility to provide morphological and POS information for
the treebank using an existing analyzer for Finnish will be investigated.

Acknowledgements

We would like to thank Lingsoft Ltd. for making FinTWOL available to us. This
work has been supported by the Academy of Finland and Turun Yliopistosäätiö.

References

[1] Marie-Catherine de Marneffe and Christopher Manning. Stanford typed de-
pendencies manual. Technical report, Stanford University, September 2008.

[2] Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara,
Maria Antònia Martí, Lluís Màrquez, Adam Meyers, Joakim Nivre, Sebas-
tian Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu, Nianwen Xue, and
Yi Zhang. The CoNLL 2009 shared task: Syntactic and semantic dependen-
cies in multiple languages. In Proceedings of CoNLL’09, pages 1–18, 2009.

[3] Auli Hakulinen, Maria Vilkuna, Riitta Korhonen, Vesa Koivisto, Tarja-Riitta
Heinonen, and Irja Alho. Iso suomen kielioppi / Grammar of Finnish. Suo-
malaisen kirjallisuuden seura, 2004.

[4] Katri Haverinen, Filip Ginter, Veronika Laippala, and Tapio Salakoski. Pars-
ing clinical Finnish: Experiments with rule-based and statistical dependency
parsers. In Proceedings of NODALIDA’09, Odense, Denmark, 2009.

[5] Fred Karlsson. Constraint Grammar as a framework for parsing unrestricted
text. In Proceedings of COLING’90, pages 168–173, 1990.

[6] Kimmo Koskenniemi. Two-level model for morphological analysis. In Pro-
ceedings of the 8th International Joint Conference on Artificial Intelligence,
pages 683–685, 1983.

104

[7] Veronika Laippala, Filip Ginter, Sampo Pyysalo, and Tapio Salakoski. To-
wards automatic processing of clinical Finnish: A sublanguage analysis and
a rule-based parser. International Journal of Medical Informatics, Special
Issue on Mining of Clinical and Biomedical Text and Data, 2009. In press,
available in online version only.

[8] Dekang Lin. A dependency-based method for evaluating broad-coverage
parsers. Natural Language Engineering, 4(2):97–114, 1998.

[9] Mitchell Marcus, Mary Ann Marcinkiwicz, and Beatrice Santorini. Build-
ing a large annotated corpus of English: The Penn treebank. Computational
Linguistics, 19(2), 1993.

[10] Marie-Catherine de Marneffe and Christopher Manning. Stanford typed de-
pendencies representation. In Proceedings of COLING’08, Workshop on
Cross-Framework and Cross-Domain Parser Evaluation, pages 1–8, 2008.

[11] Joakim Nivre. Deterministic incremental dependency parsing. Computa-
tional Linguistics, 34(4):513–553, 2008.

[12] Joakim Nivre. Sorting out dependency parsing. In Proceedings of GoTAL’08,
pages 16–27, 2008.

[13] Sampo Pyysalo, Filip Ginter, Veronika Laippala, Katri Haverinen, Juho Hei-
monen, and Tapio Salakoski. On the unification of syntactic annotations un-
der the Stanford dependency scheme: A case study on BioInfer and GENIA.
In Proceedings of BioNLP’07, pages 25–32, 2007.

105

Treebank Analysis and Search Using an Extracted

Tree Grammar

Seth Kulick and Ann Bies

Linguistic Data Consortium
University of Pennsylvania

{skulick,bies}@ldc.upenn.edu∗

November 4, 2009

Abstract

We describe here a new approach to the problem of analyzing and comparing

two sets of trees that contain annotation for the same data. This is an impor-

tant problem both for evaluating inter-annotator consistency during treebank

construction and also for evaluating parser output as compared to the gold

trees. Our approach is based on a decomposition of the trees into small syn-

tactic chunks, inspired by work in Tree Adjoining Grammar. This allows

queries to be stated in more meaningful syntactic units, and the resulting

system produces confusion matrices showing disagreements on these units

across the two sets of trees. There is also a significant potential speed ad-

vantage for treebank search, since duplicate information is removed from the

treebank, and a search for the syntactic chunks simply becomes a search on

integers associated with each sentence.

1 Introduction

A crucial issue when constructing a treebank is to ensure consistency in annotation

decisions among the annotators. This is usually done by having multiple annotators

annotate the same file, and then comparing the different annotations of that file.

One way in which this has been done is to use the same metrics as used for scoring

parser output against gold trees. This makes sense, since the two problems can

∗We would like thank Aravind Joshi, Anthony Kroch, Mitch Marcus, and Mohamed Maamouri

for many useful discussions. This work was supported in part by the Defense Advanced Research

Projects Agency, GALE Program Grant No. HR0011-06-1-0003. The first author was also sup-

ported under the GALE program, DARPA/CMO Contract No. HR0011-06-C-0022. The content of

this paper does not necessarily reflect the position or the policy of the Government, and no official

endorsement should be inferred.

107

both be viewed as the same, as comparing two sets of trees to determine how well

one matches against the other.

For example, the recent revision of the Penn Arabic Treebank [11] reported

inter-annotator agreement (IAA) using the evalb program.1 evalb determines a

single score for the two sets of trees, by comparing matching constituent brackets

across the two sets of trees.2 However, while the evalb score can be viewed as a

very rough approximation to the consistency of annotation, it is of little use in the

important task of pinpointing where the annotators are disagreeing. To some extent

this can be improved by breaking down the bracketing scores by bracket type (i.e.,

an NP score, an SBAR score, etc.). However, this is still just an approximation to the

sorts of decisions actually made during annotation. One other approach that has

been taken is to break down the two sets of trees into single-level head-dependency

relations, as done for English in [5] and for Arabic in [10, 11].

There are of course systems available for searching a treebank corpus for var-

ious structures - e.g., [7, 12, 13]. These are extremely useful and heavily used

(among other purposes) in corpus construction for identifying illegal structures

that were mistakenly annotated. However, they also do not allow the comparison

of structures across two sets of trees. Also, searches are stated in terms of in-

dividual nodes in the phrase-structure trees. While this allows great flexibility in

searching for structures, it requires a certain amount of trickery to translate a search

for meaningful syntactic units into the combination of single nodes.

Currently the analysis of disagreements among annotators in IAA annotation

can only be done satisfactorily by painstaking and time-consuming manual com-

parison of the sets of trees, if the goal is to understand the underlying annotation

decisions that led to the reported errors.

We present here an approach to a system for analyzing and evaluating two sets

of trees in such a way as to allow search explicitly on these structures of interest,

returning an analysis of differences on these structures. We break the trees down

into meaningful syntactic units and search and evaluate based on these units, there-

fore returning information which is more aligned with the decisions made during

annotation or mimicked during parsing. This approach is rooted in the long line of

research on Tree Adjoining Grammar [9] which has been heavily used for various

purposes in NLP but not previously for the purposes described here.

In Section 2 we discuss the particular data set we are using, which provides

the examples of tree extraction and query search in the following sections. Section

3 describes the process of decomposing the full trees into the core syntactic units.

This is similar to previous work in this tradition, although with some novel aspects,

such as including the function tags in the extracted trees. In Section 4 we discuss

how search on a treebank is reconceptualized and implemented to work on the tree

decomposition of the full trees. In Section 5 we run through some examples of

queries and results, and demonstrate the utility of this approach. Section 6 is the

1http://nlp.cs.nyu.edu/evalb/
2It also produces a few secondary numbers, such as the number of crossing brackets.

108

conclusion and discusses several possibilities for future work.

2 Data Set

There are several corpora under construction which are appropriate candidates for

utilizing the work described here. We focus in this paper on the Penn Arabic Tree-

bank, which has recently undergone a substantial revision [11] in its guidelines

and for which more data is being annotated. Further, while there have been im-

provements in Arabic parsing ([10, 11]), there are still many questions as to which

aspects of the tree structure are accurately recovered by the parser and which re-

main problematic.

Given the choice between working with a limited number of IAA files, and the

more substantial number of trees available from parsing work, we have chosen to

work first with the parse files. This is mostly because of the greater number of

samples available for the development of this approach. As discussed above, it is

basically the same problem regardless of which pairs of trees we work with.

The corpus we are using consists of the recent Arabic Treebank revisions of

parts ATB1, ATB2, and ATB3.3 For the parsing work, we used a previously-

proposed train/dev/test split.4

The problem of segmentation of Arabic text into the tokens that match the gold

tokens is not a simple one, and previously published work on parsing Arabic (e.g.,

[10, 11]), simply assumes gold tokenization for input to the parser. We instead use

a morphological tagger and tokenizer [15], and for parsing use the Bikel parser.5 6

3 Elementary Tree Extraction

As discussed above, we are aiming for an analysis of the trees that is directly ex-

pressed in terms of the syntactic constructions that annotators have in mind during

annotation, or are mimicked during parsing. Towards this end we utilize ideas

3LDC2008E61 (Arabic Treebank Part 1 v4.0), LDC2008E62 (Arabic Treebank Part 2 v3.0), and

LDC2008E22 (Arabic Treebank Part 3 v3.1), respectively.
4http://nlp.stanford.edu/software/parser-arabic-data-splits.shtml
5http://www.cis.upenn.edu/~dbikel/software.html
6There is an important issue here for parser evaluation that we can only discuss briefly. The

evalb program depends on the two sets of trees having exactly matching tokenizations, so that

the corresponding constituent spans can be compared. The spans cannot be compared when the

tokenizations do not match. In fact, while the tagger has an overall tokenization accuracy of about

98.5%, even this level of accuracy is catastrophic for evalb, since out of 1739 sentences in the dev

section (of length <= 40), 338 differ in tokenization and so cannot be evaluated, and for this reason

we do not present a parsing score. See [17] for a discussion of a similar problem for Chinese parsing

evaluation. A good candidate for overcoming this problem is the Sparseval software [14], which

allows the separate specification of how tokens are aligned. This is somewhat orthogonal to the main

concerns of this paper, but we note here that this issue does not prevent the evaluation and analysis

under our system. See footnote 13 for more detail on this issue.

109

110

===============================
TOKENS
===============================
<0> wa {and} <1> jar+at {occur+it/they/she]}
<2> Al+masiyr+ap {the+march+[fem.sg.]} <3> Al+>uxoraY {the+another}
<4> fiy {in} <5> muxay~am {refugee camp}
<6> jabAlyiA {Jabaliya} <7> li {for/to}
<8> lAji}+iyna {refugee+[masc.pl.gen.]} <9> $amAl {north}
<10> gaz~+ap {Gaza+[fem.sg.]} <11> bi {by/with}
<12> mu$Arak+ap {participation+[fem.sg.]} <13> Ea$ar+At {scores+[fem.pl.]}
<14> Al+>aTofAl {the+children}

==
FULL TREE
==

(S (CONJ <0>wa)
(VP (PV+PVSUFF_SUBJ:3FS <1>jar+at)

(NP-SBJ (DET+NOUN+NSUFF_FEM_SG <2>Al+masiyr+ap)
(DET+ADJ <3>Al+>uxoraY))

(PP-LOC (PREP <4>fiy)
(NP

(NP (NOUN <5>muxay~am})
(NP (NOUN_PROP <6>jabAliyA)))

(PP (PREP <7>li)
(NP (NOUN+NSUFF_MASC_PL_GEN <8>lAji}+iyna)))

(NP-LOC (NOUN <9>$amAl)
(NP (NOUN_PROP+NSUFF_FEM_SG <10>gaz~+ap)))))

(PP-MNR (PREP <11>bi)
(NP (NOUN+NSUFF_FEM_SG <12>mu$Arak+ap)

(NP (NOUN_NUM+NSUFF_FEM_PL <13>Ea$ar+At)
(NP (DET+NOUN <14>Al+>aTofAl)))))))

==
EXTRACTED ETREE INSTANCES
==
ETREE TEMPLATE ANCHORS
1 A1 (A1) <0> CONJ wa
2 (S (VP A1 NP[t]-SBJ^)) (A1) <1> PV+PVSUFF_SUBJ:3FS jar+at
3 (NP A1) (A1) <2> DET+NOUN+NSUFF_FEM_SG Al+masiyr+ap
4 A1 (A1) <3> DET+ADJ Al+>uxoraY
5 (PP[b]-LOC A1 NP^) (A1) <4> PREP fiy
6 (NP A1 (NP A2)) (A1) <5> NOUN muxay~am

(A2) <6> NOUN_PROP jabAliyA
7 (PP A1 NP^) (A1) <7> PREP li
8 (NP A1) (A1) <8> NOUN+NSUFF_MASC_PL_GEN lAji}+iyna
9 (NP[b]-LOC A1 (NP A2)) (A1) <9> NOUN $amAl

(A2) <10> NOUN_PROP+NSUFF_FEM_SG gaz~+ap
10 (PP[b]-MNR A1 NP^) (A1) <11> PREP bi
11 (NP A1 (NP A2 (NP A3))) (A1) <12> NOUN+NSUFF_FEM_SG mu$Arak+ap

(A2) <13> NOUN_NUM+NSUFF_FEM_PL Ea$ar+At
(A3) <14> DET+NOUN Al+>aTofAl

Figure 1: An example of Tree Decomposition resulting in extracted elementary
trees (etrees) (Translation of Arabic sentence: Another march occurred in the north
Gaza Jabaliya refugee camp for refugees with the participation of scores of chil-
dren.)

from a line of research on decomposing full trees in a treebank into smaller syntac-

tic chunks. Usually based around Tree Adjoining Grammar (TAG) or some variant

(loosely referred to as “tree grammars”), this work aims to identify the smaller

trees that are the “building blocks” of the full trees of that treebank, and that are

then used for such purposes as training parsers or as a basis for machine transla-

tion systems [3, 4, 16]. However, this approach has not been utilized for searching

within a treebank, as far as we know.

As in the earlier TAG work we use head rules to decompose the full trees

and then extract out the “elementary trees”, which are the small syntactic chunks.

For our grammar we use a TAG variant with tree-substitution, sister-adjunction,

and Chomsky-adjunction ([4]). We do not have space here to review these basic

aspects of the extraction in detail, but instead we give an example in Figure 1, and

highlight some aspects of our tree extraction that we feel are worthy of note.7

The full tree is shown in the middle of Figure 1.8 Each token is listed as

(POS <index> word), where <index> is the index of the word in the sentence.

To avoid cluttering up the tree structure, we include at the top a separate listing of

the glosses for each word.

The extracted elementary trees are shown at the bottom. Each decomposed tree

has a particular tree structure, and it is possible (indeed, it is the entire reason for

this approach) that the same tree structure is used in more than one decomposed

tree fragment. We call each such elementary tree structure an “etree template”, and

a particular instance of that template, together with the “anchors” (tokens) used

in that instance of that template, is called an “etree instance” (“etree” is short for

“elementary tree”).

For example, the template (S (VP A1 NP[t]-SBJ^)) is used once in this tree

decomposition (although many times in the entire corpus), where A1 is the anchor

of the template, which is associated with a particular word in an etree instance that

uses this template. In this case, instance #2 uses this template, and the anchor is

the verb at index <1>. The ^ indicates that the NP[t]-SBJ^ node is a substitution

node, meaning that another etree instance substitutes into it to reform the original

full tree (in this case, etree instance #3).

The template (NP A1) is used in two etree instances, #3 with anchor <2> and

#8 with anchor <8>. Templates can have more than one anchor. For example, the

template (NP[b]-LOC A1 (NP A2)) is an example of a two-level idafa structure,

an extremely common structure in Arabic, in which two or more tokens form a

tight syntactic unit. (In this particular case, the entire structure projects with a LOC
function tag as well.) Etree instance #9 uses this template, with two anchors, the

words at indices <9> and <10>. Instance #11 is an example of a three-level idafa.

A fundamental idea of this approach (as in all TAG-related work) is that the

modifiers are separated from non-recursive structures. For example, the two-level

7See [8] for an earlier and somewhat different approach to extracting a tree grammar from the

Arabic Treebank.
8Throughout this paper we use the Buckwalter Arabic transliteration scheme [2].

111

#2

#1,MOD #3,SUB

#4,MOD

#5,MOD

#6,SUB

#7,MOD

#8,SUB

#9,MOD

#10,MOD

#11,SUB

Figure 2: The derivation tree for the extraction in Figure 1

idafa at indices <5>,<6> is separated from its modifier PP and NP-LOC sisters.9

Some modifiers result in etree templates that are just a single anchor, with no

structure. For example, the template A1 is used for instance #1, of just the typical

sentence-initial conjunction wa, and also for the adjective <3>, which is separated

out from the noun it modifies (<2>).

It is important to note that each etree instance has at least one anchor, and every

tree token is an anchor for some etree instance. It therefore becomes possible to

examine the properties of an etree instance that a tree token is the anchor for, and

to compare corresponding instances for the same tree token across two different

annotations, such as gold/parser-output trees or between the trees for two different

annotators. This property (traditionally called “lexicalization” in the Tree Adjoin-

ing Grammar literature) is taken advantage of for query searching and comparison

in Sections 4 and 5.

As usual in tree grammar extraction, the extraction process for each full tree

produces not just the collection of etree instances, but also a “derivation tree” that

is in effect a record of how the etree instances combine together again to form the

original full tree. The derivation tree for the extraction just described is shown in

Figure 2, in which the nodes of the tree correspond to the etree instances in Figure

1, and the SUB and MOD indicate the type of attachment (substitution and modi-

fication).10 For example, the derivation tree shows etree instance #4 modifying

instance #3, which in turn substitutes into instance #2.

Unlike all earlier work in tree decomposition that we know of, we also include

function tags in the extracted trees. While a prominent feature of the Penn Treebank

and the Penn Arabic Treebank, they have been mostly ignored in parsing (with

some exceptions - e.g., [1, 6]) and in previous tree extraction work.11

9The “extra” NP that scopes around the span <5,10> in the full original tree is therefore missing

from the extracted instances. If recreating the original tree from the extracted trees, it can be added

back in to exactly recreate the original tree.
10This derivation tree is a bit of a simplification. The complete tree also includes the addresses in

each etree template of the locus of substitution or modification, and for sister adjunction, the direction

of modification. We leave out these details here.
11Except for the use of the function tags as a way to determine the argument/adjunct classification

112

Since the function tags are an important part of the annotation (see the argu-

ments in [1, 6]), and since they are part of the annotation process (and so something

to be checked in the inter-annotator agreement files), we include them in the tree

decomposition. We break the tags up into two groups “syntactic” and “semantic”.

The TAG decomposition views the former as being imposed on a node from the

top, and the latter as arising from the bottom, and this controls where the function

tag for a node from the original tree is placed in the extracted trees. For example,

the SBJ function tag (a syntactic tag) in the full tree is placed in the template for

instance #2 (with the [t]-SBJ meaning that it is a “top” function tag), and it is

not present on the template for instance #3, and so the word at index <2> in etree

instance #3 only receives that label from substituting into the NP[t]-SBJ^ node.

In contrast, the -LOC and -MNR tags are semantic tags, and so “bottom” tags and

appear in the extracted trees anchored by the head of the constituent the tag appears

with in the original tree.

4 Treebank Search Using Elementary Trees

We carry out the extraction procedure described in the previous section to both

versions, gold and parsed, of the dev section, using the data discussed in Section

2.12

For the two versions of the dev section, taken together, there are 141499 to-

kens, with 83196 etree instances, which need only 1551 etree templates. After this

extraction process is completed, all of the tokens, etree templates, etree instances,

and derivation trees are stored in a MySQL database for later search. We do not

have space here to show the database schema, but it is organized with appropriate

indexing to allow for very quick access to the etree instances for each sentence,

and to the etree template each one in turn links to.

The search for particular syntactic structures, as represented by the etree tem-

plates, therefore becomes a search for indexed integers (with integers represent-

ing etree instances and etree templates). Searching for these elementary trees is

therefore extremely fast, something we are taking advantage of for separate work

on searching an entire corpus for syntactic structures, aside from the current is-

sue of searching on two sets of trees together. From the perspective of database

organization, the tree extraction can be perhaps be viewed as a type of database

“normalization”, in which duplicate information is placed in a separate table.

Before any queries are processed, the tree decomposition and database cre-

ation, as discussed above, is done. This is only done once, for the two full sets of

in various head-based parsing approaches, or in the earlier TAG-based tree extraction work. However,

most parsing work has not been concerned with function tag recovery during parsing, and no TAG-

based extraction work has included the function tags in the extracted trees.
12The extraction of the parse output requires that function tags be included in the output, as in

either [1, 6]. This is because the function tags are used for the tree decomposition process. However,

it does not currently use empty categories in the parse output, as in [6] and other work, although that

will be incorporated in future work.

113

trees, and is used for all future query searches.

Currently queries are specified as conditions over elementary trees. We do not

currently utilize the derivation tree in the search as well, to query on how etrees

connect with each other. However, this is very important for future work, as dis-

cussed in Section 6.

Further, the queries can be logically grouped into sets, for cases in which we

want to see how particular etree instances might satisfy one query instead of an-

other. For example, we might want to see if the parser, or the annotators, are

confusing LOC and ADV function tags, or treating a particular token as part of a

three-level idafa instead of a two-level idafa.

We take advantage of the “lexicalized” property of the tree grammar, as dis-

cussed in Section 3, to allow us to construct confusion matrices showing how cor-

responding tokens across two different annotations compare with regard to satis-

faction of the queries of interest. This is possible because we can associate each

token with satisfaction results for various queries based on the etree instance that

the tree token belongs to. Even queries examined on their own, without reference

to other queries, form a 2x2 confusion matrix, in which the query is compared

against the lack of satisfaction of that query. We show examples of these query

results and confusion matrices in the next section.

For a given set of queries, the following sequence occurs:

• The etree templates are searched to determine which match a given query.

It is possible (and likely) that a query will select more than one of the

1551 etree templates. For example, a query specifying the structure (SBAR

WHNP S) will find cases of such SBAR trees regardless of what is below the

S node (intransitive or transitive verb, verbal noun, etc.).

• The etree instances are then searched to determine which take a template that

satisfies a given query.

• These first two steps result in the following situation. Each etree instance

is categorized as satisfying a given query or not. Due to the “lexicalized”

property of the tree grammar, as just discussed, each treebank token is linked

to an etree instance, and so it immediately follows that for any treebank

token, it is easy to determine whether it is in a syntactic context that satisfies

a given query.

• The two sets of trees are gone through in parallel, token by token.13 Each

corresponding token in the two sets of trees is checked for which queries it

satisfies. The query results are stored in confusion matrices as mentioned

above.

13As noted in footnote 6, there is an issue here with differing tokenizations in the gold and parser

data. More precisely, we are gathering data on the original whitespace-delimited tokens, which

themselves are broken up into multiple tokens for the trees, perhaps differently for the gold and

parsed data. This allows the matching of tokens across the two sets of trees, thus overcoming the

problems with evalb mentioned in footnote 6. We do not show in this paper the two levels of tokens.

114

115

GOLD TREE PARSED TREE
========= ===========

(PP (PREP (PP (PREP
<7>li,for/to) <7>li)

(NP (NOUN+NSUFF_MASC_PL_GEN (NP (NOUN
<8>lAji}+iyna,refugee+[masc.pl.gen.]) <8>lAji}+iyna)

(NP-LOC (NOUN+CASE_DEF_ACC (NP (NOUN
<9>$amAl+a,north/North+[def.acc.]) <9>$amAl)
(NP (NOUN_PROP+NSUFF_FEM_SG+CASE_DEF_GEN (NP (NOUN_PROP

<10>gaz~+ap+i,Gaza+[fem.sg.]+[def.gen.]) <10>gaz~+ap)

Figure 3: The token <10>gaz~+ap in the parsed tree is an example of a token that

results in the cell (N,4) in Table 1, since it is the anchor of a three-level idafa while

the corresponding token in the gold tree is not. At the same time, the token <9> in

the gold tree results in an entry in cell (1,N) in Table 2 since it is the anchor of a

NP-LOC structure, while the corresponding token <9> in the parsed tree is not.

matter in this approach to report on multi-level etree structures that are larger than

just one-level relations in the trees.

Table 2 shows the confusion matrix for queries 1, 2, and 3. For example, the

cell (1,1) indicates that there are 28 cases in which both the gold and parsed trees

had an (NP-LOC A) structure for a token A. Cell (1,3) indicates that there are 8

cases in which the gold tree satisfied query 1 (NP-LOC) for some token, while the

parser output tree satisfied query 3 (NP-ADV) for that same token.

Of particular interest to us is that cell (1,N) indicates that there are 16 cases in

which the gold tree had a token projecting to NP-LOC while the parsed tree did not

project to LOC, DIR, or ADV. One such case is the same pair of tree fragments in

Figure 3, in which token <9> in the gold tree heads an NP-LOC while this is not the

case in the parsed tree.15

These examples are of necessity just a sampling of the searches currently being

used. The ability to define conditions on etrees and relate the results to particular

tokens makes it easy to look for properties across the pairs of trees. It is extremely

useful to be able to define queries on meaningful syntactic units, such as the idafas

or, in other queries not shown here, properties of relative clause constructions,

properties of etrees headed by verbs (such as valency), and so on. These types of

searches are harder to do in the earlier work on tree analysis discussed in Section

1, which are limited to reporting on one-level head/dependency relations.

15This case is also of interest also because it shows that the parser is not taking advantage of

morphological evidence showing that the three-level idafa analysis is wrong. The tight coupling of

words in an idafa triggers various morpological and phonological effects, one of which is that the

“n” in non-final words in the idafa is dropped, and so the suffix “iyna” in token <8> clearly indicates

that the idafa in the parse output must be incorrect.

116

6 Conclusions and Future Work

We have described a new approach to treebank search that allows queries to be

directly stated, and reports generated, using meaningful units of tree fragments.

Future work will take place in three overlapping directions:

(1) The work has so far focused on Arabic parsed data. This needs to be ex-

tended for IAA analysis (which, again, is basically the same problem), and further-

more, for other languages, in particular English, both for parsing analysis and for

current treebank construction.

(2) As discussed in Section 4, there are some notable potential speed advan-

tages to this approach, and we intend to utilize and test this for the more standard

problem of searching on a complete corpus for various configurations, in addition

to the search on parallel trees as described here.

(3) However, by far the most important aspect of future work is extending the

query definition to allow for searches on how etrees combine in the derivation tree.

This will allow us to quantify various aspects of modifier attachment, always a

concern for both annotation and parsing. Because we are using trees of meaning-

ful syntactic structures as the basic units of search, we will be able to quantify

the results concerning such questions as “how often do the annotators agree on

the core structures, but disagree on the attachment of various modifiers into those

structures?”

While searching in the derivation tree is necessary for fully expressing the

searches we are interested in, it will add a layer of complexity to the search proce-

dure. The worst-case scenario is that requiring arbitrary searches over the deriva-

tion tree will bring up here the usual issues concerning how to search trees in a

database that we have so far avoided in this approach by “normalizing” the cor-

pus by extracting out the etrees. However, we suspect that many of the required

searches will need to examine only very local slices of the derivation tree, namely

just parent/head/sister relations, which are those used to represent modification in

the derivation tree. This should be the case because in the derivation tree, each node

already represents a chunk of syntactic structure, instead of just a a single node. If

this hypothesis holds, and arbitrary hierarchical searching on trees is avoided for

queries, we will be able to search for queries we are interested in, while avoiding

any significant speed penalty.

References

[1] Don Blaheta. Function Tagging. PhD thesis, Brown, 2003.

[2] Tim Buckwalter. Arabic morphological analyzer version 2.0. LDC2004L02,

2004. Linguistic Data Consortium.

[3] John Chen. Towards Efficient Statistical Parsing Using Lexicalized Gram-
matical Information. PhD thesis, University of Delaware, 2001.

117

[4] David Chiang. Statistical parsing with an automatically extracted tree adjoin-

ing gramar. In Data Oriented Parsing. CSLI, 2003.

[5] Michael Collins. Head-driven statistical models for natural language parsing.

Computational Linguistics, 29:589–637, 2003.

[6] Ryan Gabbard, Seth Kulick, and Mitchell Marcus. Fully parsing the Penn

Treebank. In HLT-NAACL, pages 184–191, 2006.

[7] Sumukh Ghodke and Steven Bird. Querying linguistic annotations. In Pro-
ceedings of the Thirteenth Australasian Document Computing Symposium,

pages 69–72, Hobart, Australia, 2008.

[8] Nizar Habash and Owen Rambow. Extracting a Tree Adjoining Grammar

from the Penn Arabic Treebank. In Traitement Automatique du Langage Na-
turel (TALN-04), Fez, Morocco, 2004.

[9] A.K. Joshi and Y. Schabes. Tree-adjoining grammars. In G. Rozenberg and

A. Salomaa, editors, Handbook of Formal Languages, Volume 3: Beyond
Words, pages 69–124. Springer, New York, 1997.

[10] Seth Kulick, Ryan Gabbard, and Mitchell Marcus. Parsing the Arabic Tree-

bank: Analysis and improvements. In Proceedings of TLT 2006. Treebanks

and Linguistic Theories, 2006.

[11] Mohamed Maamouri, Ann Bies, and Seth Kulick. Upgrading and enhancing

the Penn Arabic Treebank: A GALE challenge. In Joseph Olive, editor, in
progress for publication (book describing work in GALE program). 2009.

[12] Jiri Mirovsky. Netgraph - making searching in treebanks easy. In Proceedings
of the Third International Joint Conference on Natural Language Processing,

pages 945–950, Hyderabad, India, 2008.

[13] Beth Randall. Corpus search. http://sourceforge.net/projects/corpussearch/.

[14] B. Roark et al. Sparseval: Evaluation metrics for parsing speech. In Fifth
International Conference on Language Resources and Evaluation, Genoa,

Italy, 2006.

[15] Rushin Shah. The LDC Standard Arabic Morphological Tagger. talk at Lin-

guistic Data Consortium.

[16] Fei Xia. Automatic Grammar Generation From Two Different Perspectives.

PhD thesis, University of Pennsylvania, 2001.

[17] Nianwen Xue. Evaluating the impact of Chinese word segmentation on syn-

tactic parsing, 2009. Book chapter for Global Automatic Language Exploita-

tion.

118

A Declarative Formalism for

Constituent-to-Dependency Conversion

Torsten Marek Gerold Schneider Martin Volk

Institute of Computational Linguistics
University of Zürich

marek@ifi.uzh.ch gschneid@ifi.uzh.ch volk@cl.uzh.ch

Abstract

In this paper, we present a declarative formalism for writing rule sets to con-

vert constituent trees into dependency graphs. The formalism is designed to

be independent of the annotation scheme and provides a highly task-related

syntax, abstracting away from the underlying graph data structures.

We have implemented the formalism in our search tool and used a prelim-

inary version to create a rule set that converts more than 97% of the TIGER

corpus.

1 Introduction

Syntactic structures are expressed either as constituent or as dependent structures.

The fundamental differences between the two formalisms is that dependency is (1)

endocentric, which means that the category of the parent node follows from the

category of the child node, and (2) strictly binary, which means that the conversion

of ternary rules (and n-ary if n > 2) is ambiguous. Debates about which formal-

ism is theoretically more appropriate for linguistics are no longer topical, [4] has

e.g. shown that X-bar grammar (Principles and Parameters) is equivalent to De-

pendency, but the practical problem of conversion persists. On the one hand, the

theoretical discussions have led to successful mixed formalisms (e.g. HPSG, LFG).

On the other hand, tackling the intricate details of a given annotation scheme is now

more seen as a practical problem, where the devil is in the details. We present a

declarative formalism and a tool that supports the linguist in writing conversion

rules. The tool graphically displays conversions sentence-by-sentence and imme-

diately updates rule changes. It also delivers errors and coverage reports, allowing

a linguist to write a broad-coverage conversion in little time.

The paper is structured as follows: We summarize related work in section 2.

The conversion formalism is introduced and illustrated with examples in section 3.

We describe the performance of a sample conversion rule set that we have written

119

for the German TIGER Treebank in section 4. We discuss future work in section

5.

2 Related Work

On an abstract level, conversion of a constituent tree into a dependency graph is

an application of graph transformation [8], which is used in fields like compiler

theory and software architecture validation. A graph transformation is a series of

rewrite rules which are applied to a source graph to create a target graph. Our

formalism is influenced by this idea, but while graph transformations are domain-

oblivious, our formalism is coupled strongly to the domain of syntactic annotation

as graphs. On a practical level, a number of conversion algorithms already exist.

2.1 MALTparse

[12] for example maps Penn Treebank constituents to dependency representations.

As the majority of Penn Treebank constituents do not have functional labels, re-

lation labels need to be assigned. In order of descending priority, the rules are as

follows. (mother = M, head = H, dependent = D, r = dependency relation label)

1. if D is a punctuation category, r = P.

2. if D contains the function tag SBJ, r = SBJ.

3. if D contains the function tag PRD, r = PRD.

4. if M = VP, H is a part-of-speech tag and D = NP (without any function tag),

r = OBJ.

5. if M = VP, H is a part-of-speech tag and D = VP, r = VC.

6. if M = SBAR and D = S, r = SBAR.

7. if M = VP, S, SQ, SINV or SBAR, r = VMOD.

8. if M = NP, NAC, NX or WHNP, r = NMOD.

9. if M = ADJP, ADVP, QP, WHADJP or WHADVP, r = AMOD.

10. if M = PP or WHPP, r = PMOD.

11. Otherwise, r = DEP.

This mapping is simple and reliable but leads to a less elaborate dependency

formalism than e.g. the Stanford scheme [5]

2.2 Johannsson

[9] describes constituent-to-dependent conversion as a two stage process: head-

selection (as most constituent representations are not endocentric) and function

assignment (as most dependency relations are labeled). Head selection typically

involves a set of Magerman rules [11]. The function assignment function is an

extension of [12], addressing e.g. the distinction between object and adjunct, and

raising long-distance dependency nodes.

120

2.3 Pro3Gres

[15] describes mapping as a complex task, which comes with some loss. In order to

train the dependency parser Pro3Gres on Penn Treebank data, an involved mapping

that has high precision but slightly incomplete recall, and that does not map all

structural configurations is used. This leads to a mapping that delivers reliable

relations but not fully connected trees, which is sufficient for the task of delivering

statistical data for parser training. The annotation scheme is very similar to the

Stanford scheme [7].

The structural configurations are queried with a large collection of tgrep queries,

the majority of which are non-local, allowing access to lexical material and dealing

with long-distance dependencies.

2.4 TiGerDB

There are several approaches converting the Penn Treebank, but there is less re-

search on other Treebanks. Forst et. al [6] converted the German TIGER Treebank

into a dependency representation, TiGerDB. The conversion had to be done semi-

automatically, since TiGerDB has a richer annotation than the original data. Boyd

et al. [1] address several issues in TiGerDB, which keep it from becoming a proper

gold standard for dependency parsing and map it to a more surface-oriented anal-

ysis which does not include abstract nodes and is aligned with the original corpus

tokens.

3 The Conversion Formalism

Developing a formalism for converting phrase structure into dependency trees that

is independent of the annotation formalism, must strike a balance between expres-

sivity on the one and task-relatedness on the other hand. If the formalism is too

expressive, it might just as well be implemented as a framework or library for a

general purpose programming language.

On the other hand, the formalism should have sufficiently expressive power,

even for structures that can be arbitrarily large, like coordination constructions;

and a syntax that captures the problems in constituent-to-dependency conversion,

head identification and introduction of dependency edges.

3.1 Data Structures

In the conversion process, syntax trees, irrespective of the actual syntax formalism,

are represented as directed graphs with typed nodes and edges. A graph G has a

set of vertices (or nodes) VG and a set of directed edges EG. An edge going from p
to c with {p,c} ⊂VG is represented by (p,c) ∈ EG.

Nodes and edges are typed attribute-value matrices (AVMs), with the actual

types depending on the syntax and annotation formalism. There are several differ-

121

ent types of edges, thus graphs need not be proper trees (i.e. one and only one node

from which all others can be reached, no cycles), however the edges that define the

main structural layer must satisfy the requirements for a tree.

3.1.1 Constituent Graphs

Based on the type system in [10], a constituent graph C consists of terminal and

nonterminal nodes, representing words and linguistic phrases. The base type of

all node types is the feature record. The main structural layer is defined by dom-

inance edges, which define the phrase structure. All nodes but the root node have

exactly one incoming dominance edge. If we refer to the origin and target node of

a dominance edge, we use the terms parent and child.

The linear ordering of terminals in the sentence is annotated explicitly, which

allows crossing dominance edges. This can be encoded using precedence edges

between successive terminals, but for performance reasons each terminal has its

positional index as a feature value.

3.1.2 Dependency Graphs

In contrast to constituent graphs, which are created from two different kinds of

node types, a dependency graph D as defined in this paper contains only nodes

representing words, again with explicit linear ordering.

The main structural layer is defined by dependency edges. The origin of a

such an edge is called head, its target dependent. A word can have any number

of outgoing dependency edges, but has at most one incoming dependency edge.

Words without incoming edges are the root node and, depending on the formalism,

punctuation and other non-word tokens.

Some formalisms for dependency graphs allow empty nodes, i.e. nodes that act

as heads but do not correspond to any word in the sentence, thus resembling phrase

nodes in constituent trees. In our conversions, we do not use empty nodes so far.

3.2 Conversion Process Constraints

Following the approach described in [9], conversion is carried out by identifying

a head child for each phrase in the constituent tree and connecting the remaining

children to the head using appropriate dependency edges. The conversion of a

whole tree is carried out by repeated applications of bound rules, which define

the rules for different kinds of linguistic phrases. The conversion process is local
in the sense that only a phrase and its immediate children are considered during

rule application. Nonterminal children are assumed to be opaque regarding their

internal structure.

The conversion of a constituent graph C is sound if the generated dependency

tree D satisfies the structural requirements described in section 3.1. The conversion

is complete if each nonterminal node p is matched by a bound rule and if this

122

rule handles each dominance edge emanating from p explicitly in the conversion

process. The completeness criterion does not require that each dominance edge in

Ec is converted into a dependency edge in ED, cf. 3.3.2 for a justification of this

relaxation.

Both constituent and dependency trees build structures on the exact same sen-

tence material, thus the first step in the conversion is always to copy all terminal

nodes from the constituent tree into the dependency tree.

3.3 Bound Rules for Nonterminals

Bound rules are the core of each rule set. They describe the conversion of a non-

terminal node p and all its immediate children, i.e. all nodes c ∈ VC for which

(p,c) ∈ EC holds. Example 1 shows the structure of such a rule.

(1) context { <node> } { <body> }

The keyword context is followed by the rule context <node>, which specifies

the nonterminal nodes the rule is applied to. Here, we use the well-established

syntax introduced by the TIGER query language [10], which can be used to query

arbitrary acyclic directed graphs with feature structures as nodes. The context is

currently limited to node descriptions and can thus only be used to select nodes

based on local features. Extended contexts with structural constraints are discussed

in section 5.1. The following list shows examples of node descriptions.

• [cat="NP"]
Matches all nodes where the feature cat is "NP"

• [cat=("CS"|"CNP")]
Matches all nodes where the feature cat is either "CS" or "CNP"

The second pair of curly braces contains the body (<body>) of a bound rule.

The body is a series of actions, which are used to create the structure of the depen-

dency graph, cf. section 3.3.2. They are applied to node variables which are intro-

duced through quantifiers. The general form of a quantified expression is shown in

example 2.

(2) <quant> <var> { <child> } => <actions>;

This expression states that the list of children of the current nonterminal node

should be searched for nodes c that satisfy the local context given in <child>. The

context is defined by a partial node description, which can be made more specific

by constraining the label of the edge (p,c). Examples of child contexts are:

• NK [pos="NN"]
Any word with part-of-speech tag NN and incoming dominance edge label

NK.

• AC [FREC]
Any node with incoming dominance edge label AC.

123

3.3.1 Quantifiers

The quantifier <quant> determines the way the individual nodes that satisfy the

context descriptions are actually bound to the variable <var>. For the quantifiers,

we follow the Repeatability criterion of [9] (p. 35), which states:

Any syntactic relation must be either unlimitedly repeatable or non-

repeatable.

The criterion marks the difference between complements, which must occur

exactly once, and adjuncts, which can occur any number of times, including not at

all, motivating the following quantifiers:

• first: Applies the actions only to the leftmost node that matches the criteria.

The actions are mandatory; if they cannot be applied, the conversion fails

immediately.

• last: This quantifier is analog to first, but matches the right- instead of the

leftmost node, which is useful for right-headed phrases.

• first?, last?: These two quantifiers behave like their non-?-suffixed versions,

except that they do not enforce application.

• each: Applies the actions to any node matching the criteria.

3.3.2 Actions

While the quantifiers are used to identify nodes, actions are used to describe the

structure which is created. Examples for the two most important actions, head

marking and dependency edge insertion, are shown in example 3. The quantified

actions are applied from top to bottom.

(3) context { #s:[cat="S"] } {
first #hd { HD [FREC] } => root #hd;
first #s { SB [FREC] } => <root> subj #s;

}
context { #np:[cat="NP"] } {

last #n { NK [pos="NN"] } => root #n;
each #d { NK [pos="ART"] } => <root> det #d;

}

The root #hd action marks its node arguments as the head of the current non-

terminal, in this case the first (and only the first) occurrence of a node with the edge

label HD. In the second action, we introduce a dependency between the head and

the first node with the edge label SB, using the edge insertion action <root> subj
#s. Since there is only one head per nonterminal—marking more than one node

as a head is a conversion error and results in immediate failure—we can refer to it

using the implicit variable <root>. Since the conversion process is not tied to any

124

�����

��

	
�
�
	

���
�������

����

��

����

��

��

���

(a) Original

����������

	
�

�

�����

����

���

	��

����

(b) Conversion

Figure 1: Conversion Example

specific dependency grammar, the set of edges is not limited, and any alphanumeric

string is a valid edge label.

Each node marked as head and each node on the right-hand side of an edge

insertion action are marked as consumed. In a bound rule, each node is consumed

at least once, which means that it cannot be matched in subsequent quantifiers.

Consumption is also used to check the completeness of the conversion process

after no more rules can be applied.

In some cases, it is necessary to drop edges that are present in the constituent

tree, like punctuation tokens, which are attached to the virtual root phrase in the

NEGRA annotation scheme [3]. The ignore action marks a node variable as con-

sumed without introducing a dependency edge.

3.3.3 The Conversion Process

Each nonterminal p, unless all its children are dropped from the structure, must

have a unique root head cp, otherwise the conversion will fail. The head assign-

ments of the rule applications define a surjective mapping of nonterminals to termi-

nals, which are mapped to words in the dependency structure. As an example, we

show the steps for converting the structure shown in figure 1a to the dependency

graph in 1b, based on the conversion rules in example 3.

1. Identify the heads
NP1 ≡ t2 ∧ S1 ≡ t3

2. Create dependency edges
t2

det−−→ t1 ∧ t3
subj−−→ NP1

3. Replace all nonterminals with an equivalent terminal
t2

det−−→ t1 ∧ t3
subj−−→ t2

4. Replace constituent tree terminals by words
w2

det−→ w1 ∧w3
subj−−→ w2

In the first step, we assign a head to each nonterminal phrase, for instance

“dog” (t2) for NP1. In step 2, all remaining nodes are connected to their heads using

dependency edges. In step 3, all nonterminals in the dependency edge definitions

are replaced by equivalent terminals, which are determined using the assignments

125

��� ����	

��

���
���� ��

��	

��

����

�� �� ������

���

(a) Original

����������	��

��

�����
��

���

�	��

�	��

(b) Conversion

Figure 2: Handling of Coordination

from step 1. The last step replaces all terminals by the equivalent words in the

dependency graph.

3.4 Free Rules

Free rules allow for conversion of arbitrarily large structures like coordination

phrases. Consider the tree in figure 2a; instead of selecting one conjunct as the

head and connecting all other conjuncts to it, it should also be possible to create

a chained structure as seen in figure 2b. Since there is no limit to the number of

conjuncts, we combine a bound rule and a free rule that invokes itself recursively,

as shown in example 4.

(4) rule coord() {
first #first { CJ [FREC] } => root #first;
first? #e { CJ [FREC] } => <root> conj coord();

}
context { #cnp:[cat=("CAC"|...|"CVZ")] } {

each #cd { CD [FREC] } => ignore #cd;
root coord();

}

In the bound rule, any conjunctions (edge label CD) are dropped from the

phrase and the free rule coord is invoked unconditionally. Like bound rules, free

rules have at most one node that is marked as a head, again using the root action,

which is also used as the final argument to the action in which the free rule is in-

voked. Therefore, the head of the first invocation of coord also becomes the head

of the whole coordination phrase.

In coord, the leftmost conjunct (edge label CJ) is marked as the head. The

second action, quantified with first? is invoked only if another conjunct remains,

which is connected to the head with the dependency conj. Otherwise, the base case

is reached and recursion stops.

Free rules are also useful to avoid rule duplication when certain constituent

phrases have a similar structure.

126

Result Count Percentage

Complete 43,299 85.79%

Partial1 5,902 11.69%

Failure 1,269 2.51%

Total 50,470 100.00%

Table 1: Conversion Coverage in the TIGER Treebank Release 2.1

3.5 Match Cascades

Some phrases have a varying structure. The head of an NP can be a noun, a personal

or demonstrative pronoun or a proper name, which are mutually exclusive, but in

some cases it is necessary to match some with higher priority than others. So

far, this can only be approximated by using a series of quantifiers as shown in

example 5. To solve this problem, we introduce cascaded descriptions as shown in

example 6.

(5) first? #h { [pos="NK"] } => root #h;
first #h { [pos="FM"] } => root #h;

(6) first #h { [pos="NK"], [pos="FM"] } => root #h;

The descriptions in example 6 are matched against the available nodes in the

order they are written and behave similar to the rules in ex. 5, but only one head is

assigned.

4 Conversion of the TIGER Treebank

As a first experiment, we wrote a rule set for converting the German TIGER tree-

bank [2] into a dependency format. The rule set consists of 14 bound and 5 free

rules, with little more than 100 individual actions. Coverage is shown in table 1,

which is based on a version of the converter that handles secondary edges trans-

parently. Any secondary edge in the constituent graph is treated like a dominance

edge, but is eventually inserted as a secondary dependency. If deactivated, the

failure rate raises to 3.51%.

We used the interactive character of our tool to constantly check and improve

performance and coverage. We did not perform an exhaustive evaluation, but only

errors remain.

5 Conclusion & Future Work

In this paper, we created a declarative formalism for converting constituent trees

into dependency graphs and showed that the formalism is already powerful enough

1Conversion process results in several unconnected substructures.

127

to convert more than 97% of the TIGER treebank. Rule writing and debugging is

supported by the graphical interface which converts on the fly and delivers error

and coverage messages.

We implemented the formalism in ladon2, a library for structured linguistic an-

notation data. We also developed a new tool for browsing and searching treebanks

that supports interactive writing of conversion rule sets as well as transparent con-

version and searching.

5.1 Converting the Penn Treebank

Following the work by [9] and [14], we will create a rule set for the Penn Treebank.

In the current implementation, the context for bound rules is very limited, since

only local features of the node can be used. In some cases, it is desirable to choose

conversion rules based on a larger context, and to be able to add further sources

of information. Local conversions, for example in [12] or extensions of it like in

[13] can run into linguistic problems and inconsistencies, which are largely due

to the Penn Treebank annotation scheme. For example, the distinction between

objects, adjuncts and indirect objects is not always possible, the distinction between

appositions and conjunctions needs non-local context, and the distinction between

PP complements and adjuncts is partly underspecified in the Penn Treebank.

References

[1] Adriane Boyd, Markus Dickinson, and Detmar Meurers. On Representing

Dependency Relations – Insights from Converting the German TiGerDB. In

Proceedings of the Sixth Workshop on Treebanks and Linguistic Theories
(TLT 2007), pages 31–42, Bergen, Norway, 2007.

[2] Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George

Smith. The TIGER Treebank. In Proceedings of the First Workshop on Tree-
banks and Linguistic Theories, TLT 2002, Sozopol, Bulgaria, 2002.

[3] Thorsten Brants, Roland Hendriks, Sabine Kramp, Brigitte Krenn, Cordula

Preis, Wojciech Skut, and Hans Uszkoreit. Das NEGRA-Annotationsschema.

Technical report, Universität des Saarlandes, Saarbrücken, Germany, 1997.

[4] Michael A. Covington. GB theory as Dependency Grammar. Technical Re-

port AI1992-03, University of Georgia, Athens, Georgia, 1992.

[5] Marie-Catherine de Marneffe and Christopher D. Manning. The stanford

typed dependencies representation. In COLING 2008 Workshop on Cross-
framework and Cross-domain Parser Evaluation, Manchester, UK, 2008.

2http://www.cl.uzh.ch/kitt/hg

128

[6] Martin Forst, Nria Bertomeu, Berthold Crysmann, Frederik Fouvry, Silvia

Hansen-Schirra, and Valia Kordoni. Towards a dependency-based gold stan-

dard for German parsers – The TiGer Dependency Bank. In Proceedings of
LINC-04, Geneva, Switzerland, 2004.

[7] Katri Haverinen, Filip Ginter, Sampo Pyysalo, and Tapio Salakoski. Accurate

conversion of dependency parses: targeting the Stanford scheme. In Proceed-
ings of Third International Symposium on Semantic Mining in Biomedicine
(SMBM 2008), Turku, Finland, 2008.

[8] Reiko Heckel. Graph Transformation in a Nutshell. In Proceedings of the
School on Foundations of Visual Modelling Techniques (FoVMT 2004) of the
SegraVis Research Training Network, volume 148, pages 187–198. Elsevier,

2006.

[9] Richard Johansson. Dependency-based Semantic Analysis of Natural-
language Text. PhD thesis, Department of Computer Science, Lund Uni-

versity, Lund, Sweden, 2008.

[10] Wolfgang Lezius. Ein Suchwerkzeug für syntaktisch annotierte Textkor-
pora. PhD thesis, IMS, University of Stuttgart, Stuttgart, Germany, December

2002.

[11] David Magerman. Statistical decision-tree models for parsing. In Proceed-
ings of the 33rd Meeting of the Association for Computational Linguistics,

Boston, MA, 1995.

[12] Joakim Nivre. Inductive Dependency Parsing. Springer, 2006.

[13] Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson,

Sebastian Riedel, and Deniz Yuret. The CoNLL 2007 shared task on depen-

dency parsing. In Proceedings of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007, pages 915–932, 2007.

[14] Gerold Schneider. Extracting and Using Trace-Free Functional Dependencies

from the Penn Treebank to Reduce Parsing Complexity. In Proceedings of
Treebanks and Linguistic Theories (TLT), Vaxjö, Sweden, 2003. University

Press.

[15] Gerold Schneider. Hybrid long-distance functional dependency parsing. PhD

thesis, University of Zürich, 2008.

129

Selectional Preferences from a Latin Treebank

Barbara McGillivray
University of Pisa

E-mail: b.mcgillivray@ling.unipi.it

Abstract

We present a system for automatically acquiring selectional preferences for

Latin verbs. We use the Index Thomisticus Treebank Valency Lexicon and an

enriched version of Latin WordNet as the reference conceptual hierarchy.

1 Introduction

The linguistic community today can rely on large annotated corpora, lexical re-

sources and Natural Language Processing (NLP) tools for several modern lan-

guages. Compared with these, Latin is a low resource language. In the past

years various projects have started aiming at filling this lacuna. Three treebank

projects are ongoing, sharing annotation style: Latin Dependency Treebank (LDT),

Index Thomisticus Treebank (IT-TB) and PROIEL Treebank.1 Among the lexi-

cal databases, Latin WordNet (LWN) [6] consists of around 10,000 Latin lemmas

mapped into the parallel structure of MultiWordNet [3]. The syntactic content of

treebanks joined with the semantic information from LWN allows for further re-

search in distributional computational semantics and in several NLP applications:

word sense disambiguation, anaphora resolution, parsing, etc.

This paper deals with the issue of automatically extracting semantic informa-

tion from syntactically annotated Latin corpora. In particular, we aim at extracting

the verbs’ selectional preferences (SPs), i. e. the semantic preferences of verbs

on their arguments. For example, the subject position of the transitive verb think is

usually filled by lexical items whose semantic properties include being human. The

background for this work is the IT-TB Valency Lexicon [5], which collects syntac-

tic arguments of verbs occurring in the IT-TB and represents them in a structured,

easily searchable way. It is automatically extracted from this treebank and updated

as the annotation proceeds. Following the method illustrated in [1] developed for

a cognitive model, we exploit the semantic hierarchy of LWN to map lexical items

into concepts and extract their semantic relations among them. Then, SPs are cal-

culated as probability distributions over these semantic features. The result is a

rich computational resource for the variety of Latin attested in the IT-TB.

1The sizes of these treebanks range between 50,000 words (LDT) and 100,000 (PROIEL). See

[5] for references.

131

2 Background and new contribution

Over the last decade, research into automatic acquisition of SPs from corpora led

to several systems which rely on supervised and unsupervised methods. Given a

set of argument headwords (for example, doctor, child as subjects of think), these

approaches perform a generalization step over unseen cases (human being). The

generalization problem is represented in WordNet (WN) approaches in terms of

preference probabilities over a noun hierarchy, and the goal is to find the appro-

priate noun classes for each verb-argument pair (the probability of human being
appearing in the subject position of think). This is achieved using statistical tools

from information theory, statistical testing and modeling (see [4] for references).

All these models start from single verb-argument occurrences collected from

large corpora to infer the probability that the verb’s argument position is filled by

a class of nouns. Since our dataset is extracted from a small treebank (63,000 to-

kens), a large number of low frequency verb-noun distributions are observed. Nev-

ertheless, these low frequencies are not necessarily a property of the Latin verbs:

they follow from a small which underestimates variance. This can be remedied

by grouping the observations into larger clusters. For these reasons, the method

illustrated in [1] proved effective when dealing with the peculiarities of our data.

Although we work on the same language and with treebanks comparable in

size, our system also differs from the one described in [2]. Bamman and Crane

report experiments on extracting SPs from a 3.5 million word Latin corpus which

was automatically tagged and parsed using the LDT as training set. The large size

allows for better variance estimates and more representative frequencies: this over-

comes the problems caused by noisy parsed data. SPs are then extracted through

the log likelihood test, a technique also used in collocation extraction. The out-

put consists of association scores between single verbs and single nouns occurring

as their arguments. Given the high complexity of the LDT (various authors, gen-

res and time periods), their system makes finer-grained distinctions between the

specific usages in different authors, eras, and genres.

While having the same annotation style, IT-TB and LDT differ as to their com-

position: IT-TB contains works by one author (Thomas Aquinas), belonging into

one genre (philosophy). Hence, the variability of the lexicon in the IT-TB is not as

extreme as in the LDT, allowing us to treat the corpus as a homogeneous whole.

This also implies that a higher number of verb (and noun) instances are typically

found that share the same sense (i. e. WN synset). This decreases the probability

of finding very low frequency associations between a verb sense and a noun sense,

and partially improves the accuracy of the extraction system. Moreover, instead of

finding association scores between verbs and nouns in an argument position, we

aim at calculating the probability of a WN concept occurring in an argument po-

sition for a given verb. This proves to be effective in a lexicographic perspective,

where broader semantic classes rather than single words are required.

132

3 Acquisition of selectional preferences

Alishahi and Stevenson [1] propose a computational model for SP induction in a

cognitive framework. In their model, each verb usage is a frame, that is a collec-

tion of syntactic and semantic features, such as the number of verbal arguments,

the syntactic pattern, and the semantic properties of each argument. By semantic

properties they refer to the lists of WN hypernym synsets for each word. A con-
struction is defined as a collection of frames probabilistically sharing some feature

values, for example the transitive construction: a construction clusters frames to-

gether based on their syntactic and semantic features. For each (verb, argument

position) pair, a probability distribution over a set of semantic properties is calcu-

lated; this probability distribution represents the verb’s SPs.

We adapted the definitions of frame, syntactic and semantic features to the

data at hand. In the IT-TB Valency Lexicon each verbal form occurring in the IT-

TB corresponds to a lexical entry recording syntactic, morphological and lexical

information on the verb’s arguments. For example, the sentence2

(1) dominus

Lord-NOM.M.SG

discipulis

disciples-DAT.M.PL

formam

form-ACC.F.SG

baptizandi

baptize-GERUND-GEN

dedit.

give-PRF.3SG

“the Lord gave to the disciples the form of the baptism.”

represents a frame for an active ditransitive occurrence of the verb do (“give”); it
is recorded in the lexicon as the following subcategorization structure (SCS):3

do+A_Sb[nom]{dominus},Ob j[acc]{ f orma},Ob j[dat]{discipulus} (1)

The argument positions (or slots) for the active form of do are a nominative subject

(A_Sb[nom]), an accusative object (A_Obj[acc]) and a dative object (A_Obj[dat]).4

The lemmas, or fillers, of the lexical items occurring in these positions are: domi-
nus (‘Lord’), forma (‘form’), and discipulus (‘disciple’). We assigned the SCS

structures to the set of syntactic features of the frame (f eature1).

In order to define the semantic features of each frame, we referred to the LWN

database, which contains around 10,000 lemmas aligned with the English WN. The

mapping links each Latin synset to an English synset and defines a “lexical gap”

when this is not possible. Since the coverage of this resource is low with respect to

our data,5 we semi-automatically added new Latin lemmas to the hierarchy in the

following way. For each lemma L (for example abiectio), we collected its Italian

and/or English translations T (for example ‘avvilimento’, ‘abbattimento’, ‘dejec-

tion’, ‘despondency’) by using electronic versions of Latin-to-Italian and Latin-to-

English dictionaries. Then, we selected the synsets of T that are relevant to the

2Thomas, Super Sententiis Petri Lombardi, IV, Distinctio 8, Quaestio 1, Articulus 3C, Argumen-

tum 2, 3-3.4-1.
3‘A’ stands for ‘Active’, ‘Sb’ for ‘subject’, ‘Obj’ for ‘object’, ‘nom’ for ‘nominative’, ‘acc’ for

‘accusative’, and ‘dat’ for ‘dative’.
4The linear order of these elements in the sentence is not recorded: this choice is due to the

relatively free word order in Latin sentences.
51027 fillers out of 2934 and 90 verbs out of 559 were not present in the lexical database.

133

senses of L; thanks to the alignment in MultiWordNet, we finally assigned L to

the Latin synsets corresponding to these selected senses of T , if any (humiliatio-
humilitas-indignitas; contritio; demissio).6

For each argument position, the semantic properties of a frame (feature2) are

the set of WN hypernyms of the fillers for that slot. For example, the semantic

properties for the slot A_Sb[nom] in (1) are all the hypernyms of dominus.

Finally, the semantic properties of the verb belonging to a frame are the list of

its WN synsets (feature3): in (1) they coincide with the synsets of do.

3.1 Bayesian clustering of frames

In the approach suggested by [1], a frame is clustered into a new construction ac-

cording to the probabilistic similarity between its features and the features of the

frames already included in the construction. This way constructions are created

incrementally by means of a Bayesian process. A construction K is chosen for a

frame F if it maximizes the probability P(k|F) over all constructions k (includ-

ing a new construction), that is (after Bayes’ theorem) if it maximizes the product

P(k)P(F |k). We set the prior probability P(k) to the number of frames contained in

k divided by the total number of frames. If we assume that the frame features are in-

dependent, P(F |k) is the product of Pi(featurei(F)|k) for i=1,2,3: Pi(featurei(F)|k)
is the probability that the ith feature displays in k the value it has in F , that is

featurei(F).
Feature1: for the syntactic properties, we estimated P(feature1(F)|k) by using

the following maximum likelihood formula:

P(feature1(F)|k) = ∑h∈k synt_score(h,F)
nk

where synt_score(h,F) = |SCS(h)∩SCS(F)|
|SCS(F)| (syntactic score) is the number of syn-

tactic slots shared by h and F over the number of slots in F . This accounts

for the degree by which two frames h and F differ in their syntactic patterns

(SCSs).7 For example, let F be the frame given by the verb coniungo (‘join’)

+ P_Ob j[dat]{ f inis},P_Sb[nom]{calor} and h be the frame adiungo (‘join’) +

P_Ob j[dat]{terminus}. The algorithm clustered F into a construction containing

h: hence, synt_score(h,F) = 1
2
.

Feature2: for each argument position a in F , P(feature2(F)|k) is

P(feature2(F)|k) = ∑h∈k sem_scorea(h,F)
nk

(2)

6This way, we were able to add 401 new noun lemmas + 90 verb lemmas to 2056 already existing

Latin synsets.
7Given the high frequency of omitted arguments in Latin sentences, the chances of an exact

match between the two SCSs are low. For this reason, we did not define the syntactic score as a

binary function.

134

where sem_scorea(h,F) = |S(h)∩S(F)|
|S(h)∪S(F)| (semantic score) accounts for the degree of

overlap between the semantic properties S(h) of h and the semantic properties S(F)
of F (for argument a). In the previous example, terminus (‘limit’) and finis (‘end’)

are the lexical fillers of the P_Ob j[dat] slot for h and F , respectively. The seman-

tic score is 1
5

because the intersection between the semantic properties of the two

words contains one item (abstraction), as shown below:8

terminus: indefinite_quantity, mensura-modus-quantitas (‘measure-quantity-amount-quantum’),

abstraction.

finis: locus-punctum (‘point’), aetas-circumductio-circumductum-continuatio-periodus-sententia-

-spatium (‘time_period- period-period_of_time-amount_of_time’), abstraction.

Feature3: the probability of displaying in k the value that F has feature3 is

P(feature3(F)|k) = ∑h∈k syns_score(h,F)
nk

(3)

where syns_score(h,F)= |Synsets(verb(h))∩Synsets(verb(F))|
|Synsets(verb(F))| (synset score) calculates the

degree of overlap between the synsets for the verb in h and the synsets for the verb

in F over the number of synsets for the verb in F ; nk is the number of frames in k.

The algorithm uses smoothed versions of all the previous formulas and clusters

a frame into a construction after taking into account its syntactic features (relative

to the subcategorization pattern) and its semantic properties (relative to both the

verb and the lexical fillers of the verb’s arguments).

3.2 Selectional preferences

The clustering allows us to perform the generalization step over unseen cases while

predicting the probability that a noun n is an argument filler for a verb v in an

argument position a; this probability is calculated as the sum of Pa(n,k|v) over all

constructions k and can be approximated as the product P(k,v)Pa(n|k,v). P(k,v)
is the probability that v occurs in construction k and is estimated as the smoothed

relative frequency of v occurring in k. On the other hand, we calculate Pa(n|k,v) as

Pa(n|k,v) = ∑h∈k sem_score(h,n) · syns_score(h,v)
nkv

where sem_score(h,n) is the semantic score between the set of semantic properties

of the fillers for a in h and the set of semantic properties of n (see formula (2));

syns_score(h,v) is the synset score between the synsets of v and the synsets of the

verb in h; finally nkv is the number of frames contained in k whose verbs share with

v the same synset. Note that frames containing verbs semantically similar but not

identical to v do contribute to the probability, thus contributing with an innovation

with respect to Alishahi & Stevenson’s system. This is particularly important when

dealing with few occurrences of v that would not allow further generalization over

unseen cases; as noted previously, this is a frequent case in our dataset.

8For reasons of space we only displayed the set of semantic properties of one sense for each word.

135

4 Conclusion

We propose a new system for automatically acquiring SP which integrates frequen-

cies from a Latin treebank with a translation-analogy-enriched version of LWN.

Since this research employs a treebank for a less resourced language, it gave us the

opportunity to discuss issues related to the size of treebanks for these languages

and the integration with other lexical resources, such as wordnets. We showed how

methods developed in computational semantics for extant languages and large cor-

pora can be adapted to the special case of a dead language in order to improve the

state of the art of its resources. In particular, our approach deals with low frequency

items in a novel way by means of a clustering technique which expands the set of

seen occurrences that participate in the generalization step, while calculating selec-

tional preferences. In the near future we plan to evaluate this system both against

traditional resources such as dictionaries and thesauri, and against corpus data from

other sources. Finally, thanks to the shared annotation, running our system on the

LDT and the PROIEL treebank would lead to diachronic investigations on Latin

syntax and semantics, while at the same time being a computational challenge.

References

[1] A. Alishahi and S. Stevenson. A cognitive model for the representation and ac-

quisition of verb selectional preferences. In Proceedings of the ACL Workshop
on Cognitive Aspects of Computational Language Acquisition. Prague, pages

41–48, 2007.

[2] D. Bamman and G. Crane. Building a dynamic lexicon from a digital library.

In Proceedings of the 8th ACM/IEEE-CS Joint Conference on Digital Libraries
(JCDL 2008). Pittsburgh, 2008.

[3] L. Bentivogli, P. Forner, and and Pianta E. Magnini, B. Revising wordnet do-

mains hierarchy: Semantics, coverage, and balancing. In Proceedings of COL-
ING Workshop on Multilingual Linguistic Resources, pages 101–108, Geneva,

2004.

[4] C. Brockmann and M. Lapata. Evaluating and combining approaches to se-

lectional preference acquisition. In Proceedings of the tenth conference on
European chapter of the ACL, volume 1, Budapest, 2003.

[5] B. McGillivray and M. Passarotti. The development of the Index Thomisticus
Treebank Valency Lexicon. In Proceedings of the Workshop on Language
Technology and Resources for Cultural Heritage, Social Sciences, Humanities,
and Education (LaTeCH-SHELT&R 2009). Athens, pages 33–40, 2009.

[6] S. Minozzi. The Latin Wordnet project. In P. Anreiter and M. Kienpointner,

editors, Proceedings of the 15th International Colloquium on Latin Linguistics
(ICLL), 2009.

136

Annotation Quality Checking and Its Implications

for Design of Treebank (in Building the Prague

Czech-English Dependency Treebank)

Marie Mikulová and Jan Štěpánek

Charles University in Prague, Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

E-mail: {mikulova,stepanek}@ufal.mff.cuni.cz

Abstract

This article presents the system for annotation quality checking, proposed

and used during the building of the Czech part of the Prague Czech-English

Dependency Treebank. At first, the treebank project is introduced, as well as

its basic principles and annotation process. The second part of the article pur-

sues in detail one of the important phases of the annotation process, namely

how the correctness of the annotated data is automatically and continuously

checked during the process. The system of annotation quality checking is

demonstrated on several particular checking procedures concerning syntacti-

cal phenomena. We try to evaluate the contribution of the system not only to

the quality of the data and annotation, but also to the corpus design, impact

on annotation rules and the annotation process as a whole.

1 Introduction

The annotation of a corpus is always a complex task, especially if the corpus is

large and the added linguistic information is rich. The organization and manage-

ment of the annotation process needs to be elaborate. If the linguistic information

attached to input data (sentences) is rich and complex, the common method, mul-

tiple parallel annotation and measurement of inter-annotator agreement, becomes

too costly and inapplicable for capacitive reasons. For the Prague Czech-English

Dependency Treebank (PCEDT), an example of such a large complex corpus, a

system of automatic quality checking of the annotated data was developed to avoid

multiple parallel annotation (however, subsets of the data were still annotated in

parallel).

137

2 The Prague Czech-English Dependency Treebank

2.1 Basic Principles

The PCEDT is planned to be a corpus of (deeply) syntactically annotated parallel

texts (in English and Czech) intended chiefly for machine translation experiments.

The texts for the PCEDT (its first version was described in (Čmejrek et al., 2004))

were taken from the Penn Treebank (Marcus et al., 1993), which means there are

mostly economical articles from the Wall Street Journal. 2312 documents were

used in the PCEDT (approximately 49,000 sentences) that are manually annotated

using constituent trees in the Penn Treebank. For the Czech part of the PCEDT, the

English texts were translated into Czech.

As a base of the process of creation of the corpus (hierarchical system of an-

notation layers, annotation rules) we use the already finished Prague Dependency

Treebank (PDT) 2.0 (Hajič et al., 2006). While organizing the annotation of the

PCEDT (especially its Czech part, which is the main concern of this article), we

will prop ourselves upon multifarious experiences (both positive and negative)

gained from the production of the PDT 2.0.

Similarly to the PDT 2.0, written sentences in the PCEDT are represented on

three layers: morphological layer (lemmas, tags, morphological categories), ana-

lytical layer (surface structure, dependencies, analytical functions) and tectogram-

matical layer.

The tectogrammatical layer contains all the information that is encoded in the

structure of the sentence and its lexical items: the deep, semantic-syntactic struc-

ture, the functions of its parts, values of the “deep” grammatical categories, the

coreference and the topic-focus articulation including the deep word order. Every

sentence is represented by a tectogrammatical tree. A node of the tree either repre-

sents a semantic unit present on the surface shape of the sentence (an autosemantic

word with its function words like prepositions, subordinating conjunctions, auxil-

iary verbs converted into various node attributes called “grammatemes”) or it is a

newly established node that has no counterpart on the surface—in case of ellipsis.

We adhere to the stand-off annotation principle: the layers of annotation are

separated from the input data and from one another, they are interlinked by refer-

ences leading always from the hierarchically higher layers to the lower ones. For

example, there are two references to the analytical layer from a tectogrammati-

cal node representing a prepositional group (as one syntactic-semantic unit): one

pointing at the preposition and one at the noun.

2.2 Annotation Procedure

Tectogrammatical (deep syntactic) layer of the PCEDT that is currently being built

(but also of the already accomplished PDT 2.0) represents a really broad linguistic

annotation. There are 39 different attributes, for a node of a tectogrammatical tree

in the PDT 2.0 there are 8.42 attributes filled on average. The annotation manual

138

(Mikulová et al., 2006) has more than 1000 pages.

In case of such an extensive annotation project, we find the following three

aspects necessary:

• division of the annotation into several phases

• periodic measurement of inter-annotator agreement

• continuous checking of the annotation correctness

Although the annotators get their data automatically preprocessed, so that they

do not have to build the syntactical tree from the very beginning (Klimeš, 2006),

the annotation of the tectogrammatical layer in phases is unavoidable, because no

annotator is able to keep all the annotation rules for all the annotated phenomena

in her head. Moreover, the more information the annotator has to attach to the data,

the more likely he or she omits some of the details.

Therefore, for the tectogrammatical annotation, we plan for the following phases:

1. building a tree structure, dealing with ellipsis included; assignment of func-

tors and valency frames, links to lower layers (10 attributes).

2. annotation of subfunctors (fine grained classification of functors, 1 attribute).

3. annotation of coreference (4 attributes).

4. annotation of topic-focus articulation, rhematizers and deep word order (3 at-

tributes).

5. annotation of grammatemes, final form of tectogrammatical lemmata (17 at-

tributes).

6. annotation of remaining phenomena (quotation, named entities etc.)

The first phase is the most difficult, each annotator is responsible for the whole

structure of the tree and correct values of ten attributes. All these attributes are

connected with the structure and deep syntactical functions of nodes. Annotators

do not have to pay attention to anything else.

To determine the amount of annotated information that does not harm the qual-

ity of the data is obviously difficult. Our belief that the current schedule of phases

constitutes a reasonable and manageable rate seems to be justified by the measur-

ing of inter-annotator agreement. The quality of the data is regularly guarded by

the system of automatic checking procedures (see the following section).

3 System for Annotation Quality Checking

3.1 Motivation

A higher quality of the annotated corpus data is usually attained by parallel annota-

tion of the same data. Particular annotated data from different annotators are mutu-

ally compared, the differences are found and manually corrected. Such a method is

139

very expensive (with regard to time and work) and becomes impossible if the tree-

bank is large and the annotated information is complex. In one hour, one annotator

can annotate 9.2 sentences in average in the first phase of the tectogrammatical an-

notation of the PCEDT. Annotation of the whole treebank (about 49,000 sentences)

by one person would therefore take 5326 hours. If a person worked regularly for

20 hours a week (half-time job), the whole treebank in its first phase would take 5

years. It is clear that if we want to keep the volume of the annotated information

(i.e. the annotation rate), we have to search for a different way to guard the quality

of the annotated data than the usual parallel annotation.

Consequently, already during the building of the PDT 2.0, a system for au-

tomatic checking of the data was developed. The real checking took place when

all the annotation had finished. The checking and fixing phase was quite complex

and time-consuming; moreover, in some cases, the changes were not realized full-

scale (Štěpánek, 2006). We want to avoid such a procedure in the development of

PCEDT. The system of automatic checking procedures is now fully integrated into

the annotation process.

3.2 Design of the Automatic Checking Procedures

Checking of the annotated data takes place continuously during the annotation

process. At the beginning of the process, many automatic checking procedures

were proposed and created in accordance with the annotation guidelines and more

are added even during the process. Contrary to (Boyd et al., 2007) or (Dickinson,

2005), all the procedures were programmed manually, even though some of them

were based on generalization of the output of an automatic inconsistency lookup.

The checking procedure proposals are based on the fact that many annotation

rules imply that particular phenomena cannot (or have to) occur in the annotation

output. They mainly combine attribute values and the structure of a tree.

For example, a simple check (coord002) states that every coordination has at

least two members and reports all one-member (and zero-member) coordinations

as errors. Another check (structure001.2) states that the root of a tectogrammatical

tree has only a limited set of possible functors (PRED for a predicate, DENOM for

nominative clause, PARTL for interjection clause, VOCAT for vocative clause).

There is also a converse check (structure001.1) monitoring that no dependent node

has the PRED or DENOM functor. The checks structure021.1 and structure021.2

guard the fact that some types of nodes, i.e. the nodes added to a tree in case of

ellipsis of the governing node (such a node either has a special tectogrammatical

lemma #EmpVerb or #EmpNoun or is a copy of a different node in the tree) can by

definition never be leaves of a tree.

Each checking procedure has the same structure: its name consists of a category

(see below) and number. A short comment explains the purpose of the procedure.

All the procedures are written in Perl, as well as the main annotation tool TrEd

(Pajas and Štěpánek, 2008). The output of each procedure is a table whose first

column contains the name of the procedure followed by a short explanation of

140

#!btred -N -T -t PML_T -e coord()

package PML_T;

$NAME=’coord002’;

Every coordination has at least two members.

sub coord {
writeln("$NAME\tmembers\t".ThisAddress($this))

if IsCoord($this)
and scalar(grep $_->{is_member},$this->children) < 2;

} # coord

Figure 1: Checking procedure coord002

the violation of the monitored invariant. There can be any number of additional

columns with any information, but the last column must contain the address of the

problematic node. The annotation tool TrEd can open files with lists of addresses

and can subsequently open a given tree with the cursor on a given node, and after

a correction is made, it can switch to the next address in the list. An example of a

checking procedure is shown in Figure 1.

The checking procedures should be accurate, i.e. they should report an error

only if the data are not correct and should not report it if not. To achieve this,

exceptions might be added to some of the procedures (stating something like “do

not report error if the identifier of the node is T2431, the node is a leaf and its

parent has functor ACT”). Several procedures had to be abandoned because of the

number of exceptions getting too high.

By its name and function, each checking procedure can be classified into one

of five categories:

(1) structure This category constitutes the fundamental part of the checking pro-

cedures. The procedures in this category check the structure of tectogram-

matical trees, i.e. the relations between governing and dependent nodes. Par-

ticular types of nodes presume by definition only particular types of govern-

ing and/or dependent nodes. Any departure from these invariants is reported

by the procedures. Besides those already mentioned, another typical exam-

ple is structure027.1: it states that adjectival attribute (functor RSTR) never

depends on a verb; or structure016.1, that assures that every negated verb has

a #Neg child.

(2) coord The checking procedures guarding the correctness of coordination struc-

tures form a separate group. An example of the procedure coord002 was al-

ready given in Figure 1. Other procedures in this category follow from the

141

rules stating that some types of functors can never be coordinated together,

e.g. an inner participant (argument) can be in coordination only with an ar-

gument of the same sort (coord004.4).

(3) valency The next group of checking procedures is related to valency. During

the tectogrammatical annotation, each verb is assigned a valency frame from

the valency lexicon describing the verb’s meaning and laying down which

valency modifications pertain to the given verb. (Procedure valency001.1

checks that the valency frame is assigned where required). If some of the

obligatory modifications are not present on the surface, they have to be added

to the tectogrammatical tree in form of so called newly established nodes.

The valency checking procedures guard that all those modifications were

correctly added, mainly, whether none of them is missing (valency003.2),

that no modification is redundant (valency003.3), and also that the form and

auxiliary words used to express the modification are listed as possible in the

lexicon (valency003.4). Another checking procedure (valency004.1) moni-

tors whether all copied verb nodes have the same valency frame assigned as

their original (as in the ellipsis John loves Mary and Peter [loves] Jane).

(4) links The checking procedures in this category check the correctness of the

links from the tectogrammatical nodes to the analytical nodes. For example,

for every analytical node representing a word (i.e. not punctuation) there

must be a link from a tectogrammatical tree (links001.1.1). However, the

same analytical node can be linked as an auxiliary word from different tec-

togrammatical nodes only if the tectogrammatical nodes are coordinated in

one coordination, or they or their parents have the same tectogrammatical

lemma, or if all but the first tectogrammatical node are predicates with PREC

children (a particle refering to a preceding context). Other procedures are

based on the fact that some types of tectogrammatical nodes anticipate par-

ticular types of links, or some types of links are forbidden for them. For

example, there can be no link to a preposition from a tectogrammatical

node with the functor DENOM, representing a nominative clause and the

same holds for a node with the functor VOCAT representing vocative clause

(links003.1).

(5) attribute Checking procedures in this category do not care about the structure

of a tree, only attributes of a single node are checked. All the procedures cre-

ated so far focus on the tectogrammatical lemma (no other non-structural

attribute is annotated in the first phase of the process). For example, at-

tribute001.1 checks that reasons are given for every change in pre-generated

tectogrammatical lemma.

Currently, there are 50 checking procedures with 103 possible violations re-

ported (55 in the category structure, 11 coord, 15 valency, 19 links and 3 attribute).

142

3.3 Corrections

The checking procedures return a list of erroneous (questionable) positions in the

data. The annotator gets his or her data back for corrections, manually fixing each

position. As was already mentioned in the previous section, the annotation tool

TrEd and the output of the procedures are compatible so that annotators only see

the problematic sentences and nodes.

The checking procedures are run periodically after a given volume of the data

has been annotated by an annotator (1000 sentences) or once a quarter. An error in

the annotation is often reported by more than one checking procedure, each of them

can report a different node affected by the error. This would confuse annotators:

once they would have corrected an error in a list from one procedure, they would

encounter the corrected sentence again in a different list. Moreover, by rearranging

nodes in a tree an address might point to a different node than before. Therefore,

the list is always filtered to contain each sentence just once in one run.

All the data (the already corrected ones included) are checked every time (in

case a new check existed), and after one run of corrections, the data are checked

again and again while there are any errors left (there might be some errors left by

the filtering and new errors can arise in fixing the old ones).

3.4 Limits of the Automatic Quality Checking

Automatic checking procedures improve the quality of the data not only by fixing

the present errors, but also by providing a feedback to the annotators (because each

annotator fixes his or her own data, i.e. his or her own errors) and thus eventually

improving the future annotation.

Nevertheless, even the automatic checking procedures have their limits, they

cannot be used to check everything. One of the most difficult tasks is the validation

of functors. The definitions of functors are very general, there are no invariants and

no clues for a procedure to catch on. When assigning a functor, the annotator uses

mainly his or her intuition. Of course, there is plenty of phenomena for which no

automatic checking is possible. If it were possible to check the whole annotation

automatically, it would be as well possible to annotate the whole data with a ma-

chine. The point of manual annotation is to obtain the data that cannot be gained

automatically, because human intuition and decision of an educated annotator are

needed to produce them.

However, we are aware that even the intuition of the annotators has to be re-

vised. It is necessary to monitor whether the intuition of the annotators is roughly

the same, i.e. that two different annotators will decide in (roughly) the same way

in particular cases.

Consequently, some data files have been picked up for parallel annotation. The

differences between annotators that are left after correcting the output of the check-

ing procedures indicate differences in intuition, different approach of the annotators

to the phenomena the checking procedures are not able to capture. We measure an

143

inter-annotator agreement, both for individual attributes and overall, on the files an-

notated in parallel. A low agreement signals that the annotation rules are too loose

and we should ponder whether the rules should be made stricter.

4 Implications of the Quality Checking for the Design of
the Treebank

Our system for annotation quality checking was primarily developed to search for

errors in the annotated data, but its contribution for the treebank building is much

broader. The checking procedures not only find errors, but also show problems re-

lated to the design of the treebank: reveal vague annotation rules, contribute to the

appreciation of the annotators and in effect to the evaluation of the whole annota-

tion procedure.

4.1 Evaluation of Annotators

Using the list of errors generated by the checking procedures, we can count how

often the annotators make errors (only those errors the procedures can detect, of

course). Long term regular monitoring (since the start of the annotation process)

shows that the differences in error rate between annotators can be huge and that

all the annotators keep their positions: no one gets markedly better nor worse (so

to say, some annotators are simply more thorough than others). The comparison

of veteran annotators and the new ones that annotate only for a short time is also

interesting: it shows that knack, practice, and experience lead to quality of the

annotation.

Table 1 shows the error rate counted on all the data annotated so far (73% of

the treebank) for all the annotators individually (the number of errors made by an

annotator divided by the number of sentences annotated by her), the total error rate

ALL (the number of all errors found divided by the number of all the sentences

annotated) and the error rate in the original data ORG (not annotated data, just

automatically preprocessed; the number of sentences is lower than the number of

annotated sentences because sentences annotated in parallel are counted just once,

unlike in ALL).

Annotators can be evaluated by other means, too, for example by measuring

the inter-annotator agreement. Such an evaluation is a part of the project as well,

but it is not a subject of this article. For more details of the results of the evaluation

of the project, see Mikulová and Štěpánek (2009).

4.2 Refining the Annotation Rules

The checking procedures has also lead to a refinement of the annotation rules. A

condition of a checking procedure follows from (a combination of) various rules

in the annotation manual, therefore one would suppose it holds everywhere in the

144

Annotator Errors / Sentences Errors per Sentence

ma 3 271 / 6 026 = 0.54

al 1 214 / 3 213 = 0.38

iv 2 648 / 8 125 = 0.33

ji 301 / 1 064 = 0.28

mi 430 / 1 786 = 0.24

ka 1 834 / 8 132 = 0.23

le 373 / 1 903 = 0.20

ol 1 177 / 6 828 = 0.17

ALL 12 139 / 39 609 = 0.31

ORG 119 090 / 34 862 = 3.42

Table 1: Number of errors per sentence

data. However, cases that are not errors are often found in the output of some check-

ing procedures (mainly after their first run) among evident mistakes. Those are phe-

nomena that were forgotten when formulating the rules. Thus, as a consequence of

application of checking procedures to concrete natural language data, the original

annotation guidelines get refined.

For example, the annotation manual states that copied verb has always the same

valency frame as the original one (a verb is copied in case of actual or textual

ellipses of the governing verb). The checking procedure guarding this rule was

already described (valency004.1). However, the real data showed many exceptions

to the rule and pointed out some errors in the valency lexicon as well. In case of

an actual ellipsis of a governing verb, the manual completely omits the cases of a

metaphoric, phraseological or otherwise unusual usage of the verb, as in

Na konflikt nemá dost pozornosti ani [na něj nemá] žaludek.
For a conflict, he does not have enough attention nor [he has] stomach.

“Have attention” and “have stomach” are two different meanings of the verb to
have, thus two different valency frames—it is an exception to the rule in the man-

ual, but also for the checking procedure. The procedure indicates inaccuracies in

the valency lexicon as well when one meaning is split into several valency frames,

for example Akcie uzavřely na burze smíšeně, Akcie uzavřely na burze níže, and

Akcie uzavřely na burze s mírným poklesem (Stocks closed mixed, Stocks closed
lower, Stocks closed down modestly). In the sentence

Akcie společnosti A uzavřely na burze smíšeně a akcie společnosti B [uzavřely]
s mírným poklesem.
Company A’s stock closed mixed and company B’s [stock closed] down modestly.

the condition of the identity of valency frames cannot be met.

The output of the checking procedures can be compiled into a table showing

the type of the most common errors. Among others, they may indicate problems in

145

Checking Procedure Occurences Percentage Note

valency003_2_PAT_missing 883 7.27

links001_6.1_same_aux 700 5.77

valency003_2_ACT_missing 623 5.13

links001_1.1_no_tnode 438 3.61

valency001_1_no_frame 405 3.34

valency003_4_wrong_aux 387 3.19

structure016_1_no_neg 378 3.11

attribute001_1_t-lemma 352 2.90

structure003_1_fphr_lemma 348 2.87 Foreign phrase

valency003_1_invalid_lemma 345 2.84 The same lemma in

the data and lexicon

Table 2: Most common types of errors. Procedures without a note are described in

section 3.2.

annotation guidelines or the hardest tasks for the annotators. The ten most common

errors are shown in Table 2, where the second column presents the number of

occurrences and the third column presents the percentage of the given error type

among all the errors found.

5 Conclusion

In this paper, we have presented our automatic system for annotation quality check-

ing, which has been proposed and used during building the Czech part of the Prague

Czech-English Dependency Treebank. The automatic checking procedures are pro-

grammed according to both the explicit annotation rules from the guidelines and

the output of an automatic inconsistency lookup, and they monitor the quality of

the data already during the annotation process. The output of the procedures is a

list of problematic nodes that can be subsequently manually corrected.

The system for annotation quality checking was primarily developed to search

for errors in the annotated data, but its contribution is much broader. The checking

procedures not only report errors in the annotation, increasing the quality of the

data, but also point out problematic annotation rules, contribute to the evaluation

of the annotators and of the whole annotation procedure.

Acknowledgement

The research reported in this paper was supported by the LC536, GAUK 22908/2008,

and FP7-ICT-2007-3-231720.

146

References

A. Boyd, M. Dickinson, and D. Meurers. Increasing the recall of corpus annotation

error detection. In Proceedings of TLT 2007, volume 1, Bergen, Norway, 2007.

NEALT Proceedings Series. 3.2

M. Dickinson. Error detection and correction in annotated corpora. PhD thesis,

The Ohio State University, 2005. 3.2

J. Hajič et al. The Prague Dependency Treebank 2.0. CD-ROM, 2006. URL

http://ufal.mff.cuni.cz/pdt2.0. Linguistics Data Consortium Cat.

No. LDC2006T01. 2.1

V. Klimeš. Analytical and Tectogrammatical Analysis of a Natural Language. PhD

thesis, Charles University in Prague, 2006. 2.2

M. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated

corpus of English: the Penn Treebank. Computational Linguistics, (19):313–

330, 1993. 2.1

M. Mikulová et al. Annotation on the tectogrammatical level in Prague Depen-

dency Treebank. Annotation manual. Technical Report TR-2006-30, ÚFAL,

Prague, 2006. 2.2

M. Mikulová and J. Štěpánek. Annotation procedure in building the Prague Czech-

English Dependency Treebank. In Proceedings of Fifth International Confer-
ence SLOVKO, Bratislava/Smolenice, 25-27 November 2009. In print. 4.1

P. Pajas and J. Štěpánek. Recent advances in a feature-rich framework for treebank

annotation. In The 22nd International Conference on Computational Linguistics
- Proceedings of the Conference, Manchester, 2008. 3.2

M. Čmejrek et al. Prague Czech-English Dependecy Treebank: Syntactically an-

notated resources for machine translation. In 4th International Conference on
Language Resources and Evaluation, Lisbon, Portugal, 2004. 2.1

J. Štěpánek. Závislostní zachycení větné struktury v anotovaném syntaktickém kor-
pusu (nástroje pro zajištění konsistence dat) [Capturing a Sentence Structure by
a Dependency Relation in an Annotated Syntactical Corpus (Tools Guaranteeing
Data Consistence)]. PhD thesis, Charles University in Prague, 2006. 3.1

147

TEI P5 as an XML Standard for Treebank Encoding∗

Adam Przepiórkowski

Institute of Computer Science, Polish Academy of Sciences
and Institute of Informatics, University of Warsaw

E-mail: adamp@ipipan.waw.pl

Abstract

The aim of the paper is to show that a subset of Text Encoding Initiative

Guidelines is a reasonable choice as a standard for stand-off XML encoding

of syntactically annotated corpora. The proposed TEI schema — actually

employed in the National Corpus of Polish — is compared to other such

candidate standards, including TIGER-XML, SynAF and PAULA.

1 Introduction

The need for text encoding standards for language resources (LRs) is widely

acknowledged: within the International Standards Organization (ISO) Technical

Committee 37 / Subcommittee 4 (TC 37 / SC 4), work in this area has been going

on since the early 2000s, and working groups devoted to this issue have been set up

in two current pan-European projects, CLARIN (http://www.clarin.eu.)

and FLaReNet (http://www.flarenet.eu/). It is obvious that standards are

necessary for the interoperability of tools and for the facilitation of data exchange

between projects, but they are also needed within projects, especially where multi-

ple partners and multiple levels of linguistic data are involved.

Given the existence of a number of proposed and de facto standards for various

levels of linguistic annotation, the starting point of the design of a specific schema

to be used in a particular project should be careful examination of those standards:

in the interest of interoperability, creation of new schemata should be avoided.

But, if a number of standards are applicable, which one should be chosen and

on what grounds? And if constructing a schema for a particular linguistic level

in a particular project should start with an overview and comparison of existing

∗The work reported here, carried out within the National Corpus of Polish project funded in

2007–2010 by the research and development grant R17 003 03 from the Polish Ministry of Science

and Higher Education, has its origins in a series of papers co-authored by Piotr Bański, dealing

with the encoding of lower levels of linguistic information and with the metadata; cf. Bański and

Przepiórkowski 2009 and Przepiórkowski and Bański 2009a,b. The paper also profited from insight-

ful comments by TLT8 reviewers.

149

standards — a time consuming task which may be hard to justify within the limits

of a project budget — would it not be easier and cheaper to construct one’s own

focused schema from scratch?

The aim of this paper is to examine the most popular standards and to make spe-

cific recommendations concerning the encoding of syntactic information. We look

at four standards: 1) the very specific and commonly used TIGER-XML schema, 2)

SynAF, a more general model derived from TIGER-XML, currently under devel-

opment as an ISO standard, 3) PAULA, a schema for the representation of various

linguistic levels, and 4) version P5 of the Text Encoding Initiative (TEI) Guidelines,

proposing multitudinous mechanisms for representing multifarious aspects of text

encoding. Perhaps because of this richness, TEI is the least obvious candidate for

treebank encoding, but it is the one that we would like to argue for here.

2 Standards and Best Practices for Treebank Encoding

In this section we briefly examine three probably most often cited standards and

best practices for treebank encoding: TIGER-XML, SynAF (and related ISO pro-

posed standards) and PAULA. A TEI P5 schema for the annotation of syntactic

information is presented in § 3, and a discussion of relative merits of these stan-

dards is given in § 4.

2.1 TIGER-XML

TIGER-XML (Mengel and Lezius 2000) is a de facto standard for XML annotation

of treebanks. It is well documented1 and exemplified, it has been adopted in various

projects, and it was the starting point for the SynAF proposed standard.

In TIGER-XML, each sentence is represented as a <graph> consisting of

<terminals> and <nonterminals>. The <terminals> element is a list

of <t>erminals, with orthographic, morphosyntactic and other information repre-

sented in attributes. Morphosyntactic attributes and their possible values may be

defined in corpus <head>er.

Similarly, <nonterminals> is a list of <nt> syntactic nodes. Within each

node, <edge>s link the node to its immediate constituents (<t>s or <nt>s). Ad-

ditional secondary edges (<secedge> elements within <nt>) may be used to

represent co-reference or other non-constituency information.

There is a treebank search engine serving TIGER-XML corpora, TIGERSearch

(Lezius 2002, König et al. 2003), and converters from TIGER-XML to other for-

mats, including the PAULA format used by ANNIS2 (http://www.sfb632.
uni-potsdam.de/d1/annis/) and the Poliqarp (Janus and Przepiórkowski

2007) format.

1http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/
html/TigerXML.html.

150

2.2 SynAF and Related Standards

Two proposed ISO standards immediately relevant for syntactic annotation are

Syntactic Annotation Format (SynAF; ISO 24615) and Morphological Annotation

Format (MAF; ISO 24611). According to http://www.iso.org/ both were

at the DIS stage of ISO standard development2 at the time of writing this paper,

although only the CD versions were available free of charge at http://www.
tc37sc4.org/. It is these CD versions, ISO:24615 2009 and ISO:24611 2005

(see the bibliography), that we refer to here.

While TIGER-XML provides a specific schema, “SynAF is dealing with the

description of a metamodel for syntactic annotation” (ISO:24615 2009, p. 6; em-

phasis ours), where syntactic annotation includes both constituency and depen-

dency marking. The SynAF metamodel is described within a page and a half

(ISO:24615 2009, pp. 12–14) as a straightforward generalisation of TIGER-XML.3

The three main classes are: T_Node (for terminal nodes), NT_Node (for non-

terminal nodes) and Edge (for dependency edges between nodes). Both kinds of

nodes are defined over spans of text.

According to SynAF, syntactic annotation is applied to MAF-annotated in-

put. MAF (ISO:24611 2005) is a much more specific and mature standard than

SynAF, providing various examples of the encoding of morphosyntactic informa-

tion. The two main elements it provides are <token> and <wordForm>. Tokens

may identify spans in an external file (stand-off annotation), or may be marked in

the original document (embedded annotation). Token attributes such as @form
and @transcription may be used to abstract over the sequence of characters

marked as a <token>. The @join attribute may specify whether there is whites-

pace to the left or right of the token. Two or more <token>s may overlap, e.g.,

in the case of abbreviations, where the final dot may belong to the abbreviation

<token> and also constitute a separate <token>.

Word forms are defined over tokens. In the default case, one <wordForm>
corresponds to one <token> and adds information about the lemma, the mor-

phosyntactic analysis, etc. This linguistic information may be encoded as at-

tributes of <wordForm>s or as feature structures (ISO:24610-1 2005) within

<wordForm>s.4 Word forms may also be empty (as for pro or PRO in Chomsky’s

2There are six stages of development of any ISO standard: 1) initial proposal of a new work

item, 2) preparation of a Working Draft (WD), 3) production and acceptance of the Committee Draft

(CD), 4) production and acceptance of the Draft International Standard (DIS), to be distributed to

ISO member bodies for commenting and voting, 5) approval of the Final Draft International Standard

(FDIS), which has to pass the final vote, and 6) the publication of the International Standard (IS).
3Unfortunately, most of ISO:24615 2009 is devoted to an annex containing a preliminary list

of syntactic data categories, even though, in our opinion, the contentious issue of linguistic data

categories should be kept separate from the relatively straightforward matter of defining a metamodel

or specific XML encoding of constituency and dependency relations. The other annex contains

“testsuites”, i.e., examples of MAF and SynAF annotation, which contain errors (they are not well-

formed XML) and need “to be considerably revised” (p. 63). In summary, the practical usefulness of

the version of SynAF referred to here is still rather limited.
4MAF contains also recommendations on tagset specification and on the handling of various

151

Principles and Parameters), or they may consist of a number of possibly discontin-

uous tokens. One <token> may also give rise to a number of <wordForm>s

(as, possibly, in the case of German am, French auquel, Italian damelo, English

wanna or Polish nań, if they are analysed as single <token>s). Moreover,

<wordForm>s may contain other <wordForm>s, e.g., for the purpose of repre-

senting various multi-word units, so the domain of applicability of MAF overlaps

somewhat with the domain of SynAF. Word forms may also refer to an external

lexicon for their definitions.

Another proposed ISO standard that should also be mentioned here is Linguis-

tic Annotation Framework (LAF; ISO:24612 2008), which defines a generic graph-

based pivot format, called GrAF, designed to facilitate comparison and exchange

of data in various annotation formats.

2.3 PAULA

PAULA (Ger. Potsdamer AUstauschformat für Linguistische Annotation; Dipper

2005), a LAF-inspired format developed within the SFB 632 project in Potsdam

and Berlin, is an example of a family of general encoding standards for the anno-

tation of multi-modal data.5

In the PAULA data model there are objects (“markables”), various types of re-

lations between them, and features of objects. Markables may be simple spans of

text (<mark>) or abstract <struct>ures bearing <rel>ations to other mark-

ables. For example, a syntactic constituent with 3 immediate daughters (one word

and two syntactic constituents) may be represented as follows:6

<struct id="syn2"> <!-- PAULA -->
<rel id="rel3" type="head" xlink:href="tok.xml#t6"/>
<rel id="rel4" type="nonhead" xlink:href="#syn20"/>
<rel id="rel6" type="nonhead" xlink:href="#syn21"/>
</struct>

This representation closely corresponds to the following representation in

TIGER-XML, though PAULA’s <rel> is a generalisation of TIGER-XML’s

<edge> and may be used for the representation of various types of relations.

<nt id="nt2"> <!-- TIGER-XML -->
<edge label="head" idref="#t6"/>
<edge label="nonhead" idref="#nt20"/>
<edge label="nonhead" idref="#nt21"/>
</nt>

Additionally, markables are associated with feature values via a PAULA-

specific encoding of feature structures.

kinds of ambiguities, including structural ambiguities encoded as finite state automata.
5See Dipper et al. 2006 for references to other such largely graph-based encodings.
6This is a modification of an example from Dipper 2005.

152

3 TEI P5

The Text Encoding Initiative “was established in 1987 to develop, maintain, and

promulgate hardware- and software-independent methods for encoding humanities

data in electronic form” (http://www.tei-c.org/). It is a de facto, con-

stantly maintained XML standard for encoding and documenting textual data, with

an active community, detailed guidelines (Burnard and Bauman 2008) and sup-

porting tools. Its recommendations for the encoding of linguistic information are

limited, but it includes the ISO FSR standard for representing feature structures,

which can be used to encode various kinds of information (cf., e.g., Witt et al.
2009).

There are some TEI-encoded morphosyntactically annotated corpora, but the

impact of the current P5 version of TEI Guidelines, released in November 2007,

has been rather limited so far. Probably the main reason for this state of affairs is

the richness and versatility of TEI. Ideas useful for linguistically annotated corpora

are scattered over the 1350-odd pages of the Guidelines, and usually there is more

than one way of representing any given annotation, so designing a coherent and

constrained TEI-conformant schema for linguistic corpora is a daunting task.

One such schema, indirectly based on an earlier version of TEI Guidelines, is

XCES (Ide et al. 2000), an XML-ised version of the TEI-based Corpus Encoding

Standard (CES; Ide and Priest-Dorman 1995, Ide 1998) specified in SGML. XCES

DTD schemata specify the representation of metadata, primary data, morphosyn-

tactic annotation and — for parallel corpora — alignment. There are general fea-

ture structure mechanisms for the representation of other levels of information, but

it is the specificity at the morphosyntactic and alignment levels that had a large

influence on the relative success of that version of XCES. Around 2003 a new ver-

sion of XCES was introduced — given as XML Schema specifications — that was

a step back in this respect, as it lacks specific recommendations for any linguis-

tic levels, resorting instead to general feature structure mechanisms; only minor

technical modifications have been made to these schemata since their introduction.

Other reasons why XCES does not currently meet the expectations of corpus de-

velopers are: 1) lack of documentation; http://www.xces.org/ refers to old

CES documentation as “supporting general encoding practices for linguistic cor-

pora and tag usage” and “largely relevant to the XCES instantiation”, although the

CES documentation is hardly applicable to the second version of XCES, 2) feature

structure mechanisms different from the established feature structure representa-

tion ISO standard (ISO:24610-1 2005), 3) lack of mechanisms for the encoding

of discontinuity 4) or alternatives, and 5) the potential for confusion regarding the

version of the standard (in particular, for many years DTD and XML Schema spec-

ifications co-existed on XCES web pages, without any clear information that they

specify different representations).

In Przepiórkowski and Bański 2009b, we propose a representation of the pri-

mary data, text structure, text headers and corpus headers conformant with TEI P5.

In this section we describe a possible TEI P5 encoding of syntactic information

153

designed to maximise compatibility with other proposed standards.7

3.1 Morphosyntax and Other Assumptions

Following the common standard practice, we assume that each linguistic level is

represented in its own file, referring to lower layers, down to the primary text,

i.e., we assume the stand-off approach to annotation. More precisely, each cor-

pus text is represented as a collection of files containing various annotation lay-

ers of the text, and each layer has the following minimal general structure (where

corpus_header.xml contains the unique corpus header, and header.xml is

the header of the particular text):

<teiCorpus
xmlns:xi="http://www.w3.org/2001/XInclude"
xmlns="http://www.tei-c.org/ns/1.0">
<xi:include href="corpus_header.xml"/>
<TEI>
<xi:include href="header.xml"/>
<text>
<body><!-- text to annotate --></body>
</text>
</TEI>
</teiCorpus>

Depending on the type of text (written or spoken), <body> contains a list

of <p>aragraphs (or possibly paragraph-length anonymous blocks, <ab>) or

<u>tterance turns, further split into <s>entences, e.g.:

<body>
<p xml:id="segm_p1">
<s xml:id="segm_s1">...</s> <!-- more sentences here -->
</p> <!-- more paragraphs here -->
</body>

We assume that this structure, down to the sentence level, is preserved and

made parallel at all annotation layers. The correspondence between different lay-

ers is expressed with the TEI attribute @corresp. For example, assuming that

the above code is a fragment of the segmentation layer of a text (by assumption

represented in ann_segmentation.xml), defining word-level tokens, the next

layer, morphosyntax, may have the following parallel structure:

<body>
<p xml:id="morph_p1" corresp="ann_segmentation.xml#segm_p1">
<s xml:id="morph_s1" corresp="ann_segmentation.xml#segm_s1">...</s>
</p>
</body>

Whatever other annotation layers are present in the corpus, we as-

sume the existence of a morphosyntactic layer (by assumption encoded in

7The overall picture, encompassing all linguistic levels assumed in the National Corpus of Polish,

is presented in Przepiórkowski and Bański 2009a.

154

ann_morphosyntax.xml). Each sentence at this layer is a sequence of

<seg> elements implicitly (via a specification in the schema) marked as

@type="token", and each <seg> contains a feature structure specification of

various morphosyntactic information about the segment, e.g.:

<s xml:id="morph_s1" corresp="ann_segmentation.xml#segm_s1">
<seg xml:id="morph_seg1"><fs>...</fs></seg>
<seg xml:id="morph_seg2"><fs>...</fs></seg>
<!-- more segments here -->
</s>

TEI P5 contains wholesale the ISO standard for feature structure represen-

tation (ISO:24610-1 2005). In the interest of brevity and readability, we will

not fully specify the XML encoding of feature structures, signalled above as

<fs>...</fs>, but rather represent feature structures in a way common in lin-

guistic theories such as HPSG and LFG. For example, the Polish segment komput-
erem, analysed as a singular instrumental inanimate-masculine form of the noun

KOMPUTER, may have the following feature structure representation:⎡
⎢⎢⎢⎣

morph
ORTH komputerem
BASE komputer
CTAG subst
MSD sg:inst:m3

⎤
⎥⎥⎥⎦

Note that the names of features ORTH, BASE, CTAG and MSD are taken from

(X)CES. Of course, other kinds of information may be represented here as well,

including the whole list of possible interpretations (not just the one interpretation

selected in the context), information about person or tool responsible for disam-

biguation, etc.

3.2 Representing Constituency

At the syntactic level (by assumption, in ann_syntax.xml), each <s>entence

is a sequence of <seg> elements implicitly marked as @type="group". More

generally, for reasons of uniformity, we propose to use the <seg> element with

different values of @type for different kinds of linguistic units (see § 3.4 below),

but more specific TEI elements could be used here instead, e.g., <w> for words,

<phr> for syntactic phrases and <cl> for clauses.

Just like word segments, syntactic groups also contain feature structure descrip-

tions: in the simplest case, such a description may consist of a single attribute-value

pair naming the node (e.g., [NAME NP]), but it could also be an LFG f-structure or

a full-fledged HPSG feature structure. Apart from a feature structure specification

of the node, such a syntactic group element may contain any number of <ptr>
elements pointing at the immediate constituents of the group, e.g.:

<seg xml:id="group2">
<fs>...</fs>
<ptr xml:id="ptr3" type="head" target="ann_morphosyntax.xml#seg6"/>

155

<ptr xml:id="ptr4" type="nonhead" target="#group20"/>
<ptr xml:id="ptr6" type="nonhead" target="#group21"/>
</seg>

Note that immediate constituents may be words specified at a different layer or

other syntactic groups of the same layer. Any <ptr> element may specify the type

of the constituency relation, e.g., head or nonhead, and each has an @xml:id,

so that the relation may be referred to in the feature structure description of the

node.

Note also that this schema allows for discontinuous constituents, as <ptr> el-

ements within one <seg> do not have to point at neighbouring constituents. This

freedom, combined with the representations for dependencies outlined in the fol-

lowing subsection, makes it possible to encode various linguistic analyses of pos-

sible conflicts between phrase structure and dependency, e.g., involving extraposed

material or crossing dependencies.

3.3 Representing Dependency

It is equally straightforward to represent dependency relations in TEI P5: instead

of the one way <ptr> pointer used for immediate constituency, the <link> el-

ement may be used to relate two syntactic nodes (words or groups). According to

TEI Guidelines, <link> may be used to represent symmetrical (bidirectional) or

asymmetrical (unidirectional) relations; here, by convention, <link> represents

asymmetrical edges in the dependency graph, whose end vertices are specified in

the value of the attribute @targets.8

<seg xml:id="group43"><fs>...</fs></seg>
<link xml:id="link17" type="subject"
targets="ann_morphosyntax.xml#seg78 #group43"/>

8The constraint that there be exactly two references within the values of @targetsmay be spec-

ified in RelaxNG by constraining the TEI data model (http://www.tei-c.org/release/
doc/tei-p5-doc/en/html/ref-link.html) from:

<rng:attribute name="targets">
<rng:list>
<rng:ref name="data.pointer"/>
<rng:oneOrMore>
<rng:ref name="data.pointer"/>
</rng:oneOrMore>
</rng:list>
</rng:attribute>

to:

<rng:attribute name="targets">
<rng:list>
<rng:ref name="data.pointer"/>
<rng:ref name="data.pointer"/>
</rng:list>
</rng:attribute>

156

Again, the value of @type specifies the kind of dependency. According to the

example above, the dependency of type subject holds between a word (defined

in ann_morphosyntax) and a syntactic group (defined elsewhere in the same

file). In a “pure” dependency treebank, where dependencies are strictly between

words, <seg> elements may be completely absent in this layer.

3.4 Case Study: National Corpus of Polish

It is not a prerequisite of the scheme proposed here that there be exactly two lay-

ers of grammatical representation of each text, ann_morphosyntax.xml and

ann_syntax, and neither are fully rooted syntactic representations necessarily

assumed here. Rather, there may be various layers of various granularity.

In the fully TEI P5-encoded National Corpus of Polish (Pol. Narodowy Kor-
pus Języka Polskiego; NKJP; http://nkjp.pl/; Przepiórkowski et al. 2008,

2009), each text has the following linguistic layers: fine-grained word-level seg-

mentation (including some segmentation ambiguities), morphosyntax (referring to

disambiguated segmentation), coarse-grained syntactic words (e.g., for analytical

tense forms consisting of multiple segments; referring to morphosyntax), named

entities (referring to syntactic words) and syntactic groups (also referring to syn-

tactic words).9 The last layer assumes partial syntactic analysis, i.e., the annotation

of nominal and other phrases, without the requirement that each word in the sen-

tence must be contained in some syntactic group. All these layers are encoded as

outlined in § 3.2, with different @types of <seg> elements and different types of

feature structure representations associated with <seg>s.

For example, at the syntactic words layer, ann_words.xml, each sentence

consists of <seg> elements of @type="word" (vs. @type="token" for seg-

mentation and morphosyntax). In the default case, a <seg> at this layer will be

co-extensive with a <seg> at the lower (morphosyntax) layer, but it may also cor-

respond to a possibly discontinuous list of morphosyntactic <seg>ments. Two

different syntactic words may also overlap, as in Bał się zaśmiać ‘(He) feared (to)

laugh’, where for two inherently reflexive verbs, BAĆ SIĘ ‘fear’ and ZAŚMIAĆ SIĘ

‘laugh’, one occurrence of the reflexive marker się suffices.10 This situation is

exemplified below:

<seg xml:id="word13">
<fs> 1 </fs> <!-- (see below) -->
<ptr target="ann_morphosyntax.xml#seg17"/> <!-- bał -->
<ptr target="ann_morphosyntax.xml#seg18"/> <!-- się -->

</seg>
<seg xml:id="word14">
<fs> 2 </fs> <!-- (see below) -->
<ptr target="ann_morphosyntax.xml#seg18"/> <!-- się -->
<ptr target="ann_morphosyntax.xml#seg19"/> <!-- zaśmiać -->
</seg>

9We ignore here another layer present in NKJP, that of word senses.
10On the haplology of the reflexive marker in Polish, see Kupść 1999.

157

1 =

⎡
⎢⎢⎢⎣

word
ORTH bał się
BASE bać się
CTAG Verbfin
MSD sg:ter:m1:imperf:past:ind:aff:refl

⎤
⎥⎥⎥⎦ 2 =

⎡
⎢⎢⎢⎣

word
ORTH się zaśmiać
BASE zaśmiać się
CTAG Inf
MSD perf:aff:refl

⎤
⎥⎥⎥⎦

4 Discussion

The schema proposed above is not supposed to be novel; on the contrary, it has

been designed to be as simple as possible and to be maximally compatible with

other proposed standards for the encoding of grammatical information, but also

with the aim of avoiding the potential problems of the other proposals.

Just like SynAF and PAULA, the schema is a straightforward extension

of TIGER-XML: <seg type="token"> (or <seg type="word">) ele-

ments directly correspond to TIGER’s <t> and SynAF’s T_Node, and <seg
type="group"> — to TIGER’s <nt> and SynAF’s NT_Node. Both kinds of

<seg> elements correspond to PAULA’s <struct>.

The schema maintains the distinction between two kinds of relations between

syntactic nodes: immediate constituency, represented by <ptr>, and other — es-

pecially dependency — relations, represented by <link>, although in principle

all kinds of relations could be represented via <link> elements, just as <rel>
elements of different @types represent different relations in PAULA. Compared

to other standards, <ptr> corresponds to TIGER’s <edge> and seems to have no

analogue in SynAF, where apparently constituency is represented implicitly by the

extent of the span of particular constituents.11 On the other hand, <link> directly

corresponds to SynAF’s Edge12 and is a generalisation of TIGER’s <secedge>.

Moreover, various types of relations between <token>s and <wordForm>s,

as defined in MAF, may be represented as illustrated in § 3.4. The current schema

is also compatible with XCES, to the extent that XCES is originally TEI-based and

given that the morphosyntactic representation outlined above uses XCES-inspired

feature names.

We claim that the current schema inherits all advantages of various proposed

standards, but improves on each of them. First of all, where TIGER-XML and

MAF assume that different logical layers are present in the same file (words and

syntactic groups in TIGER-XML, tokens and word forms in MAF), the schema

proposed here assumes the stand-off philosophy of separating different layers of

linguistic annotation.13 Second, unlike TIGER-XML, which does not employ any

feature structure representation, and unlike XCES and PAULA, which use non-

standard feature structure representations, the schema proposed above complies

11The version of SynAF referred to in this paper is vague on this and various other specific issues.
12Although, curiously, in the Annex B of ISO:24615 2009, <edge> elements specify only one

end of the edge.
13But such merging of annotation layers is still possible: <seg> elements of different @types

may occur in the same XML file.

158

fully with the ISO standard on feature structure representation. Moreover, unlike

SynAF, whose current version seems to be an early draft, the schema is an applica-

tion of TEI P5, a well-established and constantly maintained standard with stable

guidelines and a large supporting community. In fact, since the schema is embed-

ded in TEI, it is almost infinitely extendable and may draw from a variety of TEI

solutions for various aspects of text representation.

5 Conclusion

One disadvantage of the Text Encoding Initiative P5 standard is that the documen-

tation is huge and the task of distilling a manageable corpus schema is daunting.

We have performed this task and reported the results in this and related papers

(Przepiórkowski and Bański 2009a,b). Moreover, we looked at other proposed

corpus encoding standards and concluded that whatever they offer may already be

found in TEI, which has the advantage of being a very mature and at the same

time actively supported standard. Nevertheless, whenever TEI provided alterna-

tive solutions, we chose mechanisms compatible with other proposed standards

for treebank encoding, thus attaining a TEI schema maximally isomorphic with

TIGER-XML, SynAF and PAULA. We hope that this work will serve as a starting

point for the design of other TEI P5 corpus encoding schemata.

References

Bański, P. and Przepiórkowski, A. (2009). Stand-off TEI annotation: the case of

the National Corpus of Polish. In Proceedings of the Third Linguistic Annotation
Workshop (LAW III) at ACL-IJCNLP 2009, pages 64–67, Singapore.

Burnard, L. and Bauman, S., editors (2008). TEI P5: Guidelines for Elec-
tronic Text Encoding and Interchange. Oxford. http://www.tei-c.org/
Guidelines/P5/.

Dipper, S. (2005). Stand-off representation and exploitation of multi-level linguis-

tic annotation. In Proceedings of Berliner XML Tage 2005 (BXML 2005), pages

39–50, Berlin.

Dipper, S., Hinrichs, E., Schmidt, T., Wagner, A., and Witt, A. (2006). Sustainabil-

ity of linguistic resources. In E. Hinrichs, N. Ide, M. Palmer, and J. Pustejovsky,

editors, Proceedings of the LREC 2006 Workshop on Merging and Layering Lin-
guistic Information, pages 14–18, Genoa. ELRA.

Ide, N. (1998). Corpus Encoding Standard: SGML guidelines for encoding linguis-

tic corpora. In Proceedings of the First International Conference on Language
Resources and Evaluation, LREC 1998, pages 463–470, Granada. ELRA.

Ide, N. and Priest-Dorman, G. (1995). Corpus encoding standard. http://www.
cs.vassar.edu/CES/, accessed on 2009-08-22.

Ide, N., Bonhomme, P., and Romary, L. (2000). XCES: An XML-based standard

for linguistic corpora. In LREC (2000), pages 825–830.

159

ISO:24610-1 (2005). Language resource management – feature structures – part

1: Feature structure representation. ISO/DIS 24610-1, 2005-10-20.

ISO:24611 (2005). Language resource management – Morpho-syntactic annota-

tion framework (MAF). ISO/CD 24611, ISO TC 37/SC 4 document N 225 of

2005-10-15.

ISO:24612 (2008). Language resource management – Linguistic annotation frame-

work. ISO/WD 2461[2], ISO TC 37/SC 4 document N 463 rev00 of 2008-05-12.

ISO:24615 (2009). Language resource management – Syntactic annotation frame-

work (SynAF). ISO/CD 24615, ISO TC 37/SC 4 document N 421 of 2009-01-

30.

Janus, D. and Przepiórkowski, A. (2007). Poliqarp: An open source corpus indexer

and search engine with syntactic extensions. In Proceedings of the ACL 2007
Demo and Poster Sessions, pages 85–88, Prague.

Kupść, A. (1999). Haplology of the Polish reflexive marker. In R. D. Borsley and

A. Przepiórkowski, editors, Slavic in Head-Driven Phrase Structure Grammar,

pages 91–124. CSLI Publications, Stanford, CA.

König, E., Lezius, W., and Voormann, H. (2003). TIGERSearch 2.1: User’s Man-
ual. Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart.

Lezius, W. (2002). TIGERSearch — ein Suchwerkzeug für Baumbanken. In

S. Busemann, editor, Proceedings der 6. Konferenz zur Verarbeitung natürlicher
Sprache (KONVENS 2002), Saarbrücken.

LREC (2000). Proceedings of the Second International Conference on Language
Resources and Evaluation, LREC 2000, Athens. ELRA.

Mengel, A. and Lezius, W. (2000). An XML-based encoding format for syntacti-

cally annotated corpora. In LREC (2000), pages 121–126.

Przepiórkowski, A. and Bański, P. (2009a). Which XML standards for multilevel

corpus annotation? In Proceedings of the 4th Language & Technology Confer-
ence, Poznań, Poland. Forthcoming.

Przepiórkowski, A. and Bański, P. (2009b). XML text interchange format in the

National Corpus of Polish. In S. Goźdź-Roszkowski, editor, The proceedings of
Practical Applications in Language and Computers PALC 2009, Frankfurt am

Main. Peter Lang. Forthcoming.

Przepiórkowski, A., Górski, R. L., Lewandowska-Tomaszczyk, B., and Łaziński,

M. (2008). Towards the National Corpus of Polish. In Proceedings of the Sixth
International Conference on Language Resources and Evaluation, LREC 2008,

Marrakech. ELRA.

Przepiórkowski, A., Górski, R. L., Łaziński, M., and Pęzik, P. (2009). Recent

developments in the National Corpus of Polish. In J. Levická and R. Garabík,

editors, Proceedings of Slovko 2009: Fifth International Conference on NLP,
Corpus Linguistics, Corpus Based Grammar Research, 25–27 November 2009,
Smolenice/Bratislava, Slovakia, Brno. Tribun.

Witt, A., Rehm, G., Hinrichs, E., Lehmberg, T., and Stemann, J. (2009). SusTEIn-

ability of linguistic resources through feature structures. Literary and Linguistic
Computing, 24(3), 363–372.

160

MaJo - A Toolkit for Supervised Word Sense

Disambiguation and Active Learning

Ines Rehbein Josef Ruppenhofer Jonas Sunde

Universität des Saarlandes, Germany
Computational Linguistics

{rehbein,josefr}@coli.uni-sb.de s9sujona@stud.uni-saarland.de

Abstract

We present MaJo, a toolkit for supervised Word Sense Disambiguation (WSD),

with an interface for Active Learning. Our toolkit combines a flexible plu-

gin architecture which can easily be extended, with a graphical user interface

which guides the user through the learning process. MaJo integrates off-

the-shelf NLP tools like POS taggers, treebank-trained statistical parsers, as

well as linguistic resources like WordNet and GermaNet. It enables the user

to systematically explore the benefit gained from different feature types for

WSD. In addition, MaJo provides an Active Learning environment, where the

system presents carefully selected instances to a human oracle. The toolkit

supports manual annotation of the selected instances and re-trains the sys-

tem on the extended data set. MaJo also provides the means to evaluate the

performance of the system against a gold standard.

We illustrate the usefulness of our system by learning the frames (word

senses) for three verbs from the SALSA corpus, a version of the TiGer tree-

bank with an additional layer of frame-semantic annotation. We show how

MaJo can be used to tune the feature set for specific target words and so im-

prove performance for these targets. We also show that syntactic features,

when carefully tuned to the target word, can lead to a substantial increase in

performance.

1 Introduction
An important step in Natural Language Processing is the disambiguation of word

senses, without which we would not be able to interpret the meaning of an utterance

or text. Word Sense Disambiguation (WSD) thus provides important information

for many NLP applications in the area of information retrieval, summarisation,

question answering or machine translation. To date, the best performance for the

task of WSD is achieved by supervised systems which rely on manually labelled

training data. However, there are two major drawbacks to the supervised approach:

1. Supervised learning requires a large amount of manually labelled data.

161

2. Supervised learning is highly sensitive to the domain the labelled data is

taken from.

Manual annotation of large data sets is time-consuming and costly. Therefore

it is infeasible to create resources a) which are large enough to capture all infor-

mation needed for disambiguation and b) which are representative of all possible

genres and domains we might want to work with. Active Learning is one possible

approach to address this bottleneck.

Active Learning tries to reduce the amount of human annotation by carefully

selecting new training instances with respect to the information content they pro-

vide for the machine learning classifier used in the supervised setting. These in-

stances are then handed over to a human annotator, the oracle, who assigns the

correct label. The basic idea is to select a small number of instances which pro-

vide important information for the classifier and to thereby achieve an increase in

performance in the same range as would be achieved on a larger training set of

randomly selected training examples.

Although Active Learning has been shown to be useful for WSD in general

[7, 24], and in particular for tackling problems of domain adaptation [5], some

open issues need to be addressed. One of them is the impact of feature design on

the WSD task. Chen and Palmer [6] show that a set of rich linguistic features does

improve the performance of WSD systems. Xue et al. [23] argue that word senses

are partitioned along different dimensions for different verbs and that, as a conse-

quence, we need to tune the set of features used for disambiguation for each partic-

ular target verb. What we do not know is which types of features are beneficial for

which (types of) target verbs. A systematic investigation of different feature types

such as syntactic and semantic features, context features, collocational features,

and so on, is urgently needed.

Another issue concerns the Active Learning environment. Recent work has ex-

plored the impact of different parameters on the performance of Active Learning.

Among these are the size of the seed data for initial training; different techniques

for selecting new, informative examples to be labeled by the human oracle; sam-

pling techniques for providing the system with new training instances to choose

from; as well as developing stopping criteria for determining the optimal point to

end the Active Learning process [24, 16, 22, 25, 2, 19]. Other issues which are also

crucial for the Active Learning setup are the grain size of sense distinctions used

for annotation as well as the distribution of the different word senses in the data. It

is not yet clear whether Active Learning does work for coarse-grained word sense

distinctions only [8], or whether it can also improve performance for fine-grained,

detailed word senses [5].

In this paper, we provide a means for tackling these questions. We present

MaJo, a toolkit with a graphical user interface for applying Active Learning to a

Word Sense Disambiguation task. Our toolkit allows users to combine different

components for syntactic and semantic pre-processing, to choose between differ-

ent sets of features which can easily be adapted to the learning problem, and to

162

integrate Active Learning in the training process. Our main intention in building

Majo is to provide an explorative tool for investigating the contribution of individ-

ual features to the learning problem and to provide an easily accessible way to test

the impact of Active Learning on different target words.

The remaining part of the paper is structured as follows. First we describe the

architecture of our tool and show how it can be used for supervised WSD with

and without Active Learning. Next we present experiments assessing the impact of

syntactic and semantic features on the performace of our WSD system and show

how MaJo can be used for tuning the feature set to particular target words. Finally

we conclude and outline future work.

2 A Tool for Feature Exploration and Active Learning
The tool presented in the paper, MaJo, allows the user to explore the usefulness of

different feature types for WSD in an Active Learning environment. The graphical

user interface guides the user through the learning process and provides an easy

way to include or exclude individual features for training. The ability to display

the extracted features for all instances allows for a qualitative evaluation of the

benefit obtained by individual features. In the Active Learning environment the

user is presented with selected instances, which can comfortably be labelled in

the GUI. The manually labelled instances are then added to the seed data, and the

system is trained on the new data set.

2.1 Architecture
MaJo features a flexible plugin architecture which implements a number of inter-

faces to off-the-shelf NLP tools and linguistic resources for extracting training data

from the web (Yahoo! search API), for preprocessing (Stanford POS Tagger [21],

Stanford Parser [13], Berkeley Parser [20], MaltParser [18]), for extracting se-

mantic features (WordNet [12], GermaNet [15]) and for classification (OpenNLP

MaxEnt 2.51). The architecture can easily be extended to incorporate additional

components for preprocessing and feature extraction, or to implement new ma-

chine learning algorithms for training. At the moment the system provides working

interfaces for English and German, but it can easily be extended to other languages.

2.2 Supervised Learning with MaJo
The GUI was designed to guide users with only basic computer skills through the

training process. First, the user has to enter a target lemma he or she wants to train

the system on. The system generates a list of possible inflected word forms for

the target lemma, using a precompiled dictionary2. The user can remove unwanted

1http://maxent.sourceforge.net
2The German dictionary was created with Morphy, a morphological analyser by Wolfgang Lezius

[17]

163

word forms or add new ones to the dictionary. Next, the user is asked to load a text

file with annotated training data or to enter new, labelled instances for training in a

text field. After that, the user can choose the plugins for preprocessing and feature

selection.

Figure 1: Working stages during supervised learning with and without Active

Learning

Plugins

At the moment, our system provides the plugins listed in Table 1. Feature classes

(1) and (2) are bag-of-word context features extracting the word form (1) or POS

tag (2) for each word occuring in a context window of size n. Feature class (3) relies

on information about syntactic categories provided by either the Berkeley Parser or

the Stanford Parser, which have been trained on a constituent version of the TiGer

treebank [3]. The user can specify a syntactic category, which is considered as con-

text for which all child nodes (word form or POS tags) are extracted. Feature class

(4) is based on functional dependency information provided by the MaltParser,

which was trained on a dependency version of TiGer. Feature classes (5) and (6)

add semantic information to the feature set, based on different preprocessing steps.

For (5), we extract selected semantic relations like hyperonymy or meronymy for

specified POS tags. The WordNet(/GermaNet)POSTag plugin uses a more fine-

grained POS tag annotation, while the WordNet(/GermaNet)SuperordinateTag plu-

gin uses a more coarse-grained (super-ordinate) POS tag scheme. For (6), seman-

tic relations are extracted for specific functional dependencies as provided by the

MaltParser.

After having selected the feature set and a machine learning classifier for train-

ing3, the system starts feature extraction and training on the annotated training

3At present, the system implements the OpenNLP MaxEnt classifier. We plan to integrate other

ML algorithms in the future.

164

Feature Class Description Parameter
(1) WordRangeContext bag-of-word context window size

(2) POSTagContext bag-of-POS-tag context window size Berk./Stan.

POS Tagger

(3) ClauseFunDep words or POS tags for given functional MaltParser

functional dependencies dependency

(4) SentencePhrase words or POS tags for children syntactic Berk./Stan.

FunDep of a specific syntactic category category Parser

(5) WordNet/GermaNet WordNet relations for max. depth, Berk./Stan.

(Super)POSTag (super-ordinate) POS tags sem. relation POS Tagger

(6) WordNet/GermaNet WordNet relations for specific max. depth, MaltParser

FunDep functional dependencies sem. relation

Table 1: Off-the-shelf software components implemented in MaJo

data. Having finished the training process, the training data is stored in a database

for future use. Now the user can access the database and evaluate the performance

of the system against a gold standard (see Figure 2.2).

Accessing the database also offers other options to the user. It is possible to

predict word senses for new, unannotated text which can be a) loaded from a text

file, b) entered in a text field (GUI) or c) generated using the Yahoo! search inter-

face. Another option allows the user to display the data stored in the database. For

each sentence in the database the user can check which features have been extracted

by the different plugins. This provides the means for a qualitative evaluation of the

usefulness of individual features.

2.3 Active Learning
The last option offered by the system provides the environment for Active Learn-

ing. The pre-stored data in the database can be considered as seed data, which is

used by the ML classifier to predict labels for new, unannotated text. These newly

annotated sentences can serve as a pool for selecting instances for Active Learning.

As described above, for Active Learning we need to identify those instances

which are the most informative for the classifier. The user can define a threshold

for selecting new instances, based on the confidence score of the classifier. The

confidence score reported by the maximum entropy classifier specifies the proba-

bility that instance n is assigned label x. We can use this score to determine which

instances the classifier is most uncertain of. The intution behind this is that the

classifier has yet to learn how to label these instances. Therefore we select new

training instances by setting a confidence threshold, so that all instances below the

threshold will be presented to the oracle to be manually disambiguated, and then

added to the training set. The GUI provides a comfortable interface for the human

annotator, who can then chose the correct label for each of the selected sentences

from a pulldown menu. When the annotation is finished, the system is retrained on

the new data set, consisting of the seed data and the newly added, manually labelled

165

freq bringen freq gewinnen freq drohen
2 Position_on_a_scale

3 Erbringen

5 Achieve_status

6 Deprive

6 Put_behind

9 Accumulated_amount

12 Contribute_effort 3 Manufacturing

15 Formulation 4 Improvement

21 Entail 30 Bring_about_result

39 Befall_patient 37 Change_position_on_a_scale

40 Present 40 Win_prize

105 Bringing 43 Come_to_be_in_state 243 drohen1-salsa

112 Receive_caused_experience 43 Suasion 256 Commitment

471 Cause_patient_to_be_in_state 300 Win_competition 501 Run_risk

850 train/test: 680/170 500 train/test: 400/100 1000 train/test: 800/200

Table 2: Word senses for bringen (to bring), gewinnen (to win) and drohen (to

threaten)

instances. After retraining, the user has the option to evaluate the performance of

the new training set or to continue the Active Learning process.

3 Experiments
In our experiments we want to assess the impact of different types of features on a

WSD task for German verbs. We chose the three German verbs drohen (threaten),

gewinnen (win) and bringen (bring), because they are reasonably frequent and

exhibit a range of difficulty in terms of the number of word senses. Our sense

inventory follows the SALSA annotation scheme [4]. The SALSA corpus is a

frame-semantic lexical resource for German, adding an additional layer of seman-

tic annotation to the TiGer treebank. Semantic frames can be considered as word

senses, and so the task of frame assignment is basically a WSD problem [10].

Table 2 shows the number of instances for the three verbs in our data set as well

as the different word senses and their distribution. We performed a 5-fold cross-

validation, randomly generating training and test folds from the pool of available

instances. The main objective of our experiments is to investigate the impact of

different feature types on the WSD task for the three target verbs. We want to

test how much we can gain in terms of precision and recall by tuning the feature

set to the individual target verbs. Furthermore, we want to test which types of

features are helpful for the different targets. What can we expect when applying

shallow context features only, and how much can be gained by adding syntactic

and semantic features to the feature set?

3.1 Results
In our experiments we first tested the performance of our system when trained

with individual features. We report f-scores averaged over the 5 folds for each

166

Feature drohen gewinnen bringen
A context features (word form)
wordRange 2 0.689 0.588 0.570
wordRange 5 0.702 0.640 0.550

wordRange 8 0.684 0.632 0.540

B context features (POS tags)
StanPOS 2 0.617 0.540 0.500
StanPOS 3 0.651 0.490 0.490

StanPOS 3, +PUNC 0.634 0.550 0.470

C Word form/POS tag context for specific syntactic categories
SentPhrase NP 0.491 0.550 0.430

SentPhrase VP 0.617 0.642 0.530
SentPhrasePOS NP 0.494 0.598 0.500
SentPhrasePOS VP 0.621 0.594 0.490

D GermaNet semantic relations for superordinate POS tags, depth 3
hyper, meron, N 0.570 0.612 0.530

hyper, meron, V 0.582 0.566 0.510

hyper, meron, NAV 0.593 0.626 0.550
E GermaNet semantic relations for GF (MaltParser), depth 3
SUBJ, OBJA, OBJD, hyper 0.499 0.612 0.510

SUBJ, OBJA, OBJD, OBJG hyper 0.510 0.614 0.520

SUBJ, OBJA, OBJD, hyper, meron 0.528 0.610 0.550
F Combinations of the best features for each target verb
best settings 0.701 0.650 0.560

Table 3: Results for individual feature plugins and combinations thereof

target word.

Context features
First, we trained the system using shallow context features. We extracted the word

forms in a context window of size 2, 5 and 8 to the left and right of the target word.

Table 3 A shows results for our three targets. For drohen and gewinnen we obtain

best results with a context window of size 5, while for bringen a smaller window

(size 2) shows better performance.

When extracting POS tag context features, for drohen best results are achieved with

a context window of size 3. For gewinnen, including punctuation in the feature set

brings a considerable improvement of 6%, while for drohen and bringen results

decrease (Table 3, B). Bringen, however, achieves best results with a small window

size of 2, as was the case for the word range context. Using word forms as features

by far outperforms POS tag context features for all three verbs.

Syntactic features
Using syntactic categories to specify the context window for which we extract

word forms, we obtain by far better results when selecting verb phrases as relevant

context. For POS tag features, the verb drohen again benefits from the VP con-

text (with an improved performance of around 12% over NP context), while for

gewinnen and bringen we observe a slightly better performance when using NPs

as context (Table 3, C).

Semantic features

167

Using semantic features as the only clue for WSD, again we obtain mixed results.

Table 3, D shows results for extracting semantic relations from Germanet for super-

ordinate POS tags (nouns N, verbs V , adjectives ADJ). While for drohen the contri-

bution of the GermaNet features is less than that of the shallow context features or

the syntactically motivated context features, for gewinnen and bringen the seman-

tic features contain more relevant clues for the disambiguation process. However,

they are still outperformed by the word context features which, for all three targets,

obtain best results.

Our last feature class, E, extracts semantic relations from GermaNet for spe-

cific grammatical functions assigned by the MaltParser. Surprisingly, selecting

features for functional dependents like subject, accusative object and dative object

does not yield better results than extracting the same relations for all nouns, verbs

and adjectives in the sentence. One possible explanation is the low performance

for grammatical function labelling in German parsing. For subjects, results are

quite high with 90.2% f-score, for accusative objects, however, we see only a per-

formance of 80.0%, and for dative objects the MaltParser achieves 49.7% f-score

only [14]. As a result, the classifier has to deal with a great amount of noise in the

feature set, which might be responsible for the poor results for feature class E.

Combined features
Next, we selected the parameter setting for which we obtained best performance

for each feature class, and trained the system on the combined feature set (Table 3,

F) Surprisingly, performance for the combined features is not much higher than for

the best individual feature classes. We suspect that by selecting the best performing

feature setting we select features capturing the same kind of information, so that

the benefit obtained from the additional features is not very great. By using a large

feature set, on the other hand, we also add more noise to the data.

Dinu and Kübler [9] argue that, at least for memory-based learning, a reduced

and controlled amount of features is more beneficial than the the full range of

features that have been proposed in the WSD literature so far. We follow this

notion and restrict our feature set to a subset of linguistically motivated features,

based on an analysis of the specific sense distinctions for our target verbs. The

History option provided by MaJo allows the user to inspect the features extracted

by each of the plugins, and to use the information for feature tuning. For drohen,

the word sense distinctions are more syntactically motivated than for gewinnen
or bringen, which becomes apparent when looking at the results for the individual

feature classes. The contribution of the semantic feature classes for drohen is rather

small (as compared to results for gewinnen and bringen), while overall results for

drohen are higher than for the other two targets.

The new set of features resulting from our analysis4 achieves an f-score of

0.775, which is significantly higher than the result obtained by combining the sin-

4ClauseFunDep (Table 1, ROOT, SUBJ, OBJA, OBJD, PP, OBJP, AUX, PART, AVZ, ATTR),

PosTagContext (window size 3, no punctuation, Stanford POS Tagger), WordRangeContext (window

size 5), SentencePhrasePOS (Berkeley Parser, VZ)

168

gle best-performing feature-classes. This shows that syntactic features (as well as

the semantic features based on the output of a treebank-trained dependency parser)

can yield a substantial improvement when choosing the right settings for feature

selection as well as appropriate features.

To compare our tool with a state-of-the-art WSD system, we trained MaJo on

all instances in our drohen data set and tested it on a test set with 111 instances

taken from the SALSA corpus. We also trained Shalmaneser [11], a shallow se-

mantic parser, on the same training set and run it on our test set. MaJo achieves

an f-score of 0.712 on the SALSA test set, while the performance of Shalmaneser

is much lower with 0.362. Please note that these results are not representative for

the overall performance of the two systems. For a fair comparison we need to test

both systems on a larger number of target words, which is beyond the scope of this

paper.

4 Discussion

The results that we have obtained match well with our linguistic intuitions about

the relative difficulty of our three verbs. Bringen as the most polysemous verb is

the most difficult, followed by gewinnen, and drohen. However, the number of

senses by itself is not the whole story. Also relevant are the actual distribution of

senses in the data and the ability to extract useful features.

Consider, as an example, the senses of the verb bringen. Several of the senses,

the ones shown in Table (4), are actually multi-word expressions with easily iden-

tifiable components such as the expletive object es, PPs headed by specific prepo-

sitions or with reflexive pronouns as prepositional objects. However, these senses

make up a mere 9% of our data. The by far most common sense, Cause_patient-

_to_be_in_state, expresses a very general meaning of causation and typically oc-

curs in the pattern NP_acc PP bringen, with a lot of different prepositions heading

the secondary predicate expressing the caused state of affairs. The two next most

frequent senses, the basic sense of Bringing and another metaphorical causation

sense, Receive_caused_experience, share the same basic syntactic configuration

NP_dat NP_acc bringen and are most readily distinguished by the semantics of

the accusative object. Overall, the semantic deck is stacked against us: the fre-

quent senses are syntactically not very distinctive, whereas the distinctive senses

are not very frequent. In this regard, bringen contrasts rather strongly with our

best-performing lemma, drohen. Its three senses have distinct prototypical syntac-

tic realizations. Commitment clauses have the two forms NP_nom drohen NP_dat
PP_mit(with) and NP_nom drohen NP_dat VP; drohen1-salsa has the form NP_dat
drohen NP_nom; and Run_risk typically has the form NP_nom drohen VP. Impor-

tantly, the skew in the frequency of these senses is not very great, with one sense

accounting for half of the tokens and the others for a quarter each.

169

Frame Canonical Form Freq.

Achieve_status es PP_zu etwas bringen 5

Deprive NP_acc PP_um bringen 6

Put_behind NP_acc hinter pron_refl. bringen 21

Accumulated_amount es PP_auf bringen 9

Formulation NP_acc auf einen Nenner bringen 15

Entail NP_ mit sich bringen 21

Total 77

Table 4: Easily identifiable senses of bringen

5 Conclusions and Future Work

We presented MaJo, a toolkit for supervised WSD, which incorporates an environ-

ment for Active Learning.5 Our tool provides an easy-to-use GUI and is tailored

to support feature tuning for specific target words such as we carried out here. Our

experiments showed that, even for medium-sized data sets, much can be gained by

tuning the feature set to specific target words, and that especially the syntactic and

semantic feature types can bring a significant improvement, provided that we use

the right features.

In future work we will extend the feature classes used for disambiguation as

well as the options for the Active Learning environment, and integrate additional

ML classifiers. We also plan to use the tool to study the interaction between the

criteria on which sense distinctions are based and the learnability for automatic sys-

tems of these distinctions, comparing for instance FrameNet[1] sense distinctions

with those of WordNet.

References

[1] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley

FrameNet Project. In Proceedings of the COLING-ACL, pages 86–90, 1998.

[2] Michael Bloodgood and Vijay Shanker. A method for stopping Active Learn-

ing based on stabilizing predictions and the need for user-adjustable stopping.

In Proceedings of the Thirteenth Conference on Computational Natural Lan-
guage Learning (CoNLL-2009), Boulder, Colorado, 2009.

[3] Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George

Smith. The TIGER Treebank. In Erhard W. Hinrichs and Kiril Simov, editors,

Proceedings of the First Workshop on Treebanks and Linguistic Theories,

pages 24–42, Sozopol, Bulgaria, 2002.

5MaJo is freely available for research purposes and can be downloaded from http://www.coli.
uni-saarland.de/projects/salsa.

170

[4] A. Burchardt, K. Erk, A. Frank, A. Kowalski, S. Padó, and M. Pinkal. The

SALSA Corpus: a German corpus resource for Lexical Semantics. In Pro-
ceedings of the 5th International Conference on Language Resources and
Evaluation (LREC-06), Genoa, Italy, 2006.

[5] Yee Seng Chan and Hwee Tou Ng. Domain adaptation with Active Learning

for Word Sense Disambiguation. In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics, 2007.

[6] Jinying Chen and Martha Stone Palmer. Towards robust high performance

Word Sense Disambiguation of English verbs using rich linguistic features.

In IJCNLP, 2005.

[7] Jinying Chen, Andrew Schein, Lyle Ungar, and Martha Palmer. An empirical

study of the behavior of Active Learning for Word Sense Disambiguation.

In Proceedings of the Human Language Technology Conference of the North
American Chapter of the ACL, New York, NY, 2006.

[8] Hoa Trang Dang. Investigations into the role of Lexical Semantics in Word
Sense Disambiguation. PhD dissertation, University of Pennsylvania, Penn-

sylvania, PA, 2004.

[9] Georgiana Dinu and Sandra Kübler. Sometimes less is more: Romanian Word

Sense Disambiguation revisited. In Proceedings of the International Con-
ference on Recent Advances in Natural Language Processing (RANLP-07),
Borovets, Bulgaria, 2007.

[10] Katrin Erk. Frame assignment as Word Sense Disambiguation. In Proceed-
ings of the 6th International Workshop on Computational Semantics (IWCS-
6), Tilburg, The Netherlands, 2005.

[11] Katrin Erk and Sebastian Pado. Shalmaneser - a flexible toolbox for Semantic

Role assignment. In Proceedings of LREC, Genoa, Italy, 2006.

[12] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database
(ISBN: 0-262-06197-X). MIT Press, first edition, 1998.

[13] Dan Klein and Chris Manning. Accurate unlexicalized parsing. In 41st
Annual Meeting of the Association for Computational Linguistics (ACL-03),
Sapporo, Japan, 2003.

[14] Sandra Kübler. The PaGe 2008 shared task on parsing German. In ACL
Workshop on Parsing German (PaGe-08), Columbus, OH, 2008.

[15] Claudia Kunze and Lothar Lemnitzer. GermaNet - representation, visual-

ization, application. In Proceedings of the 3rd International Conference on
Language Resources and Evaluation (LREC-02), 2002.

171

[16] Florian Laws and Hinrich Schütze. Stopping criteria for Active Learning of

Named Entity Recognition. In Proceedings of the 22nd International Confer-
ence on Computational Linguistics (Coling 2008), Manchester, UK, August

2008.

[17] Wolfgang Lezius. Morphy - German morphology, part-of-speech tagging and

applications. In Proceedings of the 9th EURALEX International Congress,

Stuttgart, Germany, 2000.

[18] Joakim Nivre, Johan Hall, and Jens Nilsson. MaltParser: A data-driven

parser-generator for dependency parsing. In Proceedings of the 5th Inter-
national Conference on Language Resources and Evaluation (LREC-06),
Genoa, Italy, 2006.

[19] Fredrik Olsson and Katrin Tomanek. An intrinsic stopping criterion for

committee-based Active Learning. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning (CoNLL-2009), Boulder,

Colorado, 2009.

[20] Slav Petrov and Dan Klein. Improved inference for unlexicalized parsing.

In Proceedings of the Human Language Technology Conference and the 7 th
Annual Meeting of the North American Chapter of the Association for Com-
putati onal Linguistics (HLT-NAACL-07), Rochester, NY, 2007.

[21] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer.

Feature-rich part-of-speech tagging with a cyclic dependency network. In

Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology
(NAACL-03), Morristown, NJ, USA, 2003. Association for Computational

Linguistics.

[22] Andreas Vlachos. A stopping criterion for Active Learning. Compututer
Speech and Language, 22(3), 2008.

[23] Nianwen Xue, Jinying Chen, and Martha Palmer. Aligning features with

sense distinction dimensions. In ACL, 2006.

[24] Jingbo Zhu and Eduard Hovy. Active Learning for Word Sense Disambigua-

tion with methods for addressing the class imbalance problem. In Proceed-
ings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, Prague, Czech

Republic, 2007.

[25] Jingbo Zhu, Huizhen Wang, Tianshun Yao, and Benjamin K. Tsou. Active

Learning with sampling by uncertainty and density for Word Sense Disam-

biguation and Text Classification. In Proceedings of the 22nd International
Conference on Computational Linguistics (Coling 2008), Manchester, UK,

2008.

172

An English Dependency Treebank

à la Tesnière

Federico Sangati
University of Amsterdam
f.sangati@uva.nl

Chiara Mazza
University of Pisa

chiara.mazza@gmail.com

Abstract

During the last decade, the Computational Linguistics community has

shown an increased interest in Dependency Treebanks. Several groups have

developed new annotated corpora using dependency representation, while

other people have proposed several automatic conversion algorithms to trans-

form available Phrase Structure (PS) treebanks into Dependency Structure

(DS) notation. Such projects typically refer to Tesnière as the father of de-

pendency syntax, but little attempt has been made to explain how the chosen

representation relates to the original work. A careful comparison reveals

substantial differences: modern DS annotations discard some relevant fea-

tures characterizing Tesnière’s model. This paper is presenting our attempt

to go back to the roots of dependency theory, and show how it is possible

to transform a PS English treebank to a DS notation that is closer to the one

proposed by Tesnière, which we will refer to as TDS. We will show how

this representation can incorporate all main advantages of modern DS, while

avoiding well known problems concerning the choice of heads, and better

representing common linguistic phenomena such as coordination.

1 Introduction

Although the tradition of using syntactic models in linguistics can be dated back to

Panini’s work (4th century BC), the discussion about which model linguists should

use is still open. Corpus-based Computational Linguistics (CL) was born in the

middle of last century, an important period of change in linguistic theory. In conti-

nental Europe, the French structuralist Lucien Tesnière, was developing a general

theory of syntax, which was published posthumously in 1959 [15], and would be-

came the foundation of Dependency Structure (DS) theory. In 1957 Noam Chom-

sky published his own work on Syntactic Structures [3], which would become the

main reference for Phrase Structure (PS) theory.

Corpus-based CL has been strongly influenced by PS notation, due to the strong

worldwide position of Chomskyan theory, and still nowadays most linguistic re-

sources conform to this representation. Only in the last decade, more and more

interest was placed on dependency theory, thanks to several research groups that

173

have developed new annotated treebanks using DS formalisms (e.g., [1], [6]). In

the same period other people have proposed several automatic conversion algo-

rithms to transform available PS treebanks into DS (e.g., [17], [5], [9]). Such

projects typically refer to Tesnière as the father of dependency syntax, but little

attempt has been made to explain how the chosen dependency representation re-

lates to the original work. A careful comparison reveals substantial differences:

modern DS retains only the main idea proposed by Tesnière, namely the relation

of dependency between words (section 2.1), while other operations and features of

the original model are discarded or not overtly represented.

In the current paper we present an ongoing project of converting the English

Penn Wall Street Journal (WSJ) Treebank [11] into a DS notation that is closer to

the one proposed by Tesnière, which we will refer to as TDS. In particular we will

reintroduce three key concepts: the division of a sentence into blocks of words,

which act as intermediate linguistic units (section 2.2), the junction operation, to

handle coordination and other types of conjoined structures (section 2.3), and the

operation of transference, to generalize over the categories of the linguistic ele-

ments (section 2.4)1.

Our work is not purely driven by historical concerns; in section 3 we will in

fact give empirical evidence that shows how this representation can incorporate all

main advantages of modern DS, while avoiding well known problems concerning

the choice of heads, and better representing common linguistic phenomena such as

coordination. Finally, in section 4 we will give more details about the conversion

procedure, and the generated structures.

2 Dependency Structures à la Tesnière

2.1 The dependency relation

The main idea behind Tesnière’s model is the notion of dependency, which identi-

fies the syntactic relation existing between two elements within a sentence, one of

them taking the role of governor (or head) and the other of dependent (régissant
and subordonné in the original terminology). Tesnière schematizes this syntactic

relation using a TDS stemma as in figure 1, putting the governors above the de-

pendents. On the right side of the figure we present the same sentence using our

notation, incorporating all the main features introduced by Tesnière, which we will

explain in the following sections.

1See in [15] part I ch. 22 on nucléus, part II on jonction, and part III on translation. We choose

transference for the original French word translation to avoid any misunderstanding with the other

meaning of the word translation in English. Unfortunately, 50 years after its publication, there is still

no official English translation of the author’s work.

174

is singing

friend song

my old this nice my old

friend

is singing

this nice

song

Figure 1: TDS of the sentence “My old friend is singing this nice song”, in Tesnière

notation (left) and in our TDS representation (right).

2.2 Words, blocks and categories

In TDS, all words are divided into two classes: full content words (e.g., nouns,

verbs, adjectives, etc.), and empty functional words (e.g., determiners, preposi-

tions, etc.). Each full word forms a block2 which may additionally include one or

more empty words, and it is on blocks that operations are applied. Tesnière distin-

guishes four block categories (or functional labels3), here listed together with the

original single letter notation, and the color reported in our diagrams: nouns (O,

blue), adjectives (A, green), verbs (I, red), and adverbs (E, yellow).

The verb represents the process expressed by the clause, and all its arguments,

representing the participants in the process, have the functional labels of nouns, and

are determined by the valence of the verb. On the other hand the verb’s adjuncts

(or circonstants), representing the circumstances under which the process is taking

place, i.e., time, manner, location, etc., have the functional labels of adverbs. We

will now introduces two operations, junction and transference, by means of which

it is possible to construct more complex clauses from simple ones.

2.3 Junction

The first operation is the junction. It is employed to group blocks which lie at the

same level, the conjuncts, into a unique entity which has the status of a block. The

conjuncts are horizontally connected in the TDS, belong to the same category, and

are possibly (and not always) connected by means of empty words, the conjunc-
tions. Figure 2 displays three coordinated structures4.

2Tesnière in [15, ch. 22] uses the term nucléus, and explains that it is important in order to

define, among other things, the transference operation (see section 2.4). In our diagrams blocks are

represented as black boxes, and empty words are written in grey to distinguish them from full words.
3We will use both terms interchangeably. Categories can be roughly seen as a simplification of

both PoS tags and dependency relations in DS’s. See also section 3.2.
4Tesnière uses the junction operation to represent coordinated structures and other particular

joined structures, such as the apposition (e.g., [the US president], [Obama]). Although our im-

plementation includes all types of junction, in this paper we will particularly focus on coordination
since it constitutes the majority of the cases, and yet the most problematic ones.

175

fall

Alfred and Bernard

a lunch

good but expensive

laugh and sing

children

Alfred and Bernard

fall a lunch

good but expensive children

laugh and sing

Figure 2: Examples of coordination. Tesnière’s original notation is on top, and our

notation at the bottom (we represent the junction with a yellow box).

2.4 Transference

The other operation is named transference. There are two types of transference.

The first degree transference is a shifting process which makes a block change

from the original category of the content word, to another5. This process often

occurs by means of one or more empty words belonging to the same block, called

transferrers. Figure 3 (left) shows an example of first degree transference. The

word Peter is transferred from the word class noun and takes the functional label

of an adjective via the possessive clitic ’s which acts as a transferrer. In our repre-

sentation (bottom), every block has two little colored boxes: the one at the bottom

indicates the original category of the content word, and the one at the top indicates

the category of the block after all transferences are applied.

The second degree transference occurs when a simple clause becomes an ar-

gument or an adjunct of another clause6, maintaining all its previous lower con-

nections, but changing its functional label within the main clause. The sentences

below represent some examples of second degree transference:

(1) She believes that he knows

(2) The man I saw yesterday is here today

(3) You will see him when he comes

5A somehow similar operation has been formulated in the framework of Combinatory Categorial

Grammar (cf. [8]), and goes under the name of type raising.
6In other words, the verb of the embedded clause becomes a dependent of an other verb. This

should not be confused with the case of compound verbs, which are represented as a single block,

where auxiliaries are labeled as empty words (see for instance the TDS in figure 1).

176

book

Peter
A

's

he

believes

She O

that knows

You E

when comes

he

him

will see

Peter 's

book
She

believes

that

he

knows You

will see

him when

he

comes

Figure 3: An example of first degree transference of the phrase “Peter’s book”

(left), and two examples of second degree transference of the sentence “She be-
lieves that he knows” (center) and the sentence “You will see him when he comes”

(right).

In the first sentence, we have a transference verb� noun by means of the trans-

ferrer that. The embedded clause in italics takes the functional label of a noun,

and becomes the object of the verb. Figure 3 (center) shows the corresponding

TDS. The embedded clause in the second example has the functional label of an

adjective. It is a transference verb� adjective without any transferrer. The third

sentence is an example of transference verb� adverb: the clause in italics has the

functional label of a temporal adverb through the transferrer when. Figure 3 (right)

shows the corresponding TDS.

3 Advantages of TDS over DS

In this section we will describe three main advantages of using TDS notation as an

alternative of currently available DS representations. In particular we will discuss

the issue of choosing the linguistic heads in PS trees (section 3.1), compare how

the two models categorize dependency relations (section 3.2), and how they treat

the phenomenon of coordination (section 3.3).

In order to compare the different representations, Figure 4 illustrates three

structures of an English sentence: the original Penn WSJ PS tree, the same struc-

ture converted to DS as in [9], and the TDS our conversion algorithm generates.

177

S

NP-SBJ

NNP

Japan

VP

CONJP

RB

not

RB

only

VP

VBZ

outstrips

NP

DT

the

NNP

U.S.

PP-LOC

IN

in

NP

NN

investment

NNS

flows

CONJP

CC

but

RB

also

VP

VBZ

outranks

NP

PRP

it

PP-LOC

IN

in

NP

NP

NN

trade

PP-CLR

IN

with

NP

JJS

most

JJP

JJ

Southeast

JJ

Asian

NNS

countries

.

.

SBJ
NNP
Japan

CC
RB
not

DEP
RB

only

COORD
VBZ

outstrips

NMOD
DT
the

OBJ
NNP
U.S.

ADV
IN
in

NMOD
NN

investment

PMOD
NNS
flows

ROOT
CC
but

COORD
RB
also

COORD
VBZ

outranks

OBJ
PRP

it

ADV
IN
in

PMOD
NN

trade

ADV
IN

with

NMOD
JJS

most

AMOD
JJ

Southeast

NMOD
JJ

Asian

PMOD
NNS

countries

P
.
.

Japan

not only outstrips

the U.S. in

investment

flows

but also outranks

it in trade

with

most

Southeast

Asian

countries .

Figure 4: Comparison between different representations of an English sentence.

Top: original WSJ PS taken from the WSJ sec-00 (#666). Null productions and

traces have been removed. The red labels are the heads according to the DS be-

low. Center: DS according to [9] using the pennconverter script in conll2007
mode. Every word in the DS is presented together with its PoS and the label of

the dependency relation with its governor. Bottom: TDS our conversion algorithm

generates.

178

3.1 Choosing the correct heads

The first step in order to perform a PS-to-DS conversion is to annotate the starting

PS with head labels. This procedure has been initially proposed in Natural Lan-

guage Processing (NLP) by Magerman [10] and then slightly modified by others

(e.g., [17], [9]). If exactly one unique head is chosen for every constituent of the

PS, the enriched tree can be shown to be homomorphic to a single projective DS

(cf. [7], [13]).

The choice of heads assignment is a critical one: although much linguistic

literature is present on this issue (cf. [4]), in NLP there have been only few at-

tempts to empirically evaluate different heads assignments (i.e., [2], [14]). While

certain choices are less disputed (e.g., the verb is unequivocally the head of simple

clauses), most of the remaining ones are contended between empty and full words.

The most frequent cases are listed here:

• Determiner vs. noun in nominal phrases (e.g., the man).

• Preposition vs. noun in prepositional phrases (e.g., on paper).

• Complementizer vs. verb in sub-clauses (e.g., I believe that it is raining).

In TDS, all these choices become irrelevant: since every empty word is in-

cluded in the block together with the content word it belongs to, no preference is

needed7.

3.2 Categories and Blocks

Currently used DS representations make use of labels to identify the dependencies

between words. For example SBJ and OBJ are used to mark the relation between a

verb and its subject and direct object respectively. These labels are closely related

to the four categories proposed by Tesnière. The main difference is in their number:

while DS uses around a dozen of different labels, TDS uses only four. This turns

out to be beneficial for a more simplified and yet generalized analysis.

The other difference is more subtle. In DS every word is a node, and therefore,

for every node (except for the root) we need to identify the label of the dependency

relation with its governor. The problem here is related to the above discussion

about the choice of heads. If we take the example in figure 3 (center), one has

to choose whether the complementizer or the verb is the direct object of the main

verb. TDS better represents these cases, by including both elements in the same

block. This choice is justified by the fact that both elements contribute to make the

node an argument or an adjunct of the verb.

7In TDS, heads assignment remains essential when two or more full words are sister nodes of the

same constituent, such as in “the woman who I like”. In this example the verb should be the head.

179

3.3 Coordination

Coordination represents one of the major problems in currently used DS represen-

tations (cf. [13]). If dependency8 is the only operation available to relate words,

two main strategies are adopted:

1. One conjunction (or conjunct) is the head of the other elements.

2. Each element (conjunction or conjunct) is the head of the adjacent element

which follows.

The first solution is the one which is more commonly adopted in current PS-to-

DS conversions. The second one is proposed by Mel’čuk in [12]. Both solutions

are problematic in circumstances such as the one of figure 4. If the coordination

includes multiple conjunctions, assigning the head to either one of the conjuncts

or one of the conjunctions, leads to a strong asymmetry in the structure: either

the conjuncts are not all at the same level, or the set of dependents includes both

conjunctions and conjuncts. Moreover, if the coordination phrase is coordinating

verbs at the top of the sentence structure, other potential blocks, e.g., the subject

Japan in the example, will also appear in the set of dependents, at the same level

with the verbs they depend on9. Finally the conjunction phrase, i.e., a group of

words forming a single conjunction (e.g., not only in the example), is also poorly

represented in DS representations, since it is not grouped into a unique entity.

Tesnière’s choice of adding a special operation to handle coordination is justi-

fied if we consider how well it represents all the cases DS fails to represent con-

sistently. Coordination in TDS can be seen as a borrowing of the notion of con-

stituency from PS notation: the different blocks being conjoined have equal status,

they govern all the blocks being dominated by the coordination block, and are de-

pendents on all blocks the coordination structure depends on.

4 Converting the Penn WSJ in TDS notation

In this section we will present the current state of the project of converting the Penn

WSJ treebank [11] into TDS notation. In section 4.1 we will introduce the elements

composing each generated TDS, in section 4.2 we will describe the conversion

procedure, and in section 4.3 we will provide some error analysis on the generated

structures.

8We only consider the case of single headed DS, i.e., each word should have exactly one governor.
9The labels of the dependency relations, such as the ones in the DS of figure 4, can often help

to differentiate between dependents which have the same head, but differ in their functional labels.

However they cannot be considered an optimal solution, since they don’t eliminate the structural

asymmetry.

180

4.1 Elements of a TDS

Figure 5 illustrates the main elements, introduced in section 2, which we need to

define in order to construct our TDS’s. Words are divided into full and empty

words10, and blocks are either standard or junction blocks. A generic block con-

tains a list of empty words, and a list of dependent blocks. In addition a standard

block has to contain a unique full word, while a junction block needs to specify a

list of conjunction words and a list of conjunct blocks.

Word { {
Standard Block

- Full Word (FW)

Junction Block

- Conjunctions (EW)�

- Conjuncts (Block)

Block

- Empty Words (EW)�

- Dependents (Block)�

Empty Word (EW)

Full Word (FW)

Figure 5: Word and block types.

4.2 The conversion procedure

In order to generate TDS’s from the Penn WSJ, we have decided to start from the

PS original annotation, instead of using already converted DS’s. The main reason

for this choice is that PS annotation of the WSJ is richer than currently available DS

representations. This concerns in particular coordination structures, which would

be much harder to reconstruct from DS notation (see section 3.3).

Each PS in the corpus is preprocessed using the procedure described in [16],

in order to add a more refined bracketing structure to noun and adjectival phrases.

Moreover, we remove null productions and traces from all trees, and enrich them

with head labels11.

The pseudocode reported in algorithm 1, contains the procedure which is ap-

plied to each PS of the corpus, in order to generate the respective TDS. The al-

gorithm recursively traverses from top to bottom each node of a PS, and outputs

either a junction block12 (left) or a standard block (right).

10A word is empty if its PoS is one of the following: punctuation marks, CC, DT, EX, IN, MD,

POS, RP, SYM, TO, WDT, WRB. Moreover special pairs of words are marked as empty (e.g., more

like, more than, even though, such as, many of, most of, rather than).
11This operation is done using the treep script [2], and a rule set which is a modification of the

one used in [10]. This modification mainly consists in prioritizing conjunctions’ PoS within several

phrase structures (e.g., NP, VP, QP). Moreover we have added few rules for the non-terminals (i.e.,

"NML", "JJP") introduced by the procedure described in [16].
12A constituent is roughly identified as a junction structure when it presents conjunctions elements

(i.e., CC, CONJP), or when it is composed of subconstituents with the same labels, such as in the

cases of apposition (see note 4).

181

Algorithm: Convert(NPS)
Input: A node NPS of a PS tree

Output: A block NT DS of a TDS tree

begin
instantiate NT DS as a generic block
if NPS is a junction then

instantiate NT DS as a junction block

foreach node D in children of NPS do
if D is a conjunct then

DT DS ←Convert(D)
add DT DS as a conjunct block in NT DS

else
Dlex ← lexical yield of D
if Dlex is a conjunction then

add Dlex as a conjunction in NT DS

else
add Dlex as empty word(s) in NT DS

else
Nh ← head daughter node of NPS

if Nh yield only one word wh then instantiate NT DS

as a standard block with wh as its full word

else NT DS ←Convert(Nh)
foreach node D in children of NPS do

if D == Nh then continue
Dlex ← lexical yield of D
if Dlex are only empty words then

add Dlex as empty word(s) in NT DS

else
DT DS ←Convert(D)
add DT DS as a dependent of NT DS

return NT DS
end

Algorithm 1: Pseudocode of the conversion algorithm from PS to TDS.

For each TDS the algorithm generates, several post-processing steps are applied:

1. Join together all compound verbs into a unique block13.

2. Unify in a unique standard block all contiguous proper nouns.

3. Define the original category14 of each block.

4. Define the derived category15 after transferences are applied.

The conversion procedure just described has been successfully employed to

generate the first TDS version of the Penn WSJ treebank. The conversion and

visualization tool, together with its technical documentation, is freely available at

http://staff.science.uva.nl/~fsangati/TDS.

13E.g., [is eating], [has been running]. All verbs preceding the main one, are marked as empty

words. This procedure doesn’t apply to junction structures, see also section 4.3.
14This category is specified by the PoS of its full word if it is a standard block, and by the original

category of the first conjunct block, if it is a junction structure.
15This category is specified by the original category of the governing block (if the current block is

the root of the structure the category coincides with its original category). If the governing block is

a noun or an adjective, the current block is an adjective or an adverb, respectively. If the governing

block is a verb, the current block is either a noun or an adverb. This last decision depends on whether

the original PS node, from which the current block derives, has a circumstantial label, i.e., it contains

one of the following tags: ADVP, PP, PRN, RB, RBR, RBS, ADV, BNF, CLR, DIR, EXT, LOC,

MNR, PRP, TMP, VOC.

182

4.3 Error analysis

At this stage it is impossible to give a meaningful quantitative analysis of the over-

all accuracy of the conversion, since no gold corpus annotation is available for the

target format. However, a manual analysis on a small sample of the corpus reveals

that most of the mistakes relate to coordinated structures16, and wrongly assigned

categories (mostly arguments/adjuncts).

Moreover, in a limited number of cases, we found two possible inadequacies

of the current TDS notation, when dealing with specific linguistic phenomena. The

first issue concerns junction structures: while in our model the junction operation

can only join blocks, several linguistic constructions show the necessity of defining

it also on full (or empty) words within a block17. Two examples are the coordina-

tion of compound verbs (e.g., He was [eating and drinking]), and the coordination

of empty words (e.g., The indicator fell steadily [up to and through] the crash).

The second case regards the transferrers: in our implementation they must be

always empty words. There are however few cases in which a full words can

function as a transferrer, such as likely in “A forum likely to bring attention”. We

will take into consideration these modifications for future updates of the model.

5 Conclusion

In this paper we have described an ongoing project of converting the Penn Wall

Street Journal treebank from PS to TDS representation, inspired by the work of

Tesnière [15]. Corpus-based Computational Linguistics has often valued a good

compromise between adequacy and simplicity in the choice of linguistic represen-

tation. The transition from PS to DS notation has been seen as a useful simplifi-

cation, but many people have argued against its adequacy in representing frequent

linguistic phenomena such as coordination. The TDS conversion presented in this

paper, reintroduces several key features from Tesnière’s work: on one hand the

operation of junction enriches the model with a more adequate system to handle

conjoined structures (e.g., coordination); on the other, the blocks, the transference

operation, and the category system further simplify and generalize the model.

We are currently working on a probabilistic extension of our framework. The

idea is to define a language model which generates and parses sentences using

the new representation. In particular, for what concerns junction structures, our

intuition is that the model should generate them differently with respect to standard

blocks. If our intuition is correct, the new probabilistic model could be better at

modeling and predicting language structures.

16In certain complex coordinated structures, where conjuncts and modifiers of the coordination

are put at the same level, dependent blocks are wrongly identified as conjuncts. In other cases the

coordination is not detected because conjunction words are missing.
17This means that we would need to define an other element, in addition to the word-types of

figure 5 (left), which we could call junction word. This new entity would have to specify a list of full

(or empty) conjunct words and a list of (empty) conjunction words.

183

Acknowledgments
The authors are particularly thankful to Igor Mel’čuk, Willem Zuidema, Rens Bod, Yoav Seginer,

Sophie Arnoult, and three anonymous reviewers for their valuable comments. FS gratefully ac-

knowledge funding by the NWO (grant 277.70.006).

References
[1] Cristina Bosco, Vincenzo Lombardo, Daniela Vassallo, and Leonardo Lesmo. Building a Tree-

bank for Italian: a Data-driven Annotation Schema. In Proceedings of the Second International
Conference on Language Resources and Evaluation, pages 99–105, 2000.

[2] David Chiang and Daniel M. Bikel. Recovering latent information in treebanks. In Proceedings
of the 19th international conf. on Comput. Linguist. , pages 1–7, Morristown, NJ, USA, 2002.

[3] Noam Chomsky. Syntactic structures. Mouton, Den Haag, 1957.

[4] Greville G. Corbett, Norman M. Fraser, and Scott McGlashan, editors. Heads in Grammatical
Theory. Cambridge University Press, New York, 2006.

[5] Martin Forst, Núria Bertomeu, Berthold Crysmann, Frederik Fouvry, Silvia Hansen-Schirra,

Valia Kordoni. Towards a dependency-based gold standard for German parsers - The TiGer

Dependency Bank, 2004.

[6] Jan Hajič, Eva Hajičová, Petr Pajas, Jarmila Panevová, Petr Sgall, and Barbora Vidová Hladká.

Prague Dependency Treebank 1.0, 2001.

[7] David G. Hays. Grouping and dependency theory. In National Symposium on Machine Trans-
lation, pages 258–266, Englewood Cliffs, NY, USA, 1960.

[8] Julia Hockenmaier and Mark Steedman. CCGbank: A Corpus of CCG Derivations and De-

pendency Structures Extracted from the Penn Treebank. Comput. Linguist. , 33(3):355–396,

2007.

[9] Richard Johansson and Pierre Nugues. Extended Constituent-to-Dependency Conversion for

English. In Proceedings of NODALIDA 2007, Tartu, Estonia, May 2007.

[10] David M. Magerman. Natural Language Parsing as Statistical Pattern Recognition. PhD

thesis, Stanford University, 1994.

[11] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a Large An-

notated Corpus of English: The Penn Treebank. Comput. Linguist. , 19(2):313–330, 1993.

[12] Igor Mel’čuk. Dependency Syntax: Theory and Practice. State Univ. of New York Press, 1988.

[13] Joakim Nivre. Inductive Dependency Parsing (Text, Speech and Language Technology).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[14] Federico Sangati and Willem Zuidema. Unsupervised Methods for Head Assignments. In

Proceedings of the 12th Conference of the European Chapter of the ACL, pages 701–709,

Athens, Greece, March 2009.

[15] Lucien Tesnière. Eléments de syntaxe structurale. Editions Klincksieck, Paris, 1959.

[16] David Vadas and James Curran. Adding Noun Phrase Structure to the Penn Treebank. In

Proceedings of the 45th Annual Meeting of the Association of Comput. Linguist. , pages 240–

247, Prague, Czech Republic, June 2007.

[17] Hiroyasu Yamada and Yuji Matsumoto. Statistical Dependency Analysis with Support Vector

Machines. In Proceedings of IWPT, pages 195–206, 2003.

184

Towards English-Czech Parallel Valency Lexicon

via Treebank Examples

Jana Šindlerová and Ondřej Bojar

Charles University in Prague

Institute of Formal and Applied Linguistics (ÚFAL)
E-mail: {sindlerova,bojar}@ufal.mff.cuni.cz

Abstract

The paper describes an ongoing project of building a bilingual valency

lexicon in the framework of Functional Generative Description. The

bilingual lexicon is designed as a result of interlinking frames and frame

elements of two already existing valency lexicons.

First, we give an overall account of the character of the lexicons to

be linked, second, the process of frame linking is explained, and third, a

case study is presented to exemplify what the information contained in

frame links tells us about crosslinguistic differences in general and the

linguistic theory applied.

1 Introduction

Bilingual and multilingual lexicons have been arising quite commonly on the

computational linguistics scene in the past decade. Besides the simple fact that

electronic bi- and multilingual dictionaries are necessary tools for NLP projects

concerned with machine translation, there is also a strong assumption that bi-

and multilingual valency lexicons can be useful in the MT area as well.

Many researchers in the field of lexicography underline the need to support

the lexicographic data with the evidence from linguistic corpora, e.g. [2]. Dic-

tionaries and valency lexicons thus often arise directly in the process of corpora

annotation (see e.g. [4]).

Contrary to the idea of building a valency lexicon as a resource for tree-

bank annotation, we present an ongoing project of building a bilingual valency

lexicon using a treebank as an annotation tool. The project takes advantage

of two already existing valency lexicons: PDT-VALLEX and Engvallex, which

have been developed during the annotation of the Prague Dependency Treebank

[3] and Prague Czech-English Dependency Treebank (PCEDT, [1]), and of the

parallel treebank PCEDT itself.

185

PCEDT is a syntactically annotated parallel corpus of approximately 50,000

sentences originally from the Penn Treebank (Wall Street Journal section),

translated into Czech. The merit of PCEDT lies in the fact that the core an-

notation takes place on the tectogrammatical layer (t-layer), i.e. on the layer

of deep syntactic relations with an overrun into the area of semantic relations.

The deep syntactic annotation of PCEDT is still in progress. The annotation

works on the Czech part (PCEDT_CZ) and the English part (PEDT) proceed

independently albeit synchronized. Currently, about 11,500 mutually corre-

sponding sentences are finished, which amounts to about 23% of the whole

corpus (though the percentage of sentences already finished on each individual

side of PCEDT reaches higher, to about 40% and 60%). By the time our mul-

tilingual valency lexicon is concluded, we expect the PCEDT corpus to have

been completed.

By creating a bilingual valency lexicon, we hope to gain a multifunctional

resource useful in many areas. First it will provide linguistic information about

the behaviour of verbal valencies in a crosslinguistic perspective. Second, the

resulting multilingual valency lexicon created in a specific linguistic framework

(FGD) may serve as an interesting test for the usability and appropriateness of

the framework itself. Fourth, since there is an assumption of a certain degree of

universal behaviour across languages, comparing the frames in the two lexicons

can be used as a test of the accuracy of the lexicons. And last but not least, with

respect to the fact that verbal valencies serve as the core of syntactic structure

in most languages, it will provide an interesting resource for MT applications.

2 Lexicographic Process in a Parallel Treebank

2.1 Construction of Source Valency Lexicons

PDT-VALLEX1 has been developed as a resource for valency annotation in a

large-scale syntactically annotated corpus, the Prague Dependency Treebank.

Information about verbal valency is embedded into the tectogrammatical layer

of annotation, i.e. the layer of deep syntactic dependency relations, therefore

it does not specify any surface requirements but rather syntactico-semantic re-

quirements of the verbs. Each headword contains one or more valency frames

corresponding (mostly) to the individual senses of the headword. Valency

frames contain participant slots represented by tectogrammatical functors, i.e.

labels from the layer of syntactico-semantic representation. Only the so called

“inner participants” and obligatory “free modifiers” are included in the frame,

information about possible typical background elements is not stored except

for some short notes in the example area. Each slot is marked as obligatory or

optional.

1Not to be confused with VALLEX [5], a general lexicon with very similar formal back-

ground but not tailored to any corpus.

186

By now, PDT-VALLEX contains 10,593 valency frames for 6,667 verbs.

The verbs and frames come mostly from the data appearing in the PDT, ver-

sion 2.0, the lexicon is being constantly enlarged by data gained from PCEDT

annotation.

The origin of Engvallex is different, though the motivation (gaining a re-

source for syntactic annotation of a treebank) is similar. At the time PCEDT

begun to be annotated on the tectogrammatical layer, a reliable version of PDT-

VALLEX had already been finished, fully checked and published. A similar

resource was needed to be available for the English annotation in a reasonable

time, therefore, instead of creating Engvallex manually on the basis of pure

data, we decided to adapt an already existing resource of English verbs valency

characteristics, the PropBank [7].

The PropBank lexicon has been adapted to the Functional Generative De-

scription scheme in several ways. First, all slots have been renamed using func-

tors, second, the non-obligatory (according to FGD) free modifiers have been

deleted and optional elements marked. Third, frames corresponding to the same

verb sense have been merged. Fourth, the lexicon has been refined in the pro-

cess of treebank annotation by addition of other frames, whole verb lemmas,

and also, the PropBank adapted frames were corrected manually with respect

to the language data available in the PCEDT corpus.

Engvallex only contains verbs so far. Currently, it contains 6,213 valency

frames for 3,823 verbs. As in case of PDT-VALLEX, it is being constantly

expanded and refined in the course of PCEDT annotation.

In the process of PropBank adaptation to FGD theory, some core differ-

ences of the two valency theories came alight that are supposed to affect also

the intended linking process. For example, it appeared that the PropBank argu-

ment range is much broader than the one usually admitted by FGD approach.

It results from stricter criteria for “argumentness” used in FGD (the famous di-
alogue test [8], disallowance of non-obligatory free modifiers in verb frames

etc.). Such frame arguments were usually deleted during the adaptation pro-

cess, though we kept them in sporadic cases where the resulting frame would

have been otherwise divested of adjuncts too typical. The deleted frame ar-

guments were typically benefactives, non-obligatory attributes of arguments,

commitatives or locatives.

2.2 Annotating Types While Seeing Tokens

Our aim of aligning two existing valency lexicons is considerably easier than

the lexicographic process carried out at the time the individual lexicons were

built. Still, we face the problem of formally describing verb (or frame) types
while observable items are verb tokens.

Traditionally, lexicographers collected corpus evidence, organized the to-

kens into groups of examples with similar syntactic and/or semantic proper-

ties and derived a single description of the given type. Little or no effort was

187

spent in checking whether the description well matches the “training” tokens

or even an independent set of “test” tokens. In our opinion, this is the root of

troubles faced when trying to apply a traditional lexicon in NLP applications.

Fortunately, recent projects (e.g. FrameNet [9]) try hard to provide enough

real-world example sentences coupled with lexicon entries.

We design our annotation process to carefully separate the annotation at-

tributed to types (i.e. lexicon entries) from the annotation attributed to tokens

(i.e. verb occurrences in a treebank), but we require the annotator to see and

provide both annotations simultaneously. In order to simplify the annotation

process, we implement automatic procedures to project type annotation to an

observed token and vice versa.

With the automatic procedures at hand, the annotator usually constructs the

type annotation at the first token of the given type. Subsequent tokens of the

same type will automatically reveal how the type annotation projects in the

particular case. We can easily highlight any conflicts between the projection

and the token annotation.

We feel that this design of the lexicographic process has several advantages:

• The annotation of types is presented not in an abstract form but rather

naturally projected on a given example, i.e. verb frames are displayed in

example sentences, but not available in the form of written lists of slots.

• While building the lexicon, we get an annotated corpus as a by-product,

including explicit links between the two resources.

• Automatic highlighting of conflicts between the annotation of tokens and

the projected annotation of types serves as quality assurance for all three

components in question: the lexicon, the corpus of lexicon examples and

the automatic procedures that apply lexicon entries to (unseen) sentences.

We believe that this explicit type-token link is vital for future applicabil-

ity of the constructed resource. For instance, if a lexicon entry is doubted by

a human user, he or she can use the treebank examples to understand better

the generalization captured in the lexicon. For NLP tools, the set of annotated

examples can serve as a test set or as a training set for machine-learning algo-

rithms.

2.3 Description of Annotation Environment

2.3.1 Tools Used

The annotation tool we developed builds on two large software projects: Tec-

toMT [11] framework for various NLP tasks (including MT) and tree editor

TrEd2.

2http://ufal.mff.cuni.cz/˜pajas/tred

188

TectoMT is a modular programming environment aimed at linguistically

rich processing of text. The two features of TectoMT we exploit are: automatic

alignment of Czech and English t-nodes [6] and TectoMT native file format

TMT, capable of storing dependency analyses of two languages at all three

layers of linguistic description. As our source examples of verb usage are al-

ready manually annotated at the t-layer for both English and Czech, we do not

need the automatic analyses implemented in TectoMT, but this option would be

clearly very useful for a potential future annotation of a different text type.3

TrEd is a highly customizable and extensible editor of dependency trees.

TrEd was used for manual annotation of all the above-mentioned Prague tree-

banks and an extension of TrEd allows to edit TMT files, i.e. to work with

several trees of a given sentence pair at once.

2.3.2 Design of User Environment

The design of the user environment for the annotation follows the principles

outlined in Section 2.2. The user is presented with a pair of t-trees and aligned

verbs. We use several types of arrows to indicate token annotation, i.e. links be-

tween dependents of the verbs in this particular sentence, and type annotation,

i.e. links indicating the correspondence between the slots of the two frames in

question, see Figure 1.

The user environment facilitates the following annotation actions:

Token annotation: Correction of automatic node alignment.
The pair of t-trees has already been automatically node-aligned, so most

English t-nodes have a Czech t-node counterpart (one, at most). We use

the node alignment to find both: pairs of matching verbs as well as pairs

of verbs’ immediate dependents.

If the automatic alignment does not provide a link, or there is an error in

the alignment, the user can provide manual node alignment links simply

by dragging an English node onto a Czech node. If a node is aligned both

manually and automatically, the manual alignment takes precedence and

the automatic alignment is not displayed at all.

Type annotation: Collection of node alignment to Engvallex.
When the manual or automatic node alignment correctly represents the

alignment of verb dependents, the annotator uses a single keystroke com-

mand to collect and store it as the slot alignment in the correspoding

Engvallex entry.

3The only step performed in our source manual trees with no automatic counterpart in Tec-

toMT is the selection of frame ID of a given verb occurrence, i.e. the verb-frame disambiguation

task. However, the task itself has already been explored for Czech [10].

189

SEnglishT

SCzechT

but
PREC

#Gen
ADDR

analyst
ACT

ale
PREC

say
PRED

analytik
ACT

#Gen
ADDR

říkat
PRED

company
ACT

společnost
ACT

try
EFF

také
RHEM

also
RHEM

snažit_se
EFF

#Cor
ACT

#Cor
ACT

prevent
PAT

zabránit
PAT

further
RSTR

další
RSTR

price
RSTR

cenový
RSTR

drop
PAT

pokles
PAT

But analysts say the company is also trying to prevent further price drops.
Ale analytici říkají, že společnost se také snaží zabránit dalším cenovým poklesům.

Figure 1: Sample pair of sentences with manual and automatic alignment of

verb dependents and projected alignment of frame slots (thick arrows). In prac-

tice, the arrows are color-coded.

A feedback to the user visually combines both type and token annotation.

For every pair of aligned verbs (indicated by dashed green arrows) we highlight

immediate dependents and their alignment:

• Manual and automatic node alignments are displayed as dotted red

and blue arrows. (The complete automatic node alignment is indicated

by very thin dotted lines.)

• If the frame entry contains a slot alignment specification, the slot align-

ment is projected on the pair of verbs and indicated by thick green arrows.

• All English verb dependents with a missing or mismatching slot align-

ment are displayed as large (yellow) nodes.

190

• When the type and token alignment matches (as illustrated for the verb

prevent–zabránit in Figure 1), the nodes are smaller (and green).

In order to simplify the access to individual verb examples, we use TrEd

“filelists”. A filelist contains a list of corpus positions, i.e. filenames and node

IDs. Filelists allow to browse the parallel treebank data in various ways. For

the time being, we prepared a filelist for each pair <English verb, its Czech

translation> and we organize the filelists based on the number of corpus exam-

ples. With a different filelist, the same corpus could be browsed from the most

complex verb frames or from frames with most conflicts in the (automatic) to-

ken and type annotation.

2.3.3 Implementation Details

Both parts of the parallel treebank we build upon use their respective file for-

mats to store Czech and English t-layers. We identify sections of data annotated

in both PEDT and PCEDT_CZ and merge them into TMT files. In the subse-

quent annotation, we use only the combined TMT files and never modify the

original independent treebank files.4

Engvallex and PDT-VALLEX are stored in XML files with a similar but not

exactly identical structure. Both lexicons are still under development. In order

to avoid conflicts, we detach from their development and preserve some fixed

versions of the lexicons for our purposes.5

Technically, manual node alignments are stored directly in the TMT files.

The slot alignment information should belong to both valency dictionaries, but

for the time being we prefer to store it in Engvallex only.

We extend the representation of Engvallex to include a set of frame coun-

terparts for each frame of an English verb. Each of the frame counterparts spec-

ifies the ID of the target frame in PDT-VALLEX accompanied by a mapping

of slots. As slots in both valency dictionaries are uniquely identified by their

functors, the mapping simply consists of tuples <Czech slot functor, English

slot functor>. The format currently permits also 1-0 mapping (no counter-

part slot in the Czech frame) and we will soon also store the list of unaligned

English slots, i.e. 0-1 mapping, to differentiate between no mapping and still

unspecified mapping in the representation.

4We preserve sentence and node IDs (and do not modify the t-layer annotation apart from a

few corrections in functor values), so all our annotations can be transfered back to the treebanks,

if desired.
5Frame IDs are usually preserved, so later our alignment should be easily transferable to

fresh versions of the lexicons.

191

3 Preliminary Observations

The most frequent problem with the annotation environment is the lack of sup-

port for coordinated verb dependents or, even worse, coordinated verbs. While

this limitation does not completely block the annotation process (all problem-

atic examples can be simply skipped), it requires the annotator to walk the

filelist searching for a suitable example. The solution for examples with coor-

dinated verb dependents is rather simple: a conjunction node should serve as

a representative for both coordinated members and it should be understood as

bearing the functor common to the dependents instead of a technical functor

CONJ.

Another issue is caused by ellipsis: many examples do not contain depen-

dents to fill all the slots of a frame. Currently, the annotator has to wait for

an example explicitly mentioning a dependent of a given functor to be able to

annotate the slot link. We plan to add artificial nodes for all slots not expressed

at the t-layer so that the annotator would be able to align them.

The last issue is less important in our case but should be taken as a caveat

for similar annotation enterprises. In our case, each example is a pair of t-

trees, occupying a large portion of screen and requiring a short but observable

time to render. If the lexicographer should be provided with many examples

at once, e.g. for the purposes of comparison, the t-layer would be a too rich

representation.

4 Case Study: Verbs of Commercial Transaction

Verbs of Commercial Transaction are due to the character of the corpus (WSJ

texts, economic focus) one of the most common verb classes in PCEDT. What

is more, they are characteristic by a great number of hypothetic arguments,

which often fail to be realized in a surface syntactic structure. As such, they

represent a verb class highly attractive as verbal valency investigation issue.

Due to the lack of space we will limit our observations to one member of

the class only, the verb sell.

4.1 Sell

Sell is a typical representative of the verb class in question. The representations

of its valency frames in the individual valency lexicons are in Table 1.

PropBank provides a single verb meaning with a single set of participants

exemplified by several surface argument layouts. Engvallex, on the other hand,

provides three different frames, though representing the same meaning of the

verb (which is quite an unusual situation in FGD framework). Those three

frames are exemplified further in (1)–(3) respectively.

192

PDT-VALLEX entry
Propbank entry: Engvallex entries: for prodat/prodávat:
Arg0: Seller ACT ACT ACT

Arg1: Thing Sold PAT PAT ACT PAT

Arg2: Buyer ?ADDR ADDR

Arg3: Price Paid (EXT) (EXT) (EXT) (EXT)

Arg4: Benefactive — —

Table 1: Comparison of valency entries for sell–prodat/prodávat. The question

mark “?” sign indicates that the frame element is optional only and the brackets

“(. . .)” around the functor label represent the information that the element is

considered a free modifier, and as such it is not included in the frame.

(1) a. At last count, Candela had sold $4 million of its medical devices in

Japan.

b. Celkem prodala Candela v Japonsku své lékařské přístroje za 4 mil-

iony dolarů.

Example (1) is an instance of the most common positive sentence constella-

tion of the arguments. It can be seen that the three lexicons do not substantially

differ in how they capture the valency properties of such uses of the verb.6

(2) a. A more recent novel , “Norwegian Wood” (every Japanese under 40

seems to be fluent in Beatles lyrics), has sold more than four million

copies since Kodansha published it in 1987.

b. Novějšího románu “Norské dřevo” (snad každý Japonec pod 40 zná

texty Beatles) se prodalo od jeho vydání v nakladatelství Kodansha

roku 1987 více než čtyři miliony výtisků.

c. Four million copies of a more recent novel, “Norwegian Wood” . . . ,

have been sold since Kadansha published it in 1987.

Example (2) is an instance of a nonstandard shift of arguments (as Prop-

Bank interprets it). The sold item moves into the position of seller and its place

is taken by an expression of transaction proportion. The Czech translation (2b)

uses correctly a type of passive voice, which does not require an additional va-

lency frame. Nevertheless, if we were to consider (2b) an instance of the frame

constellation used in (1), we would have to consider an underlying structure

such as (2c), which would have exactly the same tree representation as (2b).

Nevertheless, there is no imaginable way of justifying a transformation of

this kind, for there is (almost for sure) no leading case for such a shift between

a deep representation and a surface structure in the whole treebank. For this

6We decided to keep ADDRessee optional due to the dialogue test [8] results and due to the

fact that in vast majority of examples in PCEDT it is semantically suppressed and not realized

on the surface.

193

reason, we decided to keep a separate frame (despite the fact that the same verb

sense is employed). Keeping a separate frame in this case also minimizes the

risk of linkage conflict in the bilingual valency lexicon.

(3) a. At Christie’s, a folio of 21 prints from Alfred Stieglitz’s “Equivalents”

series sold for $396,000, a single-lot record.

b. Na Christie’s bylo 21 fotografií ve foliovém formátu z řady “Ekvi-

valenty” od Alfreda Stieglitze prodáno za 396 000 dolarů, rekordní

částku za jedinou položku.

For similar reasons, we decided to keep a separate frame for (3a), though

the construction evokes alternations of the type which is considered a mere

derivation of the basic frame in the FGD application to English data.

Another issue connected to the verb sell is the issue of the element named

EXT and standing for the price of the goods in the commercial transaction.

FGD considers EXT a free modifier, not allowing it any role in the valency

frame. Though with other verbs of commercial transaction, such as pay, the

price argument has its place in the frame (being considered obligatory), here it

falls out. This is a disadvantageous property of the linguistic framework we use

and it, of course, has limiting consequences for the task of our interlinking the

frame elements.

5 Conclusion and Future Work

Despite the fact that the process of our creating a bilingual valency lexicon is

still at its beginnings, we have, thanks to it, already gained some important

insight into the theoretical issues of crosslinguistic comparison of verbal valen-

cies. By accessing the linguistic core of verbal valency via its treebank mani-

festations we are in hope of gaining a valuable, reliable and useful resource of

linguistic information. The methodological solution we have chosen turns out

as easy, user-friendly and effective in practical use.

We expect to continue annotation works and complete the linking process in

approximately a year horizon. Further, we plan to utilize the bilingual valency

lexicon in a forthcoming linguistic research in verbal valency and its impact on

the verb semantic classes, and also, we would like to use the lexicon in future

MT experiments.

6 Acknowledgment
The work on this project was supported by the following grants: GAUK 19008/2008,

GAUK 52408/2008, MSM 0021620838, and FP7-ICT-2007-3-231720 (EuroMatrix

Plus). We are grateful to Josef Toman for significant help with the implementation of

our extension to TrEd and to Miroslav Týnovský for preliminary merging of PCEDT

and PDT files into the TMT format.

194

References
[1] Jan Cuřín, Martin Čmejrek, Jiří Havelka, Jan Hajič, Vladislav Kuboň, and Zdeněk

Žabokrtský. Prague Czech-English Dependency Treebank, Version 1.0. Linguis-

tics Data Consortium, LDC2004T25, 2004.

[2] Jan Hajič and Zdeňka Urešová. Linguistic annotation: from links to cross-layer

lexicons. In Proc. of TLT 2, pages 69–80, 2003.

[3] Jan Hajič. Complex Corpus Annotation: The Prague Dependency Treebank. In

Insight into the Slovak and Czech Corpus Linguistics, pages 54–73, 2006.

[4] Erhard W. Hinrichs and Heike Telljohann. Constructing a Valence Lexicon for a

Treebank of German. In Proceedings of the Seventh International Workshop on
Treebanks and Linguistic Theories, pages 41–52, 2009.

[5] Markéta Lopatková, Zdeněk Žabokrtský, and Václava Kettnerová. Valenční
slovník českých sloves. Nakladatelství Karolinum, Praha, 2008.

[6] David Mareček, Zdeněk Žabokrtský, and Václav Novák. Automatic Alignment

of Czech and English Deep Syntactic Dependency Trees. In Proc. of EAMT 2008,

Hamburg, Germany, 2008.

[7] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The Proposition Bank: An

Annotated Corpus of Semantic Roles. Computational Linguistics, 31(1):71–106,

2005.

[8] Jarmila Panevová. Formy a funkce ve stavbě české věty [Forms and functions in
the structure of the Czech sentence]. Academia, Prague, Czech Republic, 1980.

[9] Josef Ruppenhofer, Michael Ellsworth, Miriam R. L. Petruck,

Christopher R. Johnson, and Jan Scheffczyk. FrameNet II: Ex-

tended Theory and Practice. Technical report, ICSI, 2005.

http://framenet.icsi.berkeley.edu/book/book.pdf.

[10] Jiří Semecký. Verb Valency Frames Disambiguation. PhD thesis, Charles Uni-

versity, Prague, 2007.

[11] Zdeněk Žabokrtský, Jan Ptáček, and Petr Pajas. TectoMT: Highly Modular Hy-

brid MT System with Tectogrammatics Used as Transfer Layer. In Proc. of ACL
Workshop on Statistical Machine Translation, pages 167–170, 2008.

195

Building a Large Machine-Aligned Parallel

Treebank

Jörg Tiedemann
Department of Linguistics and Philology

Uppsala University, Uppsala/Sweden
jorg.tiedemann@lingfil.uu.se

Gideon Kotzé
Alpha-Informatica

Rijksuniversiteit Groningen, Groningen, The Netherlands
g.j.kotze@rug.nl

Abstract

This paper reports on-going work on building a large automatically tree-

aligned parallel treebank in the context of a syntax-based machine translation

(MT) approach. For this we develop a discriminative tree aligner based on

a log-linear model with a rich feature set. We incorporate various language-

independent and language-specific features taking advantage of existing tools

and annotation. Our initial experiments on a small hand-aligned treebank

show promising results even with small amounts of training data. The per-

formance of our approach is well above unsupervised techniques reported

elsewhere. This enables us to quickly create training material and alignment

models for additional language pairs. In recent work, we aligned more than

one million sentence pairs and started our experiments with the extraction of

transfer knowledge for our example-based machine translation system.

1 Introduction

A parallel treebank consists of a collection of sentence pairs that have been gram-

matically tagged, syntactically annotated and aligned on sub-sentential level [15].

This alignment usually includes more than the alignment of words but also links be-

tween all the corresponding constituents of given sentence pairs. Parallel treebanks

are valuable resources for a wide variety of applications. They are not only useful

as a resource for the induction of translation knowledge for machine translation

systems but also as a source for cross-lingual corpus-based studies, for example, in

contrastive linguistics. However, our main concern is the use of parallel treebanks

in the context of machine translation (MT). Since well-aligned treebanks will play

a substantial role in our MT model, finding an optimal solution to the problem

of tree alignment is very important. Various projects have been initiated to create

197

aligned parallel treebanks [7, 1, 5] and most of them are based on tedious manual

labor. There are some approaches to automatic tree alignment facilitating syntax-

oriented translation models [16, 4, 6, 17, 10]. In contrast to these unsupervised or

hand-crafted alignment systems, we propose a classifier-based alignment approach

based on supervised learning.

In the following section we outline our model including a discussion of fea-

tures used in our experiments. Thereafter, we show our results on the development

corpus and, finally, describe on-going work of applying our model to large scale

data sets.

2 Discriminative Tree Alignment

In our approach we look at the alignment of nodes in phrase-structure tree pairs.

We model this alignment using a discriminative feature-based model, which has the

advantage that we do not have to “invent” a generative story to explain the align-

ment. Hence, we use a binary classifier-based approach using a probabilistic model

directly predicting the likelihood of a link ai j between two nodes si and t j given

the features associated with these nodes. For simplicity we leave the structural na-

ture of the tree alignment problem aside for now. We will later discuss issues of

structured prediction and how we address link dependencies in our approach. In

the next section, we introduce the general model applied in the tree aligner.

2.1 A Log-Linear Link Prediction Model

Similar to related work on discriminative word alignment we base our model on

association features extracted for each possible alignment candidate. For tree align-

ment, each pair of nodes 〈si, t j〉 from the source and the target language parse tree

is considered and a score xi j is computed that represents the degree to which both

nodes should be aligned according to their features fk(si, t j,ai j) and correspond-

ing weights λk derived from training data. In our approach we use conditional

likelihood using a log-linear model for estimating these values:

P(ai j|si, t j) =
1

Z(si, t j)
exp

(
∑
k

λk fk(si, t j,ai j)

)

Here, the mapping of data points to features is user provided (see section 2.3) and

the corresponding weights are learned from aligned training data. As mentioned

earlier, we simplify the problem by predicting individual alignment points for each

candidate pair instead of aiming at structured approaches. Hence, we can train

our conditional model as a standard binary classification problem. Note that con-

textual features can easily be integrated even though first-order dependencies on

surrounding alignments are not explicitly part of the model. More details will be

given below in sections 2.4 and 2.6.

198

In our experiments we will use a standard maximum entropy classifier using

the log-linear model as stated above. One of the advantages of maximum entropy

classifiers is the flexibility of choosing features. No independence assumptions

have to be made and state-of-the art toolboxes are available with efficient learning

strategies. In this work, we apply the freely available toolbox Megam [2].

2.2 Structured Prediction

Tree alignment is a typical structured prediction problem. Treating links in iso-

lation as outlined above causes a lot of errors due to the existing dependencies

between link decisions. Therefore, applying a binary classifier alone and linking

according to the individual decisions is not a good idea. However, building a dis-

criminative predictor for the entire structure is not feasible due to the sparsity of the

data. Structured prediction is an active research area and various approaches have

been proposed incorporating various dependencies and standard machine learning

techniques. In our implementation we opt for a recurrent architecture [3] using

history-based features and a sequential classification process. We experimented

with two different directions: top-down and bottom-up link classification where

the latter gave us better results. Therefore, we will only report these results.

The idea behind this strategy is simple: previous decisions of the global clas-

sifier are used as input features for coming decisions. Training is simple as link

decisions are readily available and the classifier can learn directly using those fea-

tures. In classification, we have to use a sequential setup in order to obtain history

features. In the bottom-up strategy we start with predicting links for leaf nodes

moving up towards the tree root. Here, we assign history features to be taken from

the child nodes.

Another way of incorporating structural dependencies in prediction is to use a

simple greedy alignment strategy. In tree alignment, it is common to restrict the

process to one link per node. Therefore, we can define a greedy best-first align-

ment strategy to account for competition between link candidates [12]. Further

constraints can be applied to guide the alignment even further. For example, well-

formedness criteria can be defined to reject certain links [17]. These constraints

basically add the following restriction: Descendants/ancestors of a source linked

node may only be linked to descendants/ancestors of its target linked counterpart.

We apply both, a greedy best-first strategy and well-formedness constraints. In

addition, we also introduce a constraint to restrict alignments in such a way that

non-terminal nodes are aligned to non-terminal nodes and terminal nodes to termi-

nal nodes only.

2.3 Basic Alignment Features

Log-linear models are very flexible with regard to the feature functions that can be

used. Any real-valued function can be used without considering their dependencies

with each other.

199

Zhechev & Way [17] introduce lexical probabilities to be used in unsuper-

vised tree alignment. They are combined into an alignment score γ which is com-

posed out of so-called inside scores (α(sl|tl), α(tl|sl),) and outside scores (α(sl|tl),
α(tl|sl)). We use a slightly modified definition of inside/outside scores which in-

volves the selection of the maximum lexical score for each token instead of an

averaged sum over all possible word connections (xi ≥ x denoting dominance):

γ(sl, tl) = α(sl|tl)α(tl|sl)α(sl|tl)α(tl|sl)
α(x|y) = ∏

xi≥x
max jP(xi|y j)

In our experiments this modification gave us a better performance and intuitively

this is also more appealing. Other features can be derived directly from an existing

word alignment. We define a feature measuring the proportion of consistent links

among all relevant links Lxy involving either source sx or target language words ty
dominated by the current tree nodes (si and t j).

align(si, t j) = ∑
Lxy

consistent(Lxy,si, t j)/∑
Lxy

relevant(Lxy,si, t j)

consistent(Lxy,si, t j) =
{

1 if sx ≥ si ∧ ty ≥ t j

0 otherwise

relevant(Lxy,si, t j) =
{

1 if sx ≥ si ∨ ty ≥ t j

0 otherwise

Any sub-sentential alignment can be used with the definition above. In our ex-

periments we apply the Viterbi word alignments produced by Giza++ [13] using

the IBM 4 model in both directions, the union of these links and their intersection.

This gives us four separate feature functions using the definition above.

Another word alignment feature is defined for pairs of terminal nodes. It is

simply a binary feature being set to one if and only if both nodes are linked in the

underlying word alignment. This is useful if terminal node alignment is included

in the tree alignment model as it is in our initial experiments.

It is also possible to define a number of features that are independent of external

tools and resources. Using the relative position of each node in the parse tree

we define two features: tree-level similarity (tls) and tree span similarity (tss).

For the former we use the distance to the root node (d(si,sroot) resp. d(ti, troot))
and normalize this distance with the size of the tree (maximum distance between

any node and the root node). For the latter we compute the relative “horizontal”

position of a node based on the span (sstart → send) of the entire subtree which is

rooted in that node (si). This position is than normalized by the length (= number

of leaf nodes) of the sentence (S). Furthermore, we define a leafratio feature that

measures the difference in subtree spans (in terms of number of leaf nodes within

that subtree). The formal definitions of these tree features are as follows:

200

tls(si, t j) = 1−abs
(

d(si,sroot)
maxxd(sx,sroot)

− d(ti, troot)
maxxd(tx, troot)

)

tss(si, t j) = 1−abs
(

sstart + send

2∗ length(S)
− tstart + tend

2∗ length(T)

)

leafratio(si, t j) =
min(|leafnodes(si)|, |leafnodes(t j)|)
max(|leafnodes(si)|, |leafnodes(t j)|)

Finally, we also define features derived from the annotation. Intuitively, category

labels (for non-terminal nodes) and part-of-speech labels should be valuable indi-

cators for a possible link. These features are simply binary features which are set

to one if the particular label combination is present and zero otherwise.

2.4 Contextual Features

So far we only considered features directly attached to the candidate nodes. How-

ever, tree nodes are connected with other nodes in the tree structure and their align-

ment may as well depend on features of neighboring nodes. Therefore, features

from surrounding nodes should be considered as well. Using the tree structure

we can extract the same features as described above from other nodes connected

to candidate nodes. For this we define the following functions that can be used

to move within the tree when extracting features: parent - move to the immedi-

ate parent and take the feature values from this node; child - compute the average

feature value for all child nodes; sister - compute the average feature value for all

nodes with the same parent node. These functions can be applied recursively. For

example, applying parent twice will force the feature extraction process to move

to the grand-parent node (if this node exists). Note that these functions can be ap-

plied to either source or target language tree or both. In this way we have many

possibilities to explore contextual features. Proper feature engineering is necessary

to define useful templates.

2.5 Complex Features

Some features may be correlated in a non-linear way. To account for those it is

possible to create complex features. Any of the features above (also contextual

ones) can be combined in such a way that they form a new feature function with

their values combined. In our approach we simply compute the product of the

feature values. Other types of combinations might be possible as well. This gives

us a combinatorial explosion of possible features and careful feature engineering

is necessary again to select valuable ones. Furthermore, complex features are even

more exposed to sparseness problems. Nevertheless, various combinations lead to

significant improvements as we will see in our experiments.

201

2.6 Link Dependency Features

The last category of features refers to history features mentioned earlier in our

discussion on structural prediction. In our implementation we use two types of

history features: (1) The children_links feature is the number of links between

direct child nodes of the current node pair. (2) The subtree_links feature is the

number of links between all children of the current node pair. Both values are

normalized with the maximum number of child nodes on either source or target

side. In classification, only the prediction likelihood is used for estimating these

feature values. In other words, we use “soft counts” instead of counting actual

links. Classification can then be done in a bottom-up fashion before applying the

greedy best-first search in the final step.

3 Alignment Results

During the development of our tree aligner we applied the Smultron treebank [7]

for evaluating its performance with various strategies and feature sets. Smultron

includes two trilingual parallel treebanks in English, Swedish and German. The

corpus contains the alignment of English-Swedish and German-Swedish phrase

structure trees from the first two chapters of the novel “Sophie’s World” by Jostein

Gaarder and from economical texts taken from three different sources. The align-

ment has been done manually using the Stockholm Tree Aligner [11]. The align-

ment includes good links and fuzzy links. We will use both but give them different

weights in training (good alignments get three times the weight of fuzzy and nega-

tive examples). We mainly worked with the English-Swedish treebank of Sophie’s

World which includes roughly 500 sentences per language (6,671 good links and

1,141 fuzzy links). In our experiments we used the first 100 aligned parse trees for

training and the remaining part for testing.

For evaluation we use the standard measures of precision, recall and balanced

F-scores as they are used in word alignment evaluation. Due to the distinction

between good and fuzzy alignments we compute values similar to word alignment

evaluation scores in which “sure” and “possible” links are considered (S refers to

the good alignments in the gold standard and P refers to the possible alignments

which includes both, good and fuzzy links; A are the links proposed by the system):

Precision =
|P∩A|
|A| Recall =

|S∩A|
|S|

F =
2∗Precision∗Recall

Precision+Recall

The upper part of table 1 summarizes the results for different feature sets when

running the aligner on our development corpus. The alignment results are very

promising. We can see that adding features consistently helps to improve the per-

formance. The advantage of a discriminative approach with a rich feature set can

202

settings Precision Recall F

lexical features 64.89 51.00 57.11

+ tree features 56.80 60.70 58.68

+ alignment features 62.94 62.83 62.88

+ label features 77.20 74.44 75.79

+ context features 79.77 75.66 77.66
train=novel, test=economy 81.49 74.76 77.98

train=economy, test=novel 77.67 75.04 76.33

Table 1: Results for different feature sets (top) and textual domains (bottom).

be seen when comparing our results with the performance of an unsupervised tree

aligner. Running the subtree aligner described in [17] on the same data set yields

an F-score of 57.57% which is similar to the scores we obtained when using the

same features only. When using a better model for estimating lexical probabili-

ties (more data: Europarl+SMULTRON) the performance improves only slightly

to about 58.64%. We, can see that the additional features and the optimization

of their contributions through machine learning has a strong positive effect on the

performance. A drawback of supervised techniques is that we have to drop the

generality of the unsupervised approach and require aligned training data to build

language pair specific models. Furthermore, there is a risk of overfitting. In order

to test the flexibility of our approach we ran several cross-domain experiments us-

ing the two domains present in the Smultron treebank. The results are presented in

the lower part of table 1. As we can see there is only a slight drop in performance

when training on a different textual domain. However, we still have reasonably

high accuracy which is certainly encouraging especially considering the effort of

human annotation necessary when preparing appropriate training data.

Finally, we also looked at the training curves with varying amounts of training

data. For this we used about a third of the corpus (2667 links) for testing and

trained on parts of the remaining data. Figure 1 shows the impact of training size

on F-scores for three feature settings.

We can clearly see that the aligner yields a high performance already with little

amounts of training data. Depending on the features the training curve levels out

already at training sizes way below 100 sentence pairs. This is especially apparent

for the settings that include word alignment features. Their values bear a lot of

positive link evidence on their own and corresponding weights do not need to be

adjusted very much. Other features such as the binary label-pairs require larger

amounts of training examples (which is not very surprising). However, the align-

ment performance does not seem to improve significantly after about 128 sentence

pairs even with those features included (see, for example, “no wordalign features”

in figure 1).

203

 0

 10

 20

 30

 40

 50

 60

 70

 80

2561286432168421

ba
la

nc
ed

 F
 s

co
re

number of training sentences

best setting
lexical features

no wordalign features

Figure 1: Training curve for various amounts of training data

4 Scaling Up

4.1 Creating a New Alignment Model

After tuning and testing our tree aligner as described above the next step is to apply

the optimized model to large parallel treebanks. Unfortunately, to our knowledge

no tree-aligned training corpus is available for the language pairs we are interested

in (English-Dutch and French-Dutch). Therefore, the first step is to create a train-

ing corpus for our purposes. Fortunately, from our experiments we can conclude

that only a small amount of aligned sentences is necessary to obtain reasonable

results. Therefore, we decided to create a small aligned treebank to start with. In

particular, we aligned 100 sentences from the English-Dutch parallel Europarl cor-

pus [8] using the Stockholm Tree Aligner. We decided to follow the guidelines as

proposed by [14] in the context of the Smultron parallel treebank project.

In order to speed up the process we decided to leave out all links between ter-

minal nodes. This reduces the annotation effort dramatically not only in terms of

number of links that have to be drawn but also in terms of alignment decisions.

There are usually a lot of difficult decisions when aligning words with each other

as we know from the literature on statistical MT and alignment competitions. A

drawback is, of course, that we will miss this information when learning our align-

ment model. However, we believe that we will not lose a lot in performance if we

take links between terminal nodes directly from existing word alignments.

For aligning the non-terminal nodes we decided to follow some guidelines as

proposed by [14] in the context of the Smultron parallel treebank project:

• Align as many nodes as possible.

• They must be translatable to each other.

• Grammatical forms do not need to fit.

204

• Approximate translations are accorded fuzzy links. For example, one side

may contain more general or more specific information.

• Pronouns are not linked to full noun phrases.

• Nodes with extra information that is missing and required on the other side

are not linked. This ensures that a sentence is not linked to a verb phrase, for

example.

• We only allow 1:1 links between non-terminal nodes.

We modified our implementation such that it can be run to consider only non-

terminal nodes in training and alignment which is very straightforward. The soft-

ware is also able to recognize existing links when aligning trees which is impor-

tant when adding non-terminal links to a word-aligned parallel treebank. This is

especially important for proper handling of history features and checking well-

formedness criteria. Using these settings we trained a new model on our tiny set

of training examples. Note that we used alignment features (for example, lexical

probabilities) from a GIZA++ model trained on the entire Europarl corpus in order

to get reliable estimates.

We also performed a sanity check with our newly created training corpus in

order to see if the expected performance can be reached. For this we used 80

aligned sentences for training and the remaining ones for testing. This gives us a

good idea about the expected outcome although the test set is way too small to give

reliable evaluation scores. The results are as follows:

Precision 73.20%

Recall 86.89%

F 79.46%

As we can see, the scores are quite high especially in recall. This is partially

due to the nature of our training material in which we prefer accurate links and

tried to avoid fuzzy links as much as possible (in order to reduce the number of

unreasonable/questionable links). Note that we only consider non-terminal nodes

now in this evaluation. From this little experiment we may conclude that we can

expect reasonable alignments even for our new language pair and a different textual

domain.

4.2 Aligning Europarl

We are now able to align the entire Dutch-English part of the parallel Europarl

corpus with the alignment model created as described above. For this we parsed

both sides of the corpus with existing tools (Alpino for Dutch and the Stanford

Parser for English) and converted the output of these parser to Tiger XML, which

is used in our tree aligner implementation. The advantage of Tiger XML is that

it supports even non-projective structures and it is also used by the Stockholm

Tree Aligner which enables us to visualize alignment results easily (see figure 2).

205

Moreover we can even manually correct automatic alignments in this way which

might be a valuable feature in future research.

Figure 2: Automatic tree alignments visualized by the Stockholm Tree Aligner

After these pre-processing steps we proceeded in the following way: First we

added all word alignments from the intersection of the two Viterbi alignments cre-

ated by GIZA++. They were classified as “good” links assuming that they are very

reliable. Next, we added links from the word alignment using the “grow-diag”

symmetrization heuristics [9]. These links are less reliable and therefore were

tagged as “fuzzy”. Finally we ran the tree aligner to add non-terminal nodes to the

parallel treebank.

There are some consequences of this alignment pipe-line architecture espe-

cially in combination with the well-formedness criteria. Word alignments often

cause violations of these constraints and block the possibility of adding links on

higher nodes. One solution to this problem is to disable the well-formedness check

between terminal and non-terminal nodes and to allow violations at this level.

However, this is not really desirable. Therefore, we use another mode in which

existing word links compete with new incoming links in the same way as usual.

For this we need to specify link scores for existing word alignments. In our ex-

periments we simply defined arbitrary fixed scores (0.8 for links coming from the

intersection and 0.4 for links coming from the grow-diag heuristics). As a con-

206

sequence, certain word alignments may disappear from the final result if they are

overruled by other stronger links that do not meet the constraints with these partic-

ular word alignments (which is probably a good thing).

Using this setup we aligned the entire Dutch-English Europarl corpus. Note

that we only apply the aligner to one-to-one sentence alignments and that some

sentences were dropped due to parsing time-outs. However, we obtained a sub-

stantial amount of machine-aligned parse trees (see table 2).

good (p > 0.5) fuzzy all

Europarl English-Dutch 20,109,174 5,205,048 25,314,222

non-terminals 6,999,851 3,821,970 10,821,821

terminals 13,109,323 1,383,078 14,492,401

links/sentence 19.01 4.92 23.93

Table 2: Links in 1,057,875 aligned parse trees from Europarl Dutch-English

5 Conclusions

We have presented a discriminative tree aligner that can be trained on small amounts

of hand-aligned training data using a rich feature set. With this tool we achieve

state-of-the-art performance in tree-to-tree alignment that can be used to align par-

allel treebanks on a larger scale. We are currently aligning large automatically

parsed parallel corpora which we will use as a resource in the development of a

syntax-oriented data-driven machine translation system.

References

[1] Lars Ahrenberg. LinES: An English-Swedish parallel treebank. In Proceed-
ings of the 16th Nordic Conference of Computational Linguistics, 2007.

[2] Hal Daumé III. Notes on CG and LM-BFGS optimization of logistic regres-

sion. Implementation available at http://hal3.name/megam/, 2004.

[3] T.G. Dietterich. Machine learning for sequential data: A review. In T. Caelli,

editor, Structural, Syntactic, and Statistical Pattern Recognition, volume

2396 of Lecture Notes in Computer Science, pages 15–30. Springer, 2002.

[4] Daniel Gildea. Loosely tree-based alignment for machine translation. In

Proceedings of ACL-03, pages 80–87, Sapporo, Japan, 2003.

[5] Annette Rios Gonzales, Anne Göhring, and Martin Volk. A Quechua-Spanish

parallel treebank. In Proceedings of TLT7, 2009.

207

[6] Declan Groves, Mary Hearne, and Andy Way. Robust sub-sentential align-

ment of phrase-structure trees. In Proceedings of COLING 2004, pages 1072–

1078, Geneva, Switzerland, 2004.

[7] Sofia Gustafson-Čapková, Yvonne Samuelsson, and Martin Volk. SMUL-

TRON (version 1.0) - The Stockholm MULtilingual parallel TReebank.

http://www.ling.su.se/dali/research/smultron/index.htm, 2007. An English-

German-Swedish parallel Treebank with sub-sentential alignments.

[8] Philipp Koehn. Europarl: A parallel corpus for statistical machine translation.

In Proceedings of MT Summit, 2005.

[9] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Mar-

cello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine

Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and

Evan Herbst. Moses: Open source toolkit for statistical machine translation.

In Proceedings of ACL-07, Prague, Czech Republic, 2007.

[10] Alon Lavie, Alok Parlikar, and Vamshi Ambati. Syntax-driven learning of

sub-sentential translation equivalents and translation rules from parsed paral-

lel corpora. In Proceedings of the ACL-08: HLT Second Workshop on Syntax
and Structure in Statistical Translation, pages 87–95, Columbus, Ohio, 2008.

[11] Joakim Lundborg, Torsten Marek, Maël Mettler, and Martin Volk. Using

the Stockholm TreeAligner. In Proceedings of TLT6, pages 73–78, Bergen,

Norway, 2007.

[12] I. Dan Melamed. Empirical Methods for Exploiting Parallel Texts. The MIT

Press, 2001.

[13] Franz Josef Och and Hermann Ney. A systematic comparison of various

statistical alignment models. Computational Linguistics, 29(1):19–51, 2003.

[14] Yvonne Samuelsson and Martin Volk. Alignment tools for parallel treebanks.

In Proceedings of GLDV Frühjahrstagung 2007, 2007.

[15] Yvonne Samuelsson and Martin Volk. Automatic phrase alignment: Using

statistical n-gram alignment for syntactic phrase alignment. In Proceedings
of TLT6, pages 139–150, Bergen, Norway, 2007.

[16] Wei Wang, Jin-Xia Huang, Ming Zhou, and Chang-Ning Huang. Structure

alignment using bilingual chunking. In Proceedings of COLING 2002, pages

1–7, Taipei, Taiwan, 2002.

[17] Ventsislav Zhechev and Andy Way. Automatic generation of parallel tree-

banks. In Proceedings of COLING 2008, pages 1105–1112, 2008.

208

Cross-Lingual Projection of LFG F-Structures:

Building an F-Structure Bank for Polish

Alina Wróblewska† and Anette Frank‡

alina.wroblewska@ipipan.waw.pl frank@cl.uni-heidelberg.de

†Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

‡Department of Computational Linguistics, Heidelberg University, Germany

Abstract

Various methods aim at overcoming the shortage of NLP resources, espe-

cially for resource-poor languages. We present a cross-lingual projection

account that aims at inducing an annotated treebank to be used for parser in-

duction for Polish. Our approach builds on Hwa et al.’s projection method [7]

that we adapt to the LFG framework. The goal of the experiment is the induc-

tion of an LFG f-structure bank for Polish. The projection yields competitive

results. The resulting f-structure bank may be used to train a dependency

parser for Polish, or for automatic induction of a probabilistic LFG grammar.

1 Introduction

Natural language processing has made rapid progress over the last decades. Yet,

computational linguistic resources and tools are restricted to a handful of lan-

guages. The creation of high-quality resources for all languages using traditional,

manual techniques is a time-consuming and expensive process. This holds espe-

cially for the creation of grammars and syntactic treebanks. Various methods aim

at overcoming the shortage of NLP resources (such as bootstrapping, unsupervised

learning, cross-lingual projection). The approach pursued in this paper targets the

induction of linguistic annotations in a cross-lingual setting: Using a bilingual cor-

pus, existing analysis tools are applied to the resource-rich language side of a bi-

text. The resulting annotations are projected to the second, resource-poor language

via automatically produced word alignment links. This annotation projection ap-

proach for resource induction is built on the assumption that the linguistic analysis

of a sentence carries over to its translation in an aligned parallel corpus. While this

assumption does not hold uniformly, the projected annotations can be used to train

NLP tools for the target language (cf. Section 2).
Within the ParGram project [3], grammars for English, French, German, Nor-

wegian, Japanese, Urdu and further languages are written according to the frame-

work of Lexical Functional Grammar (LFG), using the Xerox Linguistic Environ-

ment (XLE) as a processing platform. Manual development of large-scale LFG

209

grammars is an expensive process that may be sped up by automation techniques.

One strand of work that targets the automatic induction of LFG grammars is the in-

duction from existing syntactic treebanks (Cahill et al. [4]). However, this method

relies on the availability of high-quality treebanks. To overcome the need of man-

ual creation of treebanks, we investigate the cross-lingual projection approach to

induce syntactically annotated corpora for new languages. Given the consider-

able divergence of constituent structures across languages, the grammar architec-

ture of LFG, with its strong lexicon component and multiple levels of represen-

tations seems especially suited for a cross-lingual grammar induction task. F-

structures are largely invariant across languages, and are thus especially suited to

serve as the pivot for cross-lingual syntactic annotation projection. Following this

insight, we pursue cross-lingual projection of grammatical functions to induce an

f-structure bank for Polish. Our approach builds on Hwa et al. [7] and adapts their

method to the LFG framework. We project the f-structure analyses of automatically

parsed English sentences in a bitext to their Polish translations via word-alignment

links. As the projected annotations are typically noisy, we apply a number of post-

correction rules and filtering methods. The induced f-structure bank can be used

to train a dependency parser for Polish. A full-fledged LFG grammar for Polish

may be obtained by mapping the induced f-structures to appropriate c-structures

(cf. Klein [8]), and using the obtained c- and f-structure bank for automatic LFG

grammar induction, following the method of Cahill et al. [4].

Our paper is structured as follows. Section 2 gives an overview of the state

of the art relevant to this work: We introduce the theoretical assumptions and re-

lated works on cross-lingual projection. We then focus on the projection of syn-

tactic dependency relations and review existing computational linguistic resources

for Polish. In Section 3 we outline relevant facts about the Polish language. We

present the transposition of Hwa et al.’s work to the LFG framework and describe

its application to the Polish language. Section 4 presents the data and experiments

we conducted to induce an f-structure bank for Polish. Finally, we carry out some

error analysis and compare our results to related work. Section 5 concludes.

2 State of the Art

2.1 Cross-lingual Annotation Projection

The cross-lingual annotation projection method consists in applying available mono-

lingual NLP resources and tools in a multilingual scenario. Existing analysis tools

are applied to the source language side of a word-aligned parallel corpus. Based on

the assumption that the linguistic analysis of a sentence carries over to its transla-

tion in the bitext, the resulting linguistic annotations are projected from the source

language onto the target language using automatic word alignment as a bridge.

Annotation projection results in an automatically annotated corpus in the target

language that can be used for supervised induction of NLP tools.

While the underlying assumption of cross-lingual correspondence is rather

210

strong, the cross-lingual projection method has been successfully applied to vari-

ous levels of linguistic analysis and corresponding NLP tasks, such as PoS tagging

and NP bracketing (Yarowsky and Ngai [14]), syntactic dependency annotation and

parser induction (Hwa et al. [7], Ozdowska [10]), argument identification (Bouma

et al. [1]), word sense disambiguation (Diab and Resnik [6]), semantic role la-

belling (Padó and Lapata [11]) and temporal labeling (Spreyer and Frank [12]).

2.2 Projection of Syntactic Dependencies

As shown in the pioneering work of Hwa et al. [7], syntactic dependencies are

especially suitable for cross-lingual projection of syntactic information, as depen-

dency relations can carry information across languages with varying word order.

Specifically, the projection of syntactic dependencies is based on the Direct Cor-
respondence Assumption, which states that the dependencies in a source sentence

directly map to the syntactic relationships in the word-aligned target translation:

Given a pair of sentences E and F that are (literal) translations of each

other with syntactic structures TreeE and TreeF , if nodes xE and yE of

TreeE are aligned with nodes xF and yF of TreeF , respectively, and if

syntactic relationship R(xE ,yE) holds in TreeE , then R(xF ,yF) holds

in TreeF . Hwa et al. (2005:314) [7]

Hwa et al. [7] apply this method for annotation projection and the induction of

dependency parsers for Spanish and Chinese. In their experiments, the English side

of a word-aligned parallel corpus is annotated with dependency representations.

These annotations are directly projected onto the target language side. Since the

direct projections are noisy, the projected representations are post-processed using

about 12 language-specific correction rules. The transformed representations are

used to train dependency parsers for Spanish and Chinese. The results obtained by

Hwa et al. [7] will be presented in Section 4, in comparison to our results.

Two further studies apply cross-lingual methods for the induction of depen-

dency relations. Ozdowska [10] projects part-of-speech tags, morphological in-

formation (gender and number) and syntactic dependencies from two source lan-

guages (English or French) onto one target language (Polish) using only one-to-one

word alignments. The aim of this experiment is to verify which source language

(English or French) is more suitable for the projection of particular annotations

onto Polish. Even though the annotations for both source languages are available,

Ozdowska does not test whether projection from both languages in a triangulation

architecture could increase the results. By contrast, the triangulation method is ex-

plored in the multi-parallel annotation projection architecture proposed by Bouma

et al. [1]. Here, selected grammatical functions are projected from (one or several)

source language(s) (German, English) with the aim of verb argument identification

in the target language (Dutch). The approach is similar to ours, since it is based

on the Pargram LFG grammars and the target of the projection are grammatical

211

functions. However, the goal of our experiment is the induction of full-fledged

f-structures, as opposed to verb-argument functions as in Bouma et al. [1]

In our work, we build on Hwa et al.’s approach that combines direct projection

with language-specific post-correction rules. These rules target principled differ-

ences between the source and target languages that the DCA fails to capture, and

thus offer a focused way for improving precision without impeding recall. Our

account may still be complemented by triangulation techniques in later stages.

2.3 Computational Linguistic Resources for Polish

Polish is a language with relatively few NLP resources and tools. Currently, the

following resources are available for Polish: corpora (e.g. the morpho-syntactically

annotated corpus IPI PAN, PWN Corpus), morphological analyzers (e.g. Morfeusz,

SAM, Morfologik), stemmer (Lametyzator), parsers (a DCG parser Świgra, a shal-

low parsing and disambiguation system Spejd)1 and the Polish Wordnet Słowosieć.2

Thus, there is a strong need for investigating methods for the rapid creation of fur-

ther high-quality NLP resources for Polish.

3 Cross-lingual Induction of a Polish F-Structure Bank

3.1 Some Facts about Polish

In contrast to our source language English, Polish is rather unfamiliar to most read-

ers and has been discussed and processed in few NLP studies. We briefly outline

the main characteristics of the Polish syntax, with focus on syntactic phenomena

that may be relevant to the projection task.

Morphology and word order. Polish is an inflecting language with relatively

free word order and morphological identification of grammatical functions, by as-

signment of case. Thus, constituent order is rather flexible, as seen in (1.a,b).

(1) a. Tomek kocha Marię.

Tom.NOM-SUBJ love.3.SG Mary.ACC-OBJ

‘Tom loves Mary.’

b. Marię kocha Tomek.

Mary.ACC-OBJ love.3.SG Tom.NOM-SUBJ

‘Tom loves Mary.’

Pro-drop. As a pro-drop language, Polish allows omission of a personal pronoun

in SUBJ function. The morphological features of the omitted subject are specified

by the verb; the SUBJ is represented by an ’empty’ pronoun PRED = ’pro’, see (2).

1See overview on ACL Wiki: http://aclweb.org/aclwiki/index.php?title= Resources_for_Polish.
2See plWordNet Słowosieć at http://www.plwordnet.pwr.wroc.pl/browser/?lang=en

212

(2) Gotuję obiad.

cook.1.SG.PRES dinner.MASK.SG.ACC

‘I am cooking a dinner.’

⎡
⎢⎢⎢⎣

PRED ’gotować<SUBJ,OBJ>’

SUBJ
[

PRED ‘pro’
]

OBJ

[
PRED ’obiad’

CASE ACC

]
⎤
⎥⎥⎥⎦

Null specifiers. Polish does not possess articles corresponding to ‘a/an’ and ‘the’

in English that function as SPECifiers. However, there are some pronouns that may

function as determiners in SPECifier function: possessive (mój ‘my’, twój ‘your’,

etc.), demonstrative (ten ‘this.MASK’, ta ‘this.FEM’, etc.), quantificational (niek-
tórzy ‘some.MASK’, wielu ‘many.MASK’, etc.), interrogative (jaki ‘what.MASK’,

która ‘which.FEM’, etc.).

Negation and case marking. (a) In the so-called genitive of negation, an

accusative-marked OBJect changes to genitive case if the verb is negated, while

other arguments of the verb remain unaltered. In (3.a) the verb czytać (engl. ‘to

read’) requires an accusative OBJect argument, while under negation in (3.b), the

only possible case of the OBJ argument is genitive.

(3) a. Czytam ksiażkę.

read.1.SG.PRES book.ACC

‘I’m reading a book.’

b. Nie czytam książki.
not read.1.SG.PRES book.GEN

‘I’m not reading any book.’

(b) A special phenomenon of case marking called feature indeterminacy (Dal-

rymple and Kaplan [5]) is observed in coordination constructions such as (4).

(4) Kogo Jan lubi a Jerzy nienawidzi?
who.ACC/GEN John.NOM likes.3.SG.PRES Cnj George.NOM hates.3.SG.PRES

‘Who does Jan like and George hate?’

In this type of construction, two verbs with conflicting object case marking are

coordinated: lubić (engl. ’like’) requires accusative object marking, while nien-
awidzić (engl. ’hate’) requires its object to be marked genitive. The interrogative

pronoun kogo (engl. ‘who’) fulfills the OBJ function that is distributed over the co-

ordinated verb predicates. It can do so because of case syncretism, i.e. because it

shows the same surface form both in accusative and genitive case. Dalrymple and

Kaplan [5] account for this phenomenon in a set-based theory of case-marking, by

defining indeterminate (or a set of) case(s) for kogo, as seen in (5).

(5)

kogo ‘who’: (↑ CASE) = {ACC, GEN}

lubić ‘like〈SUBJ, OBJ〉’: ACC ∈ (↑ OBJ CASE)

nienawidzić ‘hate〈SUBJ, OBJ〉’: GEN ∈ (↑ OBJ CASE)

213

Since our account will be based on the projection of grammatical functions, geni-

tive of negation or feature indeterminacy as special cases of case marking will not

constitute any problem, as the grammatical functions involved remain constant.3

Missing subjects and specifiers constitute structural divergences at the surface level

and need to be accounted for in the projection module that considers special word

alignment configurations (see below, Section 3.2). The fact that Polish has a rela-

tively free word order fits nicely with LFG’s conception of f-structures and gram-

matical functions, which are represented independently of surface word order.

3.2 Cross-lingual Projection of LFG F-Structures

The aim of our work is to create an LFG f-structure bank for Polish with minimal

human involvement. We build on Hwa et al.’s approach and adapt their method of

projecting dependency structures to the LFG framework. Two main characteristics

of LFG make it especially suitable for this cross-lingual projection method: (i)

Since LFG is a lexicalized theory, projection of annotations assigned to particular

words can be sufficently guided by word alignment. (ii) F-structures constitute

an abstract level of analysis that is largely invariant across languages, and thus

perfectly suited for projection between languages with varying word order.
LFG f-structures encode grammatical functions holding between PREDicates

and their arguments or modifiers, represented as partial f-structures. Next to PREDs,

partial f-structures encode morpho-syntactic information, such as CASE, TENSE,

PERSon and NUMber. The close correspondence between grammatical function

information in LFG and syntactic dependencies in general is most easily seen by

viewing grammatical functions holding between partial f-structures as relating two

lexical items (PREDs) that head the corresponding partial f-structures.4

Cross-lingual projection of f-structures is defined as follows: Projection is

grounded in automatically induced word alignment links al(tei, t fi) (al ∈ AL :

E × F) between English and Polish surface words (terminals) tei ∈ E, t fi ∈ F .

Based on the LFG-parsed English corpus, we identify the corresponding lexical

items (PREDs) e in the English f-structures. The set GF consists of grammatical

functions SUBJ, OBJ, OBL, ADJ, etc. that hold between pairs of English PREDicates

g f (ei,e j). During projection, grammatical functions gf encoded in the source f-

structure f se are transferred to the target sentence via word alignment links, ac-

cording to the following definition, which is similar to the one in Hwa et al. [7]:

The grammatical function g f (ei,e j) holding between PREDs ei and e j

in the source f-structure f se projects to the target f-structure f s f as

g f (fi, f j) if and only if the source terminals tei and te j that project

to the PRED values ei,e j included in f se are aligned with the target

terminals t fi and t f j of fi and f j, respectively.5

3However, since Polish has an extended case system distinguishing seven cases, studying the

interaction of grammatical functions and case marking will be important for further improvements.
4In general, dependency structures are assumed to be trees, whereas LFG f-structures are graphs.

This difference has no effect on the present projection approach.

214

The definition states that if two English words are related by a grammatical func-

tion, the same grammatical function will relate their word counterparts in Polish.

Similar to Hwa et al. [7], we define specific projection constraints for different

types of alignment links:6

one-to-one: a grammatical function g f (ei,e j) relates source words ei and e j that

are aligned with exactly one target word al(ei, fi) and al(e j, f j), respectively.

one-to-many: a grammatical function g f (ei,e j) relates source words ei and e j that

are aligned with a single target word: al(ei, fi) and al(e j, fi). The g f is pro-

jected to the partial target f-structure f si headed by fi: g f (fi, f j), where f j is

defined as [PRED ’pro’] for an incorporated SUBJ pronoun (pro-drop) or as

[PRED ’null’] for other grammatical functions (e.g. null specifiers SPEC).

unaligned e: a grammatical function g f (ei,e j) relates source words ei and e j,

where ei is aligned with the target word fi al(ei, fi), the other with none
al(e j, none). The g f is projected to the partial f-structure f si headed by fi:

g f (fi, f j). f j is defined as [PRED ’pro’] for an incorporated SUBJ pronoun or

as [PRED ’null’] for other grammatical functions (e.g. null specifiers SPEC).

However, the Direct Correspondence Assumption that underlies the annotation pro-

jection approach is an idealisation. Indeed, the projected grammatical functions

may be incorrect, due to

(i) errors in the source annotations obtained from automatic LFG parsing;

(ii) poor accuracy of automatic word alignment;

(iii) true mismatches of functional structure between English and Polish.

These error sources radically impair the quality of the projected grammatical func-

tions. However, these shortcomings can be overcome by applying correction rules

similar to Hwa et al. [7] that locally transform the induced Polish f-structures. We

have defined two post-projection correction rules that are motivated by general lin-

guistic properties of the Polish language:7

Rule 1: The PRED value of the SPEC_DET function for the article ‘the’ or ‘a/an’

in English is replaced by ‘null’ in the Polish partial f-structure (cf. Figure 1).

Rule 2: The grammatical function borne by an of -prepositional phrase in English

is realized by a genitive noun phrase in Polish (cf. Figure 2).

5This definition presupposes lemmatisation on the target side, to provide appropriate values fi for

the target f-structure’s PRED features. In practice, given that we don’t use any tagger or morphologi-

cal analyzer to preprocess the Polish corpus, the target f-structure PRED values are instantiated with

the aligned Polish surface words (together with the English lemma, for better readability, see below

Figures 1-3). In the following, we will use fi, f j instead of t fi, t f j, to keep the definitions simpler.
6Hwa et al. 2005 distinguish 5 alignment type scenarios: one-to-one, unaligned (English), one-

to-many, many-to-one, many-to-many. In our unidirectional alignment experiment (cf. Section 4),

we only found the 3 alignment types defined above.
7Further correction rules may be formulated by taking into account morpho-syntactic information

concerning case, number, tense etc. Currently, we do not consider morpho-syntactic features.

215

[
PRED ’cecha (feature)’

SPEC_DET
[

PRED ’lex (the)’
]]

−→
[

PRED ’cecha (feature)’

SPEC_DET
[

PRED ’null’
]]

Figure 1: Example of application of Rule 1: an erroneously induced Polish article equi-

valent to English ‘the’ in SPEC_DET function is replaced by a ‘null’ specifier.

⎡
⎣ PRED ’decyzja (decision)’

ADJUNCT

{[
PRED ’komitetu (of)’

OBJ
[

PRED ’komitetu (committee)’
]]} ⎤

⎦

−→
[

PRED ’decyzja (decision)’

ADJUNCT
{[

PRED ’komitetu (committee)’
]}]

Figure 2: Example of application of Rule 2: the prepositional projection level of an of -PP

in English is reduced to yield an NP adjunct in Polish.

We currently focus on the projection of grammatical functions, without consider-

ing morpho-syntactic features. The induced Polish f-structures are therefore preds-
only f-structures. The following f-structure of the Polish sentence Niniejsza dyrek-
tywa skierowana jest do Państw Członkowskich is automatically induced based on

the f-structure of its English equivalent ‘This directive is addressed to the Member

States.’⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PRED ’skierowana_jest (address)’

SUBJ

[
PRED ’dyrektywa (directive)’

SPEC_DET
[

PRED ’niniejsza (this)′
]]

OBL

⎡
⎢⎢⎢⎣

PRED ’do (to)’

OBJ

⎡
⎢⎣

PRED ’państw (state)’

MOD
{[

PRED ‘członkowskich (member)’
]}

SPEC_DET
[

PRED ‘null’
]

⎤
⎥⎦

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 3: The f-structure of the Polish sentence Niniejsza dyrektywa skierowana jest do
Państw Członkowskich. (‘This directive is addressed to the Member States.’)

Based on the projection of f-structure information as stated above, and enhanced

with post-correction rules as seen in Figures 1 and 2, we obtain an LFG f-structure

bank for Polish that may be used to train a dependency parser, or a full-fledged LFG

c- and f-structure bank and LFG grammar, by inducing f- to c-structure mappings

for Polish, along the lines of Klein [8] for English8 and inducing a probabilistic

treebank-based LFG grammar, using the method of Cahill et al. [4].

8The f-structures used in Klein [8] contain morpho-syntactic features based on PoS information.

In a similar way, our proto-f-structures induced for Polish can be enriched with morphological infor-

mation using a PoS-tagger for Polish (on the target language side).

216

4 Data, Evaluation and Results

4.1 Data and preprocessing

Our projection experiment is conducted on the JRC-Acquis Multilingual Parallel

Corpus [13], a large collection of European Union legislative texts that – unlike

Europarl – includes texts in Polish. From the full English-Polish section of JRC-

Acquis (1,26 mil. sentence links) we selected a subcorpus aligned on the sentence

level consisting of 257,144 sentence pairs. The average sentence length ranges

from 4 to 30 tokens. In the preprocessing phase the parallel texts are word-aligned,

the English side of the bi-text is parsed into LFG f-structures, and we apply some

filtering methods. We briefly describe these phases, in turn.

Word alignment is performed with the SMT system MOSES [9], based on statis-

tics captured from the entire corpus. To a certain degree English is an iso-

lating language that makes use of function and non-content words. Polish,

by contrast, is a highly inflecting language and needs in general fewer or

as many words as English to express the same content. In order to de-

cide whether alignment of one Polish word with one or more English words

conforms to general translational mappings, we use unidirectional Polish-

English word alignment as a basis for projection.

LFG parsing The English side of the parallel corpus is parsed with the hand-

crafted wide-coverage English LFG grammar, which is enhanced with a sta-

tistical disambiguation component selecting the most probable analysis.

Filtering We filter all duplicates and omit sentences that contain inconsistencies

of tokenization between MOSES and XLE.

4.2 Evaluation

We evaluate the quality of the automatically induced f-structures against a gold

standard consisting of f-structures of 50 Polish sentences randomly selected from

the entire corpus. The gold f-structures chosen from the preprocessed data (11.98

tokens/sent. for English, 9.76 tokens/sent. for Polish) have been manually cor-

rected. For this purpose, the f-structures were first transformed to the SALSA/

TIGER XML format required by the SALTO annotation tool (Burchardt et al. [2]),

which enables efficient modification by adding, deleting or correcting grammatical

functions. We calculate precision, recall and f-score for various projection scenar-

ios (cf. Table 1):

+/- correction: for exact match of projected grammatical functions, distinguish-

ing direct projection (direct) and projection with post-modification (+corr)

using the two correction rules mentioned above;

+/- automatic: for the projected grammatical functions taking into account auto-

matically derived (noisy) word alignment (automatic) in contrast to hand-

corrected (optimal) word alignment (manual), to establish an upper bound.

217

experiment languages sentences alignment projection LP LR F-score

(corpus) /ULP /ULR /UF-score

automatic direct 49/50 51/52 50/51

Current en-pl 50 +corr 64/64 63/63 63.5/63.5

Experiment (JRC-Acquis) manual direct 61/62 63/63 62/62.5

+corr 85/85 81/82 83/83.5

automatic direct /33.9

Hwa et al. en-sp 100 +corr /65.7

(UN/FBIS manual direct /36.8

/Bible) +corr /70.3

Ozdowska en-pl 50 (AC) automatic direct 67/82

ge-de 222 52.2 52.9 52.6

Bouma et al. en-du (Europarl) automatic direct 54.3 48.8 51.4

(ge,en)-du 74.6 34.1 46.8

Table 1: LP/ULP: precision for labeled/unlabeled grammatical functions; LR/ULR: recall

for labeled/unlabeled grammatical functions.

Results. As expected, direct projection of grammatical functions is noisy (49.98%

f-score). Application of language-specific transformation rules considerably im-

proves the accuracy of the projected grammatical functions (63.5% f-score). The

quality of word alignment is a crucial factor for projection quality: projection based

on corrected word alignments enhances the quality of the induced f-structures by

12 percentage points (pp) f-score for direct projection and by 19.45 pp f-score

for projection with transformation rules. In line with Hwa et al. [7], these results

clearly indicate that direct projection of grammatical functions is significantly out-

performed by projection using post-projection transformation rules, both for au-

tomatic word alignment (13.52 pp f-score improvement), and for manually cor-

rected word alignments, the latter constituting an upper bound of 20.97 pp f-score

improvement. The upper bound (projection based on perfect word alignment) in

conjunction with two correction rules yields an accuracy of 82.95% f-score.

4.3 Error Analysis

According to our error analysis, most errors are due to word alignment mistakes,

especially wrong alignment of a post-modifier of a Polish noun with an English

head noun. Further, errors in the automatically parsed English f-structures have a

big impact, as grammatical functions are projected to Polish without quality tests.

A final source of errors are translational divergences. They are caused by language-

specific conventions or structural constraints on how to express the same content

in different languages, or simply by some “translational freedom” taken by trans-

lators. Translational divergences may radically change the syntactic structure of

a translated sentence as compared to its source. Erroneous f-structures caused by

word alignment errors, mistakes in the source analysis or translational divergences

may be filtered on the target side, if morphological or PoS information is provided.

218

4.4 Comparison to Related Work

A full comparison to related approaches is difficult, due to the different languages

and corpora involved. Keeping this in mind, compared to the results of unlabeled

dependency projection for Spanish in Hwa et al. [7], we obtain comparable f-scores

(63.5 vs. 65.7) for automatic projection with post-correction. For direct projection,

we outperform Hwa et al.’s results by 17 pp. Compared to Ozdowska [10], preci-

sion of our direct projection is lower by 18/32 pp. Ozdowska [10] relies on one-

to-one alignment links (intersection) only, which increases precision but decreases

recall. As Ozdowska [10] does not report recall figures, we cannot compare the

results. Bouma et al. [1] represents an LFG-based approach, like ours. However,

their work is restricted to verb arguments while we perform full f-structure induc-

tion. We observe that combining argument information from two languages (En-

glish and German) enhances precision but degrades recall. In contrast, we obtain

balanced precision and recall values. Regarding f-score, our projection of gram-

matical functions outperforms the projection by Bouma et al. [1] by 16.7 pp.

5 Conclusions and Future Work

In summary, we presented a cross-lingual projection approach for creating an LFG

f-structure bank for Polish. Our results are competitive as compared to related prior

work on different languages and corpora. Similar to Hwa et al.’s work, the appli-

cation of post-correction rules significantly improves the quality of the induced

f-structures obtained by direct projection. It is worth mentioning that we obtain

high, balanced precision and recall values. Based on the gold standard word align-

ment, we identified an upper bound of 83% f-score to build a Polish f-structure

bank. We find that word alignment is a crucial factor affecting the accuracy of the

projected grammatical functions, next to principled linguistic differences. In fact,

there is a stark contrast between Hwa et al.’s delta to achieve the gold standard level

(70.3% vs. 65.7%) and ours (83.5% vs. 63.5%). This indicates that word alignment

constitutes a harder problem for alignment of English with Polish as compared to

Spanish. Linguistic differences may be addressed by extending the set of post-

correction rules. Word alignment may be improved by advances in the state of the

art, e.g. using lemmatised and PoS-tagged corpora for word alignment.

In future work, we will explore inclusion of problematic data (inconsistent tok-

enization), improvement of word alignment, and use of morpho-syntactic informa-

tion to further enhance the projection quality. The resulting Polish f-structure bank

may be efficiently used to train a dependency parser. Training on Hwa et al.’s Span-

ish data (with 65.7% f-score) yielded a parsing performance of 72.1% f-score [7].

Since our projection model approaches comparable f-score (63.5%), we expect that

a dependency parser for Polish will achieve comparable performance, with poten-

tial increase by further improvement of the base projection quality. Finally, we will

explore induction of a full-fledged LFG grammar for Polish, by adding a module

that learns f-to-c-structure mappings for Polish, along the lines of Klein [8].

219

References
[1] G. Bouma, J. Kuhn, B. Schrader, and K. Spreyer. Parallel LFG Grammars on Parallel

Corpora: A base for practical triangulation. In M. Butt and T.-H. King, editors,

Proceedings of the LFG 2008 Conference, pages 169–189, Sydney, 2008.

[2] A. Burchardt, K. Erk, A. Frank, A. Kowalski, S. Padó, and M. Pinkal. SALTO - A

Versatile Multi-Level Annotation Tool. In Proceedings of LREC 2006, pages 517–

520, 2006.

[3] M. Butt, H. Dyvik, T.H. King, H. Masuichi, and Rohrer Ch. The Parallel Grammar

Project. In Proceedings of the COLING 2002 Workshop on Grammar Engineering
and Evaluation, pages 1–7, Taipei, Taiwan, 2002.

[4] A. Cahill, M. Forst, M. Burke, M. McCarthy, R. O’Donovan, C. Rohrer, J. van Gen-

abith, and A. Way. Treebank-Based Acquisition of Multilingual Unification Grammar

Resources. Journal of Research on Language and Computation, 3(2):247–279, 2005.

[5] M. Darlymple and R.M. Kaplan. Feature Indeterminacy and Feature Resolution.

Language, 76(4):759–798, 2000.

[6] M. Diab and P. Resnik. An Unsupervised Method for Word Sense Tagging using

Parallel Corpora. In Proceedings of the 40th Anniversary Meeting of the Association
for Computational Linguistics, ACL 2002, pages 255–262, Philadelphia, 2002.

[7] R. Hwa, P. Resnik, A. Weinberg, C. Cabezas, and O. Kolak. Bootstrapping Parsers

via Syntactic Projection across Parallel Texts. Natural Language Engineering,

11(3):311–325, 2005.

[8] A. Klein. Von Dependenzstrukturen zu Konstituentenstrukturen: Automatische

Generierung von Penn-Treebank-Bäumen aus LFG-F-Strukturen. Master’s thesis,

Universität Heidelberg, 2009.

[9] P. Koehn, M. Federico, W. Shen, N. Bertoldi, O. Bojar, Ch. Callison-Burch,

B. Cowan, Ch. Dyer, H. Hoang, R. Zens, A. Constantin, Ch.C. Moran, and E. Herbst.

Moses: Open Source Toolkit for Statistical Machine Translation. In Proceedings of
ACL 2007, pages 177–180, Prague, 2007.

[10] S. Ozdowska. Projecting POS Tags and Syntactic Dependencies from English and

French to Polish in Aligned Corpora. In Proceedings of the EACL 2006 Workshop on
Cross-Language Knowledge Induction, pages 53–60, Trento, 2006.

[11] S. Padó and M. Lapata. Cross-linguistic Projection of Role-semantic Information. In

Proceedings of HLT/EMNLP 2005, pages 859–866, Vancouver, 2005.

[12] K. Spreyer and A. Frank. Projection-based Acquisition of a Temporal Labeller. In

Proceedings of the 3rd International Joint Conference on Natural Language Process-
ing (IJCNLP 2008), pages 489–496, Hyderabad, India.

[13] R. Steinberger, B. Pouliquen, A. Widiger, C. Ignat, T. Erjavec, Tufis D., and D. Varga.

The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. In

Proceedings of LREC 2006, pages 2142–2147, Genoa, Italy, 2006.

[14] D. Yarowsky and G. Ngai. Inducing Multilingual POS Taggers and NP Bracketers via

Robust Projection across Aligned Corpora. In Proceedings of NAACL 2001, pages

200–207, 2001.

220

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.693 x 9.449 inches / 170.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20091029120552
 680.3150
 EDUCatt17x24
 Blank
 481.8898

 Tall
 1
 0
 No
 675
 318

 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 0
 12
 11
 12

 1

 HistoryList_V1
 qi2base

