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Simple and Efficient Model Filtering in Statistical Machine
Translation

Juan Pino, Aurelien Waite, William Byrne
Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, U.K.

Abstract
Data availability and distributed computing techniques have allowed statistical machine

translation (SMT) researchers to build larger models. However, decoders need to be able to
retrieve information efficiently from these models to be able to translate an input sentence or
a set of input sentences. We introduce an easy to implement and general purpose solution to
tackle this problem: we store SMT models as a set of key-value pairs in an HFile. We apply
this strategy to two specific tasks: test set hierarchical phrase-based rule filtering and n-gram
count filtering for language model lattice rescoring. We compare our approach to alternative
strategies and show that its trade offs in terms of speed, memory and simplicity are competitive.

1. Introduction

Current machine translation research is characterised by ever increasing amounts
of data available for research. For example, Figure 1 shows that for the WMT ma-
chine translation workshop (Callison-Burch et al., 2012) French-English constrained
track translation task, the English side of parallel data has increased from 13.8M to-
kens in 2006 to 945.1M tokens in 2012 and that available English monolingual data
has increased from 27.5M tokens to 6841.1M tokens. Along with growing amounts of
data, the use of more powerful computers and distributed computing models such
as MapReduce (Dean and Ghemawat, 2008; Lin and Dyer, 2010) has enabled machine
translation researchers to build larger statistical machine translation (SMT) models.
Examples include language modelling (Brants et al., 2007), translation rule extraction
(Dyer et al., 2008; Weese et al., 2011), word alignment (Dyer et al., 2008; Lin and Dyer,
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Figure 1. Number of English tokens (in millions) in parallel and monolingual data
available for the WMT translation shared task constrained track for the years 2006 to

2012.

2010) as well as end-to-end toolkits for building entire phrase-based (Gao and Vo-
gel, 2010) or hierarchical phrase-based models (Venugopal and Zollmann, 2009) using
MapReduce.

Once SMT models are built, specifically the language model and the translation
model, decoders or rescorers only need a fraction of the information contained in
those models to be able to translate an input source sentence or a set of input source
sentences. For example, in translation from French to English, given an input sentence
”Salut toi”, we don’t need to know what translation probability the model assigns to
other words than ”Salut” and ”toi” or what probability the English language model
assigns to their possible English translation. With larger models, simply retrieving
relevant translation or language model probabilities becomes a challenge. We use the
HiFST system (Iglesias et al., 2009b; de Gispert et al., 2010), which involves a first-pass
decoding followed by a 5-gram language model lattice rescoring step (Blackwood,
2010). Given a test set, the decoder only needs the rules whose source side matches
part of one of the source sentences in the test set to be able to generate hypotheses.
In the system described by Iglesias et al. (2009b), for each new test set, rules are re-
extracted and filtered at extraction time. Similarly, for the task of 5-gram language
model lattice rescoring (Blackwood, 2010), the rescorer only needs to retrieve counts
for n-grams present in the lattice produced by the first-pass decoder to be able to
assign a score to a hypothesis. As described by Blackwood (2010), obtaining relevant
n-grams with their counts involves scanning a very large text file containing n-grams
and counts and keeping the relevant records.

These two methods become progressively slower with larger amounts of data and
we would like to improve on them for more rapid experimentation. We also would
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like to use as lightweight a computing infrastructure as possible. For example, HBase
has been applied to the use of distributed language models (Yu, 2008). However,
we wish to address the question whether we can adapt this heavy infrastructure to
our purposes with minimal effort. N-gram count filtering and rule filtering are two
essential steps in our pipeline that can be a bottleneck. Our goal is to reduce their
processing time from several hours to a few minutes.

This paper addresses the problem of retrieving relevant translation and language
model probabilities by storing models in the HFile data structure.1 To our knowledge,
this is the first detailed proposed implementation of translation and language model
storage and filtering using HFile data structures. We believe it offers a good compro-
mise between speed, performance and ease of implementation. Although the HFile
construction is done via MapReduce and a cluster of machines, the infrastructure for
filtering is lightweight and requires the use of only one machine. We will apply this
approach for two specific tasks, namely test set rule filtering prior to decoding and
n-gram count filtering to build a stupid backoff model (Brants et al., 2007) for lattice
rescoring (Blackwood, 2010). We will discuss alternative strategies as well as their
strengths and weaknesses in terms of speed and memory usage. In Section 2, we will
review approaches that have been used for model filtering. The HFile data structure
that is used to store models will be presented in Section 3. Our method and alternative
strategies will be compared empirically in Sections 4 and 5. We will finally conclude
in Section 6.

2. Related Work

We now review techniques appearing in the literature that have been used to store
SMT models and to retrieve the information needed in translation from these mod-
els. SMT models are usually discrete probabilistic models and can therefore be repre-
sented as a set of key-value pairs. To obtain relevant information from a model stored
in a data structure, a set of keys called a query set is formed, then each key in this
query set is looked up in the model. Strategies include storing the model as a simple
data structure in memory, in a plain text file, in more complicated data structures in
memory, storing fractions of the entire model, simply storing data as opposed to a
precomputed model or storing models in a distributed fashion.

If small enough, it may be possible to fit the model into physical memory. In this
case the model can be stored as a memory associative array, such as a hash table, for
rapid query retrieval. In-memory storage has been used to store model parameters
between iterations of expectation-maximisation for word alignment (Dyer et al., 2008;
Lin and Dyer, 2010).

For larger models, the set of key-value pairs can be stored as a table in a single text
file on local disk. Values for keys in the query set are retrieved by scanning through

1http://hbase.apache.org
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the entire file. For each key in the file, its membership is tested in the query set. This
is the approach adopted in the Joshua 3.0 decoder (Weese et al., 2011), which uses reg-
ular expressions or n-grams to test membership. Venugopal and Zollmann (2009) use
MapReduce to scan a file concurrently: a mapper is defined that tests if the vocabu-
lary of a rule matches the vocabulary of a test set. The MapReduce framework then
splits the grammar file into subsections for the mappers to scan over in parallel.

The model can also be stored using a trie associative array (Fredkin, 1960). A trie
is a type of tree where each node represents a shared prefix of a set of keys repre-
sented by the child nodes. Each node only stores the prefix it represents. The keys
are therefore compactly encoded in the structure of the trie itself. Querying the trie
is a O(log(n)) operation, where n is the number of keys in the dataset. The trie may
also be small enough to fit in physical memory to further reduce querying time. Tries
have been used for storing phrase tables (Zens and Ney, 2007) and hierarchical phrase-
based grammars (Ganitkevitch et al., 2012) as well as language models (Pauls and
Klein, 2011; Heafield, 2011).

It is also possible to create a much smaller approximate version of the model.
Randomised language models (Talbot and Osborne, 2007b,a; Talbot and Brants, 2008)
store parameters or counts associated with n-grams in a structure similar to a Bloom
filter (Bloom, 1970). This structure is small in comparison to the original language
model, although the reduction in size comes at the cost of randomly corrupting model
parameters or assigning model parameters to unseen n-grams. Guthrie and Hepple
(2010) propose an extension which prevents the random corruption of model param-
eters but does not stop the random assignment of parameters to unseen n-grams.
Levenberg and Osborne (2009) extend randomised language models to stream-based
language models. Another way of building a smaller approximate version of a model
is to retain items with high frequency counts from a stream of data (Manku and Mot-
wani, 2002). This technique has been applied to language modelling (Goyal et al.,
2009) and translation rule extraction (Przywara and Bojar, 2011).

Instead of pre-computing the dataset it is possible to compute the sufficient statis-
tics at query time using a suffix array (Manber and Myers, 1990), so that the model
can be estimated on the fly. A suffix array is a sequence of pointers to each suffix in a
training corpus. The sequence is sorted with respect to the lexicographic order of the
referenced suffixes. Suffix arrays have been used for computing statistics for language
models (Zhang and Vogel, 2006), phrase-based systems (Callison-Burch et al., 2005;
Zhang and Vogel, 2005), and hierarchical phrase-based systems (Lopez, 2007).

Finally, some approaches store language models in a distributed fashion. Brants
et al. (2007) describe a distributed, fast, low-latency infrastructure for storing very
large language models. Zhang et al. (2006) propose a distributed large language
model backed by suffix arrays. HBase has also been used to build a distributed lan-
guage infrastructure (Yu, 2008). The method we propose to use is closely related to
the latter but we use a more lightweight infrastructure than HBase and we apply it to
two different tasks, demonstrating the flexibility of the infrastructure.
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Data Block
...
Leaf index block / Bloom block
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Data Block
...
Leaf index block / Bloom block
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Intermediate Level Data Index Blocks
Root Data Index
File Info
Bloom Filter Metadata

Figure 2. HFile internal structure 2

3. HFile Description

We now describe the data structure we use to store models and we review rele-
vant features to the design of our system. To store a model represented as key-value
pairs, we use the HFile file format,3 which is a reimplementation of the SSTable file
format (Chang et al., 2008). The HFile is used at a lower level in the HBase infras-
tructure. In this work, we reuse the HFile format directly without having to install
an HBase system. The HFile format is a lookup table with key and value columns.
The entries are free to be an arbitrary string of bytes of any length. The table is sorted
lexicographically by the key byte string for efficient record retrieval by key.

3.1. Internal structure

As can be seen in Figure 2, the data contained in an HFile is internally organised
into blocks called data blocks. The block size is configurable, with a default size of
64KB. Note that HFile blocks are not to be confused with Hadoop Distributed File
System (HDFS) blocks whose default size is 64MB. If an HFile is stored on HDFS,
several HFile blocks will be contained in an HDFS block. A block index is constructed
which maps the first key of an HFile block to the location of the block in the file. For
large HFiles the block index can be very large. Therefore the block index is itself
organised into blocks, which are called leaf index blocks. These leaf index blocks

2after http://hbase.apache.org/book/book.html (simplified)
3http://hbase.apache.org
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are interspersed with the data blocks in the HFile. In turn, the leaf index blocks are
indexed by intermediate level data index blocks. The intermediate blocks are then
indexed by a root data index. The root data index and optionally the Bloom filter
metadata, described next, are stored at the end of the HFile. In order to distinguish
block types (data block, index block, etc.), the first 8 bytes of a block will indicate the
type of block being read. The HFile format allows for the blocks to be compressed.
The choice of compression codec is selected when the file is created. We choose the
GZip compression codec for all our experiments. Block compression is also used in
other related software (Pauls and Klein, 2011). For more details, the interested reader
can refer to the HBase documentation.4

3.2. Record retrieval

When the HFile is opened for reading, the root data index is loaded into memory.
To retrieve a value from the HFile given a key, the appropriate intermediate index
block is located by a binary search through the root data index. Binary searches are
conducted on the intermediate and leaf index blocks to identify the data block that
contains the key. The data block is then loaded off the disk into memory and the
key-value record is retrieved by scanning the data block sequentially.

3.3. Bloom filter optimization

It is possible to query for a key that is not contained in the HFile. This very fre-
quently happens in translation because of language data sparsity. Querying the ex-
istence of a key is expensive as three blocks have to be loaded from disk and binary
searched. For fast existence check queries, the HFile format allows the inclusion of an
optional Bloom filter (Bloom, 1970). A Bloom filter provides a probabilistic, memory
efficient representation of the key set with an O(1) membership test operation. The
Bloom filter may provide a false positive, but never a false negative for existence of a
key in the HFile. For a large HFile, the Bloom filter may also be very large. Therefore
the Bloom filter is also organised into blocks called Bloom blocks. Each block contains
a smaller Bloom filter that covers a range of keys in the HFile. Similar to the root data
index, a Bloom filter metadata or Bloom index is constructed. To check for the exis-
tence of a key, a binary search is conducted on the Bloom index, the relevant Bloom
block is loaded, and the membership test performed. Contrary to work on Bloom fil-
ter language model (Talbot and Osborne, 2007a,b), this filter only tests the existence
of a key and does not return any statistics from the value. If a membership test is pos-
itive, the HFile data structure still requires to do a usual search. During the execution
of a query, two keys may reference the same index or Bloom blocks. To prevent these
blocks from being repeatedly loaded from disk, they are cached after reading.

4http://hbase.apache.org/book/book.html
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3.4. Local disk optimization

The HFile format is designed to be used with HDFS, a distributed file system based
on the Google File System (Ghemawat et al., 2003). Large files are split into HDFS
blocks that are stored on many nodes in a cluster. However, the HFile format can also
be used completely independently of HDFS. If its size is smaller than disk space, the
entire HFile can be stored on the local disk of one machine and accessed through the
machine’s local file system. We find in Sections 4 and 5 that using local disk is faster
than using HDFS.

3.5. Query sorting optimization

Prior to HFile lookup, we sort keys in the query set lexicographically. If two keys in
the set of queries are contained in the same block, then the block is only loaded once.
In addition, the computer hardware and operating system allow further automatic
improvements to the query execution. Examples of these automatic improvements
include reduced disk seek time, the operating system caching data from disk,5 or CPU
caching data from main memory (Patterson and Hennessy, 2009).

4. Hierarchical Rule Filtering for Translation

In this section, we describe how the HFile data structure can be used to store a
hierarchical phrase-based translation model (Chiang, 2007) and to retrieve rules from
a given test set. We describe our system called ruleXtract, and compare it to other
methods through time and memory measurements.

4.1. Task Description

Given a test set and a hierarchical phrase-based translation model, we would like
to retrieve all the relevant rules from the model. A phrase-based rule is relevant if
its source is a substring of a sentence in the test set. A hierarchical rule is relevant if,
after instantiation of its nonterminals, it is a substring of a sentence in the test set. For
example, with a test set containing one sentence ”Salut toi”, the phrase-based rules
with sources ”Salut”, ”toi”, ”Salut toi” are relevant and the hierarchical rules with
sources ”Salut X” and ”X toi” are relevant.

4.2. HFile for Hierarchical Phrase-Based Grammars

The input to our system ruleXtract is a word aligned parallel corpus. First, hi-
erarchical phrase-based rules are extracted using a MapReduce job with no reducer.

5The Linux Documentation Project, The File System, http://tldp.org
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Then, features that require a pass over the whole training material, such as the source-
to-target probability, are computed in parallel using MapReduce jobs. We call these
features MapReduce features. We follow Method 3 described by Dyer et al. (2008) to
compute translation probabilities. Finally, the outputs of the feature jobs are merged
in sorted order and the merged output is converted to an HFile. This step is preferably
run on a cluster of machines.

Given a test set and an HFile storing a hierarchical phrase-based grammar, we
first generate queries from the test set, then retrieve relevant rules along with their
MapReduce features from the HFile. To generate queries, we have a set of allowed
source patterns and instantiate these patterns against the test set. A source pattern is
simply a regular expression. For example, the pattern Σ+X represents a rule source
side containing a sequence of terminals followed by the nonterminal X. If the input
sentence is ”Salut à toi”, the pattern will be instantiated as ”Salut X” and ”Salut à
X”. We impose the following constraints on source pattern instantiation where the
first three relate to constraints in extraction and the last one relates to a decoding
constraint:

• max_source_phrase: maximum number of terminals for phrase-based rules,
• max_source_elements: maximum number of terminals and nonterminals,
• max_terminal_length: maximum number of consecutive terminals for hierarchi-

cal rules,
• max_nonterminal_span: maximum nonterminal span in a hierarchical rule.

The source pattern instances are then sorted for more efficient HFile lookup (see Sec-
tion 3). Each query is then looked up in the HFile and if present, an HFile record is
retrieved. We typically run this retrieval step on one machine only.

We now compare our approach to similar approaches whose aim is to obtain rules
for a test set.

4.3. Suffix Array for Hierarchical Phrase-Based Grammars

We use the cdec software (Dyer et al., 2010) for hierarchical phrase-based rule ex-
traction. The implementation is based on earlier work (Lopez, 2007) which extends
suffix array based rule retrieval from phrase-based systems to hierarchical phrase-
based systems.

Given a test set, a set of source pattern instances is generated similarly to what is
done for ruleXtract. Then these source pattern instances are looked up in a suffix array
compiled from the source side of a parallel corpus. Rules are then extracted using the
word alignment and source-to-target probabilities are then computed on the fly.

4.4. Text File Representation of Hierarchical Phrase-Based Grammars

We now describe an implementation for storing and retrieving from a translation
model by the Joshua decoder (Weese et al., 2011). The first implementation variant,

12
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which we call Joshua, stores the translation model in a text file. Given a test set, each
word in the test set vocabulary is mapped to the list of sentences in which it appears.
Then, each rule in the translation model is compiled to a regular expression, and each
sentence that contains at least a vocabulary word of the rule is matched against this
regular expression. If at least one match is successful, the rule is retained. A faster
version is provided that matches consecutive terminals in the source side of a rule
to the set of n-grams extracted from the test set. We call this version Joshua Fast. A
parallel version also exists that chunks the grammar file and distributes each chunk
processing as a separate process on a cluster running Sun Grid Engine (Gentzsch,
2001). We call this version Joshua Parallel. The parallel version using the faster match-
ing algorithm is called Joshua Fast Parallel.

4.5. Experimental Setup

We use the following setup:
• Data: we use a small parallel corpus of 750,950 word-aligned sentence pairs

and a larger corpus of 9,221,421 word-aligned sentence pairs from the NIST’12
Chinese-English evaluation, to show how systems scale up with more data.

• Grammar extraction: from the parallel corpora, we extract hierarchical gram-
mars with the source-to-target probability feature only, because we do not want
feature computation to introduce noise in timing results when comparing dif-
ferent strategies and software implementations. In addition, the suffix array
implementation of rule extraction does not generate target-to-source probabili-
ties. Note that in practice, given a vector of parameters, we could simply replace
multiple features in the translation model by a single value representing the dot
product of the features with the parameter vector. The extraction constraints
are

– max_source_phrase = 9,
– max_source_elements = 5,
– max_terminal_length = 5 (redundant with max_source_elements),
– max_nonterminal_span = 10.

The small grammars contains approximately 60M rules while the larger gram-
mar contains approximately 726M rules. The grammar we obtain is converted
to the Joshua format.

• Grammar filtering: for ruleXtract, we use these constraints for source pattern
instantiation:

– max_source_phrase = 9,
– max_source_elements = 5,
– max_terminal_length = 5 (redundant with max_source_elements),
– max_nonterminal_span = ∞,

so that the number of rules obtained after filtering is identical between ruleXtract
and Joshua. For the Joshua Parallel configurations, we use 110 jobs for the larger

13
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grammar on a cluster of 9 machines. For this latter configuration, we report the
maximum time spent on a job (not the sum) and the maximum memory usage
by a job.

• Measurements: we report time measurements for query processing and query
retrieval and the total time used to obtain a set specific rule file for a test set of
1755 Chinese sentences and 51008 tokens. We also report peak memory usage.
For ruleXtract, query processing involves generating source pattern instances
and sort them according to the HFile sorting order. If we use a Bloom filter,
it also involves pre-filtering the queries with the Bloom filter. Query retrieval
involves HFile lookup. For the Joshua configurations, query processing involves
indexing the test set and generating test set ngrams and query retrieval involves
regular expression matching.

• Hardware configuration: the machine used for the query has 94GB of memory
and an Intel Xeon X5650 CPU. The distributed file system is hosted on the query-
ing machine and other machines with the same specification, which are used to
generate the HFile.

The setup was designed for accurate comparisons between strategies, however
these strategies are not necessarily used with this setup in an end-to-end translation
system. For example the grammar extracted by Joshua is smaller than the grammar ex-
tracted by ruleXtract because of target side constraints but ruleXtract uses filter criteria
(Iglesias et al., 2009a) to reduce the test set specific grammar.

4.6. Results and Discussion

Results are summarized in Table 1, from which we can draw the following obser-
vations:

• Speed: column Total Time shows that ruleXtract is competitive with alternative
strategies in terms of speed.

• Memory: column Peak Memory shows that both ruleXtract and Joshua memory
usage is important. In the case of ruleXtract, this is because we keep all source
pattern instances in memory. In the case of Joshua, this is due to a caching opti-
mization.

• HFile optimization: comparing HDFS and Local rows, we can see that using the
local filesystem as opposed to HDFS gives a small decrease in query retrieval
time, more important for the larger grammar. This is due to the fact that HDFS
blocks are located on different data nodes. Since the HFile size is smaller than
the disk space, it is preferable to work locally, although it requires copying the
HFile from HDFS to the hard disk. Comparing rows with and without Bloom,
we can see that the use of a Bloom filter gives an important decrease in query
retrieval time. This is due to the fact that the number of source pattern instances
queries is 31,552,746 and after Bloom filtering, the number of queries is 1,146,554
for the small grammar and 2,309,680 for the larger grammar, reducing the num-

14
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Small Grammar
System Query Query Total Peak # Rules

Processing Retrieval Time Memory
ruleXtract 9m1s 7m36s 16m40s 40.8G 6435124
HDFS
ruleXtract 8m57s 2m16s 11m15s 39.9G 6435124
Bloom, HDFS
ruleXtract 8m54s 7m33s 16m30s 40.4G 6435124
Local
ruleXtract 8m50s 2m19s 11m11s 38.8G 6435124
Bloom, Local
Joshua 0.9s 29m51s 29m54s 42.2G 6435124
Joshua 0.9s 7m25s 7m28s 40.1G 7493178
Fast

Large Grammar
System Query Query Total Peak # Rules

Processing Retrieval Time Memory
ruleXtract 8m56s 22m18s 31m17s 42.2G 47978228
HDFS
ruleXtract 9m12 15m33s 24m49s 40.7G 47978228
Bloom, HDFS
ruleXtract 8m55s 21m3s 30m1s 41.6G 47978228
Local
ruleXtract 9m0s 14m43s 23m46s 40.6G 47978228
Bloom, Local
Joshua 0.9s out of out of out of out of

memory memory memory memory
Joshua 0.9s out of out of out of out of

memory memory memory memory
Fast
Joshua 0.9s 537m10s 537m11s 10.1G 47978228
No Cache
Joshua 0.9s 78m53s 78m54s 10.1G 83339443
Fast No Cache
Joshua total time (not sum): 43m36s 4G 47978228
Parallel
Joshua total time (not sum): 44m29s 4G 83339443
Fast Parallel

Table 1. Time and memory measurements for rule filtering with different strategies for
a small and a large grammar.

15
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ber of time consuming HFile lookups respectively by 96% and 93%. Note that
Bloom filters increase query processing time only in the case of a large grammar
and more so when using HDFS.

• Parallelization: in order to run Joshua on the larger grammar and avoid memory
problems, we needed to use parallelization, which provided competitive speeds
and a low memory footprint (maximum 4G per job). We are currently looking
into making a parallel version of ruleXtract by parallelizing the query.

For information, cdec’s total processing time is 57m40s for the small grammar,
which is significantly slower than the other methods. However, we do not include
a direct comparison to cdec in Table 1 because the suffix array method involves much
on-the-fly computation that has been precomputed in the case of Joshua and ruleXtract.
Despite this apparent slowness, the use of suffix array methods for rule extraction fa-
vors rapid experimentation because no precomputation is required. But we note that
the HFile generation from the larger parallel corpus took 5 hours and from this HFile
it is possible to run multiple experiments by varying test sets and/or filtering param-
eters.

The ruleXtract system works in batch mode and dividing the number of words in
the test set by the total time in the best configuration (ruleXtract, Bloom, Local) for the
large grammar yields a speed of 35.8 words per second which is a real time system
speed for batch processing tasks in which latency has little effect. However, running
the system in that configuration gives a speed of 2.5 words per second for the longest
sentence in the test set (135 words) and 1.3 words per second for a sentence of length
20. Future work will be dedicated to reduce latency and obtain an actual real time
system.

5. N-Gram Count Filtering for Language Model Lattice Rescoring

In this section, we describe an HFile based infrastructure that supports a stupid
backoff (Brants et al., 2007) n-gram language model. We conduct timed queries with
comparison to a suffix array baseline.

5.1. Task Description

Blackwood (2010) motivates the use of 5-gram language model rescoring as a way
of avoiding memory limitations in language model estimation and decoding. De-
pending on translation grammar and language model complexity, pruning thresh-
olds in search can be set so that search errors are inconsequential. 5-gram rescoring
requires first to obtain n-gram counts for n ≤ 5 for a large monolingual corpus. Given
a test set, n-grams present in the output lattices generated by a first-pass decoder are
then extracted. The stupid backoff n-gram model (Brants et al., 2007) is described
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with the pseudo-probability S(·). It has the form:

S(Wi|W
i−1
i−n+1) =

{
f(Wi

i−n+1)

f(Wi−1
i−n+1

)
if f(Wi

i−n+1) > 0

αS(Wi|W
i
i−n+2) otherwise

(1)

whereWj
i is a sequence of words contained in a machine translation hypothesis, f(Wj

i)

is the count of the occurrences of the word sequenceWj
i in a large monolingual corpus,

and α is a constant that is set heuristically. To compute the pseudo-probability of an
n-gram S(Wi|W

i−1
i−n+1) the only statistics required are the counts for the constituent

word sequences extracted from the monolingual corpus. Brants et al. (2007) show that
with large amounts of data, stupid backoff smoothing performs similarly to Kneser-
Ney smoothing (Kneser and Ney, 1995).

5.2. HFile for n-gram count filtering

The HFile stores n-grams Wj
i as keys, and their counts f(Wj

i) as values. Each word
of the key is mapped to an integer so that the n-gram becomes a string of integers.
Each integer is then converted into a binary representation with a three byte width,
which is adequate for the vocabulary used by our collections. The count is stored
using a four byte integer representation.

5.3. Suffix array

The suffix array baseline is a modified version of the Suffix Array Language Model
toolkit (SALM) toolkit (Zhang and Vogel, 2006). The original SALM toolkit used a 32-
bit integer representation for each element in the suffix array. This representation has
been widened to 64-bits to allow a larger corpus to be indexed. SALM loads the suffix
array and monolingual corpus into memory for fast computation of the counts.

5.4. Experimental setup

We use the following setup:
• Data: We use a concatenation of the Gigaword Fifth Edition (Parker et al., 2011)

with the English side of the NIST’12 parallel data for the constrained track. The
SALM toolkit imposes a 256 word limit on sentence length in the corpus, there-
fore we truncated all sentences to 256 words. The corpus contains 5.4 billion
words. From the monolingual corpus we extract 2.5 billion word sequences and
counts. These are stored in an HFile with 8 KB data block size.

• Translation lattices: we replicate an experiment where a set of 2816 translation
lattices are rescored using a 5-gram stupid backoff language model (Blackwood,
2010). The n-gram keys required to build the set-specific language model are
extracted from the lattices using modified counting transducers (Mohri, 2003).
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The queries take the form of 8.4 million keys, of which 7.3 million of the keys
are unique.

• HFile optimization: we execute four HFile based queries based on whether the
HFile contains a Bloom filter index, and whether the HFile is stored on local disk
or a distributed file system.

• Time measurement phases: we split the query execution into distinct phases.
For SALM we record the time taken to load the suffix array and monolingual cor-
pus into memory, which we label index load time. We then enumerate through
the unsorted keys in the query and compute the count associated with the key.
Note that for any duplicate key in the query a duplicate count is computed. We
call this phase query retrieval. For the HFile based infrastructure, the query has
to be sorted. A Bloom filter may also be applied after the sort. We call this phase
query processing. We then look up the HFile to locate the query keys. The look
up phase is also labelled query retrieval.

• Hardware configuration: identical to the one in Section 4.

5.5. Results and Discussion

The results are shown in Table 2 from which we can draw the following observa-
tions:

• Speed: column 4 shows that the HFile infrastructure provides a competitive
query speed with respect to SALM.

• Memory: column 5 shows that the memory overhead of the HFile infrastructure
is much lower than SALM. We could reduce the suffix array memory usage by
doing an on-disk binary search but this would increase the query processing
time.

• HFile optimizations: an interesting result is the effect that the Bloom filter has
on the query processing time for the distributed query. The time spent loading
the blocks that comprise the Bloom filter offsets the time saved retrieving the
counts. However, when using local disk the Bloom filter has only a small impact
on the query processing time.

In addition, although disk usage is not an issue, it is worth mentioning that the En-
glish monolingual data together with the suffix array represent 90G of uncompressed
data and the HFile size is 11G without Bloom filter and 14G with Bloom filter. We
store the English monolingual data in a decompressed file for more efficient loading
into a suffix array. On the other hand, only HFile blocks potentially containing a key
are uncompressed during an HFile query.

We did not report comparisons to the KenLM toolkit (Heafield, 2011), which is
designed for retrieving n-gram probabilities from an ARPA file as opposed to raw
n-gram counts. It might be possible to build an ARPA file containing n-gram counts;
we leave this study to future work and hope to obtain improvements in speed.
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Index Query Query Total Peak
Load Processing Retrieval Time Memory

Suffix Array 8m39s - 3m20s 11m59s 90.7G
HFile, HDFS - 18s 3m54s 4m12s 3.1G

HFile, Bloom, HDFS - 1m11s 2m52s 4m3s 5.8G
HFile, Local - 18s 3m5s 3m23s 3.1G

HFile, Bloom, Local - 25s 1m56s 2m21s 5.8G

Table 2. Timing results for n-gram count queries.

6. Conclusion

We have presented a strategy to filter SMT models to a given test set. This strategy
is easy to implement, flexible as it was applied to two different tasks and it does not
require extensive computing resources as it is run on one machine. We have demon-
strated that its performance in terms of speed and memory usage is competitive with
other current alternative approaches.

In the future, we would like to provide two extensions to our HFile infrastructure.
First, in order to increase the speed in batch mode, we would like to implement a
MapReduce version that would split the queries (as opposed to the HFile). Second,
in order to provide a real time system, we would like to reduce latency by optimizing
the source pattern instance creation phase.
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Abstract
We describe Appraise, an open-source toolkit supporting manual evaluation of machine

translation output. The system allows to collect human judgments on translation output, im-
plementing annotation tasks such as 1) quality checking, 2) translation ranking, 3) error classi-
fication, and 4) manual post-editing. It features an extensible, XML-based format for import/
export and can easily be adapted to new annotation tasks. The current version of Appraise
also includes automatic computation of inter-annotator agreements allowing quick access to
evaluation results. Appraise is actively developed and used in several MT projects.

1. Introduction

Evaluation of Machine Translation (MT) output to assess translation quality is a
difficult task. There exist automatic metrics such as BLEU (Papineni et al., 2002) or
Meteor (Denkowski and Lavie, 2011) which are widely used in minimum error rate
training (Och, 2003) for tuning of MT systems and as evaluation metric for shared
tasks such as, e.g., theWorkshop on Statistical Machine Translation (WMT) (Callison-
Burch et al., 2012). Themain problem in designing automatic qualitymetrics forMT is
to achieve a high correlation with human judgments on the same translation output.
While current metrics show promising performance in this respect, manual inspec-
tion and evaluation of MT results is still equally important as it allows for a more
targeted and detailed analysis of the given translation output. The manual analysis
of a given, machine translated text is a time-consuming and laborious process; it in-
volves training of annotators, requires detailed and clear-cut annotation guidelines,

© 2012 PBML. All rights reserved. Corresponding author: cfedermann@dfki.de
Cite as: Christian Federmann. Appraise: an Open-Source Toolkit for Manual Evaluation of MT Output. The
Prague Bulletin of Mathematical Linguistics No. 98, 2012, pp. 25–35. doi: 10.2478/v10108-012-0006-9.
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Figure 1. Front page

and—last but not least—an annotation software that allows annotators to get their job
done quickly and efficiently.

In this paper, we describe Appraise, an open-source tool that allows to perform
manual evaluation of Machine Translation output. Appraise can be used to collect
human judgments on translation output, implementing several annotation tasks. We
will describe the tool in more detail on the following pages. The remainder of this
paper is structured as follows: Section 2 gives some further motivation concerning
the development of the tool before we describe the system in more detail in Section 3
and highlight the various annotation tasks we implemented in Section 4. We explain
the installation requirements in Section 5 and give some quick usage instructions in
Section 6. Finally, we describe several experiments where Appraise has proven useful
(see Section 7) and give some concluding remarks in Section 8.

2. Motivation

As we have mentioned before, the collection of manual judgments on machine
translation output is a tedious task; this holds for simple tasks such as translation
ranking but also for more complex challenges like word-level error analysis or post-
editing of translation output. Annotators tend to lose focus after several sentences,
resulting in reduced intra-annotator agreement and increased annotation time. In
our experience with manual evaluation campaigns it has shown that a well-designed
annotation tool can help to overcome these issues.

Development of the Appraise software package started back in 2009 as part of the
EuroMatrixPlus project where the tool was used to quickly compare different sets of
candidate translations fromour hybridmachine translation engine to get an indication
whether our system improved or degraded in terms of translation quality. A first
version of Appraise was released and described by Federmann (2010).
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Figure 2. Individual task status

3. System Description

In a nutshell, Appraise is an open-source tool for manual evaluation of machine
translation output. It allows to collect human judgments on given translation output,
implementing annotation tasks such as (but not limited to):

- translation quality checking;
- ranking of translations;
- error classification;
- manual post-editing.

We will provide a more detailed discussion of these tasks in Section 4.
The software features an extensible XML import/output format and can easily

be adapted to new annotation tasks. An example of this XML format is depicted in
Figure 5. The software also includes automatic computation of inter-annotator agree-
ment scores, allowing quick access to evaluation results. A screenshot of the task
status view is shown in Figure 2. We currently support computation of the following
inter-annotator agreement scores:

- Krippendorff’s α as described by Krippendorff (2004);
- Fleiss’ κ as published in Fleiss (1971), extending work from Cohen (1960);
- Bennett, Alpert, and Goldstein’s S as defined in Bennett et al. (1954);
- Scott’s π as introduced in Scott (1955).
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Figure 3. 3-way ranking task

Agreement computation relies on code from the NLTK project (Bird et al., 2009). Ad-
ditional agreement metrics can be added easily; the visualisation of agreement scores
or other annotation results can be adapted to best match the corresponding annota-
tion task design.

Appraise has been implemented using the Python-based Django web framework1
which takes care of low-level tasks such as “HTTP handling”, database modeling,
and object-relational mapping. Figures 1–4 show several screenshots of the Appraise
interface. We used Twitter’s Bootstrap2 as basis for the design of the application and
implemented it using long-standing and well-established open-source software with
large communities supporting them in the hope that thiswill also benefit theAppraise
software package in the long run.

In the same spirit, we have opened up Appraise development and released the
source code onGitHub at https://github.com/cfedermann/Appraise. Anybodywith
a free GitHub account may fork the project and create an own version of the soft-
ware. Due to the flexibility of the git source code management system, it is easy to
re-integrate external changes into the master repository, allowing other developers
to feed back bug fixes and new features, thus improving and extending the original
software. Appraise is available under an open, BSD-style license.3

1See http://www.djangoproject.com/ for more information
2Available from http://twitter.github.com/bootstrap/
3See https://raw.github.com/cfedermann/Appraise/master/appraise/LICENSE
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Figure 4. Error classification task

4. Annotation Tasks

We have developed several annotation tasks which are useful for MT evaluation.
All of these have been tested and used during the experiments described in Section 7.
The following task types are available for the GitHub version of Appraise:

1. Ranking The annotator is shown 1) the source sentence and 2) several (n ≥ 2)
candidate translations. It is also possible to additionally present the reference
translation. Wherever available, one sentence of left/right context is displayed
to support the annotator during the ranking process.

We also have implemented a special 3-way ranking task which works for pairs of
candidate translations and gives the annotator an intuitive interface for quick
A > B, A = B, or A < B classification. Figure 3 shows a screenshot of the 3-way
ranking interface.

2. Error Classification The annotator sees 1) the source (or target) sentence and 2)
a candidate translation which has to be inspected wrt. errors contained in the
translation output. We use a refined version of the classification described in
(Vilar et al., 2006). Error annotation is possible on the sentence level as well as
for individual words. The annotator can choose to skip translations containing
“too many errors” and is able to differentiate between “minor” and “severe” er-
rors. Figure 4 shows a screenshot of the error classification interface.
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3. Quality Estimation The annotator is given 1) the source sentence and 2) one
candidate translation which has to be classified as Acceptable, Can easily be fixed,
orNone of both. We also show the reference sentence and again present left/right
context if available. This task can be used to get a quick estimate on the accept-
ability of a set of translations.

4. Post-editing The annotator is shown 1) the source sentence including left/right
context wherever available and 2) one or several candidate translation. The task
is defined as choosing the translation which is “easiest to post-edit” and then
performing the post-editing operation on the selected translation.

In some of our experiments with Appraise, we found that annotators did not
necessarily choose the overall best candidate translation for post-editing but
often selected worse translations which, however, could be post-edited more
quickly. Our findings are summarised in Avramidis et al. (2012).

5. Installation Requirements

Appraise requires Python 2.7.x and Django 1.4.x to be installed on the deployment
machine. You can install Python using the following commands:� �

$ wget ht tp ://www. python . org/f tp/python /2 .7 .3/ Python−2 . 7 . 3 . tgz
$ t a r xzf Python−2 . 7 . 3 . tgz
$ cd Python−2.7.3
$ ./ conf igure && make && make i n s t a l l� �
After having set up Python, you have to download, extract, and install the Django

web framework. This will be installed into the site-packages folder that belongs to
the python binary used to start setup.py. Run the following commands:� �

$ wget d jangopro jec t . com/download/1.4/ t a r b a l l / −O Django−1 . 4 . 1 . t a r . gz
$ t a r xzvf Django−1 . 4 . 1 . t a r . gz
$ cd Django−1.4.1
$ python2 . 7 setup . py i n s t a l l� �

Note: on Mac OS X, you can also use MacPorts4 to install Python and Django,
simplifying the whole installation procedure to a single command:� �

$ sudo port i n s t a l l py27−django� �
Finally, you have to create a local copy of the Appraise source code package which

is available from GitHub. In git terminology, you have to “clone” Appraise. You can
do so as follows (change Appraise-Software to any other folder name you like):

4Available from http://www.macports.org/
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� �
$ g i t c lone g i t :// github . com/cfedermann/Appraise . g i t Appraise−Software
Cloning in to ’ Appraise−Software ’ . . .
…
$ cd Appraise−Software� �

Congratulations! You have just installed Appraise on your local machine.

6. Usage Instructions

Assuming you have already installed Python and Django, and have cloned a local
copy of Appraise, you can setup the SQLite database and subsequently start up the
server using the following commands:� �

$ cd Appraise−Software/appraise
$ python manage . py syncdb
…� �
When askedwhether youwant to create a super user account, reply yes and create

such an account; this will be the administrative user having all permissions.� �
$ python manage . py runserver
Val idat ing models . . .

0 e r ro r s found
Django vers ion 1 . 4 . 1 , using s e t t i n g s ’ appraise . s e t t i ng s ’
Development server i s running at ht tp ://127 . 0 . 0 . 1 : 8 0 00/
Quit the server with CONTROL−C.� �

You should be greeted with the output shown above in your terminal. In case
of any errors during startup, these will be reported instead and, depending on the
severity of the problem, Django will refuse to launch Appraise. Point your browser
to http://127.0.0.1:8000/appraise/ and check if you can see the Appraise front
page, which looks similar to the screenshot depicted in Figure 1.

New user accounts can be created inside Django’s administration backend. You
have to login and access http://127.0.0.1:8000/appraise/admin/auth/user/add/
for user administration. Evaluation tasks are created in the administration backend at
http://127.0.0.1:8000/appraise/admin/evaluation/evaluationtask/add/. You
need an XML file in proper format to upload a task; an example file can be found
inside examples/sample-ranking-task.xml within the Appraise package.

7. Experiments

7.1. Appraise in EuroMatrixPlus

As mentioned earlier in this article, we have created Appraise to support research
work on hybrid machine translation, especially during the EuroMatrixPlus project.
This is described in (Federmann et al., 2009, 2010; Federmann and Hunsicker, 2011;
Hunsicker et al., 2012).
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7.2. Appraise in taraXÜ

We have also used Appraise in the taraXÜ project, conducting several large anno-
tation campaigns involving professional translators and language service providers.
Results from this research work are summarised in (Avramidis et al., 2012).

7.3. Appraise in T4ME

In the T4MEproject, we investigate howhybridmachine translation can be changed
towards optimal selection from the given candidate translations. Part of the experi-
mental setup is a shared task (ML4HMT) in which participants have to implement
this optimal choice step. We used Appraise to assess the translation quality of the
resulting systems. This is described in (Federmann, 2011; Federmann et al., 2012a,b).

Appraise has also beenused in research related to the creation of standalone hybrid
machine translation approaches. Related work is published as (Federmann, 2012).

7.4. Appraise in MONNET

We also used Appraise in the context of terminology translation for the business
domain. These experiments are conducted as part of the MONNET project and are
presented in (Arcan et al., 2012).

8. Conclusion and Outlook

We have described Appraise, an open-source tool for manual evaluation of ma-
chine translation output, implementing various annotation tasks such as ranking or
error classification. We provided detailed instructions on the installation and setup of
the tool and gave some brief introduction to its usage. Also, we reported on research
work for which different versions of Appraise have been used, feeding back into the
tool’s development.

Maintenance and development efforts of the Appraise software package are on-
going. By publicly releasing the tool on GitHub, we hope to attract both new users
and new developers to further extend and improve it. Future modifications will fo-
cus on new annotation tasks and a more accessible administration structure for large
numbers of tasks. Last but not least, we intend to incorporate detailed visualisation
of annotation results into Appraise.
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� �
<se t id=” spiege l −20120210” source−language=”ger” ta rge t−language=”eng”>

<seg id=”1” doc−id=”source−t e x t . de . t x t ”>
<source>In der syr i schen Stadt Aleppo sind nach s t a a t l i c h en Angaben

mehrere grosse Sprengsätze deton ier t , o f fenbar vor zwei Einrichtungen
der S i c h e r h e i t s k r ä f t e . </source>

< t r an s l a t i on system=”google”>In the Syrian c i t y of Aleppo a f t e r
government data seve ra l l a rge bombs are detonated , apparently , two
i n s t i t u t i o n s of the s e cu r i t y fo r c e s . </ t r an s l a t i o n>

< t r an s l a t i on system=”bing”>In Aleppo , Syria , Syrian severa l l a rge
explos ive devices are detonates according to Sta te , apparently before
two i n s t a l l a t i o n s of the s e cu r i t y fo r c e s . </ t r an s l a t i on>

< t r an s l a t i on system=”yahoo”>In the Syrian c i t y Aleppo detonated according
to na t iona l i n s t r u c t i on s seve ra l l a rge explos ive devices , obviously

before two mechanisms of the s e cu r i t y fo r c e s . </ t r an s l a t i on>
</seg>
…

</se t>� �
Figure 5. Excerpt of sample import XML for an Appraise ranking task. For consistency

and ease of use, the same format is used for all annotation tasks. The full file is
available as examples/sample-ranking-task.xml from the Appraise software

package.
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Abstract
In this paper, we give a survey of several recent extensions to hierarchical phrase-based

machine translation that have been implemented in version 2 of Jane, RWTH’s open source
statistical machine translation toolkit. We focus on the following techniques: Insertion and
deletion models, lexical scoring variants, reordering extensions with non-lexicalized reordering
rules and with a discriminative lexicalized reordering model, and soft string-to-dependency
hierarchical machine translation. We describe the fundamentals of each of these techniques
and present experimental results obtained with Jane 2 to confirm their usefulness in state-of-
the-art hierarchical phrase-based translation (HPBT).

1. Introduction

Jane (Vilar et al., 2010a) is an open source translation toolkit which has been devel-
oped at RWTH Aachen University and is freely available for non-commercial use. Jane
provides efficient C++ implementations for hierarchical phrase extraction, optimiza-
tion of log-linear feature weights, and parsing-based search algorithms. A modular
design and flexible extension mechanisms allow for easy integration of novel features
and translation approaches.

In hierarchical phrase-based translation (Chiang, 2005, 2007), a weighted synchro-
nous context-free grammar is induced from parallel text. In addition to contiguous
lexical phrases, hierarchical phrases with usually up to two gaps are extracted. Hier-
archical decoding is carried out with a search procedure which is based on CYK+
parsing (Chappelier and Rajman, 1998). Standard features that are typically inte-
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grated into hierarchical baseline setups are: phrase translation probabilities and lexi-
cal smoothing probabilities, each in both source-to-target and target-to-source transla-
tion directions, word and phrase penalty, binary features marking hierarchical phrases,
glue rule, and rules with non-terminals at the boundaries, and an n-gram language
model. Other common and simple features are source-to-target and target-to-source
phrase length ratios and binary features marking phrases that have been seen more
than a certain number of times—one, two, three or five times, for instance—in the
training data.

Jane additionaly implements a number of advanced techniques. These range from
discriminative word lexicon (DWL models and triplet lexicon models (Mauser et al.,
2009; Huck et al., 2010) over syntactic enhancements like parse matching (Vilar et al.,
2008), preference grammars (Venugopal et al., 2009; Stein et al., 2010) and pseudo-
syntactic enhancements like poor man’s syntax (Vilar et al., 2010b) to a variety of
search strategies with diverse pruning approaches and language model (LM) score
estimation heuristics (Huang and Chiang, 2007; Vilar and Ney, 2009, 2011). Log-
linear parameter weights can be optimized with either the downhill simplex algo-
rithm (Nelder and Mead, 1965), Och’s minimum error rate training (MERT) (Och,
2003), or the margin infused relaxed algorithm (MIRA) (Chiang et al., 2009).

The purpose of this paper is to present some features that have been added to Jane
in version 2, namely insertion and deletion models (Section 2), lexical scoring variants
(Section 3), reordering extensions (Section 4), and soft string-to-dependency features
(Section 5). We will not address Jane’s basic functionality or any other non-standard
techniques that are available in Jane. Many of them have been discussed in depth in
previous publications (Stein et al., 2011; Vilar et al., 2012). We refer the reader to those
and to the manual included in the Jane package. Advice on how to employ most of the
features implemented in Jane can likewise be found in the manual. Jane 2 is available
for download at http://www.hltpr.rwth-aachen.de/jane/.

1.1. Notational Conventions

In hierarchical phrase-based translation, we deal with rules X → ⟨α,β,∼ ⟩ where
⟨α,β⟩ is a bilingual phrase pair that may contain symbols from a non-terminal set,
i.e. α ∈ (N ∪ VF)

+ and β ∈ (N ∪ VE)
+, where VF and VE are the source and target

vocabulary, respectively, and N is a non-terminal set which is shared by source and
target. The left-hand side of the rule is a non-terminal symbol X ∈ N , and the ∼

relation denotes a one-to-one correspondence between the non-terminals in α and in
β. Let Jα denote the number of terminal symbols in α and Iβ the number of terminal
symbols in β. Indexing α with j, i.e. the symbol αj, 1 ≤ j ≤ Jα, denotes the j-th
terminal symbol on the source side of the phrase pair ⟨α,β⟩, and analogous with βi,
1 ≤ i ≤ Iβ, on the target side.
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2. Insertion and Deletion Models

Insertion and deletion models are designed as a means to avoid the omission of
content words in the hypotheses. In our case, they are implemented as phrase-level
feature functions which count the number of inserted or deleted words (Huck and
Ney, 2012). An English word is considered inserted or deleted based on lexical prob-
abilities with the words on the foreign language side of the phrase. Lexical transla-
tion probabilities from different types of lexicon models may be employed within the
insertion and deletion scoring functions, e.g. a model which is extracted from word-
aligned training data and—given the word alignment matrix—relies on pure relative
frequencies (henceforth denoted as RF word lexicon) (Koehn et al., 2003), or the IBM
model 1 lexicon (henceforth denoted as IBM-1) (Brown et al., 1993).

We define insertion and deletion models, each in both source-to-target and target-
to-source direction, by giving phrase-level scoring functions for the features. In the
Jane 2 implementation, the feature values are precomputed and written to the phrase
table. The features are then incorporated directly into the log-linear model combina-
tion of the decoder.

2.1. Insertion Models

The insertion model in source-to-target direction ts2tIns(·) counts the number of
inserted words on the target side β of a hierarchical rule with respect to the source
side α of the rule:

ts2tIns(α,β) =

Iβ∑
i=1

Jα∏
j=1

[
p(βi|αj) < ταj

]
(1)

Here, [·] denotes a true or false statement: The result is 1 if the condition is true and
0 if the condition is false. The model considers an occurrence of a target word e an
insertion iff no source word f exists within the phrase where the lexical translation
probability p(e|f) is greater than a corresponding threshold τf.

In an analogous manner to the source-to-target direction, the insertion model in
target-to-source direction tt2sIns(·) counts the number of inserted words on the source
side α of a hierarchical rule with respect to the target side β of the rule:

tt2sIns(α,β) =

Jα∑
j=1

Iβ∏
i=1

[
p(αj|βi) < τβi

]
(2)

Target-to-source lexical translation probabilities p(f|e) are thresholded with values τe
which may be distinct for each target word e. The model considers an occurrence of
a source word f an insertion iff no target word e exists within the phrase with p(f|e)
greater than or equal to τe.
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2.2. Deletion Models

The deletion model in source-to-target direction ts2tDel(·) counts the number of
deleted words on the source side α of a hierarchical rule with respect to the target
side β of the rule:

ts2tDel(α,β) =

Jα∑
j=1

Iβ∏
i=1

[
p(βi|αj) < ταj

]
(3)

It considers an occurrence of a source word f a deletion iff no target word e exists
within the phrase with p(e|f) greater than or equal to τf.

The target-to-source deletion model tt2sDel(·) correspondingly considers an occur-
rence of a target word e a deletion iff no source word f exists within the phrase with
p(f|e) greater than or equal to τe:

tt2sDel(α,β) =

Iβ∑
i=1

Jα∏
j=1

[p(αj|βi) < τβi
] (4)

2.3. Thresholding Methods for Insertion and Deletion Models

We introduce thresholding methods for insertion and deletion models which set
thresholds based on the characteristics of the lexicon model that is applied. We restrict
ourselves to the description of the source-to-target direction.
individual τf is a distinct value for each f, computed as the arithmetic average of all

entries p(e|f) of any e with the given f in the lexicon model.
global The same value τf = τ is used for all f. We compute this global threshold by

averaging over the individual thresholds.
histogram n τf is a distinct value for each f. τf is set to the value of then+1-th largest

probability p(e|f) of any e with the given f.
all All entries with probabilities larger than the floor value are not thresholded. This

variant may be considered as histogram ∞.
median τf is a median-based distinct value for each f, i.e. it is set to the value that

separates the higher half of the entries from the lower half of the entries p(e|f)
for the given f.

3. Lexical Scoring

Lexical scoring on phrase level is the standard technique for phrase table smooth-
ing in statistical machine translation (Koehn et al., 2003; Zens and Ney, 2004). Jane 2
supports lexical smoothing as well as source-to-target sentence level lexical scoring
within search with many types of lexicon models (Huck et al., 2011). Phrase-level
lexical scores do not have to be calculated on demand for each hypothesis expansion,
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but can again be precomputed in advance and written to the phrase table. We present
four scoring variants for lexical smoothing with RF word lexicons or IBM-1 which are
provided by Jane 2. We describe the source-to-target directions. The target-to-source
scores are computed similarly.

3.1. Phrase-Level Scoring Variants

The first scoring variant tNorm(·) uses an IBM-1 or RF lexicon model p(e|f) to rate
the quality of a target side β given the source side α of a phrase with an included
length normalization:

tNorm(α,β) =

Iβ∑
i=1

log
(
p(βi|NULL) +

∑Jα
j=1 p(βi|αj))

1+ Jα

)
(5)

By dropping the length normalization we arrive at the second variant tNoNorm(·):

tNoNorm(α,β) =

Iβ∑
i=1

log

p(βi|NULL) +
Jα∑
j=1

p(βi|αj))

 (6)

The third scoring variant tNoisyOr(·) is the noisy-or model proposed by Zens and
Ney (Zens and Ney, 2004):

tNoisyOr(α,β) =

Iβ∑
i=1

log

1−

Jα∏
j=1

(1− p(βi|αj))

 (7)

The fourth scoring variant tMoses(·) is due to Koehn, Och and Marcu (Koehn et al.,
2003) and is the standard method in the open-source Moses system (Koehn et al.,
2007):

tMoses(α,β, {aij}) =

Iβ∑
i=1

log
({

1
|{ai}|

∑
j∈{ai}

p(βi|αj)) if |{ai}| > 0

p(βi|NULL) otherwise

)
(8)

This last variant requires the availability of word alignments {aij} for phrase pairs
⟨α,β⟩. We store the most frequent alignment during phrase extraction and use it to
compute tMoses(·).

Note that all of these scoring methods generalize to hierarchical phrase pairs which
may be only partially lexicalized. Unseen events are scored with a small floor value.

Source-to-target sentence-level scores are calculated analogous to Eq. (5), but with
the difference that the quality of the target side β of a rule currently chosen to expand
a partial hypothesis is rated given the whole input sentence fJ1 instead of the source
side α of the rule only.
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4. Reordering Extensions

In hierarchical phrase-based machine translation, reordering is modeled implicitely
as part of the translation model. Hierarchical phrase-based decoders conduct phrase
reorderings based on the one-to-one relation between the non-terminals on source
and target side within hierarchical translation rules. Recently, some authors have
been able to improve translation quality by augmenting the hierarchical grammar
with more flexible reordering mechanisms based on additional non-lexicalized re-
ordering rules (He et al., 2010b; Sankaran and Sarkar, 2012; Li et al., 2012). Extensions
with lexicalized reordering models have also been presented in the literature lately
(He et al., 2010b,a).

Jane 2 offers both the facility to incorporate grammar-based mechanisms to per-
form reorderings that do not result from the application of hierarchical rules (Vilar
et al., 2010a) and the optional integration of a discriminative lexicalized reordering
model (Zens and Ney, 2006; Huck et al., 2012). Jane 2 furthermore enables the com-
putation of distance-based distortion costs.

4.1. Non-Lexicalized Reordering Rules

In order to allow for a more flexible arrangement of phrases in the hypotheses, a
single swap rule

X → ⟨X∼0X∼1,X∼1X∼0⟩ (9)
may be added supplementary to the standard initial rule and glue rule. The swap
rule enables adjacent phrases to be transposed.

Other, more complex modifications to the grammar outright replace the standard
initial rule and glue rule and implement jumps across blocks of symbols. Specific
jump rules put jumps across blocks on source side into effect. Blocks that are skipped
by the jump rules are translated without further jumps. Reordering within these win-
dows is possible with hierarchical rules only.

4.2. Discriminative Lexicalized Reordering Model

The discriminative lexicalized reordering model (discrim. RO) tries to predict the
orientation of neighboring blocks. We use two orientation classes left and right, in
the same manner as described by Zens and Ney (2006). The reordering model is ap-
plied at the phrase boundaries only, where words which are adjacent to gaps within
hierarchical phrases are defined as boundary words as well. The orientation proba-
bility is modeled in a maximum entropy framework (Berger et al., 1996). The feature
set of the model may consist of binary features based on the source word at the cur-
rent source position, on the word class at the current source position, on the target
word at the current target position, and on the word class at the current target po-
sition. The reordering model is trained with the generalized iterative scaling (GIS)
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Figure 1. Illustration of an embedding of a lexical phrase (light) in a hierarchical
phrase (dark), with orientations scored with the neighboring blocks.

algorithm (Darroch and Ratcliff, 1972) with the maximum class posterior probability
as training criterion, and it is smoothed with a gaussian prior (Chen and Rosenfeld,
1999).

For each rule application during hierarchical decoding, the reordering model is
applied at all boundaries where lexical blocks are placed side by side within the par-
tial hypothesis. For this purpose, we need to access neighboring boundary words and
their aligned source words and source positions. Note that, as hierarchical phrases are
involved, several block joinings may take place at once during a single rule applica-
tion. Figure 1 gives an illustration with an embedding of a lexical phrase (light) in a
hierarchical phrase (dark). The gap in the hierarchical phrase ⟨f1f2X∼0, e1X

∼0e3⟩ is
filled with the lexical phrase ⟨f3, e2⟩. The discriminative reordering model scores the
orientation of the lexical phrase with regard to the neighboring block of the hierarchi-
cal phrase which precedes it within the target sequence (here: right orientation), and
the block of the hierarchical phrase which succeeds the lexical phrase with regard to
the latter (here: left orientation).

5. Soft String-to-Dependency Hierarchical Machine Translation

String-to-dependency hierarchical machine translation (Shen et al., 2008, 2010) em-
ploys target-side dependency features to capture syntactically motivated relations
between words even across longer distances. It implements enhancements to the
hierarchical phrase-based paradigm that allow for an integration of knowledge ob-
tained from dependency parses of the training material. Jane realizes a non-restrictive
approach that does not prohibit the production of hypotheses with malformed de-
pendency relations (Stein et al., 2010). Jane includes a spectrum of soft string-to-
dependency features: invalidity markers for extracted phrase dependency structures,
penalty features for construction errors of the dependency tree assembled during de-
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Figure 3. Floating with children structure

(left) and a counterexample (right).

coding, and dependency LM features. Dependency trees over translation hypotheses
are built on-the-fly during the decoding process from information gathered in the
training phase and stored in the phrase table. The soft string-to-dependency features
are applied to rate the quality of the constructed tree structures. With version 2 of
Jane, dependency LM scoring is—like the other features—directly integrated into the
decoder (Peter et al., 2011).

5.1. Dependency Structures in Translation

A dependency models a linguistic relationship between two words, like e.g. the
subject of a sentence that depends on the verb. String-to-dependency machine trans-
lation demands the creation of dependency structures over hypotheses produced by
the decoder. This can be achieved by parsing the training material and carrying the
dependency structures over to the translated sentences by augmenting the entries in
the phrase table with dependency information. However, the dependency structures
seen on phrase level during phrase extraction are not guaranteed to be applicable for
the assembling of a dependency tree during decoding. Many of the extracted phrases
may be covered by structures where some of the dependencies contradict each other.
Dependency structures over extracted phrases which can be considered uncritical in
this respect are called valid. Valid dependency structures are of two basic types: fixed
on head or floating with children. An example and a counterexample for each type are
shown in Figures 2 and 3, respectively. In an approach without hard restrictions, all
kinds of structures are allowed, but invalid ones are penalized. Merging heuristics
allow for a composition of malformed dependency structures.

A soft approach means that we will not be able to construct a well-formed tree
for all translations and that we have to cope with merging errors. During decoding,
the previously extracted dependencies are used to build a dependency tree for each
hypothesis. While in the optimal case the child phrase merges seamlessly into the
parent phrase, often the dependencies will contradict each other and we have to devise
strategies for these errors. An example of an ideal case is shown in Figure 4, and a
phrase that breaks the previous dependency structure is shown in Figure 5. As a
remedy, whenever the direction of a dependency within the child phrase points to
the opposite direction of the parent phrase gap, we select the parental direction, but
penalize the merging error. In a restrictive approach, the problem can be avoided
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Figure 4. Merging two phrases without
merging errors. All dependency pointers
point into the same directions as the

parent-dependencies.
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Figure 5. Merging two phrases with one
left and two right merging errors. The
dependency pointers point into other
directions as the parent-dependencies.

by requiring the decoder to always obey the dependency directions of the extracted
phrases while assembling the dependency tree.

5.2. Dependency Language Model

Jane computes several language model scores for a given tree: for each node as
well as for the left and right-hand side dependencies of each node. For each of these
scores, Jane also increments a distinct word count, to be included in the log-linear
model, for a total of six features. Note that, while in a well-formed tree only one root
can exist, we might end up with a forest rather than a single tree if several branches
cannot be connected properly. In this case, the scores are computed on each resulting
(partial) tree but treated as if they were computed on a single tree.

6. Experimental Evaluation

We present empirical results obtained with the different models on the
Chinese→English 2008 NIST task.

We work with a parallel training corpus of 3.0M Chinese-English sentence pairs
(77.5M Chinese / 81.0M English running words). The English target side of the data
is lowercased, truecasing is part of the postprocessing pipeline. Word alignments are
created by aligning the data in both directions with GIZA++ and symmetrizing the
two trained alignments (Och and Ney, 2003). We rely on the Stanford Dependency
Parser (Klein and Manning, 2003) to create dependency annotation on the target side
of the training data. When extracting phrases, we apply several restrictions, in par-
ticular a maximum length of 10 on source and target side for lexical phrases, a length
limit of five (including non-terminal symbols) for hierarchical phrases, and no more
than two gaps per phrase. The language model is a 4-gram with modified Kneser-Ney
smoothing which was trained with the SRILM toolkit (Stolcke, 2002).

We use the cube pruning algorithm (Huang and Chiang, 2007) to carry out the
search. A maximum length constraint of 10 is applied to all non-terminals but the
initial symbol S. Model weights are optimized against B (Papineni et al., 2002) with
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MT06 (Dev) MT08 (Test)
B T B T
[%] [%] [%] [%]

Baseline 1 (with s2t+t2s RF word lexicons, tNorm(·)) 32.6 61.2 25.2 66.6
+ s2t+t2s insertion model (RF, individual) 32.9 61.4 25.7 66.2
+ s2t+t2s deletion model (RF, histogram 10) 32.9 61.4 26.0 66.1
+ sentence-level s2t IBM-1, tNorm(·) 32.9 61.6 25.7 66.6
+ phrase-level s2t IBM-1, tNorm(·) 33.0 61.4 26.4 66.1
+ phrase-level t2s IBM-1, tNorm(·) 33.4 60.7 26.5 65.7
+ phrase-level s2t+t2s IBM-1, tNorm(·) 33.8 60.5 26.9 65.4
+ discrim. RO 33.0 61.3 25.8 66.0

+ swap rule + binary swap feature 33.2 61.3 26.2 66.1
+ jump rules + distance-based distortion costs 33.2 61.0 26.4 66.0

+ insertion model + discrim. RO + DWL + triplets 35.0 59.5 27.8 64.4
Soft string-to-dependency 33.5 60.8 26.0 65.7

— only valid phrases 32.8 62.0 25.4 67.1
— no merging errors 32.5 61.5 25.5 66.4

Baseline 2 (no phrase table smoothing) 32.0 62.2 24.3 67.8
+ phrase-level s2t+t2s RF word lexicons, tNorm(·) 32.6 61.2 25.2 66.6
+ phrase-level s2t+t2s RF word lexicons, tNoNorm(·) 32.7 61.8 25.6 66.7
+ phrase-level s2t+t2s RF word lexicons, tNoisyOr(·) 32.4 61.2 25.5 66.4
+ phrase-level s2t+t2s RF word lexicons, tMoses(·) 32.7 61.8 25.4 66.9

Table 1. Experimental results for the NIST Chinese→English translation task
(truecase). s2t denotes source-to-target scoring, t2s target-to-source scoring.

MERT on 100-best lists. We employ MT06 as development set, MT08 is used as unseen
test set. Translation quality is measured in truecase with B and T (Snover et al.,
2006). The empirical results are presented in Table 1. By incorporating a combination
of several of the advanced methods provided by Jane 2 (insertion model, discrim. RO,
DWL, triplets), we are able to achieve a performce gain of +2.6% B/ -2.2% T
absolute over a standard hierarchical baseline (Baseline 1) .

7. Conclusion

Jane is a stable and efficient state-of-the-art statistical machine translation toolkit
that is freely available to the scientific community. It implements the standard hi-
erarchical phrase-based translation approach with many extensions that further en-
hance the performance of the system. Version 2 of Jane features novel techniques like
insertion and deletion models, lexical scoring variants, discriminative reordering ex-
tensions, and soft string-to-dependency hierarchical machine translation. We found
them to be useful to achieve competitive results on large-scale tasks, and we hope that
fellow researchers will benefit from the release of our toolkit.
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Abstract
This paper describes pycdec, a Python module for the cdec decoder. It enables Python code

to use cdec’s fast C++ implementation of core finite-state and context-free inference algorithms
for decoding and alignment. The high-level interface allows developers to build integrated
MT applications that take advantage of the rich Python ecosystem without sacrificing compu-
tational performance. We give examples of how to interact directly with the main cdec data
structures (lattices, hypergraphs, sparse feature vectors), evaluate translation quality, and use
the suffix-array grammar extraction code. This permits rapid prototyping of new algorithms
for training, data visualization, and utilizing MT and related structured prediction tasks.

1. Introduction

Machine translation decoders are complex pieces of software. They must provide
efficient search and inference algorithms, represent large translation grammars (e.g.,
phrase tables), and support scoring of hypotheses with a variety of feature functions.
Typically, they also contain functionality for parameter learning and translation qual-
ity evaluation. Despite this sophistication, machine translation can be formalized
quite well using familiar, well-defined mathematical objects (e.g., lattices, vectors, hy-
pergraphs, weighted finite-state transducers) and in terms of just a few algorithms
(e.g., FST/CFG intersection, shortest path search, etc.).

Although this convenient and precise mathematical language exists (and is, of
course, used in the academic literature), the programmatic interfaces to real transla-
tion systems are much more complicated. On one hand, the low-level implementation
in the decoder’s native language (usually C++ or Java) is highly optimized, making
the mapping between the mathematical primitives discussed in papers and the actual
code difficult to perceive. On the other hand, the high-level command-line interface

© 2012 PBML. All rights reserved. Corresponding author: vchahune@cs.cmu.edu
Cite as: Victor Chahuneau, Noah A. Smith, Chris Dyer. pycdec: A Python Interface to cdec. The Prague
Bulletin of Mathematical Linguistics No. 98, 2012, pp. 51–61. doi: 10.2478/v10108-012-0008-7.



PBML 98 OCTOBER 2012

that decoders expose is not suitably expressive for anything but the most coarse au-
tomation. As a result, when new researchers and engineers master the theory of MT,
they must still invest a great deal of work in learning a real software system before
they can really innovate. This paper describes a new Python interface for the cdec de-
coder designed to narrow the gap between theory and practice.

cdec is a good candidate for this task because it has been designed with modular-
ity in mind from the beginning (Dyer et al., 2010). We choose Python as the language
to expose the API for its large user base and rich extension ecosystem, and also be-
cause it is an interpreted language supporting both object-oriented and functional
programming. The goals for this project include:

• exposing the decoder functionality as a library with a natural, easy-to-understand
interface;

• providing access to the decoder’s data structures, including translation hyper-
graphs, input lattices, hypothesis feature vectors, etc.;

• allowing direct integration of external Python libraries such as NLTK (Bird et al.,
2009) and scikit-learn (Pedregosa et al., 2011) into machine translation systems;
and

• encouraging creative use of machine translation technology by programmers
who do not need to learn the details of open-source machine translation systems.

The pycdec interface is implemented using Cython (Behnel et al., 2011) and included
as part of the open-source cdec distribution.1 In the following, we give an introduc-
tion to its main functionality and then describe a few applications of the new interface.

2. Related Work

Experiment management tools (Koehn, 2010; Clark et al., 2010) abstract the inter-
nals of the decoder from the user to provide a uniform interface to the main training
steps of the system. While these facilitate the coordination of large experimental se-
tups, they must be configured using either a domain-specific language or a graphical
interface that the user has to learn to manipulate the system. We go in the opposite di-
rection and directly expose the decoder to the user in a modern and familiar language,
Python.

Recent work has also explored the use of visualization tools for machine transla-
tion. Weese and Callison-Burch (2010) describe extensions to the Joshua decoder to
populate a graphical interface used to display derivation trees and hypergraphs. We
obtain similar functionality with just a couple of lines of pycdec in conjunction with
existing visualization tools (§ 4.1). Since our visualizations are computed with simple
Python scripts, developers have far more flexibility to innovate.

Finally, the popularity of web translation services such as Google Translate has
motivated the development of web interfaces for open-source translation tools (Fed-

1http://cdec-decoder.org

52



V. Chahuneau, N. A. Smith, C. Dyer pycdec: A Python Interface to cdec (51–61)

ermann and Eisele, 2010). We demonstrate how such tools can be rapidly developed
using common networking and communication libraries (§ 4.2).

3. Library Description

The API of pycdec exposes the main data structures and algorithms necessary for
machine translation and similar structured prediction problems. When it makes sense
to do so, we retain the structure of the C++ interface, but otherwise follow the Python
conventions.

3.1. Basic Translation and Inference API

The translation interface is provided by the Decoder class. The constructor takes
arguments specifying the configuration of the decoder. Feature weights used by the
decoder can be assigned and modified at any time (for example, in an online training
algorithm).

Once the decoder is instantiated, it can translate sentences, optionally using a
sentence-specific grammar passed as a string argument. The result returned is a trans-
lation hypergraph encoding the search space explored by the decoder.

The Hypergraph object is central to this system, and therefore it supports several
types of operations:

• extraction of the Viterbi translation (viterbi), source and target trees
(viterbi_trees) and of the corresponding feature vector (viterbi_features);

• extraction of k-best translations (kbest), source and target trees (kbest_trees)
and of the corresponding feature vectors (kbest_features);

• operations that modify the hypergraph, including:
– rescoring with new weights (reweight),
– inside-outside pruning (prune),
– intersection with a reference sentence or lattice (intersect); and

• iteration over the edges and nodes that form the hypergraph.
As an example, here is how to use a hierarchical phrase-based decoder to translate

a sentence with a grammar read from a file:

import cdec
# Create and configure a decoder object
decoder = cdec.Decoder(formalism='scfg',

feature_function=['WordPenalty', 'KLanguageModel lm.klm'],
add_pass_through_rules=True)

# Set weights for the language model features
decoder.weights['LanguageModel_OOV'] = -1
decoder.weights['LanguageModel'] = 0.1
# Read a SCFG from a file
grammar = open('grammar.scfg').read()
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# Translate the sentence; returns a translation hypergraph
hg = decoder.translate('traduttore , traditore .', grammar=grammar)
# Extract the best hypothesis from the hypergraph
print(hg.viterbi())

Other formalisms such as phrase-based translation can be accessed in a similar way
by setting the appropriate configuration parameters for the decoder.

3.2. Grammar Extraction API

To minimize memory usage and code complexity, cdec uses per-sentence grammars
(i.e., grammars containing just the rules that can match the words in a single test
sentence). While these grammars can be constructed from arbitrary tools, pycdec in-
cludes the suffix array grammar extractor of Lopez (2007), which uses an efficient
compiled representation of a parallel corpus and word alignment to construct trans-
lation grammars on demand for new test sentences. The Python module makes this
online grammar extraction procedure particularly simple.

After the training corpus has been compiled into a suffix array representation using
the tools distributed with cdec, the resulting configuration can be used to call the
grammar extractor for any arbitrary input:
extractor = cdec.sa.GrammarExtractor('extractor_config.py')
decoder = cdec.Decoder(formalism='scfg')
sentence = 'traduttore , traditore .'
decoder.translate(sentence, grammar=extractor.grammar(sentence))

The extraction algorithm is implemented in Cython and is suitable for online extrac-
tion of grammars from very large corpora (Lopez, 2008).

3.3. Translation Quality Evaluation

cdec includes implementations of basic evaluation metrics (BLEU and TER), ex-
posed in Python via the cdec.score module. For a given (reference, hypothesis) pair,
sufficient statistics vectors (SufficientStats) can be computed. These vectors are
then added together for all sentences in the corpus and the final result is finally con-
verted into a real-valued score.

Writing a script which computes the BLEU score for a set of hypotheses and refer-
ences is thus straightforward:
import cdec.score
with open('hyp.txt') as hyp, open('ref.txt') as ref:

stats = sum(cdec.score.BLEU(r).evaluate(h) for h, r in zip(hyp, ref))
print('BLEU = {0:.1f}'.format(stats.score * 100))

Multiple references can be used by supplying a list of strings instead of a single string:
cdec.score.BLEU([r1, r2])
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Figure 1. Source (Chinese) and target (English) parse trees, drawn using NLTK

When implementing training algorithms using pycdec (§ 4.3), it is often necessary
to manipulate k-best lists of scored hypotheses. For every metric, sentence scorers are
able produce such sets of hypotheses (CandidateSet). For each Candidate in the list,
its sentence-level metric score (score), feature vector (fmap) and output string (words)
can be obtained.

4. Applications

In this section, we provide several examples using the pycdec module to solve
visualization, parameter estimation, and grammar extraction problems.

4.1. Visualizing the Result of Decoding

We can make use of the functionality of NLTK to visualize derivation trees that
result from the decoding of a sentence under a synchronous grammar. Fig. 1 shows an
example for a Chinese/English hierarchical phrase-based system. The corresponding
Python code is:
hg = decoder.translate(sentence)
f_tree, e_tree = hg.viterbi_trees()
nltk.Tree(f_tree).draw() # draw source tree
nltk.Tree(e_tree).draw() # draw target tree
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Another finite-state formalism supported by cdec is compound splitting, in which
case the model output takes the form of a lattice (encoded as a hypergraph produced
by the translatemethod). Conversion to the Graphviz dot format (Ellson et al., 2003)
allows a compact visualization of the output space. Then we can use any of the several
Python interfaces to Graphviz to directly render the lattice as shown below:
hg = decoder.translate('tonbandaufnahme')
hg.prune(beam_alpha=9.0, csplit_preserve_full_word=True)
pydot.graph_from_dot_data(hg.lattice().todot()).write_svg('lattice.svg')

0

1
ton

2tonband 4

tonbandaufnahme

band

bandaufnahme

aufnahme

3aufn ahme

Finally, we introduce a more complex visualization which makes use of the direct
access to the hypergraph (Fig. 2). For the same sentence as our first example, we
represent the synchronous parse chart as a table, with each cell containing all the
possible non-terminals for the corresponding span. Then we color the background of
the cell according to the following value:

log
∑

node∈nodes

max
edge→node

p(edge)

This gives an indication of how much uncertainty is present at each level of the
parse. We believe that this is an efficient method to compactly visualize the enormous
output space produced by the decoder: the hypergraph contains 244, 232 edges and
77 nodes encoding a total of 3.8× 1028 paths!

We conclude by noting that, as opposed to specialized visualization tools (e.g.,
Weese and Callison-Burch, 2010), pycdec allows the programmer to use any algo-
rithm and output format to explore the various decoder data structures. We suggest
in particular the use of the IPython notebook (Pérez and Granger, 2007) to produce
HTML or SVG graphics directly in a web browser, as we did for Fig. 2.

4.2. A Web Translation Interface

Commercial web translation platforms, such as Google Translate, have been very
successful in bringing state of the art machine translation systems to internet users.
In a research environment, it can also be useful to provide similar web interfaces,
for example, for non-technical users to explore the strength and weaknesses of the
system.
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        yield '</tr>'
    yield '</table>'

display_html(' '.join(table()), raw=True)
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In [ ]:

def lines():
    yield '<div style="border:1px solid black; height:1em; display:inline-block">'
    for i in arange(1e-12, 1, 0.05):
        x = int(log(i) * 100)
        yield '<span style="background-color:rgb({0}, {0}, {0}); display:inline-block; width:1em; height: 1em"> </span>'
    yield '</div>'
        
display_html(''.join(lines()), raw=True)

def lines2():
    for i in arange(1e-12, 1, 0.05):
        x = int(log(i) * 100) + 50
        yield '<span style="background-color:rgb({0}, 100, {1}); display:inline-block; width:1em; height: 1em"> </span>'
        
display_html(''.join(lines2()), raw=True)
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Figure 2. Chart for the synchronous parse of a Chinese sentence
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Figure 3. Architecture of the web translation service
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Since pycdec provides an access to the decoder directly from Python, it is possible
to implement such a service with standard networking libraries to manage commu-
nication. Fig. 3 illustrates the messages transmitted between the three layers of the
architecture as a piece of text is translated:

• The user interface consists of a HTML page with a JavaScript UI interacting with
the web server via asynchronous HTTP requests.

• When the web server – a Python application implemented using the flask web
framework – receives a translation request, it applies standard pre-processing
steps to the input. The text is first segmented into sentences, and each sentence
is in turn tokenized. We rely on NLTK for this step, at least when the source
language is English. Then, each sentence is sent separately through a ZeroMQ2

socket to the translation server, using the pyzmq library.
• The translation server receives individual sentences, for which it extracts gram-

mars on the fly as explained in § 3.2, before calling the decoder to translate the
sentence with the extracted grammar. It replies to the web server with the trans-
lated sentence.

• The web server then post-processes each translated sentence and recomposes
the translated text block before transmitting it back to the web UI.

Even with such a minimal architecture, our system can easily be scaled by multiplying
the number of translation servers and relying on ZeroMQ to distribute translation
tasks to the multiple decoder instances.

4.3. Parameter Estimation

Another natural use case for pycdec is to facilitate development of new discrimi-
native parameter learning algorithms in Python. Such algorithms (e.g., Chiang et al.,
2008; Hopkins and May, 2011; Gimpel and Smith, 2012) use the decoder to compute
statistics over the hypergraphs or k-best lists produced by decoding a development
set so as to optimize some objective function (like BLEU, or likelihood). In these al-
gorithms, the majority of the computational effort is the decoding step (or a similar
inference problem, such as computing posterior probabilities over n-grams), whereas
the manipulation of the weight vector is inexpensive. Thus, a natural division of labor
is to use Python’s mathematical libraries for manipulation of the weight vector and
pycdec for inference.

Advantages of writing a new training method with pycdec include the possibility
to easily debug code by directly interacting with the decoder data structures through
the Python interpreter, and the availability of mature machine learning libraries such
as scikit-learn.

To illustrate these claims, we implement a recently published training method that
is not currently included in cdec. We choose Bazrafshan et al. (2012), a simple exten-

2http://www.zeromq.org
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decoder = cdec.Decoder(...)

def get_pairs(source, reference):
hg = decoder.translate(source)
# 1. Generate a list containing the k best translations
cs = cdec.score.BLEU(reference).candidate_set()
cs.add_kbest(hg, K)
# 2. Use the uniform distribution to sample n random pairs
# from the set of candidate translations
pairs = []
for _ in range(n_samples):

ci = cs[random.randint(0, len(cs) - 1)]
cj = cs[random.randint(0, len(cs) - 1)]
# 3. Keep a pair of candidates if the difference between their score
# is bigger than a threshold t
if abs(ci.score - cj.score) < score_threshold: continue
pairs.append((ci.fmap - cj.fmap, ci.score - cj.score))

# 4. From the potential pairs kept in the previous step,
# keep the s pairs that have the highest score
for x, y in heapq.nlargest(n_pairs, pairs, key=lambda xy: abs(xy[1])):

# 5. For each pair kept in step 4, make two data points
yield x, y
yield -1 * x, -1 * y

# The DictVectorizer converts dictionaries into sparse vectors
vectorizer = sklearn.feature_extraction.DictVectorizer()

for _ in range(n_iterations):
# Collect training pairs
X, g = [], []
for source, reference in zip(sources, references):

for x, y in get_pairs(source, reference):
X.append(dict(x))
g.append(y)

# Train a linear regression model
model = sklearn.linear_model.LinearRegression()
X = vectorizer.fit_transform(X)
model.fit(X, g)
# Update weights with the learned model
for fname, fval in zip(vectorizer.feature_names_, model.coef_):

decoder.weights[fname] = (alpha * fval +
(1 - alpha) * decoder.weights[fname])

Figure 4. Python code for Tuning as Linear Regression (Bazrafshan et al., 2012)
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sion to PRO (Hopkins and May, 2011) which uses linear regression instead of a binary
classifier to rank sampled training pairs (briefly: the model is trained to predict the
difference in sentence level BLEU scores based on a difference in feature vectors). The
complete Python code is given in Fig. 4.

5. Conclusion

We have presented pycdec, a high-level Python interface to the fast cdec decoder.
We illustrated how such an interface allows effortless development of visualizations,
training algorithms and applications using machine translation. We hope that the
release of our tool will encourage further creative uses of finite-state and context-free
methods for machine translation and related applications.
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Abstract
We describe Phrasal Rank-Encoding (PR-Enc), a novel method for the compression of word-

aligned target language data in phrase tables as used in phrase-based SMT. This method re-
duces the redundancy in phrase tables which is a direct effect of the phrase-based approach.
A combination of PR-Enc with Huffman coding allows to reduce the size of an aggressively
compressed phrase table by another 39 percent. Using this and other methods for space reduc-
tion in a new binary phrase table implementation, a size reduction by an order of magnitude
is achieved when comparing to the Moses on-disk phrase table implementation. Concerning
decoding speed, all variants of the new phrase table are faster than the Moses binary phrase
table implementation while the PR-Enc encoded variant outperforms all other methods.

1. Introduction

Phrase tables as used in phrase-based statistical machine translation (PB-SMT) are
huge. Their size is a direct consequence of the PB-SMT approach itself and the fact
that precomputed phrase pairs can be accessed efficiently. Precomputation, how-
ever, leads to a combinatorial bloat of phrases and to phrase redundancy since for
any phrase pair all possible subphrase pairs may be included in the phrase table.

Explicitly stored phrase tables are currently the most widely used representation
of translation models in PB-SMT. The main goal of this paper is to describe Phrasal
Rank-Encoding (PR-Enc) — a lossless encoding and compression method dedicated
to explicitly stored phrase tables. PR-Enc aims to reduce redundancy by exploiting the
phrase table itself as a compression dictionary, making use of translational relations
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Cite as: Marcin Junczys-Dowmunt. Phrasal Rank-Encoding: Exploiting Phrase Redundancy and Translational
Relations for Phrase Table Compression. The Prague Bulletin of Mathematical Linguistics No. 98, 2012,
pp. 63–74. doi: 10.2478/v10108-012-0009-6.



PBML 98 OCTOBER 2012

between subphrases and the repetitiveness of subphrases. Previous approaches con-
centrate only on one of these properties and correspondingly either require additional
resources, like external translation dictionaries, or is restricted to a certain type of
phrasal redundancy, for instance prefixes in trie-based implementations. An efficient
dynamic programming algorithm for the decompression of PR-Enc encoded target
phrases is presented. The described method is employed in a previously introduced
compact phrase table implementation (Junczys-Dowmunt, 2012a,b) for Moses (Koehn
et al., 2007) that can be used as a replacement for the current binary phrase table.

2. Related Work

2.1. Previous Work in Machine Translation

Zens and Ney (2007) describe a phrase table architecture on which the standard bi-
nary phrase table of Moses is based. Memory requirements are low due to on-demand
loading, disk space requirements, however, can become substantial. The only com-
pression technique relies on the application of a trie for the representation of a source
phrase index which collapses common source phrase prefixes into single paths.

Germann et al. (2009) introduce tightly packed tries (TBT) which they use for lan-
guage models and phrase tables in the Portage SMT system (Sadat et al., 2005). TBTs
are stored in byte arrays with variable byte encoding applied to reduce their space
requirements. The section on phrase tables does not provide sufficient information
to compare our approaches, but we have contacted the authors and may be able to
provide a comparison of compression rates in the future.

Suffix-array based implementations of translation models have been introduced
by Callison-Burch et al. (2005). Both sides of a parallel corpus are stored as suffix ar-
rays. If alignment data between the parallel sentences is provided, phrase pairs can
be extracted and scored on demand. The precomputation of phrase pairs is avoided
altogether, which immediately solves the problem of redundancy. On-demand trans-
lation models are a promising alternative to phrase tables, but we do not compare this
approach with ours, instead we concentrate on explicitly stored phrase tables.

Phrase table filtering (e.g. Johnson et al., 2007) can be seen as a type of lossy com-
pression. Reduction rates of more than 80 percent while maintaining or even improv-
ing translation quality are not uncommon. We find this particularly interesting since a
combination of phrase table filtering with our approach can yield a translation model
size reduction by two orders of magnitude.

2.2. Compression of Parallel Corpora

Conley and Klein (2008) propose an encoding scheme of target language data
based on word alignment and translational relations. However, they require the exis-
tence of lemmatizers and a translation lexicon. From the aligned parallel data a lexi-
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con of lemmatized parallel phrases is created. Target phrases are replaced with point-
ers consisting of start and end indexes of the corresponding source phrase, indexes
of translations, and one integer pointer per target word to its inflected form. This
turns the method into a word-based method since no length reduction of the text
is achieved. Actually, there are more pointers after encoding than there were target
words before. Compression is achieved by the application of a Huffman coder.

The most recent work is Sanchez-Martinez et al. (2012) who propose to use “bi-
words” to compress parallel data sequentially. Similar as in Conley and Klein (2008),
translational relations and Huffman coding are employed to take advantage of the im-
proved entropy properties of the encoded data. This method is called Translational
Relation Encoding (TRE). Again, mainly word-based translational relations are used,
allowing at most many-to-one alignments. Sanchez-Martinez et al. include a list of
biwords, a translation dictionary extracted from the alignment, in the compressed file.

2.3. Compact Phrase Table Implementation

Junczys-Dowmunt (2012a) introduces a compact phrase table architecture which
we use for our experiments with PR-Enc. A “baseline” variant is presented that uses
standard compression methods like the Simple-9 algorithm (Anh and Moffat, 2004),
variable-byte encoding (Scholer et al., 2002), and Huffman coding (Huffman, 1952)
of target words, scores, and alignment points. Size reduction for source phrases is
achieved by using a minimal perfect hash function as an index. Junczys-Dowmunt
(2012b) describes the further reduction of the source phrase index and the impact of
false positive assignments of target phrases to source phrases on translation quality.
That implementation achieves a size reduction of more than 77 percent when com-
pared to the Moses binary phrase table with significantly better performance.

Also in Junczys-Dowmunt (2012a) word-based Rank-Encoding is described. This
method is similar to TRE (Sanchez-Martinez et al., 2012), but does not store source
words which are provided during phrase table querying. Target phrase words are
replaced with pairs of pointers. The first pointer indicates the corresponding source
phrase word, the second the rank of the target word among the translations of the
source word. A translation lexicon generated from the alignment is included in the
phrase table. Again, Huffman coding improves the compression rate.

3. Phrasal Rank Encoding

The general idea of Phrasal Rank-Encoding is similar to that of classic dictionary-
based compression methods like LZ77 (Ziv and Lempel, 1977). Repetitive subphrases
are replaced by pointers to subphrases in a phrase dictionary which should result in
a reduction of data length. Decompression relies on the look-up and reinsertion of
subphrases based on the pointer symbols. Something similar, though in an rather
ineffective way, has been attempted by Conley and Klein (2008). If we simplify their
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method by dropping all external data requirements and move it onto the ground of
phrase tables, we get a basic version of Phrasal Rank-Encoding. Instead of compress-
ing a bitext with a translation lexicon of phrases, we compress the lexicon itself. In
Phrasal Rank-Encoding the compressed phrase table is its own phrase dictionary.

Although Phrasal Rank-Encoding shares some properties with word-based Rank-
Encoding and mentioned bitext compression methods, compression is achieved in
a different way: sequential data is implicitly turned into a graph-like structure similar
to a trie or finite-state automaton, which is more visible during the discussion of the
decoding algorithm. Translational relations and entropy coding help to compress the
graph structure itself and not so much the data in it, which is not unlikely to the work
presented by Germann et al. (2009). Phrasal Rank-Encoding could also be used to turn
the target data of the Moses binary phrase table based on Zens and Ney (2007) into
a graph-like structure without changing the underlying implementation (much).

3.1. Encoding Procedure

The encoding procedure is presented in Figure 1. PR-Enc requires the phrase table
to contain word alignment information. In order to perform encoding efficiently, it
should be possible to look-up phrase pairs and to retrieve the rank of a target phrase
relative to its corresponding source phrase. By rank we mean the position of a target
phrase among a list of phrase pairs with the same source phrase. The list is ordered
decreasingly by the translation probability P(t|s), i.e. the most probable translation
has rank 0. In our implementation this is achieved by creating a minimal perfect hash
function with concatenations of source and target phrases as keys which are mapped
to ranks. This searchable phrase table is passed to the algorithm as RankedPT.

We illustrate the algorithm with an example. Given are a Spanish-English phrase
pair and the internal word alignment depicted by the black boxes in Figure 2:

es: Maria no daba una bofetada a la bruja verde
en: Mary did not slap the green witch

Phrase pairs are represented as quadruples where the values correspond to the
source phrase start position, the target phrase start position, the length of the source
phrase, and the length of the target phrase. In line 3 of the algorithm, all true sub-
phrase pairs of the encoded phrase pair are computed. The result is marked in Fig-
ure 2 by filled and empty rectangles — with one exception: the complete phrase pair
itself is ruled out for not being a true subphrase pair. The first condition of the ex-
pression in line 3 requires subphrase pairs to lie within the boundaries of the encoded
phrase. The second, introduced by Zens et al. (2002), defines subphrase pairs that are
consistent with the underlying alignment. The same procedure is used during phrase
pair extraction when the translation model is created. In order to avoid self-references,
the third condition forbids to add the input phrase pair itself.

Next, the subphrase pairs are inserted into a queue (line 4) according to the follow-
ing order: subphrase pairs are ordered decreasingly by length and increasingly by
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1 Function EncodeTargetPhrase(s, t, A,Order,RankedPT)
2 t̂← ⟨ ⟩; Â← A

3

P ← {⟨i, j,m, n⟩ : (0 ≤ i < i +m ≤ |s| ∧ 0 ≤ j < j + n ≤ |t|)
∧ ∀⟨i′, j′⟩ ∈ A : (i ≤ i′ < i +m⇔ j ≤ j′ < j + n)
∧ (m < |s| ∨ n < |t|)}

4 Q← Queue(P,Order)
5 while |Q| > 0 do
6 ⟨i, j,m, n⟩← Pop(Q)
7 s′ ← Substring(s, i,m)
8 t′ ← Substring(t, j,n)
9 if ∃r : ⟨s′, t′, r⟩ ∈ RankedPT then

10 T [j]← ⟨i − j, |s| − (i +m), r⟩
11 S[j]← n

12 Â← Â \ {⟨i′, j′⟩ ∈ Â : i ≤ i′ < i +m∧ j ≤ j′ < j + n}

13
P ← P \ {⟨i′, j′,m′, n′⟩ : i ≤ i′ < i +m∨ j ≤ j′ < j + n

∨ i′ ≤ i < i′ +m′ ∨ j′ ≤ j < j′ + n′}

14 Q← Queue(P,Order)
15 j← 0

16 while j < |t| do
17 if S[j] > 0 then
18 t̂← t̂ · ⟨T [j]⟩
19 j← j + S[j]

20 else
21 t̂← t̂ · ⟨tj⟩
22 j← j + 1

23 return ⟨t̂, Â⟩

Figure 1. Algorithm for Phrasal Rank-Encoding

the start position of the target phrase, then by length and start position of the source
phrase. For our example, the first phrase pair popped from the queue is

es: no daba una bofetada a la bruja verde
en: did not slap the green witch

which is checked for inclusion in the ranked phrase table (line 9). A rank of 0 is as-
signed. The target subphrase is replaced with a pointer symbol

es: Maria no daba una bofetada a la bruja verde
en: Mary (0,0,0)

The integer values of the pointer triple have the following interpretation:
• The first is the difference of source and target start positions of the subphrase

pair. Due to general monotonicity this yields smaller integers than positions.
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Maria no daba una
bofetada

a la
bruja

verde

Mary

witch

green

the

slap

not

did

Figure 2. Archetypical example for phrase pair extraction by Knight and Koehn (2003)

• The second value is the distance of the right source subphrase boundary from
the end of the encoded phrase.

• The last value is the rank of the selected subphrase pair.
All alignment points lying within the boundaries of the chosen subphrase pair are

removed (line 12) and all subphrase pairs that overlap with the subphrase pair are
deleted from the queue (line 13 and 14). Only one phrase pair is left in the queue:

es: Maria
en: Mary

Applying the same procedure again, the following encoded phrase pair is produced:
es: Maria no daba una bofetada a la bruja verde
en: (0,8,0) (0,0,0)

Target subphrases for which no substitution has been found are kept as plain words.

3.2. Decoding Procedure

A naive decoding procedure processes a mainly-binary tree (Figure 3) in poten-
tially exponential time. However, if all target phrases for a sentence are considered,
a dynamic programming algorithm with linear time-complexity per phrase can be
constructed. Moses queries the phrase table processing sentences in a left-to-right
fashion, starting with subphrases of length 1 and increasing the length until a limit is
reached. Then it moves to the next word, starting at length 1. Hence, if a phrase is re-
trieved, its prefixes have already been processed. If all queried phrases are cached for
decoding and all phrases used for decoding are cached for look-up, the total number
of phrase table accesses is the same as in a linear phrase table. With caching, a target
phrase for “Maria no daba una bofetada” would be found immediately, avoiding the
descent into the left branch of the graph. The subphrase “a la” will still be processed,
but when Moses queries that phrase, it will be retrieved from the cache.
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0 (0,4,0) (1,2,1) green witch

Maria no daba una bofetada a la
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...
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...
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Figure 3. Phrasal Rank-Decoding without Caching

This is implemented in the algorithm in Figure 4. A target phrase collection for
a source phrase is created. If a target phrase with the given rank has been seen be-
fore, it is retrieved from the cache. Otherwise an encoded version is loaded from the
phrase table and passed to DecodeTargetPhrase. If t̂j is a plain word, the symbol is
concatenated with the decoded target phrase. If not, a pointer for the subphrase s′

is reconstructed and the rank r′ of the target phrase is determined. If the target sub-
phrase t′ has been decoded before, it is retrieved from the cache, else the encoded
versions of t′ and Â′ are fetched from the phrase table. t′ and A′ are obtained by
recursively calling DecodeTargetPhrase. The decoded target subphrase is then con-
catenated with the current target phrase and subphrase alignment points are added
to the output alignment, shifted accordingly. Results are cached before return.

4. Results
Coppa, the Corpus Of Parallel Patent Applications (Pouliquen and Mazenc, 2011)

is used for phrase table generation. It comprises ca. 8.7 million parallel segments,
198.8 million English and 232.3 million French tokens. The generated phrase table
consists of 247 million phrase pairs. All phrase table variants include alignment in-
formation, a requirement for several WIPO applications. Performance test were con-
ducted on an Amazon EC2 server with 8 cores and 70 GB RAM. The first unique 1000
sentence pairs from the WIPO test set1 are translated for performance tests using all

1http://www.wipo.int/patentscope/translate/coppa/testset2011.tmx.tgz
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1 Function GetTargetPhraseCollection(s)
2 T ← ⟨ ⟩; r← 0

3 while r < NumberOfTargetPhrases(s) do
4 if InCache(s, r) then
5 ⟨t, A⟩← GetFromCache(s, r)
6 else
7 ⟨t̂, Â⟩← GetFromPhraseTable(s, r)
8 ⟨t, A⟩← DecodeTargetPhrase(s, r, t̂, Â)

9 T ← T · ⟨⟨t, A⟩⟩
10 r← r + 1

11 return T

12 Function DecodeTargetPhrase(s, r, t̂, Â)

13 t← ⟨ ⟩; A← Â

14 j← 0

15 while j < |̂t| do
16 if Type(t̂j) = Pointer then
17 ⟨k, l, r′⟩← t̂j
18 i← k + |t|

19 m← |s| − l + 1

20 s′ ← Substring(s, i,m)
21 if InCache(s′, r′) then
22 ⟨t′, A′⟩← GetFromCache(s′, r′)
23 else
24 ⟨t̂′, Â′⟩← GetFromPhraseTable(s′, r′)
25 ⟨t′, A′⟩← DecodeTargetPhrase(s′, r′, t̂′, Â′)

26 t← t · t′
27 A← A ∪ {⟨i + i′, j + j′⟩ : ⟨i′, j′⟩ ∈ A′}

28 else if Type(t̂j) = Word then
29 t← t · ⟨t̂j⟩
30 j← j + 1

31 AddToCache(s, r, ⟨t, A⟩)
32 return ⟨t, A⟩

Figure 4. Retrieving a set of target phrases

cores. Results are reported in Table 1 for: translation model size (Files), peak resident
memory usage (RSS), peak operation system cache usage (Cached), warm-up time
(Load), translation time without warm-up (Trans.), and time until the first transla-
tion is produced after warm-up (First). Before za “1st run” the operation system I/O
caches have been dropped. During the “2nd run” all I/O caches of the first run are
available.
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System name Memory (GB) 1st run (s) 2nd run (s)
Files RSS Cached Load Trans. First Load Trans. First

Moses 22.01 2.54 3.48 14 251 9 0 151 9
Moses+LR 68.40 4.00 5.84 15 470 8 3 215 8

Compact 4.77 1.76 4.85 18 195 2 4 135 1
Compact+LR 6.19 2.02 5.84 17 330 4 4 192 1

PR-Enc 2.93 1.84 3.98 15 170 1 3 137 <1
PR-Enc+LR 4.36 2.11 4.69 15 256 2 3 199 <1

PR-Enc (mem) 2.93 4.49 4.16 51 137 <1 5 138 1
PR-Enc+LR (mem) 4.36 5.91 5.59 66 196 <1 8 198 <1

Table 1. Comparison of phrase table implementations

We compare the following configurations: the standard Moses binary phrase ta-
ble (“Moses”), the compact phrase table from Junczys-Dowmunt (2012a) without any
encoding methods (“Compact”) and with PR-Enc (“PR-Enc”). Additionally, phrase
tables are combined with corresponding implementations of lexical reordering mod-
els (“+LR”), i.e. the Moses phrase table is used with the Moses binary reordering table,
the compact phrase table is combined with a reordering model based on the compact
implementation. In-memory variants of the compact phrase and reordering tables
are denoted by “(mem)”. All systems use the same 3-gram KenLM (file size 1.1 GB),
which is responsible for a part of the load time and memory usage.

To sum up the results in Table 1: during second runs, speed is nearly identical for
both variants of the compact table — with or without PR-Enc — and always better
than for the Moses binary tables. During first runs, however, we see how reduced file
size and reduced disk access result in increased speed. The complex PR-Enc decom-
pression procedure has only a minor influence on speed, visible during second runs.
PR-Enc reduces the size of the compact phrase table by another 39 percent. Compared
to the Moses phrase table, size reduction reaches an order of magnitude, for lexical
reordering models even more (46.4 GB versus 1.4 GB). Memory requirements for on-
disk access are also more modest. If the phrase table and reordering table are loaded
into memory, RSS memory usage is higher than for the Moses tables, but read cache
usage is comparable. Translation speed, however, is much better despite increased
load time. For more than 1000 sentences, cache usage will keep increasing in case of
the Moses binary tables, for the compact in-memory version, it remains constant.

5. Conclusions

We introduced Phrasal Rank Encoding, a new method for the compression of
translation phrase tables. The size reduction and performance improvement com-
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pared to the Moses binary phrase table and a basic version of our phrase table are
significant. Our implementation can be successfully used in place of the Moses bi-
nary phrase table. Experiments were performed for a medium sized phrase table and
it is planned to repeat them with a phrase table that contains billions of phrase pairs.
We suspect that increasing phrase table size might work to the advantage of our im-
plementation, as should the usage of much weaker machines.

6. Usage

We include only basic instructions, see the Moses website for more information on
compact phrase tables2nd lexical reordering tables3

Download and install the CMPH library4, next recompile a current Moses version:
./bjam --with-cmph=/path/to/cmph

For PR-Enc, the phrase table should include alignment information. The following
command creates a compact binary phrase table phrase-table.minphr from a stan-
dard text version with PR-Enc enabled by default:

mosesdecoder/bin/processPhraseTableMin -in phrase-table.gz \
-out phrase-table -use-alignment -threads 4

The compact phrase table variant without PR-Enc can be created by adding the option
-encoding None. In the Moses config file, the filename stem phrase-table has to be
specified and the type is to be set to 12, i.e.:

[ttable-file]
12 0 0 5 phrase-table

A compact lexical reordering model reordering-table.minlexr can be created
with the following command:

mosesdecoder/bin/processLexicalTableMin -in reordering-table.gz \
-out reordering-table -threads 4

If only the file stem is given in the configuration file, the compact model is loaded
instead of any other present lexical reordering model.

In-memory storage of the phrase table and the reordering model can be forced by
running Moses with the options -minphr-memory and -minlexr-memory correspond-
ingly. These can also be specified in the configuration file.
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Abstract
We present a universal data-driven tool for segmenting and tokenizing text. The presented

tokenizer lets the user define where token and sentence boundaries should be considered.
These instances are then judged by a classifier which is trained from provided tokenized data.
The features passed to the classifier are also defined by the user making, e.g., the inclusion
of abbreviation lists trivial. This level of customizability makes the tokenizer a versatile tool
which we show is capable of sentence detection in English text as well as word segmentation
in Chinese text. In the case of English sentence detection, the system outperforms previous
methods. The software is available as an open-source project on GitHub1.

1. Introduction

Researchers in statistical machine translation and other natural language process-
ing fields make use of large corpora of text. However, not all of these corpora are
immediately useful since not all of them are partitioned into words and sentences.
This is in odds with the premise that words and sentences, not chunks of text, form
the basic processing units of most NLP applications. This is where tokenization and
segmentation have to step in.

Segmentation (a term we use for what is also referred to as sentence detection or
sentence boundary disambiguation) has been tackled using a variety of techniques.
The most common approaches include writing heuristics and constructing abbrevi-
ation lists (the Stanford Tokenizer, the RE system) or using machine learning algo-
rithms to predict the role of a potential sentence terminator (Satz, MxTerminator,

1https://github.com/jirkamarsik/trainable-tokenizer
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Apache OpenNLP). There have also recently been some very successful systems using
unsupervised methods (Punkt).

Tokenization is a problem which stops being trivial when we start considering
whitespace-free languages such as Chinese or Japanese. In these languages, tokeniza-
tion (also referred to as word segmentation) receives a lot of attention (Emerson, 2005).

TrTok aims to be a practical tool for tokenizing and segmenting text written in any
language. To achieve such a goal, TrTok relies on the user determining the specifics
of training and tokenization, and providing the necessary training data.

Continuing the approach outlined by Klyueva and Bojar (2008), TrTok’s novelty
comes in the openness and formalization of the tokenization process and in its result-
ing general applicability. The process is divided into several discrete stages, most of
which are heavily customizable. For example, the user is able to say where in the text
TrTok should consider breaking up or joining tokens or sentences, how TrTok should
represent the context of these decision points to the underlying classifier, how the
classifier should be trained, how existing whitespace should be treated and more.

TrTok was also built to be a practical tool, which means it can transparently process
text interspersed with XML tags and HTML entities and it was designed to run fast.

The major inconveniences of TrTok are that, 1) due to its customizability it needs to
be properly set up and, 2) due to its reliance on machine learning methods, it requires
manually tokenized training data.

2. Previous Work

Established methods of sentence boundary disambiguation can be organized into
three distinct groups: rule-based systems, supervised learning systems and unsuper-
vised learning systems.

The RE system (Silla and Kaestner, 2004) is an example of a rule-based system.
The program scans a document, looking for full stops. When one is found, the word
preceding it is compared to a list of regular expression exceptions (mostly abbrevia-
tions) and unless the word is found to match one of them, it is assumed to end the
sentence. Besides this core logic, the system also implements a small heuristic which
checks for numbers preceding the full stop and the word following it.

MxTerminator (Reynar and Ratnaparkhi, 1997) is a supervised sentence boundary
disambiguator using maximum entropy models to predict whether a potential sen-
tence terminator does indeed signal the end of a sentence. The prefix and suffix of
the word containing the potential sentence terminator and the words preceding and
following it are analyzed and their features are passed to the classifier. The features
consist of the tokens’ type, their capitalization and their membership status on a list
of abbreviations which are either hand-prepared or induced from data.

The biggest difference between TrTok and MxTerminator is that TrTok does not
assume any particular selection of features and thus offers space for richer models
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(e.g., by extending the width of the context or providing more complex features like
part of speech tags).

An example of a system using more advanced features is the Satz system (Palmer
and Hearst, 1997), which uses possible POS (part of speech) tags as features in the
machine learning algorithm.

Unsupervised learning systems are the most distinct from TrTok amongst all the
sentence boundary detection algorithms as they usually require no manual configu-
ration nor any training data to function properly. A great example of an unsupervised
sentence boundary disambiguator is the Punkt system (Kiss and Strunk, 2006).

Punkt relies mostly on collocation detection techniques but also makes use of an
orthographic heuristic to analyze the test data in several passes and disambiguate
abbreviations and sentence terminators. The system has shown remarkable perfor-
mance without needing any manual tuning or training data.

3. System Description

TrTok is implemented by a parallel execution of several, configurable pipeline
steps. This pipeline can be repurposed to train the embedded classifier using tok-
enized data, to tokenize new data using a trained classifier, and to evaluate the pre-
dictions of a trained classifier on manually tokenized data.

We will describe the important pipeline steps one by one, in the order in which
they process data when tokenizing new text.

3.1. RoughTokenizer

The RoughTokenizer partitions the stream of input characters into small, discrete
chunks of non-blank characters called rough tokens. The partitioning can be made
more granular by user-defined rules which specify positions at which the desired
tokenization might differ from the whitespace-induced one.

A location in the text may be marked as a MAY_SPLIT meaning that the characters
in the text preceding and following it may be parts of different tokens even though
they are not separated by whitespace (e.g. we might wish to put a MAY_SPLIT between
“was” and “n’t” in “wasn’t”).

A location within a span of whitespace characters might be labeled as a MAY_JOIN
signalling that the characters preceding and following the whitespace might be parts
of the same token, as in the case of spaces entered in long numbers (e.g. “12 345”).

Finally, a location in the text may be marked as a MAY_BREAK_SENTENCE if the char-
acters preceding and following it might belong to different sentences.

See Figure 1 for an example of how these potential tokenization operations can
look like in a sentence. A rough token is defined as a maximal sequence of charac-
ters uninterrupted by whitespace nor by any symbol denoting a possible tokeniza-
tion operation (the symbols underneath the sentence in Figure 1). For example, in the
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The $10 000 upgrade to 2.0 wasn't worth it.

Figure 1. In this example, N stands for MAY_SPLIT, H for MAY_JOIN and • for
MAY_BREAK_SENTENCE. This is how the rough tokenization might turn out given some

reasonable settings for tokenizing English.

sentence from Figure 1, “was”, “n”, the apostrophe and “t” are all individual rough
tokens. Note that the presence of a MAY_* event only signifies the possibility of a to-
kenization operation (splitting or joining of tokens or sentences). Whether a token
split, token join or sentence break will occur is up to the Classifier.

The locations of these possible tokenization operations are determined by user-
defined rules, each of which consists of a pair of regular expressions. The respective
tokenization operation is signalled if the characters leading up to and following a
position match the regular expressions in one of these rules.

If we look back at Figure 1, we might imagine more robust settings also placing a
MAY_BREAK_SENTENCE after the apostrophe/single quote, while others might be more
daring and not place a MAY_BREAK_SENTENCE after the point in “2.0”, because it is fol-
lowed by a non-blank character.

TrTok collects these rules and generates a Quex program implementing a fast FSM
(Quex2 is a fast and Unicode-friendly variation on the classic tools lex and flex for
C++).

3.2. FeatureExtractor

The stream of rough tokens interleaved with potential tokenization operations out-
put by the RoughTokenizer is processed using the FeatureExtractor. The FeatureEx-
tractor annotates each rough token with a bit vector signifying which of the user-
defined feature predicates hold for the rough token in question.

The features can be defined in two ways: either using a regular expression or a list
of rough tokens. For a feature defined using a regular expression, a rough token is
said to have that feature if and only if the regular expression matches the entire rough
token. In the case of a feature defined using a list of rough tokens, a rough token is
said to have that feature if and only if it is in the list.

This way it is easy to specify features which try to analyze the shape of rough
tokens using regular expressions or to simply give a list of all interesting tokens (e.g.
words of a certain part of speech or exceptions such as abbreviations).

2http://quex.sourceforge.net
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3.3. Classifier

The Classifier is the other important element in the pipeline (besides the RoughTo-
kenizer). Its job is to disambiguate the potential tokenization operations identified by
the RoughTokenizer, i.e. it decides whether a MAY_SPLIT splits a word into two tokens,
whether a MAY_JOIN truly joins two words into one token and whether a MAY_BREAK_-
SENTENCE ends a sentence. It does so by consulting a maximum entropy classifier for
every location containing these potential tokenization operations.

The features passed to the classifier consist of the features of rough tokens in the
context surrounding the potential tokenization operation and the presence of whites-
pace and potential tokenization operations in the context area. The user is free to
select the size of the context area and which features from which rough tokens in the
context area should be passed to the classifier.

Features can also be clustered together into conjunct features which provide a
value for every combination of the constituent features’ values (this lets the trainer es-
timate a different parameter for different combinations of the features’ values, which
is useful to model the joint influence of some features).

The classifier then marks each location with a potential tokenization operation as
either a sentence boundary, token boundary or no boundary (meaning the location
is inside a token). Using this classification, any potential tokenization operations are
finally disambiguated.

The model used in the Classifier unit is a maximum entropy model trained using
the Maximum Entropy Modeling Toolkit for Python and C++3. Training is performed
via either the L-BFGS or GIS algorithm, depending on the user’s choice. Other pa-
rameters of the learner, such as the number of iterations to spend on training, are
controlled by the user as well.

3.4. OutputFormatter

The OutputFormatter is the point at which the stream of rough tokens is turned
back into a character stream. This means that all the rough tokens are concatenated
and whitespace is inserted between them depending on whether there originally was
any whitespace between them and on the tokenization operations which are to be
carried out in the space between them. Individual tokens end up being separated by
a single space character and sentences are separated by line breaks.

4. Usage

TrTok is used as a command line application.
Example:

trtok train en/satz-like/brown -l data/brown/train.fl -r "|raw|txt|"

3http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html
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Its first argument is the mode of operation, which can be one of train, tokenize,
evaluate or prepare. The train mode uses manually annotated files to train a model
for the Classifier and save it, while the evaluate mode uses them to compare the
tokenizer’s predictions to the manual tokenization and outputs the comparisons. The
tokenize mode takes the input files and segments them using the trained model. The
preparemode does the same but with a dummy model which performs every possible
sentence and token break.

The second argument to TrTok is the tokenization scheme folder. The tokeniza-
tion scheme folder contains a set of optional files which influence the behavior of the
tokenizer. Files with the .rep and .listp extensions define new features in terms of
regular expressions or lists of types, respectively. Files with the .split, .join and
.break extensions contain pairs of regular expressions which define possible token
splits, token joins and sentence breaks, respectively. The features file defines which
features are to be used from which rough tokens relative to the possible tokenization
operation. The maxent.params file contains values for tuning the performance of the
training algorithm. The scheme folder also allows a few other configuration files for
convenience. An important thing to note is that the scheme folders can be nested and
that the inner schemes inherit all the files of the outer scheme, unless they provide
their own files of the same name. This is useful in cases where e.g. some features or
training data are applicable to all texts of a language but refinements exist for various
domains or tokenization conventions.

The rest of the parameters are input files and various options for adjusting the
behavior of the tokenizer.

TrTok requires CMake and Quex at runtime, while several multi-platform libraries
are also required at compile time. Further details on the installation and use of TrTok
can be found in the bundled documentation.

5. Evaluation

We evaluated our implementation of TrTok compared to a wide range of promi-
nent implementations and approaches to sentence detection. The results are given in
Table 1.

5.1. Dataset

The experiments were conducted on the Brown corpus (Francis and Kucera, 1982)
as supplied through NLTK (Bird et al., 2009). A representative (covering each category
of text proportionately) 20% of the corpus was used as the testing data. This number
was chosen so that the testing data would be sure to contain at least 1,000 instances of
a non-sentence-terminating full stop; the resulting test set ended up containing 1,481
such full stops. The rest of the data was made available for training to the supervised
learning methods.
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Acc. ↓ Err. Rate Prec. Recall F1 Time
TrTok::Groomed 98.86% 1.14% 99.12% 99.57% 99.34% 5.10s
Stanford CoreNLP 98.83% 1.17% 98.78% 99.89% 99.33% 5.02s
TrTok::MxTerm-like 98.76% 1.24% 98.70% 99.89% 99.29% 1.10s
TrTok::Easy 98.70% 1.30% 98.61% 99.91% 99.26% 1.08s
Punkt 98.65% 1.35% 98.82% 99.63% 99.22% 3.13s
MxTerminator 98.27% 1.73% 98.30% 99.74% 99.01% 1.37s
Apache OpenNLP 98.20% 1.80% 98.20% 99.77% 98.97% 1.13s
Apache OpenNLP (ready) 97.71% 2.29% 98.62% 98.75% 98.68% 1.17s
RE 97.26% 2.74% 98.52% 98.32% 98.42% 16.93s
TrTok::Satz-like 96.50% 3.50% 97.91% 98.08% 97.99% 1.59s
TrTok::Baseline 91.84% 8.16% 91.67% 99.66% 95.50% 0.85s
Absolute Baseline 86.89% 13.11% 86.89% 100.00% 92.99% 0.02s

Table 1. The performance of the various sentence detectors on full stops from the
Brown corpus testing data. The 1.15 MB of testing data consisted of 11,376 sentences

and 232,893 tokens.

5.2. Performance Measurement

The performance of the evaluated systems was measured by their success (accu-
racy) in classifying instances of the full stop character. The text contains other sen-
tence terminators such as the question mark and the exclamation mark, but they al-
most never serve as anything else but sentence terminators in the text. Other occa-
sional sentence delimiters such as dashes, semicolons, colons and line breaks were
ignored as well, since the other systems usually do not have a solution for them. This
way, the comparison is fair. Furthermore, the full stop is the most common and am-
biguous of the sentence delimiters, so it makes sense to focus on it.

Besides the systems’ accuracy, we also measure the time spent for processing the
whole testing data and we present the median of 11 runs to bring the implementation
speed of the systems into consideration as well.

5.3. Sentence Detection Methods

Absolute Baseline simply marks every full stop as a sentence terminator.
Trtok::Baseline is the simplest tokenizer which can be written in TrTok. However,

even the simplest TrTok configuration always uses the whitespace following the pos-
sible tokenization operation as a feature and thus it is able to perform better than the
Absolute Baseline.

TrTok::Satz-like is a straightforward attempt at reconstructing the Satz system in
TrTok. The POS-tagged training data was used to construct lexicons for each different
part of speech tag (NLTK’s method of simplifying tags was used to reduce the number
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of different tags to overcome data sparsity). The POS tags for three tokens on either
side of the full stop were used as the features.

TrTok::Satz-like’s system of tags is not as refined as the original and it does not use
its fallback regular expression heuristics and hence it does not perform as well as the
original Satz system did (Palmer and Hearst, 1997).

The RE system, MxTerminator and Punkt were described in Section 2. For train-
ing, Punkt received the entire Brown corpus (training data and testing data) without
any annotations while MxTerminator was trained using the training data.

Punkt achieves remarkable performance and stands as the strongest competitor to
TrTok in the field of multilingual sentence detection. They are both accurate language-
independent tools but TrTok’s big shortcoming is its need for a corpus of manually
tokenized data.

Apache OpenNLP contains a sentence detector based around a maximum entropy
classifier. The implementation is nearly identical to the specification of MxTerminator
with only minor deviations (such as signalling surrounding whitespace as features).

We performed experiments both with the ready-made model for English distributed
via OpenNLP’s website and with a model which was trained on our training data.

The Stanford CoreNLP sentence splitter works by applying its tokenizer to the
input text which makes the distinction between a full stop as part of an abbreviation
or an ordinal number as opposed to a full stop as a sentence terminator. Thus the
task of sentence splitting is trivial after the tokenization has been performed. The
tokenizer is a rule-based program implemented using a lexical analyzer generator,
JFlex (similar to how TrTok uses Quex to implement the RoughTokenizer).

The Stanford Tokenizer’s performance is excellent, especially considering it has not
had the chance to train itself on the target corpus. However, the Stanford Tokenizer
is written explicitly for English and it is likely that its performance would not carry
over to other languages without significant work.

TrTok::MxTerm-like is a reconstruction of MxTerminator in TrTok. It is a nice
demonstration of the ease with which new tokenization setups can be defined in Tr-
Tok. The entire setup consisted of creating a directory, collecting the abbreviations
in a single file and writing five lines of configuration, two or three of which could be
easily obsoleted by adopting saner defaults in TrTok and one of which is purely for
convenience.

The reason why MxTerminator does not achieve the same performance could be
that the maximum entropy trainer used in MxTerminator limits itself to 100 itera-
tions of Generalized Iterative Scaling, which converges very slowly compared to L-
BFGS (Malouf, 2002). Another reason might be the fact that both MxTerminator and
OpenNLP cut off infrequent features.

The high accuracy of TrTok::MxTerm-like led us to try and see what happens when
we simplify the tokenization setup even further, which led to TrTok::Easy which
works the same way as TrTok::MxTerm-like, but which does not use any abbrevia-
tion lists, merely the token types surrounding the full stop. Therefore, TrTok::Easy
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True Words Recall Test Words Precision F-measure
Academia Sinica 0.933 0.919 0.926
City University 0.934 0.934 0.934
Peking University 0.923 0.933 0.928
Microsoft Research 0.951 0.952 0.951

Table 2. The scores assigned to our tokenizer by the official scoring script of the
Second International Chinese Word Segmentation Bakeoff, sorted by dataset.

does not rely on any external linguistic knowledge and is fairly language universal,
given that we have enough training data. The performance of TrTok::Easy also points
out that the difference in performance between TrTok and MxTerminator/OpenNLP
cannot be explained by the different abbreviation lists.

Finally, TrTok::Groomed is a large, hand-made tokenization setup ported from a
previous version of the tokenizer. It considers 24 different potential sentence termi-
nators, it includes seven distinct lists of abbreviations totalling 303 types (prefix and
suffix titles, abbreviated names of months, etc.) and it implements features for de-
tecting the case of tokens, for noticing numbers which happen to be in the range of
years, or the days of the month, etc… These features are extracted from rough tokens
within eight tokens distance from the full stop. The two closest tokens on either side
of the full stop also contribute their token type as a feature.

Due to the large number of potential tokenization operations and user-defined fea-
tures, TrTok::Groomed’s speed lags significantly behind the other TrTok setups.

Interestingly, there is not much difference in the performance of TrTok::Groomed,
TrTok::MxTerm-like and TrTok::Easy. This tells us that besides the token types in the
close vicinity of the full stop, other features are not that important. This highlights
another use for TrTok as a tool for the fast analysis of the importance of different con-
textual features for performing the task of sentence detection.

5.4. Chinese Word Segmentation

Since TrTok is a general program for splitting text into sequences (sentences) which
are in turn composed of other sequences (tokens) based on user-defined features, Tr-
Tok can be used for more than just sentence detection. One other segmentation task
we had hoped might be solvable using TrTok is Chinese word segmentation.

We ported the key features of one of the top contestants (which also happens to em-
ploy a maximum entropy classifier) (Low et al., 2005) in the 2005 Second International
Chinese Word Segmentation Bakeoff into TrTok and evaluated its performance using
the official evaluation scripts. The results achieved (see Table 2) are approximately a
median of the scores reported for submissions to the Bakeoff.
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6. Conclusion

We have presented and described a universal tool for segmenting and tokeniz-
ing textual data. We have applied the tool to detecting sentences in English text and
identifying words in Chinese text. We have shown that in both cases, TrTok can of-
fer performance which is competitive with previous approaches, more so in the case
of English sentence detection. In our experiments, different setups of TrTok outper-
formed existing systems in either speed or accuracy, while some setups of TrTok out-
performed nearly all competitors in both criteria at the same time.

Since TrTok lets us define a lot of its behavior using declarative rules and feature
descriptions, it might be interesting to harness this ability to find out the effect of
various contextual cues on the performance of a sentence detector.

On the software side of things, TrTok would also benefit from getting more user-
friendly, which would entail providing a walkthrough of the setup process, distribut-
ing further example setups and trained models and offering an all-dependencies-
included compiled package for easier deployment.
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Abstract
This paper presents a C++ implementation of the phrase scoring step in phrase-based sys-

tems that helps to exploit the available computing resources more efficiently and trains very
large systems in reasonable time without sacrificing the system’s performance in terms of Bleu
score.

Three parallelizing tools are made freely available. The first exploits shared memory paral-
lelism and multiple disks for parallel IOs while the two others run in a distributed environment.

We demonstrate the efficiency and consistency of our tools, in the framework of the Fr-En
systems we developed for the WMT and IWSLT evaluation campaigns, in which we were able
to generate the phrase table in one third up to one seventh of the time taken by Moses in the
same tasks.

1. Introduction

Phrase scoring is one of the most important and yet very expensive steps in phrase-
based translation system training. Typically, it consists of estimating the correspond-
ing scores for each unique phrase pair extracted from an aligned parallel corpus. Usu-
ally, the scores are estimated based on two directions (from source to target and vice
versa). Therefore, the process is accomplished in two runs. In the first run, counts are
collected and then the scores are estimated based on the source phrases while in the
second run a similar task is performed based on the target phrases.

This process is memory greedy. However, for non large corpora it could be per-
formed efficiently in the physical memory by some implementations. For instance,
memscore (Hardmeier, 2010) uses a lookup hash table based on STL1 maps to index

1C++ Standard Template Library http://www.sgi.com/tech/stl/
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the phrases. Then the hash identifiers are used to directly access the corresponding
phrases in order to update the marginal and joint counts. Unfortunately, this does not
scale very well for corpora of large sizes. As a matter of fact, a memory requirement of
more than 60GiB was reported for a corpus of 4.7M sentence pairs (Hardmeier, 2010).

On the other hand, most systems such as the widely used phrase-based system
Moses (Koehn et al., 2007), handle the memory limitation by streaming the large data
sets, keeping only a limited amount of data into memory, and saving temporary re-
sults into disk. In fact, all the pairs which correspond to a given phrase should be kept
into memory while gathering the marginal and joint counts for this phrase. Conse-
quently, the streamed data must be sorted depending on whether the computation
is being held based on source phrases or target phrases . In Moses, this is achieved
by performing two sorting operations using the standard Unix sort command.2 Even
though, being a good external memory sorting tool, the Unix sort command is not
optimal when the corpus is very large. For instance, the runs are formed and sorted
serially, it lacks support for multiple disks, and the IO could not be overlapped with
the computations.

Gao and Vogel (2010) developed a platform for distributed training of phrase-
based systems starting from word alignment until phrase scoring. Even though ex-
cellent speed gains were reported, this system runs on top of the Hadoop framework,
and therefore needs the cluster to fit this special infrastructure.

Unlike applications which operate exclusively on data stored in main memory,
applications which involve external memories such as hard disks face an additional
challenge with the high data transfer latency between the external and main mem-
ory. For this purpose, data structures and algorithms have been developed in order
to minimize the IO overhead and to exploit the available resources such as parallel
disks and multiple processors more efficiently (Vitter, 2008). Luckily, different exter-
nal memory APIs have been created in order to make the underlying disk access and
low level operations transparent to programmers. Such platforms include, but are not
limited to, LEDA-SM (Crauser and Mehlhorn, 1999), TPIE (Arge et al., 2002), Berkeley
DB (Olson et al., 1999), and STXXL (Dementiev and Kettner, 2005).

The main goals of our tools for phrase scoring are to exploit CPU and disk par-
allelism in an external memory environment, so that the phrase sorting and score
computation are performed more efficiently. The CPU parallelism is ensured by the
OpenMP library (Chapman et al., 2007) (eventually coupled with an MPI implementa-
tion (Pacheco, 1996)), while the disk parallelism and other external memory function-
alties are ensured by the STXXL library. STXXL is preferred over other environments
due to its superior performance, ease of use (STL-compatible interface), and explicit
support for parallel disks (Dementiev et al., 2008).

Most of our tools are written in C++. The underlying CPU parallelism comes in
three flavours: multithreaded, hybrid, and distributed. The multithreaded version

2http://unixhelp.ed.ac.uk/CGI/man-cgi?sort
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uses shared memory parallelism and therefore runs on a single node. In the hybrid
setting, multiple nodes can be used. On each of these nodes the shared memory par-
allelism is exploited. The distributed tool proceeds in a MapReduce strategy (Dean
and Ghemawat, 2008): Starting from Giza alignments, the large corpus is split into
partitions and training is performed independently on the partitions. For each part,
standard Moses tools are used for alignment combination, lexical scoring, and phrase
extraction. For phrase scoring, we use a slightly modified version of the multithreaded
tool. It allows all the partial counts to be saved as well. The partial phrase tables are
then merged and the probabilities are reestimated using the new updated counts.

In the next section, the external memory sorting is briefly presented in the frame-
work of the STXXL implementation. Afterwards, the architecture and underlying al-
gorithms of our different software flavours are dissected and its usage is explained.
Then some experimental results are presented and discussed. Finally, a conclusion
about the main findings and eventual extensions ends the paper.

2. External memory sorting in STXXL

Due to its extreme importance, the external memory sorting has received continu-
ous improvements over the years. The different techniques can be categorized in two
classes: distribution sorts and merging sorts. A detailed survey of both approaches
can be found in Vitter (2008).

Details about STXXL sort implementation are given in Sanders and Dementiev
(2003). In the following, we briefly review its important aspects.

STXXL implements a multiway-merge sort. It assumes that the data records are of
fixed size. The processing then could be held on fixed size data blocks. The STXXL
library forms the backbone of many sorting benchmark3 winners in the past years
(Andreas et al., 2011; Rahn et al., 2009; Beckmann et al., 2012). The two key steps of
STXXL sorting are as follows:

Run formation In a double buffering strategy, two threads cooperate to read/sort
the different runs. The first thread sorts the run which occupies half of the sorting
memory, while the second thread is either reading the next run or writing the sorted
run. The sorter thread creates lighter data structure consisting of only the keys and
pointers to the actual elements. After that, it sorts the keys in the new data structure
where the sorting method depends on their number (straight line code if it doesn’t
exceed 4, insertion sort if it is between 5 and 16, otherwise it uses quicksort).

Multiway merging In order to define the order in which blocks will be streamed into
the merger, the smallest elements in each block are recorded in a sorted list during run

3http://sortbenchmark.org/
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formation. The position of an element in this list defines when its containing block will
enter the merging buffers. The merger keeps a number of blocks equal to the number
of the sorted runs in merging buffers. In order to minimize the time of selecting the
current smallest element, the keys of the smallest elements of all blocks in merging
buffers are kept in a tree sctructure.

STXXL uses an overlap buffer for reading and a write buffer for writing in order to
overlap IOs and merging. The size of the overlap buffer depends both on the number
of runs and the number of parallel disks while the size of the write buffer depends on
the number of disks only. If the write buffer has a number of blocks which exceeds
the number of disks, a parallel output is submitted. Similarly, if the overlap buffer
has a number of free blocks which exceeds the number of disks, a parallel read is
performed.

Distributed External Memory sorting (DEMSort) is an extension of the STXXL sort-
ing so that it fits the distributed case where the sorting is rather performed on mul-
tiple machines (Rahn et al., 2010). The key difference here is the introduction of an
additional intermediate phase between run formation and multiway merging: the so-
called Multiway selection.

Like the distribution sorts, the multiway selection tends to find global splitting
points over all the sorted runs. By the end of this operation, each node knows its ex-
clusive range of data. Afterwards, the data are redistributed globally over the nodes
using an all-to-all operation to satisfy the range constraints. In this case, the MPI in-
terface is used for the inter-node communication. Finally, the merging is done locally
as explained before.

3. Software architecture and algorithms

Like Moses scoring tool, our phrase scoring tools take three files as input and pro-
duce a phrase table as output. The first input file contains the extracted phrases (called
’extract.0-0.gz’ in Moses convention) and the other files are two bilingual dictionar-
ies which model Pr(s | t) and Pr(t | s) for every source and target words s and t if they
are aligned at least once (’lex.0-0.f2e’ and ’lex.0-0.e2f’ in Moses convention).

Typically, the phrase table records 4 scores for every extracted phrase pair. Rela-
tive frequency and lexical score for each direction (source to target and vice versa).
Our lexical score is identical to the one produced by Moses Scoring tool, whereas our
relative frequency is smoothed using modified Kneser-Ney smoothing as described
in Foster et al. (2006).

The development of our tools led to three different levels of parallelism: multi-
threaded, hybrid, and distributed. The multithreaded version forms the core of the
other two versions. The multithreaded and hybrid versions parallelize only the phrase
scoring whereas the distributed version parallelizes the former steps too. In the fol-
lowing, we explain each of these versions.
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Figure 1. Multithreaded phrase scoring anatomy

3.1. Multithreaded phrase scoring

The basic data structure used in this software is STXXL vector whose interface is
similar to STL vector but it rather stores data which does not all reside in memory.
STXXL vector elements are stored in the form of key, value. The keys of this vector
are the phrase pairs (source and target phrases concatenated) and the values are the
different counts. In order to satisfy the fixed size record of STXXL vectors, the keys
are represented by a fixed-length string.

As depicted in Figure 1, the process consists of several threads, each of which takes
care of one large STXXL vector of data. The phrase table is the result of five consecutive
steps. Details about each of these steps are presented in what follows.

Loading the data First of all, the lexical dictionaries are loaded into two STL maps
(one for each direction). Afterwards, each thread reads one phrase pair at a time,
computes its lexical score, and then loads it into its corresponding STXXL vector. This
multithreaded way allows for computations and IOs to be overlapped.

There are two ways to read pairs from the file into memory. The fast way: where
all the threads read the same file concurrently one line at a time. In this case, the input
file should not be zipped. The alternative way allows to read directly from the zipped
file, the master reads from the file and pushes the lines into a FIFO queue. The other
threads pop lines from the queue and process them.

As soon as the loading is complete, the lexical maps are disposed since they will
not be needed anymore.

Sorting by target phrases Every thread sorts its vector by simply calling the STXXL
sort function which performs a multiway merging sort on the corresponding vector.

Merging and computing the target-based scores The merging follows the same ap-
proach as the multiway merging. The first elements from all vectors are organized in a
tree structure. Whenever an element is taken out, it is replaced with the next element
from the same vector.
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Parallel threads acquire a lock on the tree and get all the pairs with the same target
phrase in a local vector, then release the lock for the next thread. After collecting the
pairs, every thread updates the corresponding count fields and writes the updated
records to a new STXXL vector. Since the identical pairs have to be uniquified in this
step, our implementation allows chosing one lexical score and one alignment based
on maximal lexical score or the most occurring one.

Sorting by source phrases Again, this is done in parallel by the STXXL sort.

Merging and computing the source-based scores This operation is identical to the
merge based on target phrases.

Writing out the phrase table Like the loading phase, two writing ways are possible.
The way which supports writing zipped phrase table is performed by a single thread
while the multithreaded way writes only unzipped files.

Optionally, all the counts can be recorded for further use (as in the distributed ver-
sion). It is as well possible to write out an optional abridged phrase table containing
only phrases which match a list of given n-grams.

3.2. Hybrid parallel phrase scoring

The extension DEMSort allows us to effieciently sort an STXXL vector spread over
multiple interconnected machines. There are only few changes in the architecture
compared to the previous version. We suppose that the nodes dispose of a shared
disk space. First of all, all the nodes build the lexical maps in the same way. After-
wards, every node reads a quota of the input file of phrase pairs into an STXXL vector.
Running the DEMSort could raise the following issue: the phrase pairs which corre-
spond to a given phrase could be spread between two adjacent nodes due to the redis-
tribution as explained in Section 2. To fix this, every node sends all the phrase pairs
corresponding to the first phrase to its immediate predecessor. As a consequence of
this sorting approach, no further data exchange between the nodes is needed.

Every node performs the local merging and scoring strictly identical to the mul-
tithreaded version. In our development process, this resulted in an unbalanced load
between the nodes. Consequently, we extended the merging with a dynamic load
balancing strategy. The final merging procedure executed on every node looks as
follows:

1. Execute a multithreaded merging and listen to signals from other nodes
2. If request for sharing is received from another node, then send half of the re-

maining pairs to that node
3. When finished, signal all other nodes
4. If all nodes have no remaining pairs, then exit
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Figure 2. Distributed phrase table construction process (2 partitions)

5. Receive half of the remaining pairs from the node with the largest remaining
number of pairs

6. Go to 1

The output is done in a similar manner to the previous system where all the nodes
write to the same file concurrently. The position from which a node starts writing in
the common output file is estimated based on the number of enteries in this node’s
vector.

3.3. Distributed translation model construction

This version is based on two complementary pieces: the aforementioned multi-
threaded scorer and a multithreaded merger. The objective of the latter is to merge
streamed partial phrase tables produced by the scorer.

In fact, starting from partitioned Giza alignement files all the subsequent steps are
run independently (typically on a cluster of machines). However, a slight modifica-
tion is introduced in this pipeline in order to produce correct lexical dictionaries.The
counts for aligned words are collected from each part independently and then glob-
ally combined in an additional step from all the collected counts. The sequencing
and dependence between the different steps of this version is shown in Figure 2 (for
a number of partitions equals to 2).

The global merger is very similar in design to the multithreaded scorer. The only
difference is that the counts are not initialized to 0, but rather based on the saved
counts in the partial phrase tables. Afterwards, it proceeds in the same steps as the
multithreaded scorer.

3.4. Usage

All our tools show different options by specifying -h or --help flag.
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Multithreaded phrase scorer The number of threads can be specified by setting the
OMP_NUM_THREADS environment variable. If this variable is not set, it will be set to the
number of physical cores available on the machine. The most important options and
flags for this software are (all options can be printed using the -h flag):
-e, -l, -L are used to provide the extract, lexical dictionary source to target, lexical

dictionary target to source files respectively.
-b with this option, the sorting internal memory per thread can be specified in Mega

bytes.
-w is used to specify the different disks (paths) which will serve as parallel disks for

STXXL sort. It is a comma-separated list.

Hybrid phrase scorer The binary in this case is called pscore. It accepts the same
arguments as the previous one. Though, it needs to be started with mpirun.

Running the distributed version on a cluster The script which automates the parti-
tioning the Giza alignment files and ensures the correct dependency between the jobs
(as shown in Figure 2) is written in Python and uses specific commands for the Slurm4

queue manager. We believe however that it can be easily adapted to other schedulers.

4. Experimental results

In this section, we show some performance comparisons between the different ver-
sions of our scoring tools. We compare them as well to Moses. The hardware envi-
ronment where these experiments took place is a cluster consisting of 8 core machines
with 32GiB of memory and 16 core machines with 64GiB memory.

All the machines have access to a RAID NFS shared space and dispose of a local
disk of 1.7TiB. In all experiments the parallel scorers use two disks for the STXXL
vectors (the local disk and NFS). The first set of experiments (in WMT2011) was held
on the 8 core machines, while the others were held on the 16 core machines.

Experiments in the WMT2011 In this set of experiments, the Multithreaded ver-
sion was run on a 16-core machine, whereas the hybrid was run on four different
machines (using 4 cores out of 8 on each one). Table 1 compares the speed of different
tools used in this experiment, whereas Table 2 shows the Bleu scores resulting from
a system based on Moses phrase table and the hybrid balanced system (we kept only
one phrase table since all the tables produced by our tools are identical). These phrase
tables are trained based on three parallel corpora (merged into a single large corpus):
EPPS, NC, and UN. The total number of parallel sentences is 13.8 millions. Clearly,
the best choice here is the hybrid balanced version. It is 7.5 times faster than Moses

4https://computing.llnl.gov/linux/slurm/
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scorer. However, explicitly handling the communication (for both versions) and the
load balancing (for the balanced version) from whithin the scoring routines degrades
readability, and thus maintaining this code became expensive. This was the reason
why we next created the fully distributed version and we didn’t report further tests
with the hybrid version.

System Time span

Moses 53h 34m
Multithreaded 28h 49m
Hyb. unbalanced 8h 45m
Hyb. balanced 7h 08m

Table 1. Phrase scoring time span in WMT2011

System en-fr fr-en

Moses 23.16 24.16
Parallel scoring 23.24 24.21

Table 2. Bleu scores in WMT2011

System EPPS+NC +UN

Moses 11h 23m/27.21 49h 34m/29.13
Multithr. 9h 34m/27.5 27h 44m/29.02

Table 3. Phrase scoring in IWSLT2011

System Time Bleu

Moses 92h 46m 29.77
Distributed 49h 20m 30.00

Table 4. Phrase scoring in WMT2012

Experiments in the IWSLT2011 Experiments in this context are shown for Moses vs.
the multithreaded version for the same corpora as the previous. For every corpus and
system, Table 3 gives the corresponding time span and Bleu score. As in the previous
experiment, the amount of speed up becomes more and more appearent as the corpus
size augments, while the translation model’s performance in terms of Bleu scores is
almost invariant. However, the slight difference (Table 3, column +UN compared to
Table 1) is mainly due to a different set of disks.

Experiments in the WMT2012 This set of experiments is held between Moses and
the distributed version. In addition to the EPPS, NC, and UN corpora, the training
data here include the Giga corpus as well (resulting in 29.4 millions parallel sen-
tences). The number of partitions here was 12 and the jobs were submitted indepen-
dently to the cluster (some of them end up on the same node, which is not optimal).
Table 4 records the time required for phrase scoring. It is shown here that the dis-
tributed version is almost 2 times faster than Moses.

It is noteworthy that relative frequency in Moses version here was also modified
as in Foster et al. (2006). These experiments show that not only our tools are faster
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than Moses, but they also produce in most cases slightly better results. We think the
reason for that is due to the lexical score selection explained in Section 3.1, unlike
Moses where the first occurring score is selected.

Surprisingly, the distributed version was not as fast as the hybrid version. This
could be justified by the race condition which occurs during concurrent access to the
the NFS space by so many processes.

5. Conclusion

In this paper, we presented three versions of a tool which makes the phrase scoring
manageable for extra large corpora. This was achieved by exploiting multiple process-
ing units and parallel disk IOs using the STXXL library for external memories. The
first implementation can be run on a single machine. Whereas the other two can be
executed in a multinode environment (typically on a cluster of nodes). The three im-
plementations are freely available under the LGPL license and can be downloaded
from http://isl-wiki.ira.uka.de/~mmediani/fscorer. All these tools depend on
the STXXL and OpenMP libraries. In addition to that, the hybrid version assumes
the existence of an MPI implementation and the DEMSort extension for the STXXL
library.

Given that the bottleneck in this process is the slow disk speeds compared to inter-
nal memory, the amount of improvement strongly depends on the number of parallel
disks. This could be shown by the experiment in Section 4, where the hybrid version
performed better than other versions since it uses multiple nodes each of which uses
its local disk as well as the NFS space. The distributed version is still being tested and
optimized, therefore the speedup it brings is still low compared to the hybrid version
even though they are somehow similar in spirit.

Since the objective of the experiments shown in this paper was to participate in
the MT evaluation campaign, they were run on relatively powerful hardware. How-
ever, these tools would also work for less powerful architectures, since the memory
consumption is bounded by design.

The main limitation of our tools is the disk space consumption. This is essentially
due to the fact that our basic data structure uses a fixed size character string for the
keys of our STXXL vectors. As a result, some very long pairs cannot be taken into
account and shorter ones have to be filled with blank characters. This implies that a
considerable amount of the space allocated for keys is not useful. A possible solution
to this would be to use suffix arrays to index the phrases and use only the ID’s in the
STXXL vector keys.
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Abstract
We describe F, a tool for automatic evaluation of machine translation output based on n-
gram precision and recall. The tool calculates the F-score averaged on all n-grams of an arbi-
trary set of distinct units such as words, morphemes,  tags, etc. The arithmetic mean is used
for n-gram averaging. As input, the tool requires reference translation(s) and hypothesis, both
containing the same combination of units. The default output is the document level 4-gram
F-score of the desired unit combination. The scores at the sentence level can be obtained on
demand, as well as precision and/or recall scores, separate unit scores and separate n-gram
scores. In addition, weights can be introduced both for n-grams and for units, as well as the
desired n-gram order n.

1. Motivation

Evaluation of machine translation output is an important but difficult task. A num-
ber of automatic evaluation measures have been studied over the years, some of them
have become widely used by machine translation researchers, such as the B met-
ric (Papineni et al., 2002) and the Translation Edit Distance  (Snover et al., 2006).
Precision and recall are used for machine translation evaluation in Melamed et al.
(2003) and it is shown that they correlate well with human judgments, even better
than the  score. Recent investigations have shown that the n-gram based evalu-
ation metrics  and F-score calculated on Part-of-Speech () sequences correlate
very well with human judgments (Popović and Ney, 2009) clearly outperforming the
widely used metrics  and . However, using only  tags for evaluation has

© 2012 PBML. All rights reserved. Corresponding author: maja.popovic@dfki.de
Cite as: Maja Popović. rgbF: An Open Source Tool for n-gram Based Automatic Evaluation of Machine Trans-
lation Output. The Prague Bulletin of Mathematical Linguistics No. 98, 2012, pp. 99–108.
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certain disadvantages, for example the translation hypotheses ”The flowers are beau-
tiful” and ”The results are good” would have the same score. Therefore combining
lexical and non-lexical ”units”, e.g. words and  tags seemed to be a promising
direction for further investigation.

The F tool presented in this work enables calculation of such combined scores,
i.e. F-score of an arbitrary combination of distinct units (words,  tags, morphemes,
etc). The tool has been successfully used in the sixth  evaluation shared task
(Popović, 2011; Callison-Burch et al., 2011), and it is confirmed that introducing the
morphological and syntactic properties of involved languages thus abstracting away
from word surface particularities (such as vocabulary and domain) improves the cor-
relation with human judgments, especially for the translation from English.

The name F refers to the  color model used in computer graphics: in this
model, primary colors red, green, and blue are added together in various ways thus
producing a broad array of different colors. Our evaluation tool adds together indi-
vidual scores for different basic units and n-gram orders in various ways thus pro-
ducing a broad array of evaluation scores. The final letter F stands for the F-score
which is the default output.

The tool is written in Python, and it is available under an open-source licence.
We hope that the release of the toolkit will facilitate the automatic evaluation for the
researchers, and also stimulate further development of the proposed method.

2. F tool

2.1. Algorithm

F implements the precision, recall and F-score of all n-grams up to order n of all
desired units. The arithmetic averaging of n-grams is performed – previous exper-
iments on the syntax-oriented n-gram metrics (Popović and Ney, 2009) showed that
there is no significant difference between arithmetic and geometric mean in the terms
of correlation coefficients. In addition, it is also argued that the geometric mean used
for the  score is not optimal because the score becomes equal to zero even if only
one of the n-gram counts is equal to zero, which is especially problematic for the sen-
tence level evaluation.

The recall is defined as percentage of words in the reference which also appear
in the hypothesis, and analogously, the precision is the percentage of words in the
hypothesis which also appear in the reference. Multiple counting is not allowed. For
example, for the hypothesis ”this is a hypothesis and this is a hypothesis” and the
reference ”this is a reference and this is a hypothesis” the unigram precision will be
8/9=88.9% and not 9/9=100%. In the case of multiple references, the highest precision
and the highest recall score is chosen for each sentence (the optimal reference for the
precision and the optimal reference for the recall are not necessarily the same). Once
the recall and precision are obtained, the F-score is calculated as their harmonic mean.
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Although the method is generally language-independent, availability of some kind
of analyser for the particular target language might be required depending on which
units are desired.

2.2. Usage

F supports the option -h/--helpwhich outputs a description of the available com-
mand line options.

The input options are:
-R, --ref translation reference
-H, --hyp translation hypothesis
-n, --ngram n-gram order (default: n = 4)
-uw, --uweight unit weights (default: 1/U)
-nw, --nweight n-gram weights (default: 1/n)

Inputs -R and -H are required, containing an arbitrary number of different types
of units. The combination of units must be the same and in the same order both in
the reference and in the hypothesis, and the units must be separated by ”++”. This
symbol is of course not needed if the input files contain only one unit. The required
format for all input files is a raw tokenized text containing one sentence per line. In
the case of multiple references, all available reference sentences must be separated by
the symbol #.

The output options are:
• standard output – the default output of the tool is the overall (document level)

4-gram F-score.

In addition to the standard output, the following optional outputs are available:
-p, --prec precision
-r, --rec recall
-u, --unit separate unit scores
-g, --gram separate n-gram scores
-s, --sent sentence level scores

An example of input and output files and different program calls is shown in the
next section.

2.3. Example

Table 1 presents an example of translation hypothesis consisting of two sentences and
its corresponding reference translation in the F format. Both hypothesis and refer-
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ence contain four types of units, i.e. full words, base forms, morphemes and  tags,
separated by ”++”.

example.hyp.wbmp (word+base+morph+pos)
This time , the reason for the collapse on Wall Street . ++ This time , the reason
for the collapse on Wall Street . ++ Th is time , the reason for the collapse on
Wall Street . ++ DT NN , DT NN IN DT NN IN NP NP SENT
The proper functioning of the market and a price . ++ The proper functioning of
the market and a price . ++ The proper function ing of the market and a price .
++ DT JJ NN IN DT NN CC DT NN SENT

example.ref.wbmp (word+base+morph+pos)
This time the fall in stocks on Wall Street is responsible for the drop . ++ This
time the fall in stock on Wall Street be responsible for the drop . ++ Th is time the
fall in stock s on Wall Street is responsible for the drop . ++ DT NN DT NN IN
NNS IN NP NP VBZ JJ IN DT NN SENT
The proper functioning of the market environment and the decrease in prices .
++ The proper functioning of the market environment and the decrease in price .
++ The proper function ing of the market environment and the decrease in price s .
++ DT JJ NN IN DT NN NN CC DT NN IN NNS SENT

Table 1. Example of a hypothesis and a corresponding reference containing four units:
full words, base forms, morphemes and  tags merged in the F format.

1) Simple program call without optional parameters:

rgbF.py -R example.ref.wbmp -H example.hyp.wbmp

will calculate the document level F-score with the default n-gram order n = 4 and
the uniform distribution of weights, i.e. all the n-gram weights are 1/n = 1/4 = 0.25

and all the unit weights are 1/U where U is the number of different units (U = 4 for
the input files presented in Table 1). The obtained output will be:

rgbF 42.2512

2) A desired unit and/or n-gram weight distribution can be demanded with a call:

rgbF.py -R example.ref.wbmp -H example.hyp.wbmp -uw 2-3-4-6 -nw 2-2-5-5

where uw represents the proportion of unit weights and nw the proportion of n-gram
weights. The weights are normalized automatically, so that the given numbers do not
have to sum to 1, only to represent the desired proportion. The output of this call will
be:

rgbF 36.5530

102



M. Popović n-gram Based Automatic Evaluation (99–108)

3) The weights also enable the choice of units and/or n-grams. For example, the call:

rgbF.py -R example.ref.wbmp -H example.hyp.wbmp -uw 2-0-0-3

will produce the word+ F-score averaged on unigrams, bigrams, trigrams and
fourgrams in proportion 2 words : 3 , and the call:

rgbF.py -R example.ref.wbmp -H example.hyp.wbmp -nw 1-0-0-1

will average over all units but only over unigrams and fourgrams.

4) A desired maximum n-gram order can also be demanded, for example 6-gram:

rgbF.py -R example.ref.wbmp -H example.hyp.wbmp -n 6

5) Precision and/or recall scores can be requested:

rgbF.py -R example.ref.wbmp -H example.hyp.wbmp -p -r

These scores will be then showed in addition to the default F-score:
rgbF 42.2512
rgbPrec 48.9473
rgbRec 37.1839

6) If the sentence scores are desired:

rgbF.py -R example.ref.wbmp -H example.hyp.wbmp -s

the F-score of each sentence together with the sentence number will be showed in
addition to the default document level F-score:

1::rgbF 31.0037
2::rgbF 55.8205
rgbF 42.2512

7) If the unit scores are demanded:

rgbF.py -R example.ref.wbmp -H example.hyp.wbmp -u

the F-score of each unit will be showed in addition to the default overall F-score:
u1-F 36.6824
u2-F 38.7693
u3-F 40.2712
u4-F 53.2818
rgbF 42.2512

where the unit number is its position in the reference and hypothesis file. For our
example, u1 stands for the full words, u2 for base forms, u3 are morphemes and u4
are  tags.
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8) Separate n-gram scores can also be demanded:

rgbF.py -R example.ref.wbmp -H example.hyp.wbmp -g

so that the F-score of eachn-gram of each unit will be showed in addition to the default
overall F-score:

u1-1gram-F 68.0000
u1-2gram-F 39.1304
u1-3gram-F 23.8095
u1-4gram-F 15.7895
u2-1gram-F 72.0000
u2-2gram-F 43.4783
. . . . . .

u4-3gram-F 42.8571
u4-4gram-F 21.0526
rgbF 42.2512

9) The most “complicated” program call involving all optional output parameters:

rgbF.py -R example.ref.wbmp -H example.hyp.wbmp -p -r -u -g -s

will produce all the F-scores, precisions and recalls for each unit n-gram and each
unit, on the sentence level and on the document level.

3. Correlations with human ranking

As mentioned in Section 1, the tool has been tested on all  data from year 2008 to
year 2011. In addition, it has also been tested on the data developed in the framework
of the XÜ project1. Spearman’s rank correlation coefficients ρ are calculated for
the document (system) level correlation, whereas Kendall’s τ coefficients are calcu-
lated for the sentence level correlation.

3.1.  data

The following 4-gram F scores have been investigated on the  data: F,
F, F, F, F, F, as well as F without and with given weights (F’).
Spearman’s rank correlation coefficients on the document (system) level between all
the metrics and the human ranking are computed on the English, French, Spanish,
German and Czech texts generated by various translation systems in the framework
of the third, fourth and fifth shared translation tasks (Callison-Burch et al., 2008, 2009,
2010), and the results are shown in Table 2.

1http://taraxu.dfki.de/
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metric overall x→en en→x
 0.566 0.587 0.544
F 0.550 0.592 0.504
F 0.608 0.671 0.541
F 0.673 0.726 0.617
F 0.627 0.698 0.553
F 0.587 0.655 0.514
F 0.669 0.744 0.590
F 0.645 0.721 0.565
F’ 0.668 0.744 0.587

Table 2. Average document level correlations on the  2008–2010 data for the 
score and the investigated  metrics. Bold represents the best value in the

particular metric group (single unit, two-unit and three-unit). The most promising
metrics are those containing  and morpheme information, namely F’ (F

with non-uniform weights), F and F.

The most promising metrics, i.e. F and F’ are submitted to the sixth shared
evaluation task (Callison-Burch et al., 2011) and the correlations on the document
and on the sentence level are presented in Table 3, together with the widely used 
and  metrics and the best ranked metrics MTRP, TINE--, -,
-, -adq, -rank and .

On the document level, the F scores are better than  and  and compa-
rable with the best ranked metrics for translation from English, however worse than
the best ranked metrics for translation into English. On the sentence level, the F
scores are comparable with the best ranked metrics for translation into English, and
one of the best for translation from English.

3.2. XÜ data

The XÜ corpora consist of two domains: News taken from the  2010 News
test set and technical documentation extracted from the freely available OpenOffice
project (Tiedemann, 2009). The translation outputs are produced by four different
German-to-English, English-to-German and Spanish-to-German machine translation
systems: Google, Moses (statistical systems), Lucy (a rule-based system) and Trados
(not really a system but a translation memory). The obtained outputs are then given to
the professional human annotators to assign 1–4 ranks, but without ties. More details
can be found in (Avramidis et al., 2012).

The following 4-gram  scores have been explored on this data: F, F,
F, F, F, F, F, F, F and F, all with the default uniform
weights.
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document level sentence level
metric x→en en→x x→en en→x
F 0.77 0.78 0.28 0.26
F 0.76 0.77 0.27 0.25
 0.69 0.70 / /
 0.67 0.57 / /
MTRP 0.90 / 0.37 /
TINE-- 0.87 / 0.23 /
- 0.86 0.94∗ 0.31 0.26∗
- 0.84 0.87∗ 0.30 0.25∗
-adq 0.83 / 0.28 /
-rank 0.82 0.63 0.29 0.23
 0.80 0.70 0.27 0.26

Table 3. Average document level and sentence level correlations on  2011 shared
evaluation task for two submitted  metrics, widely used  and  scores, and
best ranked novel evaluation metrics. The results marked with ∗ are averaged without

the Czech translation outputs.

Document level Spearman’s coefficients and sentence level Kendall’s coefficients
are calculated for the  score and for all investigated F scores on all data, as well
as separately for each language pair and for each domain.

On the document level no significant differences are observed – all the correlation
coefficients are very high, between 0.8 and 1. Sentence level correlations are shown
in Table 4. The results are similar to those on  data, i.e. most promising metric is
the F score, followed by the F and F scores. Combining full forms and base
forms of the words (F) does not yield any improvements.

4. Conclusions

We presented F, a toolkit for automatic evaluation of translation output which we
believe will be of value to the machine translation community. It can be downloaded
from http://www.dfki.de/∼mapo02/rgbF/.

So far, the most promising F scores are those using morphemes and  tags
as units. Different unit and n-gram weights should be investigated in future work, as
well as the use of other types of units.
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overall de-en en-de es-de news openoffice
 -0.198 0.024 -0.250 -0.296 -0.181 -0.328
F 0.557 0.592 0.544 0.544 0.549 0.619
F 0.561 0.589 0.554 0.548 0.553 0.618
F 0.587 0.616 0.570 0.583 0.581 0.639
F 0.534 0.569 0.511 0.529 0.528 0.582
F 0.577 0.610 0.564 0.565 0.571 0.624
F 0.577 0.611 0.563 0.566 0.571 0.622
F 0.597 0.623 0.587 0.589 0.591 0.644
F 0.595 0.622 0.582 0.587 0.588 0.645
F 0.596 0.620 0.589 0.588 0.589 0.654
F 0.593 0.618 0.583 0.586 0.586 0.650

Table 4. Sentence level correlations on XÜ data for the  score and the
investigated  metrics. Bold represents the best values. The most promising

metrics are F, F and F.
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Abstract
Each iteration of minimum error rate training involves re-translating a development set.

Distributing this work across computational nodes can speed up translation time, but in prac-
tice some parts may take much longer to complete than others, leading to computational slack
time. To address this problem, we develop three novel algorithms for distributing translation
tasks in a parallel computing environment, drawing on research in parallel machine schedul-
ing. We present results showing a substantial speedup in overall decoding time.

1. Introduction

The task of translation involves translating a source language document f into tar-
get language e. Most popular statistical translation techniques select the best transla-
tion ê for source sentence f according to a linear combination of models ϕ using a set
of model weights λ (Och and Ney, 2002).

ê = arg max
e

∑
i

λiϕi(e, f) (1)

Values for λ are obtained by optimizing an objective function such as BLEU (Pa-
pineni et al., 2001) against a development set, most commonly using minimum error
rate training (MERT) (Och, 2003). Each iteration of MERT requires this development
set to be re-translated using a new set of λ weights. MERT is one of the slowest com-
ponents in a typical machine translation training pipeline, and translating the devel-
opment set is nearly always the slowest step in MERT. We now examine techniques

© 2012 PBML. All rights reserved. Corresponding author: Lane.Schwartz@wpafb.af.mil
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Mathematical Linguistics No. 98, 2012, pp. 109–119. doi: 10.2478/v10108-012-0013-x.
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for speeding up the translation process by splitting a source document into parts and
distributing the translation of those parts across parallel computational nodes.

Ideally, all parts should take the same amount of time to translate. While naive
splitting techniques reduce the time required for each translation iteration by split-
ting the work between n computational nodes, in practice some parts may take much
longer to complete than others. This can lead to significant computational slack time.
To address this problem, we develop three novel algorithms for splitting translation
tasks in a parallel computing environment, drawing on research in parallel machine
scheduling.

2. Related Work

Research into parallel machine scheduling problems constitutes a wide and well-
studied field, ranging through various disciplines of engineering, manufacturing, and
management in addition to computer science and applied mathematics (Cheng and
Sin, 1999), spanning a wide range of scheduling techniques (Panwalkar and Iskander,
1977).

We now briefly examine the existing research most relevant to our task. Hu (1961)
and Graham (1966; 1969) develop various list scheduling algorithms. This family of
algorithms prioritizes jobs into a queue, then assigns jobs to machines in queue order.
This approach attempts to evenly balance the load on each execution host (De and
Morton, 1980; Cheng and Sin, 1999). Both Algorithm 1 below and the techniques we
develop in Section 3 fall into this family of algorithms.

Algorithm 1 Split input text intonparts such that each part contains the same number
of lines. In cases where the total number of lines is not evenly divisible by n, the last
part will contain fewer lines than each of the other parts.

function N-S(n,input)
s← input.length
ℓ← ⌈s/n⌉
for p← 0 . . . (n− 1) do

i← ℓ× p

for j← i . . .min(i+ ℓ− 1,s− 1) do
output[p].append(input[j])

end for
end for
return output

end function

While the models in Equation 1 could, in theory, condition on previously trans-
lated sentences, in practice virtually no widely used models do so. It is therefore very
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Figure 1: Sentence length (in words) of sentences from the NIST OpenMT 2008 Urdu-
English task.

straightforward to split the data into n parts, and translate each part independently
on n computational nodes.

3. Better Splitting Algorithms

We begin by examining the development set for the NIST OpenMT 2008 Urdu-
English task. When tuning the model weights λ, this development set will be trans-
lated numerous times. We observe in Figure 1 that the number of words in each sen-
tence varies widely and unevenly throughout the corpus.

Using Algorithm 1, scripts included with Moses (Koehn et al., 2007) split the cor-
pus into n parts of of ℓ or fewer lines each; ℓ is the smallest integer greater than or
equal to s/n, where s is the total number of input sentences. The first ℓ lines comprise
the first part, the next ℓ lines comprise the second part, and so on. Thus, each part
contains exactly ℓ lines, with the possible exception of the last part, which contains
fewer than ℓ lines when s is not evenly divisible by n.

Figure 2a shows the amount of time taken to translate each part of the development
set, split using Algorithm 1 into 64 parts, using Moses configured with a 5-gram lan-
guage model. We observe that the shape of Figure 2a generally matches that of Figure
1. There is substantial variance in translation time between the parts in Figure 2a, with
some parts taking nearly 80 seconds and many others finishing in well under 10 sec-
onds. We observe that this disparity is largely due to an imbalance of short versus
long sentences between the parts. Because short sentences take less time to translate
than long sentences, parts assigned mostly short sentences finish much faster than
parts that are assigned many longer sentences.

To remedy this imbalance, we propose Algorithm 2. Prior to splitting the data
into parts, Algorithm 2 begins by examining the number of words in each sentence.
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(a) Algorithm 1 — N-S
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(b) Algorithm 2 — H-S
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(c) Algorithm 3 — W-S
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(d) Algorithm 4 — T-S

Figure 2: Total translation time (in seconds) for each part when data from the NIST
OpenMT 2008 Urdu-English task is split into 64 parts using each of four algorithms.
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Algorithm 2 Split input text into n parts to balance the histograms of line lengths for
all parts.

function H-S(n,input)
for i← 0 . . . ( input.length −1) do

sentence[i].length← input[i].length
sentence[i].index← i

end for
S(sentence) {|x, y| x.length⇔ y.length}

◃ Sort sentences by length
p← n

for i← 0 . . . (input.length −1) do
if p < n− 1 then

p← p+ 1

else
p← 0

end if
output[p].append(input[sentence[i].index])

end for
return output

end function

Sentences are sorted according to length, then assigned in turns to parts. This round-
robin distribution of sentences into parts results in the sentence length histograms for
each part being approximately equal. While Algorithm 2 attempts to balance short
and long sentences across parts, we nevertheless observe non-trivial imbalance in
translation times across parts in Figure 2b.

To improve this remaining imbalance, we propose Algorithm 3. In Algorithm 3,
sentences are sorted by length into a queue, with longest sentences at the head of the
queue. Initially, no sentences have been assigned to any part. The longest sentence, at
the head of the queue, is assigned first to a part. As each sentence is assigned to a part,
the total number of words assigned to that part is recorded. Each subsequent sentence
is removed from the queue and assigned to the part with the least work assigned to it,
as measured by number of words. In Figure 2c, we observe that most of the imbalance
in translation times across parts has been resolved.

When assigning sentences to jobs, we would ideally like to know how long each
sentence will take to process. Algorithms 2 and 3 use the number of words in each
sentence as a proxy for processing time. During MERT, the same set of development
sentences are translated multiple times. Since each decoding process differs only by
the λ weights used, it is reasonable to expect little variation in decoding runtime for
any given sentence across all MERT runs. With this in mind, we record the time re-
quired to translate each sentence during the first iteration of MERT. In subsequent
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Algorithm 3 Split input text into n parts to balance the number of words for all parts.
function W-S(n,input)

for i← 0 . . . ( input.length −1) do
sentence[i].length← input[i].length
sentence[i].index← i

end for
S(sentence) {|x, y| y.length⇔ x.length}

◃ Sort sentences by length, in reverse order
for i← 0 . . . ( input.length −1) do

p← L(words)
◃ Find partition with fewest words

output[p].append(input[sentence[i].index])
words[p]←words[p] + sentence[i].length

end for
return output

end function

iterations, Algorithm 4 uses the time recorded to translate a sentence as an estimate
of the time it will take to translate that sentence again. Algorithm 4 differs from Al-
gorithm 3 by sorting using these times instead of sentence length. We see in Figure
2d that the time imbalance between parts is virtually non-existent, with all times now
within 0.01 seconds of each other.

4. Experimental Configuration

To observe the effects of splitting algorithms on decoding speed, we translated the
NIST OpenMT 2008 development set of Urdu-English data using Moses in a parallel
computing cluster, distributing work using the Sun Grid Engine. We ran two decoding
setups: a standard configuration using a 5-gram language model, and a much slower
syntactic LM configuration following Schwartz et al. (2011).

Figure 2 shows the per-part translation times for all parts of the development set
when n = 64. In Figure 3, we examine the per-part translation times for only the slow-
est of n translation jobs in each configuration for various values of n, ranging from
2–512. In all configurations, we see that Algorithm 4 provides the fastest performance.

Another metric to use in examining our algorithms is total computational slack
time. During MERT, computational slack time arises when some parts of the devel-
opment set finish translating faster than others. Figure 4 lists the decoding times of
the fastest and slowest translation jobs for parts split using each of the four algorithms
for various values of n, ranging from 2–512. We see the total cumulative slack time
for each of these conditions in Figure 5.
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(a) Decoding times in seconds for decoder configured using a 5-gram language model.
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Figure 3: Decoding times for the slowest translation job in a translation task split into
n decoding jobs using various splitting algorithms (N-S, H-S,
W-S, and T-S).
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Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Split Size N-S H-S W-S T-S

(n) Min Max Min Max Min Max Min Max
2 222.9 224.4 221.5 225.8 219.3 228.0 223.7 223.7
4 109.2 113.7 110.0 114.6 108.7 115.6 111.8 111.8
8 51.4 58.4 52.2 59.0 53.2 58.3 55.9 55.9
16 24.9 32.2 25.0 31.7 25.3 30.0 27.9 28.0
32 11.3 19.1 11.9 17.3 11.7 16.1 14.0 14.0
64 5.4 11.3 5.4 10.6 5.7 9.1 7.0 7.0
128 1.3 8.0 2.2 6.3 2.3 5.2 3.5 3.5
256 0.3 5.3 0.7 4.3 0.8 3.0 1.7 2.5
512 0.0 3.6 0.2 3.1 0.3 2.5 0.6 2.5

(a) Decoding times in seconds for decoder configured using a 5-gram language model.

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Split Size N-S H-S W-S T-S

(n) Min Max Min Max Min Max Min Max
2 365.7 408.0 376.3 397.5 386.1 387.6 386.9 386.9
4 176.1 214.4 186.8 205.0 184.6 200.9 193.4 193.4
8 84.6 122.8 84.8 107.6 88.4 101.9 96.7 96.7
16 40.8 70.8 40.5 62.0 45.3 55.0 48.4 48.4
32 19.2 38.3 18.8 37.8 20.5 29.2 24.2 24.2
64 9.2 26.1 9.2 25.4 9.4 16.7 12.1 12.1
128 2.7 16.6 4.1 13.0 3.7 9.3 5.9 6.2
256 0.7 10.2 1.3 8.0 1.4 6.6 2.9 4.6
512 0.0 6.9 0.3 6.3 0.6 4.6 1.1 4.6

(b) Decoding times in hours for decoder configured using a syntactic language model (Schwartz et al.,
2011) addition to a 5-gram language model.

Figure 4: Decoding times for the fastest (min) and slowest (max) decoding jobs when
a translation task is split into n decoding jobs. Bold indicates fastest max time at
that split. Italics indicate balanced task times, corresponding to zero slack time (see
Figure 5).
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addition to a 5-gram language model.

Figure 5: Cumulative slack CPU time for n processing cores when processing a paral-
lel translation task split inton jobs using various splitting algorithms. Slack CPU time
is caused when some jobs finish before others. Zero slack time indicates conditions
where all jobs complete simultaneously.

117



PBML 98 OCTOBER 2012

Algorithm 4 Split input text into n parts to balance the estimated translation time of
all parts.

function T-S(n,input,estimate)
for i← 0 . . . ( input.length −1) do

sentence[i].time← estimate[i]
sentence[i].index← i

end for
S(sentence) {|x, y| y.time⇔ x.time}

◃ Sort sentences by time, in reverse order
for i← 0 . . . ( input.length −1) do

p← L(times)
◃ Find partition with least time

output[p].append(input[sentence[i].index])
times[p]← times[p] + sentence[i].time

end for
return output

end function

5. Conclusion

While statistical translation models could, in theory, condition on previously trans-
lated sentences, in practice virtually no widely used models do so. Translation is
therefore embarrassingly parallel — a document to be translated can be split into n

parts, with each part translated independently on a different computational node.
While such splitting is commonly performed, a suboptimal naive splitting tech-

nique (Algorithm 1) is used by all translation software of which we are aware. In this
work we have presented three more effective corpus splitting algorithms (Algorithms
2, 3 and 4), enabling substantial speed-ups in parallel decoding time at virtually no
additional cost.

We observe that while Algorithm 2 fails to improve over Algorithm 1 for a standard
Moses configuration for small values of n, for values of n > 8, and for all values of
n using the slow syntactic language model, Algorithm 2 represents a clear improve-
ment. Results for Algorithm 3 show further speedups over Algorithms 1 and 2 in
most configurations. Algorithm 4 is the clear winner, nearly eliminating slack time in
many cases.

While the most effective algorithm (Algorithm 4) requires per-sentence decode
times from previous decodes, in most realistic settings, Algorithm 3 provides much
of the benefit of Algorithm 4 in terms of decreased computational slack time while
requiring little changes to existing decoding scripts which use the naive Algorithm 1.

Implementations in Ruby and Java of all four splitting algorithms are provided at
http://github.com/dowobeha/balance-corpus.
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Abstract
This paper demonstrates DELiC4MT, a piece of software that allows the user to perform

diagnostic evaluation of machine translation systems over linguistic checkpoints, i.e., source-
language lexical elements and grammatical constructions specified by the user. Our integrated
tool builds upon best practices, software components and formats developed under different
projects and initiatives, focusing on enabling easy adaptation to any language pair and linguis-
tic phenomenon. We provide a description of the different modules that make up the tool,
introduce a web demo and present a step-by-step case study of how it can be applied to a spe-
cific language pair and linguistic phenomenon.

1. Introduction

DELiC4MT12 is an open-source tool for diagnostic evaluation of Machine Transla-
tion (MT) which has been developed as part of the FP7 CoSyne project.3 In contrast
to automatic MT evaluation metrics, which are only effective at carrying out overall
evaluations of MT systems (either at sentence or document level), this tool allows the
evaluation of MT systems over linguistic phenomena specified by the user.

Most of the software tools for MT evaluation developed during the last decade
belong to the category of automatic metrics. These are programs that, given the

1http://www.computing.dcu.ie/~atoral/delic4mt/
2https://github.com/antot/DELiC4MT
3http://cosyne.eu
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output of an MT system and reference translation(s), apply different (primarily n-
gram based) algorithms that provide a score by comparing the output of the system
with the reference(s). Such automatic metrics include BLEU (Papineni et al., 2002),
TER (Snover et al., 2006), METEOR (Banerjee and Lavie, 2005), etc. A (Giménez
and Màrquez, 2010) is a toolkit that provides a common interface to a rich set of met-
rics, thus making it easier for MT users to make use of these metrics. A also in-
corporates schemes for metric combination.

Woodpecker (Zhou et al., 2008) is a piece of software that can evaluate MT systems
over specific linguistic phenomena, also known as linguistic checkpoints (linguistically-
motivated units e.g. an ambiguous word, a noun phrase, etc.), providing more fine-
grained linguistically-motivated evaluation than the aforementioned ‘traditional’ met-
rics. The tool presented in the current paper builds on the paradigm introduced by
Woodpecker and overcomes two of its limitations: (i) its implementation is language-
independent (while Woodpecker had language-dependent data for English–Chinese
hardcoded), and (ii) the license of the tool presented here allows anyone to work on it
and release modifications, while conversely, Woodpecker’s license, MSR-LA,4 is quite
restrictive in this regard. Moreover, the current tool provides additional functionali-
ties such as checkpoint filtering based on PoS tags and statistical significance testing.

Evaluations of different MT systems for a range of linguistic checkpoints have been
carried out for English–Chinese (Zhou et al., 2008), Italian–English, German–English
and Dutch–English (Naskar et al., 2011).

The rest of the paper is structured as follows. Section 2 introduces the software
architecture of the tool. This is followed by an illustrative case study in which the
software is applied to a specific language pair and linguistic checkpoint. Finally we
draw some conclusions and outline directions for future work.

2. Architecture

The aim of DELiC4MT is to provide the required functionality to perform diagnos-
tic evaluation on a set of linguistic checkpoints. This is done by extracting checkpoint
instances from text using PoS tagging (applied only to the source and reference trans-
lations) and word alignment and then evaluating these instances. The main focus
during its development has been to allow for easy adaptation to any language pair
and linguistic phenomenon. In fact, it has been applied successfully to evaluate a set
of MT systems over a set of language directions involving German, Italian, Dutch and
English, where the set of checkpoints is different for each language (Naskar et al.,
2011). The work presented in this paper extends the work previously described in
(Naskar et al., 2011) by incorporating a length-based penalty to penalize longer can-
didate translations as in (Zhou et al., 2008) and filtering of noisy checkpoint instances.

4https://research.microsoft.com/en-us/projects/pex/msr-la.txt
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Figure 1. Architecture for linguistic checkpoints-based diagnostic evaluation of
machine translation

This paper also provides additional technical details regarding the architecture and
implementation of the tool.

The tool makes use of open-source software components and representation stan-
dards developed by the research community in recent years. It uses:

• State-of-the-art PoS taggers and word aligners. Treetagger5 and GIZA++ (Och
and Ney, 2003),6 respectively, are used in the current version, although any sim-
ilar tool could be used.

• KAF (Bosma et al., 2009), established in the FP7 KYOTO project,7 for represent-
ing textual analysis. KAF is a unique format for representing all the levels of
linguistic analysis based on ISO standards for each of those levels (i.e., MAF for
morphology, SynAF for syntax and SemAF for semantics). Scripts to convert
the output of several state-of-the-art tools are available (e.g. TreeTagger).

• Kybots (Vossen et al., 2010),8 also developed within KYOTO, to define the lin-
guistic phenomena to be evaluated. A Kybot profile can be thought of as a reg-
ular expression over elements and attributes in KAF documents.

Figure 1 presents the architecture of the tool. The source- and target-language
sides of the gold standard (test set) are processed by PoS taggers and converted into
KAF. The test set is also word aligned, and the identifiers of the aligned tokens are

5http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

6 https://code.google.com/p/giza-pp/

7http://www.kyoto-project.eu/

8https://kyoto.let.vu.nl/svn/kyoto/trunk/modules/mining_module/
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stored. Kybot profiles covering the different evaluation targets (linguistic checkpoints)
are run on the source KAF text, and the identifiers of the matched terms are stored.
Finally, the evaluation module takes as input the identifiers from the Kybot output,
the KAF annotated test sets, the word alignments and the output of the MT system,9
and calculates the performance of the MT system over the linguistic checkpoint(s)
considered.

3. Case study

This section takes a closer look at the different modules of DELiC4MT by present-
ing a case study over a specific language pair and linguistic checkpoint. The case
study demonstrates the use of the tool step-by-step.10 A broader evaluation over a
set of language pairs and checkpoints can be found in (Naskar et al., 2011). A web
interface for the tool has also been developed, screenshots of which can be found at
http://www.computing.dcu.ie/~atoral/delic4mt/webdemo. All of the scripts for running
DELiC4MT are packaged within a single wrapper script (delic4mt.sh), facilitating
ease-of-use.

3.1. Preparing the test data to be evaluated

We use the Italian–English test data of (Toral et al., 2011), consisting of source file
en-it.it and target en-it.en, for illustration purposes.

The test set is PoS tagged using TreeTagger which also performs sentence-splitting
and tokenisation. Since the tokens and sentences need to correspond to those in the
alignment, we needed to alter TreeTagger’s behaviour. A script has been developed
for that reason (treetagger_preserving_tokens_and_lines.pl); it receives as input the
text tokenised and applies TreeTagger to each sentence. The output of TreeTagger
is post-processed overwriting any end-of-sentence (SENT) PoS tag by OTHER. Finally
the tag of the last token of the sentence is overwritten to SENT. The output of this
procedure is processed by a script that converts it to KAF (treetagger2kaf.pl). The
following pipeline PoS tags the test set:
cat en-it.it | tokenizer.perl | treetagger_preserving_tokens_and_lines.pl \
italian | treetagger2kaf.pl -ri > en-it.it.kaf

cat en-it.en | tokenizer.perl | treetagger_preserving_tokens_and_lines.pl \
english | treetagger2kaf.pl -ri > en-it.en.kaf

The following is a sample of the KAF files produced for the Italian–English sen-
tence pair 62 (“[...] la carne americana [...]”, “[...] American meat [...]”) 11:

9The MT output is taken as is; no processing is required as for the test set.
10A more technical tutorial is included with the software. The tool also provides a wrapper that encap-

sulates all the functionalities in a single command.
11“carne” is the Italian word for “meat”, and “americana” is the translation of “American” (inflected

for feminine singular, to agree grammatically with “carne”). Note that in Italian the attributive adjective
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<text>[...]
<wf wid="w62_4" sent="62">la</wf>
<wf wid="w62_5" sent="62">carne</wf>
<wf wid="w62_6" sent="62">americana</wf>
[...]</text>
<terms>[...]
<term tid="t62_5" type="open" lemma="carne" pos="NOM">
<span><target id="w62_5"/></span>
</term>
<term tid="t62_6" type="open" lemma="americano" pos="ADJ">
<span><target id="w62_6"/></span>
</term>
[...]</terms>

<text>[...]
<wf wid="w62_3" sent="62">American</wf>
<wf wid="w62_4" sent="62" para="1">meat</wf>
[...]</text>
<terms>[...]
<term tid="t62_3" type="open" lemma="American" pos="JJ">
<span><target id="w62_3"/></span>
</term>
<term tid="t62_4" type="open" lemma="meat" pos="NN">
<span><target id="w62_4"/></span>
</term>
[...]</terms>

The test set needs to be aligned at word level so that target equivalents of the
source-language checkpoints can be identified. This is done by appending them to
a bigger parallel corpus, e.g., Europarl,12 in order to help ensure accurate word align-
ments and avoid data sparseness. Of course, as with all alignment approaches, us-
ing in-domain parallel data, if available, would help ensure the accuracy of the word
alignments, but for our work we make use of freely available data resources. The ad-
ditional checkpoint filtering step (cf. Section 3.3) helps to circumvent any potential
noisy alignments. The text is preprocessed with the Europarl tokeniser; then GIZA++
is applied, returning word alignments between the source and target sentences that
make up the test set. The word alignments for the Italian–English sentence pair pre-
sented earlier are shown below:13

... 4-3 5-2 ...

3.2. Creating a linguistic checkpoint

Kybots are used to define linguistic phenomena (and extract their instances) that
are to be evaluated. A Kybot profile specifies which information to extract from the
KAF documents. For example the Kybot profile presented below extracts under the
element “event” the term identifiers of those nouns that are immediately followed by

normally (though not necessarily) follows the noun which it modifies, whereas in English the standard
order is to have the adjective first, followed by the noun.

12http://www.statmt.org/europarl/
13Note that identifiers in the alignment start from 0 while in the KAF files they start from 1.
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an adjective in the Italian side of the test set. Target equivalents of the tokens identified
by the Kybots in the source are obtained using the word alignments.
<Kybot id="kybot_n_a_it">
<variables>

<var name="X" type="term" pos="NOM*"/>
<var name="Y" type="term" pos="ADJ*"/>

</variables>
<relations>

<root span="X"/>
<rel span="Y" pivot="X" direction="following" immediate="true"/>

</relations>
<events>

<event eid="" target="$X/@tid" lemma="$X/@lemma" pos="$X/@pos"/>
<role rid="" event="" target="$Y/@tid" lemma="$Y/@lemma" pos="$Y/@pos" rtype="follows"/>

</events>
</Kybot>

For the sake of clarity, the case study presents a rather simple checkpoint. How-
ever, the expressive power of the Kybot engine allows the representation of more com-
plex linguistic phenomena. As an example, we used a checkpoint for Italian→English
that extracts sequences consisting of a noun followed by the preposition “di” followed
by another noun, as there are a range of possible translations of this construction into
English that are acceptable (at least in principle), e.g. keeping the preposition ”of”
between the two English nouns, using the genitive/possessive, or simply juxtaposing
the two nouns in the target language. In order to define this checkpoint, one needs to
select terms according to different fields, i.e., the first and third according to the PoS
tag while the second according to both the lemma and the PoS tag.

The following commands load the Italian test file in KAF and the Kybot profile:
doc_load.pl --container-name docs_it en-it.it.kaf
kybot_load.pl --container-name kybots_it kybot_n_a_it.xml

Then the Kybot profile can be applied on the KAF document, and the matching
terms are output:
kybot_run.pl --dry-run --profile-from-db --container-name docs_it --kybot-container-name \
kybots_it kybot_n_a_it.xml > out_n_a_it.xml

The following sample of the output shows the term “carne americana”, terms 5
and 6 extracted from sentence 62, as it is a noun adjective sequence:
<kybotOut>
<doc shortname="en-it.it.kaf">
[...]
<event eid="e66" target="t62_5" lemma="carne" pos="NOM"/>
<role rid="r66" event="e66" target="t62_6" lemma="americano" pos="ADJ" rtype="follows"/>
[...]
</doc>

</kybotOut>

3.3. Filtering checkpoint instances

Optionally the tool can filter checkpoints based on corresponding PoS tags (rec-
ommended as it alleviates word alignment errors). This is done by establishing con-
straints based on PoS tags mappings between checkpoints extracted and the equiva-
lent tokens in the target language (e.g., NOM*=N*, indicating that the equivalent token
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in the target language of a token in the source with PoS tag NOM* must have the PoS
tag N*). If a constraint is not fulfilled the corresponding instance of the checkpoint is
dropped. Consider the following two constraints for Italian→English:
NOM* = N*
ADJ* = JJ*

The following sample of the Kybot output shows a term made up of tokens 24
(index 23 in word alignment) and 25 (index 24 in word alignment) from sentence 1:
<event eid="e1" target="t1_24" lemma="sinodo" pos="NOM"/>
<role rid="r1" event="e1" target="t1_25" lemma="patriarcale" pos="ADJ" rtype="follows"/>

Consider then the word alignments of the sentence.
... 23-22 22-23 21-24 26-24 24-25 ...

The tokens of the checkpoint instance (source tokens 23 and 24) get aligned to
target tokens 22 and 25 (23 and 26 in the KAF file). Now, let us check these tokens in
the target language.
[...]
<wf wid="w1_23" sent="1">of</wf>
<wf wid="w1_24" sent="1">the</wf>
<wf wid="w1_25" sent="1">Maronite</wf>
<wf wid="w1_26" sent="1">Patriarchal</wf>
<wf wid="w1_27" sent="1">Synod</wf>
[...]
<term tid="t1_23" type="open" lemma="of" pos="IN">
<span><target id="w1_23"/></span>
</term>
<term tid="t1_26" type="open" lemma="Patriarchal" pos="NP">
<span><target id="w1_26"/></span>
</term>
[...]

Thus, “sinodo patriarcale” is wrongly aligned to “of Patriarchal” (the right align-
ment is “Patriarchal Synod”). In PoS terms, NOM ADJ gets aligned to IN NP. The con-
straints are checked and they are not fulfilled in this case, as the PoS correspondence
for “sinodo→of“ (ADJ=IN) does not match the constraint ADJ=JJ. Thus, this instance
of the checkpoint is filtered out.

3.4. Evaluating MT systems on the linguistic checkpoint

The performance of a MT system over a linguistic checkpoint is calculated by us-
ing an n-gram based evaluation metric. We split each system-generated translation
and reference for a checkpoint into a set of n-grams, compute the number of match-
ing n-grams and sum up the gains over all the n-grams as the score for this check-
point. If the reference of the checkpoint is not consecutive, we use a wildcard charac-
ter (“*”) which can be matched by any word sequence. Below are some examples for
the Italian→English language direction to demonstrate the n-gram matching.

When we calculate the recall of a set of checkpoints C, the references r of all check-
points c inC (c can be a single checkpoint, a category, or a category group) are merged
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Consecutive checkpoint:

Checkpoint: Le proteste per la carne americana
Reference: Protests over American meat
Candidate: The protests for the American meat
Matched n-grams: protests, American, meat, American meat

Non-consecutive checkpoint:

Checkpoint: Le proteste * carne [*]
Reference: Protests * meat
Candidate: The protests for the American meat
Matched n-grams: protests, meat, protests * meat

into one reference set R and the recall of C is obtained on R using equation 1.

R(C) =

∑
r∈R

∑
ngram∈r match(ngram)∑

r∈R

∑
ngram∈r count(ngram)

(1)

Since n-grams appearing in the target equivalents of instances of a linguistic phe-
nomenon are searched for in the candidate translations, longer candidate translations
have a better chance of returning higher scores. So we have implemented a length-
based penalty to penalize longer candidate translations. We set the length-based
penalty as in 2:

penalty =

{
length(R)
length(C) if length(C) >length(R)
1 otherwise

(2)

where length(C) is the average candidate sentence length and length(R) is the av-
erage reference sentence length. Thus systems producing longer candidate sentences
are penalized. The final score is calculated as in 3:

Score(C) = R(C) ∗ penalty (3)

The evaluation module is run in the following way:
java -jar delic4mt.jar -alg it-en.alignment -sl_kaf en-it.it.kaf -tl_kaf en-it.en.kaf \
-lc out_n_a_it.xml -run mt_output.iten > mt_output.iten.n

The five parameters are: alg - word alignments for the gold standard (test set),
against which the evaluation is performed; sl_kaf - source side of the test set in KAF;
tl_kaf - target side of the test set in KAF; lc - Kybot output (i.e., instances of the check-
point); and run - the output of a MT system, which is to be evaluated.

Below there is sample output which shows the matching of a translation hypoth-
esis with the reference for the checkpoint instance “carne americana”.
Sen_id: 62
Linguistic checkpoint identified on the Source: carne americana
Target equivalent (Reference): American meat
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Google Bing Systran
Score 0.6350 0.5537 0.4806

Table 1. Scores for the MT systems on the linguistic checkpoint N ADJ

Checking for n-gram matches for checkpoint instance: 65
Ref: American meat
Hypo: The protests for the American meat , [...]

n_gram matches : American, meat, American meat
# of n-grams in reference = 3
# of matching n-grams in hypothesis 62 = 3

The evaluation module finally sums up the number of matching n-grams (across
the whole testset) for the linguistic checkpoint, and divides it by the total number of
(checkpoint) n-grams in the reference set. The scores obtained by three online MT
systems (Google Translate,14 Microsoft Bing,15 and Systran16) when evaluated over
the example linguistic checkpoint (N ADJ) are shown in Table 1. Google obtains the
highest score, 8.13 points higher than Bing, which in its turn is 7.13 points higher
than Systran.

3.5. Statistical Significance Tests

Finally, for each pair of systems we can check whether the difference is statistically
significant. A script included provides this functionality using paired bootstrapping
resampling (Koehn, 2004). Let us check if the differences between Google’s and Bing’s
outputs are significant:
lingcheckp_sig.pl google.iten.n bing.iten.n
Num results: 1204, times iterations: 5, num elements per iteration: 0.3
Randomised bootstrapping 6020 iterations with 361 elements
System a better than b in 6020 iterations out of 6020, i.e. 100%

There are 1,204 instances, we run 1,024 · 5 iterations with 30% of the instances
in each iteration (randomly selected). This means running 6,020 iterations with 361
instances each. For all of the iterations the score of system a is higher than that of
system b, thus we can say that the difference is statistically significant for p = 0.01.

4. Conclusions and Future Work

This paper has presented DELiC4MT, a tool for evaluating MT systems over user-
specified linguistic phenomena. The tool makes extensive use of already available
open-source software and standards and is easily adaptable to new languages and

14http://translate.google.com
15http://www.microsofttranslator.com
16http://www.systran.co.uk
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linguistic phenomena. We have presented a case study which illustrates how the tool
can be adapted to evaluate a specific linguistic phenomenon of a given language pair.

Regarding future work, we envisage the following tasks: (i) use alternative aligners
and alignment heuristics to investigate if we can extract accurate alignments without
the need for a significant amount of additional parallel data, (ii) compare the correla-
tion of the diagnostic evaluation metric against that of other existing automatic eval-
uation metrics as well as against human judgements, and (iii) introduce a precision-
based component into the diagnostic evaluation metric.
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Abstract
Hierarchical phrase-based (Hiero) models have richer expressiveness than phrase-based

models and have shown promising translation quality gains for many language pairs whose
syntactic divergences, such as reordering, could be better captured. However, their expres-
siveness comes at a high computational cost in decoding, which is induced by huge dynamic
programs associated with language model integrated decoding, where the search space is lex-
ically exploded and exact search often becomes intractable. Cube pruning and growing are
two approximate search algorithms to make decoding much more efficient. In this article, we
describe an extension to the Hiero decoder of the Moses toolkit by providing cube growing as
an alternative to cube pruning, with an additional parameter similar to Jane’s cube growing
implementation that is not present in the original one. We also report experimental results on
a full-scale NIST MT08 Chinese-English translation task.

1. Introduction

Cube pruning for machine translation (MT) decoding performs lazy computation
along multi-hyperedges in parallel. However, it still computes a full k-best list for each
node in the hypergraph. Based on this observation, Huang and Chiang (2007) further
propose a lazy variant of cube pruning, known as cube growing, derived from k-best
parsing in Huang and Chiang (2005), which turns the k-best selection problem into
a depth-first, top-down recursive k-best generation procedure, and only generates as
many hypotheses as needed at each hypergraph node to obtain the kth best hypothesis
of the root node.

In Hiero decoding, cube growing is a two-pass procedure. In the first pass transla-
tion model only monotonic (-LM) decoding, a translation hypergraph is generated.

© 2012 PBML. All rights reserved. Corresponding author: pkoehn@inf.ed.ac.uk
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S 

X 

X1 X2 

Figure 1. A toy derivation in a hypergraph. The hyperedge associated with the SCFG
rule X→ X1X2 is shaded.

This pass could be treated as an initial bottom-up rule look-up only phrase, even
though more housekeeping work is carried out in this first pass as preparation for
the second-pass top-down main cube growing procedure. The main cube growing is
then applied to the resulting hypergraph to generate the k-best hypotheses of the goal
node (the k-best translations of a given complete sentence) in a top-down manner.

The original cube growing algorithm by Huang and Chiang (2007) is applied to a
tree-to-string translation model, and the authors have left its extension to the Hiero
model as part of their future work. We adapted the cube growing algorithm to the
Hiero model and implemented it as an alternative search algorithm in addition to
cube pruning in Moses (Koehn et al., 2007). Moreover, inspired by the cube growing
implementation by Vilar et al. (2010)1, we have introduced an additional parameter
not present in the original cube growing algorithm to boost its search and translation
quality.

2. Cube Growing for Hiero Decoding

We first provide an overview of the main structure of the cube growing algorithm,
then follow this up with an example concentrating on a critical detail of it. We depict
one possible derivation of the goal node of a hypergraph in Figure 1. Suppose we are
interested in finding the first-best hypothesis of S (for the sake of discussion, we ignore
the immediate right child of S, and concentrate only on the immediate left child node
X). First, the main cube growing procedure is called on the S node, it will then request
the first-best hypothesis of the X node. However, this required first-best hypothesis
has not been generated yet, and the X node will call the main cube growing procedure
on itself, which causes two further recursive calls of the main cube growing procedure
on the two leaf nodes X1 and X2 (assuming it is the first time we visit these two leaf
nodes, the first-best hypotheses of them are unknown either). Using a subprocedure
of cube growing, the two leaf nodes will return the recursive calls to node X with their
respective first-best hypothesis (assume for now the two leaf-nodes used a black-box
subprocedure to return their first-best hypotheses to X). Upon receiving the first-best
hypotheses of both X1 and X2, node X will use the same black-box subprocedure to

1To the best of our knowledge, Jane was the only open-source decoder which implements cube growing.
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Figure 2. Language model costs for all hypotheses associated with a hyperedge, lower
costs are better.

determine if the candidate first-best hypothesis generated from the given two first-
best hypotheses of X1and X2 is good enough to be passed up to node S. If not, more
recursive calls would be made to both of its child nodes until it is confident to pass
a hypothesis as its first-best hypothesis to S. Similarly, node S would use the same
black-box subprocedure to determine its first-best hypothesis.

We now turn to the critical subprocedure and concentrating on cube growing along
one hyperedge. In short, cube growing uses an estimated minimal language model
cost, termed the language model intersection cost heuristic to determine whether a
hypothesis is good enough to be enumerated into the final k-best list of a hyper-
edge. To define the language model intersection cost heuristic, assume for the mo-
ment that all language model intersection costs for a hyperedge are known, as de-
picted in each cell of Figure 2, and the language model heuristic for this hyperedge
is just min{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} = 0.1. In general, with LM (he) denoting the
language model cost of a hypothesis h from the hyperedge e, the language model
intersection cost heuristic for this hyperedge is

τ = min
he∈H

LM (he) ,

where H is the set of all possible hypotheses of this hyperedge. We note that this
language model heuristic is a lower bound on language model intersection costs along
this hyperedge, and we could estimate the total cost of any hypothesis he generated
from this hyperedge as β = λ (he) + τ, where λ (he) is the total cost disregarding
the language model cost. Also, β is always an underestimate if τ is the true minimal
language model intersection cost along the hyperedge e. Furthermore, we denote the
true total cost of a hypothesis he as α = λ (he) + LM(he).

Return to our example and focus on cube growing along the hyperedge X→ X1X2

as illustrated in Figure 3, assuming we know in advance that τ = 0.1 for this hyper-
edge. In Figure 3(a) (top cube) the first recursive calls for X1 and X2 have returned,
yielding a total cost of 1.0 for both of the first-best hypotheses of X1 and X2. A can-
didate first-best item of X is then generated, as shown in the top cube of Figure 3(a),
its α cost is 1.0 + 1.0 + 0.7 = 2.7, with 0.7 as the language model cost. This item is
first put into a priority queue (PriorityQueue), and then is immediately popped out
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Figure 3. Example illustrating cube growing along one hyperedge. The two axes of all
the “cubes” correspond to hypotheses for X1 and X2 respectively. On the top row,

black numbers indicate α costs of hypotheses in the PriorityQueue, and grey numbers
indicate hypotheses in the PriorityQueue-temp. For each cube on the top row, the
corresponding cube on the bottom row represents another priority queue which

contains the same hypotheses as the cube above it, but with β costs as the priorities.

of the queue as it is the only item in the queue and pushed into a buffer priority
queue (PriorityQueue-temp) for further comparison with more items (as we are not
certain this item is the true first-best item of X due to non-monotonicity). More re-
cursive calls cause more candidate items being generated at the node X and the top
cube of Figure 3(b) shows two more candidate items with α costs 2.2+ 0.2 = 2.4 and
4.0 + 0.4 = 4.4 and these two items are again put into the PriorityQueue. Moreover,
as we are given that τ = 0.1 for this hyperedge, we have the estimated total costs (the
β costs) for these two items as 2.2 + 0.1 = 2.3 and 4.0 + 0.1 = 4.1. For each cube on
the top row, we record β costs of hypotheses in the PriorityQueue into a correspond-
ing monotonic grid on the bottom row of Figure 3 (in a practical implementation, we
could implement this monotonic grid as another priority queue).

Now PriorityQueue-temp contains a single item he (1) with an α cost of 2.7 de-
picted in grey (top cube of Figure 3(b)) and PriorityQueue contains two items with
α(he (2,1)) = 2.4, α(he (1,2)) = 4.4, depicted in black (top cube of Figure 3(b)) and
β(he (2,1)) = 2.3, β(he (1,2)) = 4.1 (bottom cube of Figure 3(b)). As in Huang and
Chiang (2007), we define

bound = min
he∈PriorityQueue

β (he) ,
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and in this example, bound = min{β(he (2,1)), β(he (1,2))} = min {2.3, 4.1} = 2.3

with β costs as recorded in the bottom cube of Figure 3(b). Because α (he (1)) >

bound, i.e., 2.7 > 2.3, assuming lower cost is better, the candidate first-best item can-
not be popped out of PriorityQueue-temp as the first-best hypothesis of this hyperedge
(because bound tells us the α costs of any future items along this hyperedge could
be anything greater than 2.3, hence he (1) with an α cost of 2.7 may not be the true
first-best, assuming lower cost is better). As such, we continue popping the minimalα
cost hypothesis he (2,1) from the PriorityQueue and put it into the PriorityQueue-temp,
as shown in the top cube of Figure 3(c). More recursive calls give us the neighbours
of this popped out hypothesis, with α costs 4.5+ 1.0 = 5.5 and 3.2+ 1.0 = 4.2 respec-
tively. These two new neighbours are put into the PriorityQueue and their β costs are
recorded as in the bottom cube of Figure 3(c). Now there are three items in the Priori-
tyQueue (indicated by the three black numbers in the top cube of Figure 3(c)). Taking
the minimalβ costs of the three items (as depicted in the bottom cube of Figure 3(c)) in
the PriorityQueue, we get bound = min{4.6, 3.3, 4.1} = 3.3. This time, α costs of both
of the items in the PriorityQueue-temp are less than bound, and therefore could be enu-
merated into the final k-best lists, with he (2,1) as the first-best hypothesis with α cost
2.4 and he (1) as the second-best hypothesis with α cost 2.7. This procedure continues
along this hyperedge and eventually generates all the k-best hypotheses required and
in this case, the generated k-best items would be the true k-best hypotheses because
0.1 is a true lower bound of the β costs (equivalently, underestimate of α costs) along
this hyperedge.

3. Language Model Cost Heuristic

In the previous section, we have explained the overall structure and described the
details of the cube growing algorithm along a single hyperedge. The main recipe for
cube growing along one hyperedge is to use the lower bound of the language model
costs of all the hypotheses from that hyperedge to guide the search (i.e., we use the
lower bound to determine if a hypothesis could be popped out of PriorityQueue-temp
and enumerated to the final k-best list). For a single hyperedge, if the bound is a true
lower bound, then there will be no search errors and an exact k-best list would be
obtained for that hyperedge. Analogous to cube pruning, the version of cube grow-
ing used in MT decoding is a multi-hyperedge version, and thus we need to establish
whether the lower bound is still valid if we apply the above procedure to the multi-
hyperedge case where the PriorityQueue contains hypotheses from multiple hyper-
edges of one consequent node in a hypergraph. Fortunately, the validity of this lower
bound across multiple hyperedges of a given consequent node is formally obtained
and a complete proof is given by Huang and Chiang (2007). For completeness, we
show the pseudocode of cube growing for Hiero decoding in Algorithm 1.
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Algorithm 1 Cube Growing for Hiero Decoding, adapted from the algorithm
in Huang and Chiang (2007)

1: procedure DCSTD(X, k)
2: if PriorityQueue uninitialised then
3: PriorityQueue (X)← ∅
4: LazyCreateCube (PriorityQueue, 1, e) foreach e ∈ BS (X)
5: PriorityQueue-temp← ∅
6: while

∣∣Htop-k
∣∣ < k and |PriorityQueue-temp (X)|+

∣∣Htop-k
∣∣ < j do

7: if |PriorityQueue| > 0 then
8: he (u)← PriorityQueue.pop-min≼
9: PriorityQueue-temp.push (he (u))

10: LazyCreateNeighbours (PriorityQueue,he (u))
11: bound← min {β (he) | he ∈ PriorityQueue}

12: GenerateHypothesis
(
PriorityQueue-temp,Htop-k, bound

)
13: GenerateHypothesis

(
PriorityQueue-temp,Htop-k,+∞)

14: procedure LazyCreateNeighbours(PriorityQueue,he (u))
15: LazyCreateCube (PriorityQueue,u+bi, e) foreach i in 1 . . . |e|

16: procedure LazyCreateCube(PriorityQueue,u, e)
17: e is X← X1 . . . X|e|

18: for← 1 . . . |e| do
19: DecodeSpanTopDown (Xi,ui)
20: if

∣∣Htop-k (Xi)
∣∣ < ui then

21: return
22: PriorityQueue.push (he (u))

23: procedure GenerateHypothesis(PriorityQueue-temp,Htop-k, bound)
24: while |PriorityQueue-temp| > 0 and min (PriorityQueue-temp) < bound do
25: Htop-k.push (PriorityQueue-temp.pop-min)
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4. Estimating Language Model Cost Lower Bounds

As we have briefly described before, a first initial pass of -LM decoding is needed
for the main cube growing procedure. It is in the first pass that we generate the trans-
lation hypergraph and try to estimate the language model lower bounds for each hy-
peredge. In a practical implementation, it is computationally too expensive to com-
pute the true lower bound of language model intersection costs for each hyperedge,
and following Huang and Chiang (2007), we adopt a less computationally demanding
approach in our implementation.

In the -LM pass of decoding a sentence, we first generate the -LM top-k best transla-
tions for the complete input sentence, these k-best translations correspond to k com-
plete derivations in the translation hypergraph and they may share some identical
hyperedges. By following backpointers of these top-k -LM derivations, we can calcu-
late language model intersection costs for all the hyperedges involved in those -LM
k-best derivations using -LM hypotheses. For a hyperedge shared among multiple
derivations, the minimal intersection cost is then taken as the language model lower
bound estimate for that hyperedge, and for a hyperedge not shared by more than one
derivation, its only intersection cost will be used as the language model lower bound
estimate. Moreover, a hyperedge may be found not represented in the first pass at all,
in that case we then take the language model cost of the first-best hypothesis at that
hyperedge as the lower bound estimate. More detailed study on the miss rate of this
procedure can be found in Vilar and Ney (2009).

While this procedure is not guaranteed to cover all hyperedges that would be used
in the top-down main cube growing procedure, it is expected that the resulting esti-
mates from these top-k -LM derivations would be sufficient to guide the search.

5. Cube Growing Practicalities

In the original cube growing algorithm, a parameter analogous to popLimit in cube
pruning is used to control its computational cost (the variable j as shown on line 6 of
Algorithm 1). This parameter is an upper bound on the number of hypotheses allowed
in PriorityQueue-temp. Inspired by the cube growing implementation in Jane (Vilar
et al., 2010), we introduce an additional parameter which is used as a lower bound
on the hypothesis count in PriorityQueue-temp. However, our specific implementation
of the lower bound parameter is different. In our implementation, the lower bound
must be surpassed each time we start to add hypotheses into PriorityQueue-temp, while
in Jane it is only used as an one-off lower bound to accumulate hypotheses when it
is the first time hypotheses are being added into a PriorityQueue-temp. In our initial
experiments, we have found that by using this lower bound parameter, it consistently
improves the search and translation quality of our cube growing implementation in
Moses, and thus it is used by default in our experiment.
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6. Experiment

We evaluated our implementation with a full-scale NIST MT08 Chinese-English
test set, which consists of 1,357 Chinese sentences. The Hiero model is trained with
part of the GALE 2008 data, which has about 50M words for each language. A sen-
tence length limit of 80 words and a symbol limit of 5 are applied. A 5-gram language
model interpolated from three separate language models trained on the English side
of the parallel corpus is used.

To compare with the cube pruning baseline, we decoded the test set with 21 combi-
nations of lower and upper bounds (cf., Section 5) for the PriorityQueue-temp size, with
each combination having equal lower and upper bounds. The first 19 bounds range
from 10 to 100 in steps of 5, the last two bounds are 150 and 250, respectively. First
pass -LM k-best size for cube growing is set to 200 in all experiments. BLEU and model
scores against average hypothesis count plots are shown in Figure 4, with Figure 4(c)
showing an enlarged part of the model cost plot. In a nutshell, cube growing main-
tains much more consistent runtime requirements than the cube pruning baseline
and achieves more significant speedups when the popLimit values of cube pruning
are relatively high, while maintaining similar levels of translation and search quality.

When competing with cube pruning at low popLimit values, cube growing has
no clear advantage of speed. This is due to the fact that cube growing always re-
quires a first bottom-up pass to generate -LMhypotheses and compute language model
lower bound estimates. This first pass already dominates the overall runtime for cube
growing with low PriorityQueue-temp size bounds and would have compromised the
speedups gained in the top-down cube growing pass.

7. Conclusion

We described our implementation of the cube growing decoding algorithm orig-
inally proposed for a tree-to-string translation model (Huang and Chiang, 2007) as
an alternative search algorithm for Hiero decoding in Moses and inspired by Jane
(Vilar et al., 2010), a new parameter is also introduced into the original algorithm.
Our experiment shows that cube growing provides a competitive alternative to cube
pruning in terms of decoding speed, while maintaining the same level of translation
and search quality. As future work, we would like to extend cube growing to support
more syntax-based models in Moses.
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Figure 4. Translation and search quality comparisons of cube pruning and cube
growing.

141



PBML 98 OCTOBER 2012

Bibliography

Huang, Liang and David Chiang. Better k-best parsing. In Proceedings of the Ninth Interna-
tional Workshop on Parsing Technology, pages 53–64. Association for Computational Linguis-
tics, 2005.

Huang, L. and D. Chiang. Forest rescoring: Faster decoding with integrated language models.
In Proceedings of the Annual Meeting of the Association for Computational Linguistics, volume 45,
page 144, 2007.

Koehn, P., H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, et al. Moses: Open source toolkit for statistical machine translation.
In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration
Sessions, pages 177–180. Association for Computational Linguistics, 2007.

Vilar, D. and H. Ney. On lm heuristics for the cube growing algorithm. In Proceedings of the An-
nual Conference of the European Association for Machine Translation, pages 242–249. Association
for Computational Linguistics, 2009.

Vilar, D., D. Stein, M. Huck, and H. Ney. Jane: Open source hierarchical translation, extended
with reordering and lexicon models. In Proceedings of the Joint Fifth Workshop on Statistical
Machine Translation and MetricsMATR, pages 262–270. Association for Computational Lin-
guistics, 2010.

Address for correspondence:
Philipp Koehn
pkoehn@inf.ed.ac.uk
Informatics Forum
10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom

142



The Prague Bulletin of Mathematical Linguistics
NUMBER 98 OCTOBER 2012

INSTRUCTIONS FOR AUTHORS

Manuscripts are welcome provided that they have not yet been published else-
where and that they bring some interesting and new insights contributing to the broad
field of computational linguistics in any of its aspects, or of linguistic theory. The sub-
mitted articles may be:

• long articles with completed, wide-impact research results both theoretical and
practical, and/or new formalisms for linguistic analysis and their implementa-
tion and application on linguistic data sets, or

• short or long articles that are abstracts or extracts of Master’s and PhD thesis,
with the most interesting and/or promising results described. Also

• short or long articles looking forward that base their views on proper and deep
analysis of the current situation in various subjects within the field are invited,
as well as

• short articles about current advanced research of both theoretical and applied
nature, with very specific (and perhaps narrow, but well-defined) target goal in
all areas of language and speech processing, to give the opportunity to junior
researchers to publish as soon as possible;

• short articles that contain contraversing, polemic or otherwise unusual views,
supported by some experimental evidence but not necessarily evaluated in the
usual sense are also welcome.

The recommended length of long article is 12–30 pages and of short paper is 6-15
pages.

The copyright of papers accepted for publication remains with the author. The
editors reserve the right to make editorial revisions but these revisions and changes
have to be approved by the author(s). Book reviews and short book notices are also
appreciated.

The manuscripts are reviewed by 2 independent reviewers, at least one of them
being a member of the international Editorial Board.

Authors receive two copies of the relevant issue of the PBML together with the
original pdf files.

The guidelines for the technical shape of the contributions are found on the web
site http:// ufal.mff.cuni.cz/pbml.html. If there are any technical problems, please
contact the editorial staff at pbml@ufal.mff.cuni.cz.


