
The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010

EDITORIAL BOARD

Editor-in-Chief

Eva Hajičová

Editorial staff

Ondřej Bojar
Eduard Bejček
Martin Popel
Pavel Schlesinger
Pavel Straňák

Editorial board

Nicoletta Calzolari, Pisa
Walther von Hahn, Hamburg
Jan Hajič, Prague
Eva Hajičová, Prague
Erhard Hinrichs, Tübingen
Aravind Joshi, Philadelphia
Philipp Koehn, Edinburgh
Jaroslav Peregrin, Prague
Patrice Pognan, Paris
Alexander Rosen, Prague
Petr Sgall, Prague
Marie Těšitelová, Prague
Hans Uszkoreit, Saarbrücken

Published twice a year by Charles University in Prague

Editorial office and subscription inquiries:
ÚFAL MFF UK, Malostranské náměstí 25, 118 00, Prague 1, Czech Republic
E-mail: pbml@ufal.mff.cuni.cz

ISSN 0032-6585

© 2010 PBML. All rights reserved.

The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010

CONTENTS

Editorial 5

Articles

Dependency Parsing as a Sequence Labeling Task
Drahomíra ”johanka” Spoustová, Miroslav Spousta

7

Identifying Different Meanings of a Chinese Morpheme through Semantic
Pattern Matching in Augmented Minimum Spanning Trees
Bruno Galmar, Jenn-Yeu Chen

15

Pragmatically-Motivated Utterance Fine-Tuning in Human-Computer
Dialogue
Vladimir Popescu, Jean Caelen, Corneliu Burileanu

35

MT Server Land: An Open-Source MT Architecure
Christian Federmann, Andreas Eisele

57

CorporAl: a Method and Tool for Handling Overlapping Parallel Corpora
Mark Fishel, Heiki-Jaan Kaalep

67

Asiya: An Open Toolkit for Automatic Machine Translation
(Meta-)Evaluation
Jesús Giménez, Lluís Màrquez

77

An Experimental Management System
Philipp Koehn

87

© 2010 PBML. All rights reserved.

PBML 94 SEPTEMBER 2010

A Toolkit for Visualizing the Coherence of Tree-based Reordering with
Word-Alignments
Gideon Maillette de Buy Wenniger, Maxim Khalilov, Khalil Sima’an

97

Instructions for Authors 107

4

The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010

EDITORIAL

The present issue of The Prague Bulletin of Mathematical Linguistics continues in
the fruitful tradition started with the special issues of PBML 91 (2009) and 93 (2010) to
publish papers accepted for presentation at the regular Machine Translation Marathon
events organized by the EuroMatrix and EuroMatrixPlus projects. Not to postpone
the other already reviewed and accepted submissions to PBML, we publish in the cur-
rent issue 5 papers (the contributions by Christian Federmann, Andreas Eisele, Mark
Fishel, Heiki-Jaan Kaalep, Jesús Giménez, Lluís Màrquez, Philipp Koehn and Gideon
Maillette de Buy Wenniger et al.). The rest of accepted contributions to Marathon 2010
held in Le Mans will be published in PBML 95, to be out by May 2011.

We are most grateful to the group of reviewers of the Marathon event who in a
very restricted period of time have presented their highly appreciated comments to
the submitted papers and especially to Philipp Koehn, Loïc Barrault and Ondřej Bojar
who have taken over most of the editorial work with the Marathon part of this issue.

Eva Hajičová
Editor-in-Chief
hajicova@ufal.mff.cuni.cz

© 2010 PBML. All rights reserved.

The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010 7–14

Dependency Parsing
as a Sequence Labeling Task

Drahomíra ”johanka” Spoustová, Miroslav Spousta
Institute of Formal and Applied Linguistics, Charles University in Prague

Abstract
The aim of this paper is to explore the feasibility of solving the dependency parsing prob-

lem using sequence labeling tools. We introduce an algorithm to transform a dependency tree
into a tag sequence suitable for a sequence labeling algorithm and evaluate several parameter
settings on the standard treebank data. We focus mainly on Czech, as a high-inflective free-
word-order language, which is not so easy to parse using traditional techniques, but we also
test our approach on English for comparison.

1. Introduction

Dependency parsing became very popular in the recent years and many different
algorithms were suggested and evaluated for this task.

Dependency structure is a rooted tree where each node (except the root) corre-
sponds to one word of the underlying sentence. The dependency relation between
two nodes (parent and child) is captured by an edge between these two nodes. The
actual type of the relation is given as a function label of the edge.

The aim of a dependency parser is to assign correct parent node index to each child
node, optionally also with the dependency relationship label. The standard method
of evaluating dependency parser accuracy is computing the percentage of children
that got the correct parent index (and optionally the dependency relationship label),
among all words in a test data set.

Sequence labeling is a process where each token in a sentence is assigned a label
from a fixed set. Common examples include Part-of-Speech (POS) tagging, Named

© 2010 PBML. All rights reserved. Corresponding author: johanka@ucw.cz
Cite as: Drahomíra ”johanka” Spoustová, Miroslav Spousta. Dependency Parsing as a Sequence Labeling
Task. The Prague Bulletin of Mathematical Linguistics No. 94, 2010, pp. 7–14.
doi: 10.2478/v10108-010-0017-3.

PBML 94 SEPTEMBER 2010

entity recognition and Semantic Role Labeling tasks, where we label every word with
a tag. There are many well-studied algorithms that proved to be successful, many of
them based on the Hidden Markov models and the Viterbi algorithm, such as Condi-
tional Random Fields (Lafferty et al., 2001) or Averaged Perceptron (Collins, 2002).

In the area of parsing, the sequence labeling techniques were applied mainly to
the NP-chunking (shallow parsing) task.

In the following sections, we would like to explore the possibility to turn the de-
pendency parsing into a sequence labeling task.

Our approach is somewhat similar to LTAG supertagging introduced by (Banga-
lore and Joshi, 1999), but their approach mas been deeply explored mainly for English
and cannot be directly applied to free-word-order non-projective languages with rich
inflection, like Czech.

The paper is organized as follows: Section 2 introduces the data used for our exper-
iments. In section 3, we propose a tagset and conversion algorithm for the sequence
labeling task and evaluate the performance of selected settings of the proposed al-
gorithm on the English and Czech data sets. Section 4 presents current results and
concludes.

2. The data

In order to demonstrate that our approach is not restricted to a specific language,
we performed our data conversion experiments on two languages with completely
different morphological characteristics and tagsets, English and Czech.

For English, we used CoNLL Shared Task 2009 data, which is a dependency rep-
resentation of (a part of) the Penn Treebank (Marcus et al., 1994). We used the columns
PLEMMA, PPOS (automatically assigned part-of-speech tag and morphological lemma),
HEAD and DEPREL (manually annotated labeled dependency relationship). For Czech,
we selected the corresponding data (i.e. manual annotation of the dependency re-
lationships and automatic POS tagging) from the Prague Dependency Treebank 2.0
(Hajič et al., 2006), analytical layer. The Czech morphological tagset is described in
(Hajič, 2004).

Main characteristics of the data1 can be found in Table 1.

3. The data conversion algorithm

Standard dependency tree representation assigns a parent node index to every
word in a sentence. The process of turning dependency parsing into a sequence la-

1All experiments were performed using only the Train and the Development data sets. We save the
Evaluation data set for the final evaluation of the (hypothetical) parser.

8

D. Spoustová, M. Spousta Dependency Parsing as a Sequence Labeling Task (7–14)

Table 1. The data characteristics

data set tokens sentences tagset size
English train 958,167 39,278 46
English dev 33,368 1,335 45
Czech train 1,172,299 68,562 1330
Czech dev 158,962 9,270 1041

Table 2. The example sentence

FORM PLEMMA PPOS HEAD DEPREL DEPTAG
1 The the DT 4 NMOD NN_R3 NMOD
2 luxury luxury NN 3 NMOD NN_R1 NMOD
3 auto auto NN 4 NMOD NN_R1 NMOD
4 maker maker NN 7 SBJ VBD_R1 SBJ
5 last last JJ 6 NMOD NN_R1 NMOD
6 year year NN 7 TMP VBD_R1 TMP
7 sold sell VBD 0 ROOT 00_00 ROOT
8 1,214 1,214 CD 9 NMOD NNS_R1 NMOD
9 cars car NNS 7 OBJ VBD_L1 OBJ
10 in in IN 7 LOC VBD_L1 LOC
11 the the DT 12 NMOD NNP_R1 NMOD
12 U.S. u.s. NNP 10 PMOD IN_L1 PMOD

beling task must turn this ”relative” information into an absolute label, which is to be
assigned to the words. Let us call this label deptag2.

We designed the deptag to contain the following parts:
1. parent node’s POS tag
2. additional information needed to decide between more possible parent-candidates

with the same POS tag: direction and distance3.
3. The DEPREL label is added to the deptag (no transformation is needed here) to

be also predictable by the sequence labeling algorithm.
An example sentence transformation can be found in Table 2.

2Unfortunately, the word supertag was already taken in (Bangalore and Joshi, 1999).
3We use L (R) for left (right) direction, respectively, and a positive number as a distance marker. E.g.

VB_R2 means ”second VB token on the right” (i. e. the first VB candidate on the right is omitted)

9

PBML 94 SEPTEMBER 2010

3.1. Tagset reduction

Naturally, a too large deptagset (tagset of the deptags) leads to the data sparseness
problem. It turns out that the size of the tagset may be reduced by adjusting two
parameters of the algorithm:

1. Considering only a fragment of the full POS tag during the deptag construction.
This is mainly useful for a rich POS-tag set language (such as Czech with more
than 4000 possible POS-tags and only 1330 of them appearing in the training
data) and is much less important for English (with only 46 tags). We tried to
reduce the 15-positions tagset to 5 or 2 most important positions for Czech4.
At this point, the assigned deptag corresponds to exactly one parent node. In
other words, the transformation from the tree into a deptag sequence remains
lossless.

2. Constraining maximum distance to reduce the deptagset. Here the distance does
not mean the absolute number of tokens between parent and its child, but the
maximum number of possible candidates with the same POS tag to be distin-
guished. For example, if the maximum is set to 3, then all third, fourth and
further candidates will be labeled with 3 and translated back to the third candi-
date.
This constraint, however, makes the transformations lossy.

Let us define the transformation error rate of the selected algorithm configuration as
following: For each node n let p1

n be the parent node index assigned to the node n in
the source dependency tree, Dn a deptag, to which p1

n is translated using the selected
algorithm configuration, and p2

n a parent node index, to which the the deptag Dn is
translated back (the process of translating back is unambiguous). Transformation error
rate is the percentage of nodes, where p2

n ̸= p1
n.

Table 3 shows the deptagset size (labeled, unlabeled) and transformation error rates
for a few selected configurations. Considering usual performance of dependency
parsers lying between 80 % and 90 %, setting the maximum distance to 3 introduces
only a small decrease of performance (lower than 1% transformation error rate).

3.2. The list of possibilities

Usually, the sequence labeling algorithm chooses one label from a list of plausible
labels for every token. There are several methods how to generate such a list. We
can compare the methods for generating the list of possible deptags using a standard
measure: precision and recall.

45 — Part of speech, Detailed part of speech, Gender, Number, Case; 2 (originating from (Collins et al.,
1999)) — first letter is the main POS, second letter is the Case field if the main POS is the one that displays
case, while otherwise the second letter is the detailed POS.

10

D. Spoustová, M. Spousta Dependency Parsing as a Sequence Labeling Task (7–14)

Table 3. deptagset size (labeled, unlabeled) and transformation error rate. (POS -
Part-of-speech tag size, max - maximum distance.)

language POS max. distance tagset size errorlabeled unlabeled
en full - 1523 244 0.00
en full 3 1305 159 0.52
en full 1 809 78 7.56
cz full - 10449 1979 0.00
cz full 3 9949 1882 0.30
cz full 1 8679 1601 2.29
cz 5 - 7820 1319 0.00
cz 5 3 7299 1214 0.30
cz 5 1 6016 958 2.45
cz 2 - 3760 389 0.00
cz 2 3 3127 244 0.36
cz 2 1 2054 122 3.32

In order to enable sequence labeling algorithm to work well on our transformed
data, we aim to keep recall as high as possible, while introducing a reasonable preci-
sion.

• To achieve 100% recall, we need to consider every token in the sentence to be
possible parent of all other tokens. I.e. in a n-token (incl. root) sentence, every
token has n− 1 possible parents, thus translated into n− 1 unlabeled deptags.
Every deptag can (theoretically) be combined with every deprel label. Let dep
be size of the set of the deprel labels. So the final list of possibilities contains
(n− 1) ∗ dep labeled deptags for every token.
This approach achieves 100% recall, but very poor precision.

• The list of possible combinations deptag + dependency relationship label (labeled
deptags) can be simply derived from the training data. To avoid the data sparse-
ness problem, we choose to discriminate the tokens only through their morpho-
logical tags, i.e. to ignore their form and lemma. For example, if a token has
the NNP POS tag, we add to its list of possible labeled deptags manually anno-
tated parents (translated into the labeled deptags) of all NNP tokens found in the
training data.
This approach achieves 100% recall only for the training data. Its precision is
much better than the precision of previous approach, but still remains low.

• Precision of the previous approach can be increased by restricting the maxi-
mum ”length of relationship” (in absolute number of tokens) between parent
and child. We omit every possible relationship which is ”longer” (in terms of

11

PBML 94 SEPTEMBER 2010

Table 4. Generating a labeled list of possibilities; recall2 = recall including conversion
back to the tree representation

basic options list options precision recall recall2
en full - full 0.06 100 100
en full 3 full 0.06 100 99.48
en full 3 train 1.42 99.77 99.26
en full 3 train+length 2.45 99.43 98.93
cz 5 3 full 0.05 100 99.70
cz 5 3 train 1.28 98.21 97.93
cz 5 3 train+length 2.28 96.86 96.58
cz 2 3 full 0.05 100 99.64
cz 2 3 train 0.82 99.53 99.18
cz 2 3 train+length 1.46 99.01 98.67

absolute value of the subtraction between the nodes indexes) than the longest
relationship seen in the training data between nodes with the same POS tags as
the ones of the considered tokens.

Precision and recall of selected variants of the approaches described above can be
found in Tables 4 (labeled) and 5 (unlabeled), as measured on the development data
set.

4. Results and Conclusion

We have shown that our data conversion algorithm can fully represent a labeled
dependency tree, both for a rich morphology language with large tagset and for a
language with very small tagset.

The parameters of the conversion can be theoretically set in the manner that keeps
the conversion absolutely lossless. We have proposed various kinds of (slightly lossy)
reductions of the solution space.

As we have proposed in the introduction section, this article focuses on the data
conversion algorithm, i.e. data preparation for the sequence labeling algorithm.

As a proof-of-concept and possible baseline, we have processed the converted data
with the averaged perceptron algorithm (Collins, 2002) with trivial trigram feature set,
the results (accuracy of the final labeled tree) varied (depending on configuration)
between 5-10 % below state-of-the-art (according to CoNLL Shared Task 2009 results
and the http://ufal.mff.cuni.cz/czech-parsing page). Additional up to about
1 % will be loosed if we use as a postprocessing some sort of greedy algorithm which
will fix the cycles to ensure the result is tree.

Our approach can thus be used as a simple and fast way to build an ”approxima-
tive” parser in case there is no better solution available (e.g. due to license restrictions).

12

http://ufal.mff.cuni.cz/czech-parsing

D. Spoustová, M. Spousta Dependency Parsing as a Sequence Labeling Task (7–14)

Table 5. Generating an unlabeled list of possibilities; recall2 = recall including
conversion back to the tree representation

basic options list options precision recall recall2
en full - full 3.24 100 100
en full 3 full 3.52 100 99.48
en full 3 train 4.80 99.92 99.39
en full 3 train+length 6.68 99.75 99.24
cz 5 3 full 4.17 100 99.70
cz 5 3 train 6.52 99.08 98.79
cz 5 3 train+length 9.76 98.20 97.91
cz 2 3 full 4.27 100 99.64
cz 2 3 train 5.18 99.91 99.55
cz 2 3 train+length 7.26 99.67 99.32

The performance can be further improved by selection of the sequence labeling
algorithm and its configuration (such as feature set selection).

Acknowledgments

The research described here was supported by the project GA405/09/0278 of the
Grant Agency of the Czech Republic.

Bibliography

Bangalore, Srinivas and Aravind K. Joshi. Supertagging: An approach to almost parsing. Com-
putational Linguistics, 25:237–265, 1999.

Collins, Michael. Discriminative Training Methods for Hidden Markov Models: Theory and
Experiments with Perceptron Algorithms. In EMNLP ’02: Proceedings of the ACL-02 confer-
ence on Empirical methods in natural language processing, volume 10, pages 1–8, Philadelphia,
PA, 2002.

Collins, Michael, Jan Hajič, Lance Ramshaw, and Christoph Tillmann. A Statistical Parser for
Czech. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics,
pages 505–512, College Park, Maryland, USA, June 1999. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/P99-1065.

Hajič, Jan. Disambiguation of Rich Inflection (Computational Morphology of Czech). Nakladatelství
Karolinum, Prague, 2004. ISBN 80-246-0282-2.

Hajič, Jan, Eva Hajičová, Jarmila Panevová, Petr Sgall, Petr Pajas, Jan Štěpánek, Jiří Havelka, and
Marie Mikulová. Prague Dependency Treebank v2.0, CDROM, LDC Cat. No. LDC2006T01.
Linguistic Data Consortium, Philadelphia, PA, 2006.

13

http://www.aclweb.org/anthology/P99-1065

PBML 94 SEPTEMBER 2010

Lafferty, John, Andrew McCallum, and Fernando Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Proc. 18th International Conf.
on Machine Learning. Morgan Kaufmann, San Francisco, CA, USA, 2001.

Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large anno-
tated corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1994.
ISSN 0891-2017.

Address for correspondence:
Drahomíra ”johanka” Spoustová
johanka@ucw.cz
Institute of Formal and Applied Linguistics
Charles University in Prague
Malostranské náměstí 25
118 00 Praha 1, Czech Republic

14

The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010 15–34

Identifying Different Meanings of a Chinese
Morpheme through Semantic Pattern Matching in Augmented

Minimum Spanning Trees

Bruno Galmara, Jenn-Yeu Chenb

a National Cheng Kung University, Institute of Education
b National Cheng Kung University, Institute of Cognitive Science

Abstract
Galmar and Chen (2010) introduced the first corpus-based computational approach to the

problem of identifying the different meanings of a polysemous Chinese morpheme embedded
in polymorphemic words. The approach is based on the successive application of a dimension-
ality reduction method - Latent Semantic Analysis, a graph-theory algorithm - Prim’s algorithm
and a semantic pattern recognition search used for meaning inference. Our present work adds
major changes and contributions to Galmar and Chen (2010). Firstly, we theoretically defined
and detailed what are the Chinese semantic patterns to be searched in the augmented min-
imum spanning trees. Then, we modified the computational approach to include the use of
Nearest Neighbors lists. This change allows for a major contribution: a proof is given that all
the possible outputs of Prim’s algorithm in our experiment - the minimum spanning trees -
contain all the same amount of semantic information to be used for meaning inference. Thus,
our final meaning inference results are optimal.

Practically, this work could serve as a first step to add a new feature to current Chinese
Wordnets: the listing of all the Chinese words embedding a certain polysemous morpheme
with a fixed identified meaning. Finally, future directions are sketched.

KEYWORDS: Chinese Polysemous Morphemes, Meaning Inference, Dimensionality Reduc-
tion, Graph-Theory Analysis, Semantic Patterns.

© 2010 PBML. All rights reserved. Corresponding author: hsuyueshan@gmail.com
Cite as: Bruno Galmar, Jenn-Yeu Chen. Identifying Different Meanings of a Chinese Morpheme through
Semantic Pattern Matching in Augmented Minimum Spanning Trees. The Prague Bulletin of Mathematical
Linguistics No. 94, 2010, pp. 15–34. doi: 10.2478/v10108-010-0018-2.

PBML 94 SEPTEMBER 2010

1. Introduction

The character公 is a Chinese polysemous morpheme with more than sixteen di-
mensions of meaning according to an etymological dictionary1. The Chinese words
公鹿 (male deer), 外公 (maternal grandfather) and 公平 (fair) are polymorphemic
Chinese words that all embed 公 as a common morpheme. However, for a Chinese
native speaker, the meaning of公 in each of the three words is different:

1. In公鹿 (male deer), the meaning of公 is male.
2. In外公 (maternal grandfather), the meaning of公 is grandfather.
3. In公平 (fair), the meaning of公 is fair.

In the three above examples, the meaning of公 is defined each time by only one word:
“male”, “grandfather” and “fair”. These one-word definitions have a psychological
reality for the Chinese native speaker. An interesting fact is that these one-word defi-
nitions exist as the etymological dimensions of meaning of公 2 given in an etymology
dictionary of Chinese. Each etymological dimensions of meaning can be represented
by a Chinese word – which we call a meaning dimension word. Thereafter, we retain
the linguistically simplified definition of the meaning of公 in a polymorphemic word
as being one meaning dimension word.

In (Galmar and Chen, 2010) and in the present study, the proposed computational
approaches aim at identifying the meaning of公 in a polymorphemic公 word using
knowledge of the etymological dimensions of meaning for the Chinese monomor-
phemic word 公. Basically, the approaches consist in detecting in a data structure -
here a minimum spanning tree - some semantic patterns which are instances of pre-
defined abstract semantic patterns. These patterns can be interpreted through prede-
fined meaning inference rules to identify which meaning dimension word can serve
as the meaning of公 in a polymorphemic公word captured in a semantic pattern. So,
both (Galmar and Chen, 2010) approach and ours can be viewed as light knowledge-
based approaches. We used the adjective “light” to emphasize that the amount of
knowledge fed to the meaning inference system is kept as low as possible: a dozen
of meaning dimensions words and a few meaning inference rules. Our approach can
also discover other potential meaning dimensions words and can eventually update
the initial list of meaning dimensions words. Galmar and Chen (2010)’s work and
our present study are both generalizable to all Chinese polysemous monomorphemic
words. Galmar and Chen (2010) focused on 公 polymorphemic words because ex-
perimental data from a categorization label task experiment are available for the 公
words.

1 source: http://www.chineseetymology.org/www.chineseetymology.org/ Some dimensions are
overlapping.

2The dimensions of meaning for 公 are: unselfish / unbiased / fair / to make public / open to all /
public / the first of old China’s five-grades of the nobility / an old Chinese official rank / the father of
one’s husband (one’s husband’s father) / one’s father-in-law / one’s grandfather / a respectful salutation
/ the male (of animals) / office / official duties / a Chinese family name

16

B. Galmar, J.Y. Chen Identifying Different Meanings of a Chinese Morpheme (15–34)

Galmar and Chen (2010) observed that there is currently no Chinese dictionary
or database which lists for each meaning of a polysemous morpheme all the Chinese
words embedding the morpheme with this meaning. For example, the Chinese Word-
net of the Academica Sinica 3 offers a list of some of the different meanings of公 but
provides no listing of all the公 words with a same given meaning of公 e.g. “fair”.

Galmar and Chen (2010) reviewed the literature on Chinese computational mor-
phology and Chinese word sense disambiguation. They found no prior work propos-
ing a computational approach to the task of meaning identification of a polysemous
morpheme embedded in Chinese words. Therefore, Galmar and Chen (2010) pro-
posed the first corpus-based computational approach to this task. In an example,
they showed how the approach can led to extract correctly the meaning of公 in公鹿
(Galmar and Chen, 2010).

Galmar and Chen (2010)’s work suffers from the following main limitations:
1. The authors found that there was not a unique minimum spanning tree to serve

as a solution. However, only one solution was presented without indication
about its selection. The authors gave neither information about possible criteria
to use to select the best solution, neither a proof that the presented solution was
the best one.

2. The concept of augmented minimum spanning trees did appear briefly but was
not detailed and emphasized.

3. Some primary considerations for future directions were absent.
The present work adds the following major contributions and changes to (Galmar

and Chen, 2010):
1. The novel computational approach has been designed in a way that allows to

prove its optimality. Now, computing the Nearest Neighbors lists plays a major
role in helping to prove optimality of the results. We described the novelties of
our approach carefully.

2. A new way of formalizing Chinese free morphemes and words interaction for
semantic inference is presented for the first time through the concepts of seman-
tic pattern matching and semantically augmented minimum spanning trees.

3. Proofs that our results are optimal are given using solid reasoning based on the
work of Prim in graph-theory (Prim, 1957).

4. New detailed examples of meaning inference for a Chinese polysemous mor-
pheme are given to illustrate the results.

5. Future enhancements, directions and generalizations of this work are given.
This work is intended to serve as a first step in:
1. Designing tools for Chinese cognitive scientists and linguists who study the se-

mantic interaction between Chinese morphemes and polymorphemic words. It
can help in preparing experimental materials for lexical decision tasks and re-
latedness judgment tasks involving the repetition of a same Chinese polyse-

3http://cwn.ling.sinica.edu.tw/

17

PBML 94 SEPTEMBER 2010

mous morpheme embedded with a fixed identified meaning in different Chi-
nese words (Chen et al., 2009; Galmar and Chen, 2007).

2. Enhancing Chinese Wordnets with the listing for each meaning of a polysemous
morpheme of all the Chinese words embedding the morpheme with this mean-
ing.

The new computational approach to infer the meaning of 公 in polymorphemic
words can be unfolded in six steps:

1. The first step encompasses the creation of semantic spaces and their dimen-
sionality reduction. We built three nested lists of words. The Academica Sinica
Balanced Corpus (ASBC) was then filtered by these three lists to output three
term-document matrices (TDM). The matrices were weighted and then their di-
mensionality was reduced through the computation of the reduced Singular
Value Decomposition (SVD). The final matrices represent the three nested La-
tent Semantic Analysis (LSA) semantic spaces.

2. The second step consists in computing for each LSA semantic space the cosine
matrix and the dissimilarity matrix for all terms.

3. In the third step, each dissimilarity matrix is viewed as the adjacency matrix of a
complete weighted undirected graph and is used to build a minimum spanning
tree (MST) by applying Prim’s algorithm.

4. Besides building the MST, a nearest neighbors (NN) list is built for each graph.
The NN list serves to augment the MST with neighboring information.

5. In the fifth step, it is proven that even if the outputed MSTs are not unique, they
embed the maximum amount of information useful for meaning inference.

6. In the last step, the paths of the MSTs are browsed in search of patterns to extract
the meaning of公 in the polymorphemic公words.

The remainder of this paper is organized as follows. In Section 2, firstly, we newly
put forward which particular features of the Chinese language and the ASBC corpus
are at the heart of the working of the computational approach. Then, we present
briefly Steps 1 and 2 which are fully described in (Galmar and Chen, 2010). Section 3
encompasses Steps 3, 4 and 5. For Step 3, we emphasize the rationale of reducing the
completeness of the dissimilarity matrix to obtain a MST. Step 4 and 5 are new steps.
In Section 3, we also define and list the semantic patterns to be used for meaning
inference. In section 4, the application of Step 6 is illustrated through new results.
Then come the conclusion and the future directions sections.

2. The Nested Semantic Latent Semantic Analysis Spaces and Their Dimen-
sionality Reduction

2.1. Philosophy of the Computational Approach and Creation of the Semantic Spaces

At the heart of the design of the present computational approach are the following
pecularities of the Chinese language and the ASBC corpus:

18

B. Galmar, J.Y. Chen Identifying Different Meanings of a Chinese Morpheme (15–34)

1. Some Chinese characters are free morphemes: they are not only embedded in
compound words but can also be standalone words (Packard, 2000). 公 is such
a free morpheme and is also polysemous.

2. In the ASBC corpus, 公 occurs as a stand-alone monomorphemic word with
more than one part-of-speech (POS) tag: it has five different POS tags4.

The plurality of the occurence of 公 with different POS tags is thought to help
the capture of the meaning of 公 in 公 polymorphemic words. We imagined that
the公 monomorphemic words could be captured in a structure - e.g. a graph - with
other polymorphemic公 words forming together semantic patterns. These semantic
patterns could be used to infer some different meanings of the polysemous公 mor-
pheme.
To employ a metaphor inspired by the software hacking culture, we viewed polyse-
mous free morphemes like 公 as a potential backdoor to the semantics of Chinese
polymorphemic words. Hence, the work is an attempt to crack the semantics of the
Chinese language using some pecularities of the Chinese language and of the annoted
ASBC corpus.
There is also a flavor of whole-part thinking in our approach: the part - the free mor-
pheme - and the whole - the compound word - are both necessary to conduct semantic
inference about the identification of the meaning of a Chinese polysemous morpheme.

2.2. The Building of Nested Semantic Latent Semantic Analysis Spaces

Galmar and Chen (2010) built three nested lists of 公 words extracted from the
5 million words Academica Sinica Balanced Corpus (ASBC). Full details about how
were built these three lists is given in Galmar and Chen (2010). These three lists are
used to filter the ASBC corpus to obtain three term-document matrices (TDM). The
three TDM will serve to build the three semantic LSA spaces by application of Latent
Semantic Analysis.

The main idea is to create three semantic spaces of increasing semantic richness:
1. The smallest semantic space contains only 公 words. This space is thought to

be the poorest representation of the semantic relationships between the 192公
words. The 5公 words and 187 additional polymorphemic公 words constitute
the initial list of 192公 words under study. The TDM was made of 192 words
and 3716 documents.

2. The second semantic LSA space contains words that represent ten etymological
dimensions of the meaning of公. These meaning dimension words could attract
or be attracted by semantically similar公words in semantic patterns in a graph
structure. From a cluster-based viewpoint, these words could serve as centroids
of公words clusters. They could also be used later to infer the meaning of公 in
公 words. The TDM was made of 202 words and 4327 documents. The twelve

4” 公 (Vh)”, ” 公 (Nb)”, ” 公 (Nc)”, ” 公 (Na)” and ” 公 (A)”

19

PBML 94 SEPTEMBER 2010

meaning dimension words are: (公正,公平,公開,公共,無私,貴族,爵位,父,岳
父,雄性,機關,機構)5.

3. The third and biggest semantic space is thought to be semantically rich enough
to embed meaningful semantic relationships between the words it contains. Such
a micro-size space could be an alternative start to a whole corpus semantic space
to investigate the different meanings of公 in公 words. The TDM was made of
283 words and 6798 documents. Among the additional words which were in-
serted in the third list, there were:
(a) words which are key-words occurring in a Chinese dictionary’s definitions

of some of the 187 polymorphemic公 words.
(b) non-公 compound words that share some common morphemes with the

187公 compound words.
(c) a few words (e.g. 國家 (country)) which have been chosen as category la-

bels by two Taiwanese participants in a pilot study of the subjective sorting
of the 187 polymorphemic公 words.

From a language acquisition standpoint, our approach is thought to bear the two
following realistic traits: both the size of the lexicon and its semantic richness increase
- as they do during language learning -.

2.2.1. The Three Weighting Schemes

To each of the three term-document matrices, Galmar and Chen (2010) applied a
total of three weighting schemes:

1. A local weighting scheme. The TDM containing the term frequencies mi j is log-
arithmised. Hence, the effect of frequency differences between terms in a same
document is reduced.

2. A global weighting scheme. The classic Inverse Document Frequency scheme
(Landauer and Dumais, 1997; Landauer et al., 2007) is used. It gives more weight
to words with a global low frequency.

3. At the document level - the columns of the term-document matrix - a weighting
scheme is applied. To reduce the effect of the size difference between docu-
ments, each column of the term-document matrix is multiplied by:

log
(Maxdocument size

Document size +
)

. (1)

More weight is given to small documents. Such a choice is motivated by the
heuristic that especially for news articles - the documents of the ASBC corpus
-, it is easier to extract the gist of a short article than a very long one: it means
that small documents are generally better informative than long ones about their

5In the twelve words list, the first four words are公 words already present in the first semantic space.
These twelve words capture ten relatively different dimensions of meaning of公. Two of the words capture
the same dimension meaning. See (Galmar and Chen, 2010) for more details.

20

B. Galmar, J.Y. Chen Identifying Different Meanings of a Chinese Morpheme (15–34)

inherent meaning6. This document level weighting scheme is preferred to resiz-
ing the corpus’s meaning unit from the original entire document to paragraph
of a given size. Resizing could result in splitting meaningful units in different
documents.

2.2.2. Singular Value Decomposition and Reduced SVD

After being weighted, the three TDM have their reduced Singular Value Decom-
position (rSVD) computed. Galmar and Chen (2010) explained why they empirically
decided to reduce the dimensionality of the LSA spaces by taking into account only
the first one hundred singular values. This rSVD can be written:

A ≃ A =UΣV T
 . (2)

where A is the original TDM, A the reduced TDM, U and V two orthogonal
matrices7 and where Σ = diag(σ, ...,σ) and σ ≥ σ ≥ σ > 0 are the 100 first
non-zeros singular values.

Galmar and Chen (2010) termed A,, A, and A, the three reduced LSA
spaces containing respectivelly 192, 202 and 283 words. A,, A, and A,

are the Chinese LSA spaces that will be used to compute the cosine and dissimilarity
matrices.

2.2.3. Cosine Matrix and Dissimilarity matrix

In A,, A, and A,, words are represented as vectors. Similarity be-
tween two words of a Chinese LSA space is measured by calculation of the cosine
value between the two corresponding vectors. For each of the three Chinese LSA
spaces, Galmar and Chen (2010) built the whole cosine matrix C defined by ci j =
cos(vi,v j), where i and j are two words of a Chinese LSA space and where vi and v j
their representating vectors. C is symmetric due to cos(vi,v j) = cos(v j,vi). The three
cosine matrices C, C and C were computed.

From the cosine matrix C, the dissimilarity matrix D is derived with:

di j = − ci j = − cos(vi,v j)= . (3)

The three dissimilarity matrices D, D and D whose dimensions are respec-
tively 192*192, 202*202 and 283*283 were computed.

6An illustrative comparison would be that of politicians’ speeches. Politicians are sometimes criticized
to drown the meaning of their speech in their length. After listening to a long politician’s speech one could
have the feeling of having lost its gist. Politicans could not achieve to induce this feeling with a very short
speech while attention of listeners is remaining high.

7U and V are the truncated matrices of the orthogonal matrices occuring in the SVD of A.

21

PBML 94 SEPTEMBER 2010

3. The Graph-Theory Based Approach

3.1. A Few Definitions

Galmar and Chen (2010) introduced all the basic concepts from graph theory which
will be used thereafter. Here, we just define again the most crucial concepts and add
two definitions.

The adjacency matrix A of a complete weighted graph G is the matrix whose entry
Ai j is 0 if i = j and otherwise is wi j the weight assigned to the edge {Vi,Vj} (Gross and
Yellen, 2006).

A nearest neighbor (NN) VNN of a vertex Vi is a vertex for which the weight of the
edge {VNN , Vi} is minimum among all the edges joining Vi . A second nearest neighbor
(SNN) VSNN of a vertex Vi is the second vertex of smallest weight and follows VNN in
the NNs list. Two vertices Vi and Vj are said to be reciprocal nearest neighbors (RNN) if
Vi is the nearest neighbor of Vj and vice versa. In the same way, two vertices Vi and
Vj are said to be secondary reciprocal nearest neighbors (SRNN) if Vi is the second nearest
neighbor of Vj and vice versa.

A spanning tree (ST) of a graph G is a tree of G which contains all the vertices of G.
A minimum spanning tree (MST) of a graph G is a spanning tree (ST) of G whose the

sum of edges is minimum (Foulds, 1995). This can be written:∑
eε MST

w(e) = min
ST ε G

(∑
eε ST

w(e)
)

. (4)

In a short-path tree (SPT), the length of the paths between the root vertex and all the
other vertices are minimum.

3.2. Applying Graph Theory to the Dissimilarity Matrix

3.2.1. Building the Adjacency Matrix.

Galmar and Chen (2010) viewed the dissimilarity matrix D defined in §2.2.3 as the
adjacency matrix of a complete weighted undirected graph G. Each word of a given
Chinese LSA space is a vertex of G and each edge of G linking two vertices vi and v j
is weighted by di j. Thus we have:

∀ i , dii = and ∀(i, j) with i ̸= j , di j = − cos(vi,v j) . (5)

3.2.2. Building the Nearest Neighbors Lists.

From each of the dissimilarity matrices D, D and D, we computed the near-
est neighbors lists NN, NN and NN . The i-th member of the list NNX is the NN
of the i-th member of the original list of X公words.

22

B. Galmar, J.Y. Chen Identifying Different Meanings of a Chinese Morpheme (15–34)

3.2.3. Building One Minimum Spanning Tree.

From D, D and D we can directly build three minimum spanning trees
MST, MST and MST using Prim’s algorithm (Prim, 1957; Graham and Hell,
1985). Hence, each of our semantic LSA space A,, A, and A, has an
associated minimum spanning tree.

In (Prim, 1957), Prim enunciated two construction principles for building a MST
of an undirected weighted graph G:

1. Any unconnected vertex can be directly connected to a nearest neighbor (P1).
2. Any unconnected sub-MST8 can be connected to a nearest neighbor by a shortest

available path (P2).
Prim went on by validating these two construction principles by proving the two fol-
lowing necessary conditions (NC1 and NC2) for a MST:

1. Every vertex in a MST is directly connected to at least one nearest neighbor
(NC1).

2. Every subgraph of a MST is connected to at least one nearest neighbor by a short-
est available path (NC2).

In Prim’s algorithm, P1 is first applied to build a first edge and then P2 is continuously
applied to grow from the very first edge a subgraph that will be a MST once all the
vertices of the initial graph G will have been connected.

3.2.4. Uniqueness of the Minimum Spanning Tree.

Uniqueness of the MST of a graph G is ensured if each edge of G has a different
weight (Eppstein, 1995). In case of non-uniqueness of the MST, solutions provided by
(Eppstein, 1992, 1995; Broder and Mayr, 1997; Wright, 1997, 2000) can be applied to
count and enumerate all the MSTs.

3.2.5. Counting and Enumerating All the MSTs.

(Eppstein, 1995) proposed to build an equivalent graph EG of the graph G such
that the ST of EG are the MSTs of G. The Kirchoff’s matrix-tree theorem (de Abreu,
2007) served to compute the number of ST in EG corresponding to the number of
MSTs in G. Listing all the STs of EG gives all the MSTs of G. (Wright, 1997, 2000)
proposed another procedure to count the number of MSTs and build them.

3.2.6. Patterns to Be Observed in MSTs for Meaning Inference.

Once a MST is obtained for the semantic space AXwords,, it will be used for mean-
ing inference. Here, we are concerned by describing the expected patterns of ver-
tices - to be found in the MST - that will serve for meaning inference. Each pattern is

8In the original paper, Prim used isolated fragment to refer to a subgraph of a MST. Here we use the word
sub-MST.

23

PBML 94 SEPTEMBER 2010

paired with a set of assertions concerning the meaning inferences that can be formu-
lated. Figure 1 presents such an ideal pattern. In Fig. 1, one meaning dimension
word (DimWord) - introduced in §2.2 - shares an edge with a 公 monomorphemic
word 公mono. The latter shares one or more edges with 公 polymorphemic words.
The weight of the edge {公mono, DimWord} is assumed to be the smallest one among
the edges joining公mono. In other words, DimWord is the NN of公mono. This is rep-
resented on Fig.1 by a left-to-right arrow from 公mono to DimWord labeled with the
symbol NN. In the semantic space AXwords,, for the pattern represented by Fig.1, we
will assert that the primary meaning of公mono is the meaning of DimWord. 公Wordtarget
is a公 polymorphemic word directly connected to DimWord and shares no other edge
with other words. Therefore, in AXwords, , the meaning of 公 in 公Wordtarget is the
meaning of公mono whose primary meaning is the meaning of DimWord.

公Word
� NN

公Word − 公mono � DimWord − 公Wordtarget
�

公Word

Figure 1. An ideal component of a MST for meaning inference.

The pattern presented in Fig. 2 is an extension of Fig. 1 where DimWord and
公Wordtarget are connected through a number N of non-公Word. In that case, we will
also assert that in AXwords,, the closest meaning to the meaning of公 in公Wordtarget is
the meaning of公mono which itself has for meaning the meaning of DimWord.

公Word
� NN

公Word − 公mono � DimWord − Non公Word − · · · − 公Wordtarget
�

公Word

Figure 2. Another ideal component of a MST for meaning inference

In Fig. 3, DimWord and 公mono are reciprocal nearest neighbors (RNN). We will
assert that the meaning of公mono in AXwords, is the meaning of DimWord. Of all the
edges joining respectively公Wordtarget1 and公Wordtarget2, the edges {DimWord,公Wordtarget1}

24

B. Galmar, J.Y. Chen Identifying Different Meanings of a Chinese Morpheme (15–34)

and {公mono, 公Wordtarget2} are assumed to be of smallest weight. This means that
公Wordtarget1 and 公Wordtarget2 have respectively DimWord and 公mono as NN. In this
case, we will assert that in AXwords,, the meaning of公 in公Wordtarget1 and in公Wordtarget2
is the meaning of公mono which itself has for meaning the meaning of DimWord.

公Word 公Word

NN� RNN �
∗ − 公Wordtarget1 � DimWord � 公mono � 公Wordtarget2 − ∗

� RNN � NN

公Word 公Word

Figure 3. A more complex ideal component

The above list of presented patterns for meaning inference is not exhaustive. It was
given to illustrate the logic of how meaning inference is conducted from sequences of
paths in the MST.

3.2.7. Walking the MST.

Lemma 1. (Wu and Chao, 2004)
Any two vertices in a tree are connected through a unique path.

Following Lemma 1, in a MST, the path connecting two vertices is unique. The
length of the path between two vertices could be measured by:

1. summing the weights of all the edges composing the path.
2. combining the precedent sum with the total number of intermediary nodes.
3. qualitatively summing the number of concepts composing the path. This re-

quires human judgment.
4. quantitatively summing the number of concepts composing the path. This re-

quires to feed the meaning inferring program with some additional knowledge
about the relationships between the non-公 words added into the third seman-
tic space. Some of the non-公 words are synonyms, antonyms or hyponyms
of other non-公 words. The MST does not embed originally such knowledge.
Therefore the MST is to be augmented. That can be easily done by augmenting
the structure of vertices in the MST for non-公 words.

The last solution for path length calculation was chosen in this study. Path length
can serve as an indicator of similarity between two words. This similarity will be inter-
preted primarily as semantic but could be situational or of other nature. The shorter
the length of the path between two words, the closer is their similarity relationship.

25

PBML 94 SEPTEMBER 2010

Table 1. Nearest neighbors for the monomorphemic公 words

Vertex Nearest Neighbor Weight

公 (a) 雄性 (na) 0.1832
公 (na) 公社 (nc) 0.3227
公 (nb) 公債 (na) 0.8319
公 (nc) 廉政公署 (nc) 0.4776
公 (vh) 大公國 (na) 0.2364

3.3. Rationale for Applying Graph Theory to the Dissimilarity Matrix

MSTs are thought to be the smallest data structures which connect all the words of
a semantic space through paths and which embed core relationships between words.
Comparisons of weight values for the different edges joining a given vertex allow
to determine all kinds of nearest neighbor relationships (NN, RNN) that have been
precedently showed as necessary for meaning inference.

MSTs are considered more general and balanced in information than shortest-path
trees (SPT).

4. Results

4.1. Nearest Neighbors

From the three dissimilarity matrices D, D and D, we computed the nearest
neighbors list of each vertex. We present only the NNs list for our biggest semantic
space A,.

4.1.1. The Nearest Neighbors NN of A,.

Uniqueness of Nearest Neighbors. Of the 283 words, three (周公 (nb),關公 (nb) and
雞 (na)) have two nearest neighbors. The remaining words have a single - uniquely
defined - nearest neighbor.

Nearest neighbors for the monomorphemic 公 words. Table 1 shows the nearest
neighbors for the monomorphemic公 words and the associate weights. The smaller
the weight value is, the closer is the relationship between the公word and its NN.

The nearest neighbor of 公 can be interpreted as its primary meaning in the se-
mantic space A,. At best, the NN is one of the hypothesized meaning dimension
word. For example,公 (a) has雄性 as a nearest neighbour which is also a meaning di-
mension word. It can be concluded that雄性 is the primary meaning of公 (a). Others
monomorphemic公words do not have a dimension word as a NN.

26

B. Galmar, J.Y. Chen Identifying Different Meanings of a Chinese Morpheme (15–34)

Table 2. The monomorphemic公 words as nearest neighbors

Vertex 公 Nearest Neighbor Weight

外公 (na) 公 (a) 0.9058
公社 (nc) 公 (na) 0.3227
/0 公 (nb) /0
廉政公署 (nc) 公 (nc) 0.4776
大公國 (na) 公 (vh) 0.2364

Table 3. Nearest neighbors of the公 meaning dimension words

Vertex Nearest Neighbor Weight

公正 (vh) 包公 (nb) 0.0606
公平 (vh) 公交法 (na) 0.0327
公開 (vhc) 公益金 (na) 0.0173
公共 (a) 公用 (a) 0.5621
無私 (vh) 公害 (na) 0.2964
貴族 (na) 公爵 (na) 0.0768
爵位 (na) 地位 (na) 0.0424
雄性 (na) 雌性 (na) 0.0672
父 (na) 子 (nb) 0.3519
岳父 (na) 公秉 (nf) 0.2454
機構 (na) 公衛 (na) 0.1886
機關 (na) 公司法 (na) 0.6194

The monomorphemic公words as nearest neighbors. Monomorphemic公words
attracted公words and even became their NNs. No word has公 (nb) as a NN.

From Tab. 1 and Tab. 2, we noticed the existence of reciprocal nearest neighbors
relationships (RNN). The NN of公 (na) is公社 (nc) and vice-versa. {公 (nc),廉政公
署 (nc)} are RNN and {公 (vh),大公國 (na)} too.

Nearest neighbors of the 12 meaning dimension words. Table 3 presents the near-
est neighbors of the 12 meaning dimension words. Except for雄性,爵位 and父, the
dimension words have公 words as NN.

27

PBML 94 SEPTEMBER 2010

Table 4. Frequencies of the公 meaning dimension words as nearest neighbors

Dimension Word Frequencies Source Nodes Weight
as a NN

公正 (vh) 1 包公 (nb) 0.0606
公平 (vh) 2 公交法 (na),公平性 (na) 0.0327, 0.2287
公開 (vhc) 1 公益金 (na) 0.0173
公共 (a) 0
無私 (vh) 0
貴族 (na) 2 公爵 (na),小雞 (na) 0.0768, 0.2430
爵位 (na) 2 公子 (na),地位 (na) 0.0907, 0.0424
父 (na) 0
岳父 (na) 1 女兒 (na) 0.6103
雄性 (na) 1 公 (a) 0.1832
機構 (na) 3 公信力 (na),公衛 (na) 0.6165, 0.1886

提起公訴 (vb) 0.2226
機關 (na) 0

Frequencies of the meaning dimension words as nearest neighbors. Table 4 shows
how many times the dimension words have served as a nearest neighbor. From Tab. 3
and Tab. 4, we observed that the meaning dimension word公正 and the公 -word包公
are RNN. Therefore in A,, the meaning of公 in包公 is公正 (just, fair). Actually,
包公 is the name of an Ancient China high official who symbolizes justice. Chinese
speakers will associate differently the meaning of公 in包公 to the noun judge or lord
which is conceptually close to the meaning of just, fair.

Table 5 lists some vertices with their NNs. Such a list captures genuine semantic
similarity.

Table 5. Nearest neighbors capturing genuine semantic similarity

Vertex Nearest Neighbor

公雞 (na) 雞 (na)
雞 (na) 雞子 (na)
雞母 (na) 雞子 (na)
雌性 (na) 雌 (a)
阿公 (na) 伯公 (na)

28

B. Galmar, J.Y. Chen Identifying Different Meanings of a Chinese Morpheme (15–34)

4.2. Uniqueness of the Three MSTs

For each of the three adjacency matrices D, D and D, some edges have a
same weight. Therefore, we concluded than none of our three minimum spanning
trees MST, MST and MST may be unique (Eppstein, 1995).

4.3. Counting the Number of MST Meaningful to our Study

The total number of MSTs can be calculated as described in § 3.2.5 . However, we
aim at determining the number of MSTs embedding the maximum of information
for meaning inference. The MSTs of interest are the MSTs for which the number of
patterns defined in §3.2.6 would be maximum. We are going to prove that in our
case any MST is the best one: all MSTs contain the same amount of information for
meaning inference.

4.4. Any MST is optimal for meaning inference.

Let’s assume G = (V,E) to be the complete connected weighted graph of the se-
mantic space A,. We preably identified in §4.1.1 the three words that have more
than one NNs. These three words and their NNs are neither dimension words neither
公monomorphemic words and they account for the non-uniqueness of MST. Two
of the three words share the same two nearest neighbors, so that these three words
and their NNs form two subparts of the MST and not three ones. These two subparts
- sub1MST and sub2MST - will be distinctly connected through any smallest shortest
path to the remaining subpart of the MST - sub3MST -. Sub3MST connects all the
vertices not belonging to sub1MST and sub2MST.

Lemma 2. 9If every vertex of a graph G has only one nearest neighbor, the MST of G is unique.

Sub3MST’s vertices have each only one NN such that by application of Lemma
2, we deduced the uniqueness of sub3MST. Therefore, sub3MST embeds in a unique
configuration all of the twelve meaning dimension words and all of the five monomor-
phemic公words and their associated NNs or RNNs. The closest words to these sev-
enteen words are still in sub3MST. By consequence, the patterns of meaning inference
are to be found in sub3MST and will not change in the different MSTs.

4.5. Meaning Inference for a 283 Vertices MST: MST

MST can be used to extract genuinely the meaning of a公 in a公word.

9This lemma can be proved by using Prim’s first necessary condition (NC1) for a MST in a simple proof
by contradiction as in (Prim, 1957).

29

PBML 94 SEPTEMBER 2010

4.5.1. Inferring the Meaning of公 in公鹿 (Male Deer).

Figure 4 shows the path from one of the monomorphemic公 word公 (A) to公鹿
(male deer). 公 (A) forms an edge with the meaning dimension word雄性 (male or
maleness). The pattern presented by Fig. 4 follows the pattern of Fig. 2 in §3.2.6. 雄
性 is the NN of公 (A), it represents its primary meaning. In Fig. 4, the augmented
structure of the vertices of the non-公words,雌性 (female or femaleness)雌 (female)
is shown. These two words are both antonyms to雄性. Following §3.2.7, path length
is measured as 1: only one concept (femaleness) separates the concept of公鹿 and雄
性.

...公Word
� NN
公mono(A)
 雄性 − 雌性 − 雌 − 公鹿

� antonym:雄性 antonym:雄性

...公Word

Figure 4. Augmented pattern for inferring the Meaning of公 in公鹿

As for Fig.2 in §3.2.6, it can be asserted that in A,, the closest meaning of公
in公鹿 (male deer) is雄性 (male, maleness). Every Chinese speaker will agree on the
meaningfulness and correctness of such a conclusion.

4.5.2. Inferring the meaning of公 in大公國 (Grand Duchy).

From Tab. 1 and Tab. 2, we observed that 公 (vh) and 大公國 are RNN. 大公國
represents an unexpected dimension of meaning of公. Hence, in A,, the meaning
of 公 (vh) would be the meaning of 大公國. The pattern for meaning inference is
presented in Fig. 5. By an examination of edge weights, it is found that公 (vh) and
國家 (na) are secondary reciprocal nearest neighbors (SRNN).

RNN SNN

公mono(vh) � 大公國 (na)
 國家 (na) − 公Word...
RNN NN

�

SRNN SRNN

Figure 5. {公,大公國,國家} subcomponent of MST

30

B. Galmar, J.Y. Chen Identifying Different Meanings of a Chinese Morpheme (15–34)

國家 (country, nation) as mentioned in §2.2, is a possible meaning dimension word
for some Taiwanese subjects. If here國家 is considered as a meaning dimension word,
the conclusion is that the meaning of公 in both公 (vh) and大公國 is國家 (country,
nation).

4.5.3. Inferring the meaning of 公 in 廉政公署 (Independent Commission Against
Corruption).

In Fig. 6, 公 (nc) and 廉政公署 (nc) are RNN. 廉政公署 (nc) represents an unex-
pected dimension of 公. The second nearest neighbor of 廉政公署 is 政府 (na). In
A,, the closest non-公word to公 (nc) and廉政公署 is政府 (government). There-
fore the meaning of公 in廉政公署 and公 (nc) would be政府. Such an inference is
congruent with公署 in廉政公署meaning government office.

RNN NN
公mono(nc)
 廉政公署 (nc) � 政府 (na) − 公Word...

RNN SNN

Figure 6. The meaning of公 in廉政公署 is政府 (na).

5. Conclusion

This work brought major changes and improvements to the computational ap-
proach introduced by (Galmar and Chen, 2010) for inferring the meaning of a pol-
ysemous Chinese morpheme embedded in polymorphemic words. Our modified
computational approach uses the similarity matrix of reduced Singular Value Decom-
position to build nearest neighbors lists and minimum spanning trees whose vertices
structure can be augmented to compute a conceptual distance measure. A construc-
tive proof of optimality of the results have been given.

Our computational approach could serve as a first step to add a new feature to
current Chinese Wordnets: the listing of all the Chinese words embedding a same
polysemous morpheme with a fixed identified meaning. Such a listing could also
assist cognitive scientists in preparing materials for experiments aiming at investigat-
ing the effects of repetitive exposure to Chinese polysemous morphemes embedded
in compound words.

31

PBML 94 SEPTEMBER 2010

6. Future Directions

Firstly, Galmar and Chen (2010) mentioned that the Academica Sinica Balanced
Corpus could not reflect adequately the representation of human knowledge. They
advanced the Chinese Wikipedia - with its content organization following categoriza-
tion meaningful to human - as a sound corpus for a replication of their study.

Secondly, our computational approach can be abstracted and viewed as a compu-
tational chain for processing Chinese words semantics. The chain can be unfolded
into the following elements:

1. Dimensionality reduction.
2. Completeness reduction. Here the completeness of the graph - whose adjacency

matrix is the similarity matrix - is reduced to a minimum spanning tree.
3. Building of an augmented structure with additional semantic relationship in-

formation.
4. Search of semantic patterns.
5. Logical Inference.
The first element in the chain, dimensionality reduction was done through Latent

Semantic Analysis. Other possibilities would include:
1. Fiedlar retrieval: Hendrickson (2007) proposed that by considering the term-

document matrix as a bipartite graph between the set of words and the set of
documents and computing a set of the smallest eigenvalues of the Laplacian ma-
trix of the bipartite graph, one can perform an enhanced kind of LSA analysis
where unlikely to traditional LSA, documents and terms are considered equiv-
alent and cohabiting in a same space. This approach belongs to spectral graph
theory (Mohar, 1997; Chung, 1997; de Abreu, 2007).

2. Probabilistic models of semantic analysis: Latent Dirichlet Allocation (LDA) or
Probabilistic LSA. They are probabilistic successors of LSA which have been
found to outperform LSA (Blei et al., 2003, 2004; Blei and Lafferty, 2007).

For the second element in the chain, we could:
1. Replace the minimum spanning tree by other kinds of trees such as:

(a) Light Approximate Shortest-path Tree which is a hybrid tree between the
shortest path tree and the minimum spanning tree (Khuller et al., 1995).

(b) The multi-criteria Minimum Spanning Tree (mc-MST) which takes into ac-
count constraints (Zhou and Gen, 1999).

2. Instead of working with the similarity matrix viewed as the adjacency matrix
of a complete graph, we could consider to view the similarity matrix as the ma-
trix representation of an hypergraph - a generalization of graphs where edges
can join more than 2 vertices (Berge, 1976). Then, we would have to generate a
minimum spanning tree for the hypergraph.

A last point, by iterating our approach with the change of the meaning dimensions
words and the non-公words, we could capture the meaning of公 in more multimor-
phemic公words than in a single iteration.

32

B. Galmar, J.Y. Chen Identifying Different Meanings of a Chinese Morpheme (15–34)

7. Acknowledgments

We thank Iris Huang and Train Min Chen for fruitful discussions and suggestions
concerning the present work.

Bibliography

Berge, C. Graphs and hypergraphs. North-Holland Pub. Co., 1976.
Blei, D.M. and J.D. Lafferty. A correlated topic model of science. Annals of Applied Statistics, 1

(1):17–35, 2007.
Blei, D.M., A.Y. Ng, and M.I. Jordan. Latent Dirichlet allocation. The Journal of Machine Learning

Research, 3:993–1022, 2003.
Blei, D., T.L. Griffiths, M.I. Jordan, and J.B. Tenenbaum. Hierarchical topic models and the

nested Chinese restaurant process. Advances in neural information processing systems, 16:106,
2004.

Broder, A.Z. and E.W. Mayr. Counting minimum weight spanning trees. Journal of Algorithms,
24(1):171–176, 1997.

Chen, Jenn-Yeu, Bruno Galmar, and Hsiao-Jen Su. Semantic Satiation of Chinese Characters
in a Continuous Lexical Decision Task. In The 21st Annual Convention of the Association For
Psychological Science, 2009.

Chung, F.R.K. Spectral graph theory. Amer Mathematical Society, 1997.
de Abreu, N.M.M. Old and new results on algebraic connectivity of graphs. Linear Algebra and

its Applications, 423(1):53–73, 2007.
Eppstein, D. Finding the k smallest spanning trees. BIT Numerical Mathematics, 32(2):237–248,

1992.
Eppstein, D. Representing all minimum spanning trees with applications to counting and gen-

eration. Technical report, Citeseer, 1995.
Foulds, LR. Graph theory applications. Springer, 1995.
Galmar, B. and J.Y. Chen. Identifying Different Meanings of a Chinese Morpheme through

Latent Semantic Analysis and Minimum Spanning Tree Analysis. International Journal of
Computational Linguistics and Applications, 1(1-2):153–168, 2010.

Galmar, Bruno and Jenn-Yeu Chen. Can neural adaptation occur at the semantic level? a study
of semantic satiation. In The 12th annual meeting of the Association for the Scientific Study of
Consciousnesss, 2007.

Graham, R.L. and P. Hell. On the history of the minimum spanning tree problem. Annals of the
History of Computing, 7(1):43–57, 1985.

Gross, J.L. and J. Yellen. Graph theory and its applications. CRC press, 2006.
Hendrickson, B. Latent semantic analysis and Fiedler retrieval. Linear Algebra and its Applica-

tions, 421(2-3):345–355, 2007.

33

PBML 94 SEPTEMBER 2010

Khuller, S., B. Raghavachari, and N. Young. Balancing minimum spanning trees and shortest-
path trees. Algorithmica, 14(4):305–321, 1995.

Landauer, T.K. and S.T. Dumais. A solution to plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of knowledge. Psychological review, 104
(2):211–240, 1997.

Landauer, T.K., D.S. McNamara, S. Dennis, and W. Kintsch. Handbook of latent semantic analysis.
Lawrence Erlbaum, 2007.

Mohar, B. Some applications of Laplace eigenvalues of graphs. Graph Symmetry: Algebraic
Methods and Applications, 497:227–275, 1997.

Packard, J.L. The morphology of Chinese: A linguistic and cognitive approach. Cambridge Univ Pr,
2000.

Prim, R.C. Shortest connection networks and some generalizations. Bell System Technical Jour-
nal, 36(6):1389–1401, 1957.

Wright, P. Counting and constructing minimal spanning trees. Bulletin of the Institute of Com-
binatorics and its Applications, 21:65–76, 1997.

Wright, P. On Minimum Spanning Trees and Determinants. Mathematics Magazine, 73(1):21–28,
2000.

Wu, B.Y. and K.M. Chao. Spanning trees and optimization problems. Chapman & Hall, 2004.
Zhou, G. and M. Gen. Genetic algorithm approach on multi-criteria minimum spanning tree

problem. European Journal of Operational Research, 114(1):141–152, 1999.

Address for correspondence:
Bruno Galmar
hsuyueshan@gmail.com
National Cheng Kung University, Institute of Education
No.1, University Road, Tainan City 701, Taiwan (R.O.C.)
FAX: 886-6-2766493

34

The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010 35–56

Pragmatically-Motivated Utterance Fine-Tuning in Human-Computer
Dialogue

Vladimir Popescua, Jean Caelenb, Corneliu Burileanuc

a Laboratoire Informatique d’Avignon, University of Avignon, France
b Laboratoire d’Informatique de Grenoble, CNRS, France

c Politehnica University of Bucharest, Romania

Abstract
The naturalness and user-friendliness of the utterances generated by the computer when engaging

in dialogue with humans is a key point for the success of spoken language interaction-based computer
applications. This article addresses the issue by proposing a mechanism for controlling the strength of
the illocutionary force conveyed by the utterances produced by the machine. The degree of strength for
a speech act roughly quantifies the pressure that this act puts on its recipient. Few research efforts are
reported for controlling this pressure in utterance generation. This article provides the means to adjust
this force, relying on the discourse structure of the dialogue and on the public commitments that the
speakers make during the dialogue. After a concise statement of the formal framework, the proposed
approach is presented in a detailed manner and qualitatively assessed via relevant examples.

1. Introduction

In this article we address a particular issue in answer generation for human-computer dia-
logues. We are concerned with fine-tuning the degree of strength for the utterances generated
by the computer in dialogues, so that a natural dialogue is achieved. Tuning this degree of
strength is important not only for social reasons, but also for psychological reasons, related
to the level of motivation that an utterance determines in its addressee. Hence, this degree of
strength – named, in line with (Vanderveken, 1990-1991), illocutionary force degree, reflects,
from a pragmatical viewpoint, the illocutionary goal set by a speaker when she produces an
utterance1. This illocutionary goal has, certainly, perlocutionary effects on the hearer, in that it

1We will henceforth designate the speaker by she, and the hearer by he.

© 2010 PBML. All rights reserved. Corresponding author: vladimir.popescu@imag.fr
Cite as: Vladimir Popescu, Jean Caelen, Corneliu Burileanu. Pragmatically-Motivated Utterance Fine-Tuning in
Human-Computer Dialogue. The Prague Bulletin of Mathematical Linguistics No. 94, 2010, pp. 35–56.
doi: 10.2478/v10108-010-0019-1.

PBML 94 SEPTEMBER 2010

may determine his further dialogue turns. Although the importance of this aspect in linguistic
interaction has been pointed out in several studies (Vanderveken, 1990-1991; Faller, 2006),
the actual way the illocutionary force degree might be controlled was, to our knowledge, not
specifically addressed. Therefore, the goal of this article is to specify a formal framework
allowing us to compute the illocutionary force degree for an utterance that the machine is due
to produce.

For computing the illocutionary force degree, we rely on two key ideas: (i) using (Maudet
et al., 2004, 2006)’s work for computing public commitments starting from SDRT (“Seg-
mented Discourse Representation Theory”) rhetorical relations; (ii) using (Vanderveken, 1990-
1991)’s ideas for defining and formalizing the notion of illocutionary force degree, adapting
it to human-computer dialogue. Moreover, by the “agnostic” attitude that we adopt with re-
spect to the beliefs and intentions of the agents, we follow a research agenda along the lines
of (Kibble, 2006b,a). Indeed, we distance ourselves from the mentalistic approaches derived
from the BDI (“Belief-Desire-Intention”) framework (Cohen and Levesque, 1990b,a; Cohen
and Perrault, 1979). We chose to do so, since computing intentions of the agents is consid-
ered to be rather unreliable, with respect to the social commitments, that are readily available
(Kibble, 2006b, 2007).

The main contribution of this article consists in combining points (i) and (ii) above. In
order to do this, we start from a set of assumptions. First, we assume that each dialogue
partner (more specifically, the computer and the human speaker) has a commitment store that
contains the semantic forms for the utterances each speaker overtly commits to during con-
versation (Kibble and Piwek, 2007), along with the rhetorical relations between them; the
latter are accounted for in a framework inspired from SDRT (Asher and Lascarides, 2003).
We posit that, from the viewpoint of the aspects tackled in this article, the goal of the machine
is to achieve dialogue success, as opposed to task success, which is the responsibility of the
dialogue and task managers (Caelen and Xuereb, 2007). Concerning speakers’ commitments,
dialogue success is achieved if the machine’s and user’s commitments are not logically in-
consistent. A sufficient (albeit restrictive) and, in our opinion, easier to check, condition that
guarantees the consistency of the commitment stores is their equivalence. Informally stated,
the more the commitment stores are logically equivalent, the more the dialogue is success-
ful. Although this hypothesis does not hold for the general case of human dialogues, it is
supported, for service-oriented dialogues by empirical evidence brought by experiments per-
formed using an artificial dialogue agent, in the context of a room reservation dialogue system
(Nguyen, 2005). Unlike Maudet et alia, who consider the viewpoint of an external observer of
the dialogue (Maudet et al., 2006), we adopt the viewpoint of the machine. This implies that
the user’s and machine’s commitment stores are different if and only if there exists a semantic
form that is either in the commitment store of the machine and not in the user’s commitment
store, or vice versa. In this situation, the machine has to adjust the illocutionary force degree2

2In line with (Caelen and Xuereb, 2007) and (Vanderveken, 1990-1991), we consider the notions of speech act
type and illocutionary force as synonymous.

36

V. Popescu et al. Pragmatically-Motivated Utterance Fine-Tuning (35–56)

for this utterance, so that either the user commits to it, or the machine concedes to retract its
commitment to this semantic form.

From the assumptions shown above, a general adjustment policy for the degree of illocu-
tionary force can be derived, by taking into account the way the machine (as a speaker) wants
to act on the commitments of its interlocutor: first, if the machine wants the interlocutor to
integrate something in her/his commitment store, then it produces an utterance having a strong
degree of force (that is, stronger than a “neutral” degree of force, usable for pure assertions,
irrespective of the status of the commitments); second, if the machine wants its interlocutor
to retract something from her/his commitment store, then it produces an utterance with an
even stronger degree of force; this utterance is supposed to determine the interlocutor to give
up one of her/his commitments. On the other hand, if the machine wants to signal its inter-
locutor that it integrated the contents of one of her/his utterances in its commitment store, it
produces an utterance with a weak degree of force. Moreover, if the machine wants to signal
that it concedes to retract one of its commitments (thus endorsing one of its interlocutor’s
commitments), then it produces an utterance with an even weaker degree of force.

Concerning previous work related to the research described in this article, we can mention
(Traum et al., 2003)’s dialogue model, implemented with conversational agents that interact in
a multi-party dialogue context, with virtual and human speakers, in several applications, rang-
ing from military troops training, to interactive story-telling. This approach addresses two
different aspects of the interaction: (i) the discursive character of the agents’ linguistic con-
tributions – Traum et al. do not explicitly model rhetorical constraints imposed by dialogue
history on the speech turns, this is why their approach only simulates rhetorical capabilities
for the agents; (ii) the intentionality of the dialogue contributions – Traum et alia’s approach
indeed succeeds in altering the surface form of communicative intentions, but they do this by
relying on speakers’ emotional attitudes, which requires access to their intentional state. This
can only be done reliably in very limited contexts (concerning a specified task), the approach
does not seem readily transposable to different tasks, in that task-specific knowledge is not
separate enough from task-independent knowledge.

Another relevant work is (Gupta et al., 2007)’s POLLY system: the authors propose a
system architecture for controlling the surface form of the utterances in dual-party human-
system conversations. For this, the authors use (Brown and Levinson, 1987)’ Politeness The-
ory. Gupta et alia rely on pragmatic elements for choosing an adequate surface form for an
utterance that is specified in a deep form (as a plan, i.e. a set of preconditions and actions to
realize if the preconditions are satisfied). The authors use constraints imposed by a speaker’s
menaces, which basically boils to taking into account three contextual factors: (i) the power
that the hearer has over the speaker, (ii) the social distance between the speaker and the hearer,
and (iii) an imposing level of the speech act realized via an utterance. Starting from Brown
and Levinson’s Politeness Theory, Gupta et alia propose a fine-grained control of the sur-
face form of the utterances, according to the type of the menace that the speaker undergoes.
The passage from these politeness specifications (called “strategies” in Politeness Theory)
to linguistic forms is realized in a rather ad-hoc manner, since predefined lexical items are
“collated” to the prototypical, neutral, linguistic form of an utterance. Unlike in POLLY, we

37

PBML 94 SEPTEMBER 2010

propose to take into account other facets of the dialogue context, namely discourse structure
and public commitments, in order to handle basically the same phenomenon – choosing a
contextually-adequate linguistic form, between several alternatives for expressing the same
semantic content.

In view of these previous research efforts however, we do not claim that the usage of the
users’ commitments as a decision criterion in computing the degree of illocutionary force
yields better performances than politeness elements, or than emotion-related elements. We
only try to show that the rhetorical structure, a resource that is already computed and used for
other purposes (computing speech act types (Xuereb and Caelen, 2005), generating discourse
connectors in multi-sentential utterances (Popescu and Caelen, 2009), or elliptic construc-
tions (Popescu et al., 2008)), can also be used for acting on the degree of illocutionary force.
The issue of reusing already available (computed) reasources is of major importance in di-
alogue systems, where timely response to users’s demands is essential from an ergonomical
standpoint. However, the issue whether users’ commitments are, in general, an appropriate
ressource to be taken into account when computing degrees of illocutionary force falls out
of the scope of this article. What we do show though, is that there is a certain empirical
motivation behind our approach.

This article is structured as follows: in Section 2 we introduce the setting where our con-
tributions are made, i.e. task-oriented dialogue systems; in Section 3 we describe in detail the
mechanisms used for adjusting the illocutionary force degree in human-computer dialogue;
these mechanisms are also validated on several typical dialogue situations concerning a book
reservation service. Lastly, a conclusive discussion ends up the article.

2. Research Context: Pragmatic Control of Utterance Generation

The work described in this article is developed in the context of a formal framework for
controlling certain aspects of utterance production in human-computer dialogue. These as-
pects are either pragmatic in nature (such as the degree of strength that is assigned to a speech
act type that is performed by an utterance), or semantic (such as the semantic ellipsis control
in utterances). Both these sides are controlled by leaning on a formal account of the rhetorical
structure of dialogues: the interaction has to take place so that the global coherence of the
dialogue is maximized (Asher and Lascarides, 2003). On the other hand, an account of local
relevance of the utterances is used in order to foster the global coherence; namely, the duality
between utterance-level speech act types and rhetorical relations that connect pairs or larger
sets of utterances is taken into account (Caelen and Xuereb, 2007), in order to improve the
rhetorical structuring of the dialogue.

Thus, in this article we address the issue of how the commitment stores of the dialogue
partners (Asher and Lascarides, 2008) trigger decisions regarding the adjustment of the degree
of strength for the illocutionary force performed by the utterance. More specifically, we give
an account on how illocutionary force degrees are computed from the interplay between the
commitments of the speakers in dialogue.

38

V. Popescu et al. Pragmatically-Motivated Utterance Fine-Tuning (35–56)

Before continuing with the presentation of our formal framework for controlling the illo-
cutionary force degree, we introduce a set of notational conventions: (i) U and M denote the
dialogue partners, a user and the machine, respectively; (ii) L denotes a generic speaker; in our
framework, this means either M, or a human speaker, U; (iii) CS L denotes the commitment
store of speaker L; (iv) πi are utterance labels, for a positive integer i; (v) K(π) represents
the semantic form for utterance π (expressed in a first-order logic); (vi) Σρ represents the se-
mantics for the rhetorical relation ρ, expressed in the same first-order logic as the utterances;
(vii) emitter(π) is a discourse function that returns the identity of the speaker that had pro-
duced utterance π; (viii) equals(α, β) is a binary discourse predicate that is true if variable α
is bound to the value β; (ix) the operation←π states that the left-hand part is updated with the
right-hand part, via utterance π.

3. Pragmatics-based Illocutionary Force Tuning

3.1. Formalizing Vanderveken’s Illocutionary Force Degree

In formalizing the notion of degree of illocutionary force, we rely somehow on previous
work of (Vanderveken, 1990-1991). Thus, in an utterance generation context, we assume that
the input to the generator is a logical expression of the form F(p), where
• F is an illocutionary force in Vanderveken’s terminology, or a speech act type, in Cae-

len’s terminology: FF (“make-do”, a directive act), FS (“make-know”, an act of inform-
ing the hearer on something), FFS (“make-do-know”, a request for information from
the hearer), FP (“make-can”, an act of providing the hearer with several choices), et
FD (“make-must”, an act of imposing an obligation on the hearer) (Caelen and Xuereb,
2007);
• p is a propositional content in Vanderveken and Caelen’s terminologies; in the frame-

work proposed here, this propositional content is identified with the logical formula
that expresses the semantics of the utterance that realizes the act F; such a proposi-
tional content is denoted by K(π), as above, if the label of utterance F(p) is π.

Like in the work of Vanderveken and Caelen, we assume that each speech act type F can be
realized (via an utterance) with a certain degree of strength; we call this degree illocutionary
force degree and we denote it by ∂ϕ. Thus, the relation between an utterance, its propositional
content, its illocutionary force and the degree of this force can be seen as a series of functional
compositions:
π→K K(π)→F F(K(π))→∂ϕ ∂ϕ(F(K(π)) × K(π)),

which can also be written as (∂ϕ ◦ (F ◦K)×K)(π). We explicitly present below each of these
functions.

The K function assigns meanings (expressed in a first-order logic) to utterances and to
rhetorical relations; thus, it maps labels to logical formulas:

K : Π ∪ P→ Λ ,
where Π = {π1, ...} and P = {ρ1, ...} are two sets of labels – for utterances and for rhetorical
relations, Λ = {λ1, ...} is a set of logical formulas.

39

PBML 94 SEPTEMBER 2010

Thus, the K function is computed, when utterance generation is concerned, by the dialogue
controller and, when user utterance analysis is concerned, by the semantic analyzer. However,
we assume that the representations produced by the semantic analyzer and by the dialogue
controller are coherent, i.e. the same set of predicates (in the task ontology) is used. When
the K function takes the label of a rhetorical relation as argument, its operation is equivalent
to a simple search of the semantics of the rhetorical relation under discussion.

Function F assigns speech act types to (the semantics of) utterances; this function is un-
defined on the semantics of the rhetorical relations:

F : Λ \ {Σρ : ρ ∈ P}∪→ {FF,FS, FFS,FP,FD};
here, {Σρ : ρ ∈ P} represents the set of semantics for all known rhetorical relations; if function
F is applied on a formula K(π) such that it is the machine that produced utterance π (hence,
equals(M, emitter(π))), then it is the dialogue controller that computes the F function.

Function ∂ϕ assigns degrees of strength to speech act types, that are in turn applied to the
logical forms of utterances; thus, ∂ϕ maps speech act types to integers.

In order to endow the utterances with more variability, we stipulate that function ∂ϕ can
have, for the same speech act type, effects that depend on the propositional content of the
utterance, K(π). Thus, we define function ∂ϕ on the Cartesian product between the set of
speech act types and the set of propositional contents:
∂ϕ : {F} × (Λ \ {Σρ : ρ ∈ P})→ {−2,−1, 0, 1, 2},

where {F} and Λ denote, respectively, the set of speech act types, and the set (theoretically
infinite, but practically limited by the particular task considered) of logical formulas that can
be generated from a specified (e.g. in the task ontology) set of predicates. We assign five
possible levels to the illocutionary force degree, classifying them in very strong, strong,
neutral, weak and very weak ; −2 and −1 represent very weak and weak forces respectively,
0 represents the neutral force, and 1 and 2 represent strong and very strong forces, respectively.

The goal of this article is to define “analytically” the ∂ϕ function. Before doing this, we
are first going to motivate the illocutionary force degree via an example. We will thus show
that there is a relevant relationship between the illocutionary force degree that is assigned to
an utterance, and its linguistic form. Consider for instance a dialogue between a user U and a
machine M, where the user says:

U: Sorry, can you tell me, please where I can find book ‘B’?

The dialogue manager in M produces, as a response to U’s question, a communicative
intention of informing the user that the book can be found on the first floor, to the left; this
communicative intention is expressed, in logical form, and offered to the generator (π denotes
the label of this utterance):

FS(∃X,Y,Z,T,U,V : agent(X)∧equals(X,¬emitter(π))∧object(Y)∧equals(Y, ’book’)∧
feature(Y,Z) ∧ equals(Z, ’title’) ∧ equals(Z, ’B’) ∧ feature(Y,T) ∧ equals(T, ’location’) ∧
feature(T,U)∧equals(U, ’level’)∧equals(U, ’1’)∧ feature(T,V)∧equals(V, ’direction’)∧
equals(V, ’left’)) .

40

V. Popescu et al. Pragmatically-Motivated Utterance Fine-Tuning (35–56)

Some possible linguistic forms, for this communicative intention and different degrees for
the illocutionary force FS, are (linguistic markers associated to illocutionary force degrees are
written in boldface):
• ∂ϕ(FS(K(π)),K(π)) = −2:

M: On the first floor, to the left, I think.
• ∂ϕ(FS(K(π)),K(π)) = −1:

M: Wait a minute please... here it is: book ‘B’ is on the first floor, to the
left.

• ∂ϕ(FS(K(π)),K(π)) = 1:
M: You can certainly find book ‘B’ on the first floor, just to the left.

• ∂ϕ(FS(K(π)),K(π)) = 2:
M: Listen you can certainly find book ‘B’ on the first floor, just to the left,
do you understand?

Given that the speech act type considered is an FS (provision of information), all these
forms stem from a neutral illocutionary force degree:
∂ϕ(FS(K(π)),K(π)) = 0:

M: You can find book ‘B’ on the first floor, to the left.
After having seen this example, we observe that, from an answer generation viewpoint,

there are two issues to deal with, concerning the illocutionary force degree: (i) computing
the appropriate illocutionary force degree, for a given utterance, specified in logical form,
and (ii) mapping a specified illocutionary force degree to an appropriate linguistic form. In
this article, only the first issue is explicitly addressed. The second problem, of mapping
specified illocutionary force degrees to surface forms, is tackled by manual annotation of
canned utterances.

Before introducing the illocutionary force handling mechanisms, we discuss on the ade-
quacy of the five-level scale for the degree of illocutionary force. In our view, this issue has
two facets. First, why a discrete and not a continuous scale? This has been argued for at length
in several articles by Searle and Vandeveken inter alia, e.g. (Searle and Vanderveken, 2006),
or (Motsch, 1980). Essentially, a discrete scale seems to be rather a theoretical choice, partly
supported by the idea that language is a discrete phenomenon, than a necessary constraint.
Second, why a five-level scale? An answer is that the choice of five levels is arbitrary (in the-
ory, one can have a denumerable set of levels if we wish, but for a practical system one has to
make a choice for a finite number of degrees). However, we chose five levels that correspond,
roughly, to the informal (and intuitive) distiction between very weak, weak, neutral, strong
and very strong degrees. Moreover, given that in the following subsection we discuss and
illustrate the coupling between the relations between interlocutors’ commitments and the very
weak/weak/strong/very strong degrees of force, the −2 to +2 scale seems a methodologically
convenient choice, i.e., canned phrases can easily be annotated in this way, so that an answer
generation module can choose a suitable utterance (i.e., parameterized by the required degree
of force).

41

PBML 94 SEPTEMBER 2010

3.2. Illocutionary Force Handling Mechanism

The main idea that guides the computation of the illocutionary force degree stems from
the connection between public commitments and speech acts. As we emphasized before, we
rely on (Maudet et al., 2006)’s framework for computing commitment stores from discourse
structure.

For each user U in a dialogue, there exists a commitment store CS U that contains the
semantics of the utterances that U has produced, along with the semantics of the machine’s
utterances, that U has agreed with (this is indicated by rhetorical relations between these ut-
terances and utterances of U), and finally, along with the negated semantics of the machine’s
utterances that U did not agree with, along with the rhetorical relations that emphasize this
fact, e.g. P-Corr (Plan Correction) or Contrast (Asher and Lascarides, 2003). For exam-
ple, consider the following dialogue, between a human user U and the machine M, which
simulates a librarian:

M: You can still borrow three books, sir!
U: So, I can take this one as well?
M: Yes, you can take it, sir.

This interaction contains a question of U, that is in an Elabq relation to the first utterance
of M; the subsequent answer of M is in an Elaboration relation to the first utterance, since,
indeed the two turns of M achieve the same effect (from the point of view of the task that the
dialogue tries to help resolving) as a unique turn of M:

M: You can still borrow three books, so, for instance, you can take book ’X’ that
you want.

where book ’X’ and ’this one’ in the user’s question, refer to the same object in the physical
world.

The way that commitment stores are defined and used is inspired from (Maudet et al.,
2006); for instance, in the previous dialogue example, the commitment store of U, after she
had asked the question, is a set:

CS U = {K(π1),K(π2), ΣElabq(π1,π2)},
where π1 and π2 denote the first utterance of M and the first utterance of U (the question)
respectively, the function K(π) denotes the semantic content of utterance π, and ΣElabq(π1,π2)

denotes a Prolog-style semantics of the rhetorical relation Elabq(π1, π2), which specifies that
utterance π2 is a question such that any relevant answer elaborates on utterance π1 (Asher and
Lascarides, 2003).

The notion of commitment store and the way such a structure is computed for each speaker
in dialogue could have been given a better account, by using the notion of common ground.
More specifically, we could have relied on the idea that common ground in dialogue can be
seen as the joint entailments of all the speakers’ public commitments (Lascarides and Asher,
2009). Thus, commitments could have been seen as SDRSs, one such discourse structure for
each speaker. Moreover, in an adequate framework, the commitments should be computed by
taking into account the preferences of the speakers, which are learned from and affected by
conversational moves. The dynamic interplay between preferences and conversational actions

42

V. Popescu et al. Pragmatically-Motivated Utterance Fine-Tuning (35–56)

could be seen as a game-theoretical problem and modeled as such (Asher and Lascarides,
2008). However, we believe that in the context of this article, where the emphasis is put on
the way these commitments are used for computing illocutionary force degrees, the approxi-
mation provided above for the commitment stores is sufficient as a departure point.

Then, for computing a scalar value for the illocutionary force degree, we rely on the intu-
ition that the closer the speakers’ public commitments are, the closer to zero (a neutral value)
the illocutionary force degree is. In other words, in an ideal situation where U and M share
exactly the same commitments throughout the dialogue, the machine can express its utter-
ances in a neutral manner, from an illocutionary standpoint. That is, M assigns a zero degree
to the illocutionary force.

For most of the speech turns in dialogue we have that CS U . CS M , i.e., U and M’s
commitment stores are not equivalent3 after each speech turn. This non-equivalence results in
several possible cases, concerning the relationship between the interlocutors’ commitments:

1. CS M ⊂ CS U , that is, M’s commitment store is strictly included in U’s commitment
store; this is typical for dialogues where the user teaches the machine new tasks;

2. CS M ⊃ CS U , that is, conversely, M’s commitments strictly include U’s commitments;
this situation is typical for tutoring dialogues;

3. CS M ∩ CS U ≡ CS ∩ , ∅, that is, there is a certain overlapping between U and M’s
commitments; this is typical for service-oriented dialogues, where the machine interacts
with previously unknown users;

4. CS M ∩ CS U ≡ ∅, that is, M and U have no commitment in common; this is typical
for dialogues where speakers have fundamentally different cultural backgrounds, or
where the user teases the system; this type of dialogue represents only unsuccessful
interactions.

Before furthering the discussion, we have to explain what we mean by intersecting two
commitment stores: this notion can be considered either at a purely syntactic level (i.e. the
logical forms contained ad litteram in the two commitment stores), or at a semantic level (i.e.
the logical forms present in the commitment stores and satisfiable in the same set of models).
Similarly to the commitments equivalence, we consider the intersection of commitment stores
at a semantic level (a syntactic definition would have been too constrained). Thus, in order
to automatically determine the intersection of two commitment stores, or to evaluate their
equivalence, we go through several steps, stated below:

for two commitment stores CS i and CS j:
(a) for each logical formula λ(i)

k ∈ CS i and λ(j)
l ∈ CS j:

i. compute the models where these formulas are satisfiable:
µ
(i)
k [m] : µ

(i)
k [m] |= λ

(i)
k ; µ(j)

l [m] : µ
(j)
l [n] |= λ(j)

l ;
ii. compute the conjunctions of these models:

M(i)
k =

∧
m:µ

(i)
k [m],∅(µ

(i)
k)[m]; M(j)

l =
∧

n:µ(i)
k [n],∅(µ

(j)
l)[n];

3This equivalence is considered at a semantic level, stemming from the identity of the models where the logical
forms in the commitment stores are satisfiable.

43

PBML 94 SEPTEMBER 2010

U
CS

M
CS

M
CS

U
CS

M
CS

U
CS

M
CS

U
CS

U
CS

M
CS

U
CS

M
CS

U
CS

M
CS

U
CS

M
CS

U
CS

M
CS

U
CS

M
CS

U
CS

M
CS

U
CS

M
CS

M
CS

U
CS

U
CS

M
CS

U
CS

M
CS

M
CS

U
CS

π
M

π
M

π
M

π
M

321 4

(a)

(b)

(a)

(b)

(a)

(b)

(c)

(d)

(a)

(b)

Figure 1. Commitment stores for U and M

(b) compute the unions of the conjunctions of the models:
Mi =

∪
k:M(i)

k ,∅
(M(i)

k); M j =
∪

l:M(j)
l ,∅(M(j)

l).

Then, we compare these sets Mi and M j for the two commitment stores CS i and CS j, in
order to evaluate their equivalence or their intersection. The crucial issue with this approach
lies in determining the set of models that satisfy the logical formulas. Essentially, this is ac-
complished by considering the whole task ontology as a model, from which we first eliminate
the predicates that make the logical formula unsatisfiable in the model. Then, we can still
generate models where the logical formula is satisfiable, by further eliminating predicates in
the task ontology. However, we thus obtain a set of models strictly ordered with respect to
inclusion. We therefore observe that the sets M(i)

k , for each logical formula λ(i)
k in the com-

mitment store CS i, are subsets of predicates in the task ontology, such that adding λ(i)
k to this

subset does not lead to a contradiction.

44

V. Popescu et al. Pragmatically-Motivated Utterance Fine-Tuning (35–56)

The strict inclusion relation (⊂) between commitment stores is defined in semantic terms as
well, hence of models where the formulas contained in the commitment stores are satisfiable.
Thus, an inclusion relation between two commitment stores CS i and CS j is equivalent to the
inverse inclusion relation between the corresponding sets of models Mi and M j:

CS i ⊂ CS j ⇔ M j ⊂ Mi.
This is explained by the fact that the more formulas are contained in a commitment store
(modulo the logical equivalence), the less there are models that satisfy all these formulas. The
difference operation between two commitment stores is defined in model-theoretic terms as
well: the result of a difference between two commitment stores represents the set of models
that do not satisfy any formula in the second commitment store, but satisfy all the formulas in
the first commitment store that are not equivalent to the formulas in the second commitment
store:

CS i \ CS j = {µ : ∀λ j ∈ CS j µ |, λ j ∧ ∀λi ∈ CS i : λi . λ j µ |= λi}.
Given the fact that throughout the article we adopt the machine’s viewpoint, in order to

predict its behavior in producing a speech turn, we assume that, in each of the four cases
presented above, the next dialogue contribution to be produced belongs to the machine; we
thus denote by πM the next speech turn waited from M. In this context, we analyze in a
detailed manner below each of the four situations indicated above (concerning the relations
between commitment stores); these situations are illustrated in Figure 1:

Case 1: CS M ⊂ CS U

M’s goal in dialogue is to make the commitment stores of the speakers equivalent, that
is, CS M ≡ CS U . We assume that, when the machine produces turn πM , it tries to modify as
scarcely as possible its own commitment store. Moreover, for simplicity we assume that πM

consists of a single utterance; in fact, this does not reduce the generality of the problem, be-
cause we can assume that the machine produces each utterance sequentially, even in a speech
turn that contains several utterances. Thus, two possible situations arise:

(a) CS M ←πM CS M ∪ (CS U \ CS M):
In this case, M produces an utterance πM through which it marks the acceptance of all
the preceding utterances in U’s commitment store, but absent from his own commit-
ments, i.e., the machine commits to K(πU−) = CS U \ CS M , where πU− denotes a (set
of) utterance(s) previously produced by U. Thus, the machine chooses a weak degree
of illocutionary force for πM

4 : ∂ϕ(F(K(πM))) = ∂ϕ(πM) = −1.
(b) CS U ←πM CS U \ (CS U \ CS M):

In this case, M produces an utterance πM through which it tries to convince U to with-
draw her commitment to K(πU−) (i.e., to facts the machine is not committed to). Thus,
the machine chooses a very strong degree of illocutionary force: ∂ϕ(πM) = 2.

4We will henceforth simplify the notation and write ∂ϕ(π) instead of ∂ϕ(F(K(π)),K(π)) for the illocutionary
force degree of an utterance labeled π.

45

PBML 94 SEPTEMBER 2010

The machine will first try the second possibility and, only if this fails (i.e. the user does not
cooperate with the machine in adjusting its commitments to M’s), M will choose the first
possibility.

Case 2: CS M ⊃ CS U

Assuming that the machine has the same goals as in the preceding case (i.e., to make its
commitments equivalent to the user’s commitments) two possibilities arise as well:

(a) CS M ←πM CS M \ (CS M \ CS U):
In this case, M produces utterance πM through which it concedes to withdraw previous
commitments not shared by U (i.e., K(πM−) = CS M \ CS U , where πM− denotes an
utterance previously produced by M). Thus, the machine marks this withdrawal by a
very weak degree of illocutionary force for its utterance: ∂ϕ(πM) = −2.

(b) CS U ←πM CS U ∪ (CS M \ CS U):
In this case, M produces utterance πM through which it tries to convince U to commit
to K(πM−) = CS M \ CS U . Thus, the machine chooses a strong degree of illocutionary
force for πM: ∂ϕ(πM) = 1.

As in the previous case, the machine first tries the second possibility and, only if this fails, M
will go for the first possibility.

Case 3: CS M ∩CS U = CS ∩

For the subsequent presentation, we introduce the following notations: (i) K(πM−) =
CS M \ CS U , (ii) K(πU−) = CS U \ CS M , (iii) K(πUM−) = CS U ∩ CS M , (iv) K(πM¬U−) =
CS M\CS ∩, (v) K(πU¬M−) = CS U\CS ∩. We thus have that CS U∪CS M = {K(πM−),K(πU−),
K(πUM−)}.

Under the same assumptions concerning M’s goal in dialogue and the heuristics on the
preferences for updating the commitment stores, four possibilities arise in this case:

(a) (CS M ←πM CS ∩)∧ (CS U ←πM CS ∩):
In this situation, M produces utterance πM through which it concedes to withdraw its
commitment to K(πM¬U−) and it tries to convince U to withdraw its commitment to
K(πU¬M−). Thus, the machine first aggregates πM in two utterances, π′M and π′′M , such
that K(π′M)∧K(π′′M) = K(πM). Secondly, M assigns a very weak degree of illocutionary
force to π′M: ∂ϕ(π′M) = −2, and a very strong degree of illocutionary force to π′′M:
∂ϕ(π′′M) = 2.

(b) (CS M ←πM CS M ∪CS U)∧ (CS U ←πM CS M ∪CS U):
In this case, M produces utterance πM through which it commits to K(πU−) and it tries
to convince U to commit to K(πM−). Thus, the machine first aggregates πM in two
utterances, π′M and π′′M , such that K(π′M) ∧ K(π′′M) = K(πM). Secondly, M assigns
a weak degree of illocutionary force to π′M: ∂ϕ(π′M) = −1, and a strong degree of
illocutionary force to π′′M: ∂ϕ(π′′M) = 1.

(c) CS U ←πM CS M ≡ CS U \ (CS U \ CS M) ∪ (CS M \ CS U):

46

V. Popescu et al. Pragmatically-Motivated Utterance Fine-Tuning (35–56)

In this case, M produces utterance πM through which it tries to convince U to withdraw
its commitment to K(πU−) and to commit to K(πM−). Thus, the machine first aggre-
gates πM in two utterances, π′M and π′′M such that K(π′M)∧ K(π′′M) = K(πM). Secondly,
M chooses a very strong degree of illocutionary force for the first utterance, and a strong
degree for the second utterance: ∂ϕ(π′M) = 2 and, respectively, ∂ϕ(π′′M) = 1.

(d) CS M ←πM CS U ≡ CS M \ (CS M \ CS U) ∪ (CS U \ CS M):
In this case, M produces utterance πM through which it withdraws its commitment to
K(πM¬U−) and commits to K(πU¬M−). Thus, the machine first aggregates πM in two
utterances, π′M and π′′M such that K(π′M)∧K(π′′M) = K(πM). Secondly, M assigns a very
weak degree of illocutionary force to π′M and a weak degree to π′′M: ∂ϕ(π′M) = −2, and
∂ϕ(π′′M) = −1, respectively.

We assume that the machine adopts the heuristic of trying to modify as scarcely as possible
its commitments, preferring to add utterances, rather that removing them. Thus, the order of
preference for the possibilities listed above is: (c)→ (b)→ (a)→ (d).

Case 4: CS M ∩CS U = ∅

Adopting the constraint of not having empty commitment stores following an updating op-
eration, and keeping the same assumption on M’s goal in dialogue, as well as on the heuristic
concerning the preferences in commitment stores updating, we have two possibilities:

(a) CS M ←πM CS U :
In this situation, via πM M withdraws all its commitments, accepting all the user’s
commitments instead. This represents an extreme version of the case 3.(d), but the
formal treatment is identical to that case.

(b) CS U ←πM CS M:
In this case, M produces utterance πM through which it tries to convince U to give up
all his previous commitments, while accepting all of M’s commitments. This situa-
tion represents an extreme version of the case 3.(c), but the formal treatment remains
unchanged.

Given the heuristic whereby M modifies as scarcely as possible its commitment store,
preferring additions to it instead of removals, the order of preferences for the possibilities
presented above for this case is: (b)→ (a).

Concerning the assignment of illocutionary force degrees, several comments arise, in order
to defend the choice of a five-level scalar representation, and to clarify the distinction between
the five possible values for this degree of force. Thus, given a speaker L and an utterance π
produced by L, we can depict several situations:
• when via π, L concedes to remove something from its commitment store CS L, like

CS L ←π CS L \ {πL−} for some previous utterances πL− of L, we have that ∂ϕ(π) = −2,
hence a very weak degree of illocutionary force;

47

PBML 94 SEPTEMBER 2010

• when via π, L adds something to its commitment store CS L, like CS L ←π CS L ∪ {πL̄−}

for some previous utterances of another speaker, L̄, we have that ∂ϕ(π) = −1, hence a
weak degree of the illocutionary force;
• when via π, L tries to convince another speaker L̄ to add something to its commitment

store CS L̄ (i.e., CS L̄ ←π CS L̄ ∪ {πL−}), we have that ∂ϕ(π) = 1, hence a strong degree
of illocutionary force;
• when via π, L tries to convince another speaker L̄ to remove something from its com-

mitment store CS L̄ (i.e., CS L̄ ←π CS L̄ \ {πL̄−} for a previous utterance πL̄− of L̄), we
have that ∂ϕ(π) = 2, hence a very strong degree of illocutionary force.

For the neutral degree of illocutionary force (i.e., of value 0), we stipulate that an utterance
can be produced with a neutral degree only if it asserts un-contestable facts in the world (which
are encoded in the task ontology), for instance the fact that ‘Normally, a book cannot be read
in the total absence of light’, it realizes a speech act of the type FS and is uttered for the first
time in dialogue (i.e. it is not re-uttered in an attempt to make the interlocutor accept the
utterance, after having previously rejected it). By consequence, any other type of utterance,
realizing any other speech act type, cannot have a neutral degree of illocutionary force.

We thus observe how the set of possible relations between the commitment stores for the
speakers in dialogue is mapped into a set of values for the degree of illocutionary force. This
provides a first justification a posteriori for the five-level scale for this degree of force. Yet, the
choice of a discrete scale for the degrees of illocutionary force can still seem methodological
in nature: indeed, it makes it possible to annotate easier corpora of pre-defined utterances that
thus map degrees of force into linguistic realizations. However, this five-level scale accounts
well for the (set-theoretic) relations between the commitment stores of the speakers. For
instance, if we had chosen a continuous scale of values in an interval (e.g.,[−1; +1]), we
would have had difficulties in mapping these values to relationships between commitment
stores.

A possible criticism to this approach concerns the dialogue success criterion. Indeed, we
could consider the following dialogue example, between the machine M (a virtual librarian)
and a user U:

U1: Hello, I would like to have some books on the French revolution!
M1: Hello, Sir, I have two books: an introductory one, ‘X’, and a more advanced
one, ‘Y’.
U2: I would like to have book ‘Y’, it seems more interesting.
M2: OK, give me your card, please.

In this dialogue, the utterance ‘there is a book ‘Y’ on the French revolution in the library’
should belong to CS M and to CS U . Nevertheless, whereas the utterance ‘there is a book ‘X’
on the French revolution in the library’ belongs to CS M; U has not committed to its content,
either explicitly or implicitly; U is neutral about the contents of this utterance; hence, the
utterance does not belong to CS U . Thus, after these speech turns, we have that CS U ⊂ CS M;
yet, the dialogue is successful, since the user manages to make its reservation. The dialogue
would not have been more successful if, for instance, U had produced ‘OK, I agree’ as well, in

48

V. Popescu et al. Pragmatically-Motivated Utterance Fine-Tuning (35–56)

the beginning of speech turn U2, thus committing to the entire content of the previous speech
turn of M (that is, to the contents of M1):

U′2: OK, I agree. I would like to have book ‘Y’, it seems more interesting.

On the one hand, the equivalence between the commitment stores of U and M in dialogue
represents a sufficient condition to dialogue success; even though this condition is not always
necessary, its fulfillment ensures that the dialogue is successful. On the other hand, speech
turn U2 may represent an indirect implicit confirmation (essentially, if U does not contradict,
explicitly or implicitly, any part of the preceding speech turn of M, then we stipulate that by
default U commits to the entire speech turn of M) to the whole speech turn M1.

We further argue why we considered commitments’ equivalence instead of commitments’
mutual consistency as a dialogue success criterion. The argument pertains to computational
considerations. We consider that it is easier to perform a mere “set-theoretic” commitments
equivalence check, than a consistency check, because a consistency check would require us to
verify for revisions in the commitment stores, that is, to check the entire commitment stores
for each commitment store updating process. However, if equivalence is checked, only what
is being currently added to the commitment stores needs to be checked, since their equiva-
lence is aimed at during the entire dialogue. Even though this equivalence is never attained, it
is “asymptotically” aimed at, in that the machine (not necessarily like the human interlocutor,
and this is important, since, in our view, the machine need neither imitate, nor even approx-
imate human behavior, but only be a useful and “friendly” assistant to the human) tries to
adjust its commitments (and, if necessarily, its interlocutors’ commitments) so that they are
the closest possible, for each dialogue turn pair. Hence, altough restrictive, the condition on
the equivalence of the commitment stores is, we believe, operationally more feasible than the
check on their consistency.

Lastly, another relevant criticism stems from the fact that the degree of illocutionary force
is not determined only from the discourse structure and the public commitments of the speak-
ers: social roles are involved as well, in limiting the set of values that the degree of illocution-
ary force might take. According to our framework as it was presented until now, in a situation
where the user U states α and the machine M states ¬α, and the machine tries to convince
U to give up his commitment to α, then it should utter ¬α with an illocutionary force degree
of +2. This would lead the machine to produce an utterance like: ‘But Sir, α is certainly not
true, do you understand?’. In a service scenario, where U is the customer and M the “server”,
this utterance is not appropriate, because it would lead U to complain about M’s impoliteness.
This is a case where M has much less power than U in conversation. M simply does not have
the right to produce an utterance with an illocutionary force degree of +2. All the machine
can do in this case is to produce an utterance with a degree of force of +1: ‘Sir, I am con-
vinced that α is not true’. We therefore observe how a hierarchical social status with respect
to the interlocutor induces a tighter upper bound for the degree of illocutionary force. In the
same context, we can ask ourselves whether, conversely, there are relational configurations
that induce a tighter lower bound for the degree of illocutionary force as well. We believe that
here such a lower bound can only be imposed by the personality of the speaker: for example,

49

PBML 94 SEPTEMBER 2010

if the latter has a proud nature, then she will tend not to produce utterances with a degree of
force of −2 (for thus giving up its previous commitments), preferring to produce utterances
with a degree of force of −1 instead. Thus, the speaker only concedes to accept the interlocu-
tor’s utterances (that could in turn entail the withdrawal of certain commitments). Consider
for instance the following dialogue, between a user and a “proud” machine, in the sense stated
above:

U1: But book ‘X’ is not on the first floor, as you told me! Actually, this book is
on the second floor!
M1: Hm... I think you are right; I will send one of my colleagues on the second
floor bring you the book.

In M1 (which has a degree of illocutionary force of −1), the machine does not explicitly
withdraw its previous commitment to the fact that book ‘X’ were on the first floor, preferring
to confirm vaguely user’s turn U1. Had the machine been less “proud”, it would have explicitly
given up its commitment to the fact that book ‘X’ were on the first floor, as in a speech turn
M(′)
1 : ‘Yes, indeed, I was wrong, I am sorry; hence, I will send one of my colleagues on the

second floor bring you the book’.
To conclude on the social roles, we propose, in a first approximation, that the domain of

values for the degree of illocutionary force be limited by an upper bound that stems from a
lower position on the social hierarchy, with respect to the interlocutor. In the “virtual librarian”
example, the latter could only produce utterances with illocutionary force degrees in the set
{−2; −1; 0; +1}. On the contrary, the human user could produce utterances with any degree of
illocutionary force, between −2 and +2. The issue of a finer analysis of the effects that social
roles induce on the illocutionary force in producing utterances in conversation remains open
to further study.

3.3. Assessment of the Framework

In this section we assess the proposed framework via two typical dialogues, illustrating
the mechanism for adjusting the degree of illocutionary force. The mapping between degrees
of force and linguistic form is realized by using canned phrases, annotated with illocutionary
force degrees, based on linguistic intuitions. The two dialogues considered differ only in
certain speech turns, the task context being the same: a user U tries to find a book ‘B’ in a
library, whose (virtual) librarian is the machine M.

Dialogue 1:
U1: Sorry, can you tell me, please, where I can find book ‘B’? — FFS(π1)
M1: Hello, well, you can find the book just at the end of the corridor, to the left.
— FS(π2); QAP(π1, π2)
U2: But I’ve just looked there, and I couldn’t find the book! — FS(π3); P −
Corr(π2, π3)
M2: Oh, I was wrong, I am sorry; indeed, you can find book ‘B’ on the first floor,
to the right. — FS(π4);Contrast(π2, π4); P − Elab(π3, π4); QAP(π1, π4)

50

V. Popescu et al. Pragmatically-Motivated Utterance Fine-Tuning (35–56)

Dialogue 2:
U1: Sorry, can you tell me, please, where I can find book ‘B’? — FFS(π1)
M′1: Hello, wait a minute please... here it is: you can find this book on the first
floor, to the left. — FS(π′2); QAP(π1, π′2)
U2: But I’ve just looked there, and I couldn’t find the book! — FS(π3); P −
Corr(π′2, π3)
M′2: Listen, you can certainly find book ‘B’ on the first floor, just to the left, I
have just checked in my data base! — FS(π′4); P − Corr(π3, π′4); QAP(π1, π′4)

Next to each speech turn in these dialogues we have marked the speech act type, the label
of the utterance and the rhetorical relations that connect this speech turn to previous turns5

Moreover, for M’s speech turns, we have marked the illocutionary force degree as well. The
rhetorical relations are computed in the framework of (Asher and Lascarides, 2003) SDRT,
whereas the speech act types are assigned based on linguistic markers (for user utterances),
using (Colineau, 1997)’s connectionist approach, or provided directly by the dialogue con-
troller (for machine utterances) (Caelen and Xuereb, 2007). By consequence, we limit our
description to the commitment stores updating, and to the manner whereby the commitments
allow us to compute the illocutionary force degrees. These processes are presented in detail
below, for each of the two dialogues:

Dialogue 1:
1. when U produces π1, its commitment store remains unchanged, and so does M’s com-

mitment store: CS U ←π1 CS U ∧ CS M ←π1 CS M;
2. when M produces π2, its commitment store is updated, whereas U’s commitment store

remains, for the moment, unchanged: CS M ←π2 CS M∪{K(π2), ΣQAP(π1,π2)}∧CS U ←π2
CS U ; M’s goal is that U update its commitment store with K(π2) as well: CS U ←π2
CS U ∪ {K(π2)}, hence M assigns a value of +1 to the illocutionary force degree of π2:
∂ϕ(π2) = +1;

3. when U produces π3, its commitment store is updated by adding ¬K(π2), whereas M’s
commitments do not change for the moment: CS U ←π3 CS U ∪ {¬K(π2),
ΣP−Corr(π2,π3)} ∧ CS M ←π3 CS M;

4. when M produces π4, its commitment store is updated by removing K(π2) from it,
and by adding K(π4) to it, whereas U’s commitments do not change for the moment:
CS M ←π4 CS M \ {K(π2)} ∪ {K(π4), ΣContrast(π2,π4), ΣP−Elab(π3,π4), ΣQAP(π1,π4)}; M’s goal
is that U’s commitment store be updated by adding K(π4): CS U ←π4 CS U ∪ {K(π4)}
such that K(π4) ⇒ ¬K(π2), hence M assigns a value of −2 to the illocutionary force
degree of π4: ∂ϕ(π4) = −2.

Dialogue 2:
1. when U produces π1, its commitment store remains unchanged, and so does M’s com-

mitment store: CS U ←π1 CS U ∧ CS M ←π1 CS M;

5For the simplicity of the presentation, we consider that each speech turn contains only one utterance.

51

PBML 94 SEPTEMBER 2010

2. when M produces π′2, its commitment store is updated, whereas U’s commitment store
remains unchanged for the moment: CS M ←π′2 CS M ∪ {K(π′2), ΣQAP(π1,π′2)}∧CS U ←π′2
CS U ; M’s goal is that U’s commitment store be updated with K(π′2) as well: CS U ←π′2
CS U ∪ {K(π′2)}; but first, M has to update its own commitment store with K(π′2), hence
M assigns a value of −1 to the illocutionary force degree of π2: ∂ϕ(π2) = −1 (unlike
in Dialogue 1, M does not have K(π′2) in its commitment store, hence it has to ask the
task manager for this information);

3. when U produces π3, its commitment store is updated by adding ¬K(π′2), whereas M’s
commitments do not change for the moment: CS U ←π3 CS U ∪ {¬K(π′2),
ΣP−Corr(π′2,π3)} ∧ CS M ←π3 CS M;

4. when M produces π′4, its commitment store still contains K(π′2), whereas U’s commit-
ments do not change for the moment: CS M ←π′4 CS M ∪
{ΣP−Corr(π3,π′4), ΣQAP(π1,π′4)}; M’s goal is that U’s commitment store be updated by re-
moving ¬K(π′2), and by adding K(π′2): CS U ←π′4 CS U \ {¬K(π′2)}∪ {K(π′2)}, hence M
assigns a value of +2 to the illocutionary force degree of π′4: ∂ϕ(π

′
4) = 2.

For these two dialogues, we have been in two different cases, concerning the (set theoretic)
relation between U and M’s commitment stores:

• In dialogue 1 we are in the case CS U ∩ CS M = CS ∩ , ∅ after speech turn M2 were
produced;
• In dialogue 2 we are in the case CS U ∩CS M = ∅ after speech turn M′2 were produced.

If the degree of illocutionary force had not been adjusted, then we would have obtained in
all cases a single speech turn, M(0), instead of M2, or M′1 and M′2; speech turn M(0) would
have contained an utterance like:

M(0): You can find book ‘B’ on the first floor, to the left.

This would have led the machine to produce more annoying and less natural turns.
However, the approach has several limits. First, the machine is sometimes “rude” for a

public service, especially when choosing very strong degrees of force for determining its in-
terlocutor to give up some of her/his commitments. However, such as behavior is not totally
implausible, if we think at more informal interactions, especially those that are less subject
to politeness conventions: consider for example a dialogue situation between a bartender and
a (drunk) customer in a bar next to a highway at night, where very strong illocutionary de-
grees and behaviors such as those shown in the article seem casual. Yet, there is another
problem, that stems from the imprecisions in determining the interlocutors’ public commit-
ments: indeed, if, for some reason (i.e. sudden attack) the interlocutor stops in the middle
of its utterance, or the interlocutor tries to tease the system by feeding incoherent turns into
it, the machine might perform wrong calculations, and hence, for instance, inadequately pro-
duce utterances with a +1 (strong) degree of illocutionary force, in trying to determine the
interlocutor to commit to something to which the latter has already committed, or which is
irrelevant to the dialogue at hand; these limitations are discussed more thoroughly in (Popescu
et al., 2009).

52

V. Popescu et al. Pragmatically-Motivated Utterance Fine-Tuning (35–56)

4. Discussion and Conclusions

In this article we have shown that fine-tuning the degree of illocutionary force is a crucial
aspect in generating (machine) utterances in dialogue. We have proposed a computational
framework for computing the illocutionary force degree. The mechanism is based on the
public commitments of the speakers (the machine, which emulates a public service, and a
human customer of this service). The commitment stores are computed from the discourse
structure in a manner borrowed from (Maudet et al., 2006). Furthermore, we have given a
precise formalization of Vanderveken’s notion of illocutionary force degree, coupling it with
the public commitment, in a condition on dialogue success. Although limited and arguable,
this condition (of aiming at identical commitments for the interlocutors) is relevant in service-
oriented dialogues, that are restrained to a very specific task, priorly specified.

However, the approach described in this article has certain other limits and arguable as-
pects. First, out of the six components of the illocutionary force, as defined by (Vanderveken,
1990-1991), we take into account explicitly only three: propositional content, degree, and
illocutionary point (i.e., speech act type). Another arguable point, although in agreement with
(Vanderveken, 1990-1991): p. 120, is the domain of values for the illocutionary force degree:
{−2,−1, 0, 1, 2}; Vanderveken does not limit the number of possible illocutionary force de-
gree, but we do it, on the one hand because the five-level scale emerges from the relationships
between the public commitments of the speakers, and on the other hand, for methodological
reasons, related to the possibility to conveniently annotate a set of canned phrases that can be
used in surface generation.

Another possible criticism concerns the manner whereby we define the negation of an
utterance, especially when this utterance is a question. One could object that an interrogative
utterance is of the wrong semantic type for the negation operation. This is why we need to
clarify this point. Let us consider for example a question as ‘Is this book OK for you’, labeled
π. At a semantic level, this utterance is logically represented via the K/1 function. Since
it is a question, the utterance contains a predicate which takes a non-initialized variable as
argument:
∃Y, Z : object(’book’) ∧ feature(’book’,Y) ∧ title(Y) ∧ equals(Y, ⟨book_title⟩) ∧

want(¬emitter(π), ’book’,Z) ∧ equals(Z, ’?’).
Here, the non-initialized variable is the boolean Z that contains the truth value of the predicate
want/3, which is true if the entity designated by its first argument (in our case, the recipient of
π) wants the entity designated by the second argument (in our case, the book ’book’, whose ti-
tle is specified by the value of variable Y). The negation of such a question does not boil down
to the classical negation of each predicate in the conjunction, followed by the substitution of
the conjunctions with disjunctions, but to assigning the value 0 to the boolean Z; hence, in
our case, ¬K(π) has the same form as K(π), excepting the last predicate, which has the form
equals(Z, 0).

Another aspect left untackled in this article concerns the importance of the conversational
genre in determining relevant illocutionary force degrees for the utterances. Thus, for in-
stance, in absurd theatrical plays very strong illocutionary force degrees can be appropriate

53

PBML 94 SEPTEMBER 2010

even in social configurations where the speaker has a lower position on the social hierarchy,
with respect to the hearer, simply because ethical adequacy is sometimes distorted. Moreover,
in such plays (or in informal dialogues between close friends, for instance), a very strong
illocutionary force degree might as well be used for withdrawing a commitment, in an utter-
ance like ‘Listen, I was certainly wrong, I am really sorry, do you understand me?’. However,
in the service oriented customer-institution dialogues concerned by this study, such illocu-
tionary configurations seem rather inadequate, at least in the context of dialogue corpora for
task-oriented dialogues, such as the PVE (“Portail Vocal pour l’Entreprise”) system (Nguyen,
2005). In our view, genre acts in the form of supplementary constraints in human-system di-
alogues. These constraints can perform a post-filtering on the set of authorized illocutionary
forces, in a manner akin to that discussed for social roles, in the end of Section 3.2. Neverthe-
less, the issue of formalizing the intricate interaction between social and genre constraints in
producing dialogue contributions that are adequate from an illocutionary standpoint remains,
in our view, open to further study.

In spite of several limitations of the current framework, it represents a first version of a
principled way of computing the adequate illocutionary force degree of machine utterances.
A first prospect for this research would be to evaluate in quantitative manner the framework
described, by comparing automatically generated utterances to human utterances generated
via Wizard-of-Oz techniques, or present in real dialogue corpora.

Acknowledgement

The authors wish to thank Prof. Andrew Kehler from the University of California, San
Diego, for his valuable comments and thorough remarks concerning the contents of this arti-
cle.

Bibliography

Asher, Nicholas and Alex Lascarides. Logics of Conversation. Cambridge University Press, United
Kingdom, 2003.

Asher, Nicholas and Alex Lascarides. Making the right commitments in dialogue. In Fall 2008 Work-
shop in Philosophy and Linguistics. University of Michigan, 2008.

Brown, Penelope and Stephen Levinson. Politeness: Some Universals in Language Use. Cambridge
University Press, UK, 1987.

Caelen, Jean and Anne Xuereb. Interaction et pragmatique – jeux de dialogue et de langage. Editions
Hermès - Lavoisier, Paris, France, 2007.

Cohen, Philip and Hector Levesque. Persistence, intention and commitment. In Cohen, Philip, Jerry
Morgan, and Martha Pollack, editors, Intention in Communication, pages 33–69. MIT Press, 1990a.

Cohen, Philip and Hector Levesque. Intention is choice with commitment. Artificial Intelligence, 42
(2-3):213–261, 1990b.

Cohen, Philip and Raymond Perrault. Elements of a plan-based theory of speech acts. Cognitive Sci-
ence, 3(3):177–212, 1979.

54

V. Popescu et al. Pragmatically-Motivated Utterance Fine-Tuning (35–56)

Colineau, Nathalie. Etude des marqueurs discursifs dans le dialogue finalisé. Ph D Thesis, Joseph
Fourier University, Grenoble, http://tel.archives-ouvertes.fr/tel-00004928/en/, 1997.

Faller, Martina. Evidentiality and epistemic modality at the semantics / pragmatics interface. In Fall
2006 Workshop in Philosophy and Linguistics. University of Michigan, 2006.

Gupta, Swati, Marilyn Walker, and Daniela Romano. Generating politeness in task based interaction:
An evaluation of the effect of linguistic form and culture. In Proceedings of the 11th European
Workshop on Natural Language Generation ENLG’07, Schloss Dagstuhl, 2007.

Kibble, Rodger. Speech acts, commitment and multi-agent communication. Computational and Math-
ematical Organization Theory, 12:127–145, 2006a.

Kibble, Rodger. Reasoning about propositional commitments in dialogue. Research on Language and
Computation, 4:179–202, 2006b.

Kibble, Rodger. Generating coherence relations via internal argumentation. Journal of Logic, Language
and Information, 16:387–402, 2007.

Kibble, Rodger and Paul Piwek. Introducing dialogue games. In Lecture Notes, ESSLLI 2007. FoLLI,
Dublin, Ireland, 2007.

Lascarides, Alex and Nicholas Asher. Agreement, disputes and commitments in dialogue. Journal of
Semantics, 26(2):109–158, 2009.

Maudet, Nicolas, Philippe Muller, and Laurent Prévot. Tableaux conversationnels en SDRT. In Pro-
ceedings of the SDRT Workshop, Traitement Automatique des Langues Naturelles, Fès, Maroc, 2004.

Maudet, Nicolas, Philippe Muller, and Laurent Prévot. Social constraints on rhetorical relations in
dialogue. In Workshop Constraints in Discourse, Maynooth, Ireland, 2006.

Motsch, Wolfgang. Situational context and illocutionary force. In Searle, John, Ferenc Kiefer, and Man-
fred Bierwisch, editors, Speech Act Theory and Pragmatics, pages 155–168. D. Reidel Publishing
Company, 1980.

Nguyen, Hoá. Dialogue homme-machine : modélisation de multisession. Ph D Thesis, Joseph Fourier
University, Grenoble, http://tel.archives-ouvertes.fr/tel-00008789/en/, 2005.

Popescu, Vladimir and Jean Caelen. Argumentative ordering of utterances for language generation in
multi-party human-computer dialogue. Argumentation, 23(2):205–237, 2009.

Popescu, Vladimir, Jean Caelen, and Corneliu Burileanu. Contrôle rhétorique de l’ellipse sémantique
en génération du langage pour le dialogue homme-machine à plusieurs locuteurs. Traitement Au-
tomatique des Langues, 49(1):115–139, 2008.

Popescu, Vladimir, Jean Caelen, and Corneliu Burileanu. A constraint satisfaction approach to context-
sensitive utterance generation in multi-party dialogue systems. International Journal of Speech
Technology, 12(2-3):95–112, 2009.

Searle, John and Daniel Vanderveken. Speech acts and illocutionary logic. In Vanderveken, Daniel,
editor, Logic, Thought and Action, volume 2 of Logic, Epistemology and the Unity of Science, pages
109–132. Springer, 2006.

Traum, David, Michael Fleischman, and Eduard Hovy. Nl generation for virtual humans in a complex
social environment. In Proceedings of the AAAI 2003 Spring Symposium on Natural Language
Generation in Spoken and Written Dialogue, Palo Alto, 2003.

55

PBML 94 SEPTEMBER 2010

Vanderveken, Daniel. Meaning and Speech Acts. Cambridge University Press, United Kingdom, 1990-
1991.

Xuereb, Anne and Jean Caelen. Actes de langage et relations rhétoriques en dialogue homme-machine.
Revue de l’Université de Moncton, 36(2):5–51, 2005.

Address for correspondence:
Vladimir Popescu
vladimir.popescu@imag.fr
339, chemin des Meinajaries
Agroparc BP 91228
84911 Avignon Cedex 9
France

56

The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010 57–66

MT Server Land:
An Open-Source MT Architecure

Christian Federmann, Andreas Eisele
DFKI, German Research Center for Artificial Intelligence

Abstract
We describe the implementation of MT Server Land, an open-source architecture for machine

translation that is developed by the MT group at DFKI. A broker server collects and distributes
translation requests to several worker servers that create the actual translations. Users can access
the system via a fast and easy-to-use web interface or use an XML-RPC-based API interface to
integrate it into their applications. The source code is published under a BSD-style license and
is freely available from GitHub1.

1. Introduction

Easy-to-use machine translation (MT) services that are available via the internet
are an important means to increase visibility of MT research and to help shaping the
multi-lingual web. Applications such as Google Translate allow lay users to quickly
and effortlessly create translations of texts or even complete web pages; the continued
success of such services shows the potential that lies in usable machine translation,
something both developers and researchers should strive for.

Despite impressive progress in recent times, MT can by far not be regarded as a
solved problem, and the ongoing research on many levels requires careful analysis of
existing systems that may vary along many dimensions or that may be hybrid solu-
tions composed from building blocks taken from different paradigms. A significant
number of existing systems from ongoing research projects should be made available
to researchers from the field for a couple of reasons.

1You can download a copy of the code at http://github.com/cfedermann/mt-serverland.

© 2010 PBML. All rights reserved. Corresponding author: cfedermann@dfki.de
Cite as: Christian Federmann, Andreas Eisele. MT Server Land: An Open-Source MT Architecure. The Prague
Bulletin of Mathematical Linguistics No. 94, 2010, pp. 57–66. doi: 10.2478/v10108-010-0020-8.

PBML 94 SEPTEMBER 2010

For one, the ease of comparative evaluation would advance the understanding of
merits and weaknesses and hence facilitate progress towards higher quality in MT.
But the easy availability of systems would also allow researchers and developers from
related areas to use MT functionality as building blocks in a larger context. Areas
that would benefit most from this include efforts towards computer-aided translation
(CAT) platforms, cross-lingual search and question answering, easy deployment of
multilingual websites, knowledge acquisition from multilingual document reposito-
ries, and many more.

Beyond such groups, also decision makers from language industry and large or-
ganisation that are potential users of MT functionality should be given easy access to
the existing functionality in order to allow them to judge the potential of such systems
for specific applications.

Last not least, the general public, who often takes the offerings of service providers
like Google or Microsoft to be representative of the current state of the art in MT,
should be given a chance to compare these services against the functionality provided
by ongoing research. In the context of ongoing MT research projects at DFKI’s lan-
guage technology lab, such as EuroMatrixPlus, ACCURAT or TaraXÜ, we have de-
cided to design and implement such a translation application. We have published
the source code as open-source and hope that it becomes a useful tool for the MT
community.

2. Scope and Requirements

Considering some intended usages of the toolkit, we have collected a set of require-
ments our software should meet. We are planning for a staged delivery, where sub-
sequent releases of the software will meet an increasing number of the requirements
and where the priorities concerning the next round will be determined based on ex-
perience collected with active usage of the system as it was already delivered, in a set
of realistic applications. The requirements can be grouped into core functionalities,
important extensions, and features that would be useful in advanced applications.

Core Functionalities: A central requirement for the toolkit is to provide a sin-
gle entry point to multiple MT engines for multiple users. The system should also
support multiple language pairs and multiple MT engines per language pair, includ-
ing different types of engines (SMT, RBMT, hybrid MT) and multi-engine setups, as
well as variants of systems optimized for multiple application domains, text types,
and styles. The system should provide access both via user-friendly, web-based in-
teraction, as well as programmatically via a simple, yet powerful API such as a Web
service.

Important Extensions: The system should allow to assign appropriate roles to
each user (e.g. not every user should have access to every system, some user may
have priority over others, etc.). The system should support many concurrent trans-
lation requests and multiple installations of the engines on different computers. It

58

C. Federmann, A. Eisele MT Server Land (57–66)

Figure 1. Overview of the System Architecture

should make sure that work is distributed over available resources via queuing and
load balancing. The system should be able to recognize and handle exceptional cir-
cumstances caused by failure of engines and communication. The system should min-
imize the required administrative effort, even under heavy load.

Advanced Features: The sytem should be able to pass not only translation in-
and output between users and MT engines, but also additional data generated by
the engines, such as alignments, results of intermediate processing steps, as far as
the engines are able to generate these. It should allow users to pass in additional in-
formation to the engines that will allow the engines to adapt to the needs of the each
user (personalization, incremental training). Furthermore, it should provide auxiliary
functionality, such as splitting of longer documents into paragraphs and sentences,
tokenisation, case normalisation.

3. System Architecture
In this section, we will give an overview on the system’s general architecture and

the several components it is composed of. Figure 1 shows a bird’s-eye view on the
MT Server Land application. A similar application has been described in (Victor M.
Sanchez-Cartagena, 2010).

3.1. Overview

The system consists of two different layers: first, we have the broker server that
handles all direct requests from end users or API calls alike. Second, we have a layer
of so-called worker servers, each implementing some sort of machine translation func-

59

PBML 94 SEPTEMBER 2010

package serverland;

message TranslationRequestMessage {
required string request_id = 1; // Random UUID-4 32-digit hex number
required string source_language = 2; // ISO 639-2 language codes
required string target_language = 3;
required string source_text = 4; // UTF-8 encoded texts
optional string target_text = 5;

message KeyValuePair {
required string key = 1;
required string value = 2;

}

repeated KeyValuePair packet_data = 6; // Contains additional request data
}

Figure 2. TranslationRequestMessage .proto definition

tionality. All communication between users and workers is channeled through the
broker server which acts as a central “proxy” server. For users, both broker and work-
ers “constitute” the MT Server Land application.

Human users connect to the system using any modern web browser, API access
can be implemented using XML-RPC calls. It would be relatively easy to extend the
API interface to support other protocols such as SOAP or REST. By design, all internal
method calls that connect to the worker layer have to be implemented with XML-RPC.
In order to prevent encoding problems with the input text, we send and receive all
data encoded as Base64 Strings between broker and workers; the broker server takes
care of the necessary conversion steps.

3.2. Broker Server

The broker server has been implemented using the django web framework which
takes care of low-level tasks and allows for rapid development and clean design of
components. We have used the framework for other project work before and think it
is well suited to the task. More information on django can be found on the project
website which is available at http://www.djangoproject.com/, the framework itself
is available under an open-source BSD-license.

3.2.1. Translation Request Messages

Each translation request is defined by a unique request id, a source and target lan-
guage as well as a source text. After the translation has been produced, the request
will also contain the target translation and, for some worker implementations, addi-
tional data such as log files, alignment information or even parse trees that have been
returned from the translation engine.

60

C. Federmann, A. Eisele MT Server Land (57–66)

In order to allow flexible serialization of translation requests, we have implemented
them using Google Protocol Buffers (Google, 2010b). Our .proto definition is shown
in Figure 2, it can be compiled into Python code using the following command:

$ protoc --python_out=workers/ TranslationRequestMessage.proto

This will create a new Python file named TranslationRequestMessage_pb2 inside the
workers/ folder of our MT Server Land application. Using protocol buffers allows to
easily serialize Python instances to a binary representation and vice versa, something
that has proven to be very useful during the development of the system.

3.2.2. Object Models

The broker server implements two main object django models which we describe
below. Please note that we have also developed additional object models, e.g. for
quota management or API access authentication. See the MT Server Land source code
for more information.

A WorkerServer instance stores all information related to a remote worker server.
This includes the respective hostname and port address as well as a name and a short
description. In fact, this is just a shallow wrapper around the XML-RPC interface.

The TranslationRequest model represents an external translation job and related
information such as the chosen worker server, the assigned request id and additional
information about the creation date or the owner. We also prepare some fields for
caching of translation request state. Please note that neither source nor target texts
are stored within the django instance; instead they are kept in form of a serialized
TranslationRequestMessage file which is named by the request id and stored in a
configurable location on the broker server’s hard disk.

3.2.3. User Interface

We developed a browser-based web interface to access and use the MT Server Land
application. End users first have to authenticate before they can access their dashboard
which lists all known translation requests for the current user and also allows to create
new requests. Once a translation request has been completed by the chosen worker
server, the result is transferred to the broker server’s data storage, deleting the request
data from the worker server. The user can view the result within the dashboard or
download the file to a local hard disk. It is also possible to delete “pending” transla-
tion requests at any time, effectively terminating the corresponding thread within the
connected worker server.

61

PBML 94 SEPTEMBER 2010

3.2.4. API Interface

In parallel to the browser interface, we have designed and started to implement
an API that allows to connect applications to the MT functionality provided by our
service using XML-RPC. Again, we first require authentication before any machine
translation can be used. We plan to use so-called auth tokens, i.e. randomly generated
32-digit hexadecimal numbers which are bound to a certain user account, for this. We
provide methods to list all requests for the current “user” (i.e. the application account)
and to create, download, or delete translation requests. Extension to REST or SOAP
protocols is possible. Again, serialized TranslationRequestMessage objects are used
to exchange requests between the user’s application and the MT Server Land.

3.2.5. Starting the Broker Server

Like any other django project, the broker server can be started in debug mode using
the python manage.py runserver command. For internal deployment of the system,
we have used the lighttpd web server which is a lightweight, fast and open-source web
server that can be easily combined with a django application. More information can
be found on the project website which is available at http://www.lighttpd.net/. We
have configured the web server to serve all django media files and send all other re-
quests to the django FCGI server that runs in a background process. A sample server
configuration file lighttpd-django.conf and startup/stop scripts for django’s FCGI
mode are contained in the source code release package.

3.3. Worker Servers

Actual machine translation functionality is implemented by a layer of so-called
worker servers that are connected to the central broker server. We have created a
Python-based AbstractWorkerServer class which is the foundation for all worker im-
plementations. The basic worker interface is described next.

Attributes: finished: Boolean that controls the main server loop. Defaults to
False. server: The actual SimpleXMLRPCServer instance is bound here. jobs: Dictio-
nary memorizing all translation requests the worker has accepted. Maps request ids
as keys to Process objects that represent the actual worker threads. Request ids are
random 32-digit hexadecimal UUID numbers.

General Methods: __init__: Constructor, takes care of setting up the logging and
creates the actual XML-RPC server instance. start_worker: Starts the main server
loop that handles requests. stop_worker: Sets finished to True and terminates all
running translation processes. Intermediate results are lost, the file storage of the
worker server should be cleaned afterwards to avoid keeping invalid requests.

Status Methods: list_requests: Returns a list of all registered translation re-
quest ids. is_alive: Returns True to signal that the worker server is up and run-
ning. is_busy: Checks whether the worker server is currently processing requests.

62

C. Federmann, A. Eisele MT Server Land (57–66)

is_ready: Checks whether the request with the given request id is finished. is_valid:
Checks whether the request id is valid, i.e. contained within jobs.

Translation Methods: language_pairs: Returns a read-only tuple containing tu-
ples that encode the available language pairs which are supported by this translation
engine. All languages are identified by ISO 639-2 codes2. language_code Converts
the given ISO 639-2 code into the internal representation of language codes used
by the worker’s translation engine. start_translation: Takes the given serialized
TranslationRequestMessage object, creates a local copy inside the worker server’s
/tmp/ folder and then starts a Process that calls the handle_translation handler.
fetch_translation: Retrieves the translation result for the given request id if al-
ready available. Otherwise returns an empty String. delete_translation: Deletes
the translation request with the given request id from the jobs dictionary, terminating
the connected process if still running. handle_translation: Implements the actual
translation functionality of a worker implementation. Custom worker servers need to
overwrite this method.

3.3.1. Example: Implementing a Google Translate Worker

Worker servers can be implemented by subclassing AbstractWorkerServer and
creating a custom handle_translation method. The listing in Figure 3 shows the
actual code for a “Google worker” server that sends its input text to Google Translate
and extracts the translation from the resulting website.

3.3.2. Worker Server Implementations

We have implemented worker servers for several MT systems:
- Lucy RBMT: our Lucy (Alonso and Thurmair, 2003) worker is implemented

using an internal Lucy Server mode wrapper. Due to the system’s architecture,
this has to be run on a Windows machine. The actual worker code can be started
on any platform.

- Moses SMT: a Moses (Koehn et al., 2007) worker is configured to serve exactly
one language pair. We use the Moses Server mode to keep translation and lan-
guage model in memory which helps to speed up the translation process.

- Joshua SMT: similar to the Moses worker, we have created a Joshua (Li et al.,
2009) worker that works by creating a new Joshua instance for each translation
request.

We have also created worker servers for popular online translation engines such as
Google Translate, Microsoft Translator and Yahoo! Babel Fish which already
makes available a huge number of language pairs for use in MT research contexts.

2See http://www.loc.gov/standards/iso639-2/ for more information.

63

PBML 94 SEPTEMBER 2010

import re, sys, urllib, urllib2
from worker import AbstractWorkerServer
from TranslationRequestMessage_pb2 import TranslationRequestMessage

class GoogleWorker(AbstractWorkerServer):
""" Implementation of a worker server that connects to Google Translate. """
__name__ = 'GoogleWorker'

def language_pairs(self):
"""Returns a tuple of all supported language pairs for this worker."""
languages = ('afr', 'alb', 'ara', ..., 'vie', 'wel', 'yid')
return tuple([(a,b) for a in languages for b in languages if a != b])

def language_code(self, iso639_2_code):
"""Converts a given ISO-639-2 code into the worker representation."""
mapping = { 'afr': 'af', 'alb': 'sq', ... 'wel': 'cy', 'yid': 'yi' }
return mapping.get(iso639_2_code)

def handle_translation(self, request_id):
"""Translation handler that connects to Google Translate."""
handle = open('/tmp/{0}.message'.format(request_id), 'r+b')
message = TranslationRequestMessage()
message.ParseFromString(handle.read())

source = self.language_code(message.source_language)
target = self.language_code(message.target_language)
the_url = 'http://translate.google.com/translate_t'
the_data = urllib.urlencode({'js': 'n', 'sl': source, 'tl': target,
'text': message.source_text.encode('utf-8')})

the_header = {'User-agent': 'Mozilla/5.0'}

opener = urllib2.build_opener(urllib2.HTTPHandler)
http_request = urllib2.Request(the_url, the_data, the_header)
http_handle = opener.open(http_request)
content = http_handle.read()
http_handle.close()

result_exp = re.compile('<textarea name=utrans wrap=SOFT ' \
'dir="ltr" id=suggestion.*>(.*?)</textarea>', re.I|re.U)

result = result_exp.search(content)

if result:
message.target_text = unicode(result.group(1), 'utf-8')
handle.seek(0)
handle.write(message.SerializeToString())

handle.close()

Figure 3. Source code for the Google Translate worker

4. Basic Usage

The MT Server Land code can be obtained from GitHub and extracted to a local
folder named serverland/ using the following command:

$ git clone git://github.com/cfedermann/mt-serverland.git serverland

64

C. Federmann, A. Eisele MT Server Land (57–66)

After downloading the source code, we need to create a database for the project. This
can be done using the manage.py syncdb command, as shown below:

$ python manage.py syncdb

It is mandatory to create a superuser account during the syncdb step. We also pro-
vide a sample development.db file with a sample user admin:admin at the GitHub
repository3. It is now possible to startup django in development using manage.py
runserver, as we have already mentioned. However, before any translation work can
be done, at least a single worker server instance has to be started and registered inside
the django database.

The available worker server implementations can be found inside workers/. We
also provide scripts to start and stop worker server instances. To startup the Google
Translate worker server, we have to start it using the following command:

$./start_worker.py GoogleWorker localhost 1234

This will create a new GoogleWorker instance serving from http://localhost:1234/.
In order to make this worker instance accessible from the MT Server Land system, we
have to register it inside the broker server’s database. For this, we access the django
administration backend (which is available at http://127.0.0.1:8000/admin/) and
create a WorkerServer object pointing to the correct host and port address. After
the worker server has been created, authenticated users can create new translation
requests which are then processed by the respective worker server.

5. Conclusion and Future Work

We have presented an open-source architecture for machine translation. The sys-
tem can flexibly be extended and allows lay users to make use of MT technology
within a web browser or by using XML-RPC method calls from custom applications.
A central broker server receives requests from clients and dispatches them to a layer
of worker servers that take care of the translation duties. We have used open-source
software to build the system and have released the source code under a BSD-style
license.

5.1. Open-Source Development

We hope that the MT Server Land software will benefit from and grow by be-
ing maintained as an open-source project. We have opted for hosting at the GitHub
platform as this guarantees transparent development and ensures open access to the

3At http://github.com/downloads/cfedermann/mt-serverland/mt-serverland-development.db

65

PBML 94 SEPTEMBER 2010

source code. We continue to extend the MT Server Land code and available worker
servers, possibly starting at the Machine Translation Marathon in Le Mans for which
we are currently preparing project ideas related to the MT Server Land platform.

Acknowledgments

We would like to thank all members of the MT Group at DFKI for testing the MT
Server Land prototype and for all their helpful feedback during the development of
this software. This work was supported by the EuroMatrixPlus project (IST-231720)
which is funded by the European Community under the Seventh Framework Pro-
gramme for Research and Technological Development.

Bibliography

Alonso, Juan A. and Gregor Thurmair. The Comprendium Translator system. In Proceedings of
the Ninth Machine Translation Summit, New Orleans, USA, 2003.

Google. Google Translate, 2010a. URL http://translate.google.com/.
Google. Google Protocol Buffers, 2010b. URL http://protobuf.googlecode.com/.
Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola

Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proceedings of the 45th Annual Meeting of the Association for Com-
putational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages
177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/P07-2045.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Sanjeev Khudanpur, Lane Schwartz, Wren Thorn-
ton, Jonathan Weese, and Omar Zaidan. Joshua: An open source toolkit for parsing-based
machine translation. In Proceedings of the Fourth Workshop on Statistical Machine Translation,
pages 135–139, Athens, Greece, March 2009. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/W/W09/W09-0x24.

Microsoft. bing Translator, 2010. URL http://www.microsofttranslator.com/.
Victor M. Sanchez-Cartagena, Juan Antonio Perez-Ortiz. ScaleMT: a Free/Open-Source Frame-

work for Building Scalable Machine Translation Web Services. In Open Source Tools for Ma-
chine Translation, MT Marathon 2010, Dublin, Ireland, 2010.

Yahoo! Yahoo! Babel Fish, 2010. URL http://babelfish.yahoo.com/.

Address for correspondence:
Christian Federmann
cfedermann@dfki.de
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, GERMANY

66

http://translate.google.com/
http://protobuf.googlecode.com/
http://www.aclweb.org/anthology/P07-2045
http://www.aclweb.org/anthology/W/W09/W09-0x24
http://www.microsofttranslator.com/
http://babelfish.yahoo.com/

The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010 67–76

CorporAl: a Method and Tool
for Handling Overlapping Parallel Corpora

Mark Fishel, Heiki-Jaan Kaalep
Institute of Computer Science, University of Tartu

Abstract
This work introduces a method and tool for handling overlapping parallel corpora – i.e. cor-

pora that are based on the same source material. The method is insensitive to minor changes
in the text, different segmentation levels of the corpora and omitted material from either cor-
pora. The aim is to detect matching sentence pairs and either produce combinations of the
overlapping corpora or compare them and assess their quality in comparison to each other.
The introduced tool enables the user to define the desired behavior when combining corpora
pairs, resulting in pure comparison, maximum-size or maximum-quality versions of the com-
binations. We test the tool on two cases of overlapping parallel corpora and five language pairs.
We also evaluate the impact of using the method on two translation systems – a phrase-based
and a parsing-based one.

1. Introduction

The target of this research is parallel corpora that are based on partially or fully
overlapping sources of the same language pair – overlapping parallel corpora. Such
corpora can exist, for instance, when the same source documents are independently
used to create corpora at different times or different institutions.

Processing such corpora can be quite problematic. Simply concatenating them is
not a valid solution, since the data distribution of the combined corpus will be skewed.
At the same time using the standard diff utility is not guaranteed to elegantly solve
the problem of detecting the repeated and unique samples. Typically the texts have
differences in representation, or some typing or aligning errors fixed or introduced in
one of the corpora. In addition sentence pairs might be segmented differently in the
two corpora or be omitted from one of them.

© 2010 PBML. All rights reserved. Corresponding author: fishel@ut.ee
Cite as: Mark Fishel, Heiki-Jaan Kaalep. CorporAl: a Method and Tool for Handling Overlapping Parallel Corpora.
The Prague Bulletin of Mathematical Linguistics No. 94, 2010, pp. 67–76. doi: 10.2478/v10108-010-0021-7.

PBML 94 SEPTEMBER 2010

On the other hand, if those difficulties could be overcome, the overlap could be
exploited to many advantages. By comparing the two corpora the level of segmenta-
tion of both can be increased, the potential alignment error spots can be found and
the size of both can be increased on the account of omitted sentence pairs from one or
the other corpus. Finally, if it can be assumed that one of the corpora is much more
accurate, the other corpus can be proofed against it to evaluate or improve its quality.

Here we present a method that can be used to do all of the tasks mentioned above,
together with its implementation. We apply the method to two cases of overlapping
parallel corpora and evaluate its influence on the scores of statistical translation sys-
tems, trained on the resulting corpora.

2. Overlapping Parallel Corpora

Let us first look at some examples of overlapping parallel corpora.
(Kaalep and Veskis, 2007) compare the JRC-Acquis corpus (version 2.2) (Stein-

berger et al., 2006) and the corpus of the University of Tartu1. The latter also includes
Estonian laws with their English translations, in addition to the EU legislation. To
our knowledge (Kaalep and Veskis, 2007) is the only work addressing the issue of
overlapping parallel corpora.

Another example is the JRC-Acquis corpus itself, since it provides two alternative
alignments for every language pair it includes – done with Vanilla2 and HunAlign
(Varga et al., 2005). This means that, although the text might be exactly the same, the
level of segmentation can be different in the two versions. In addition, it is common
practice for aligners to exclude sentence pairs in which they are not confident enough.

In the experimental part of this work we focus on the two presented cases; however
there are other examples as well. The Hunglish corpus (Varga et al., 2005) includes
EU legislation, obtained from the same sources as the JRC-Acquis. One part of the
CzEng corpus (Bojar and Žabokrtský, 2009) also consists of EU legislation, whereas
the source documents were taken directly from JRC-Acquis, but the text processing
and alignment was done all over. Also a whole domain of corpora is a potential source
for multiple versions of the same text – movie subtitles.

3. Method Description

Let us start with an example of two parallel corpora containing an overlap (figure
1). The third sentence pair of corpus B is omitted from corpus A and the third sentence
pair of corpus A is segmented into two sentence pairs in corpus B. Also there are slight
differences in punctuation between the two corpora.

1http://www.cl.ut.ee/korpused/paralleel/?lang=en
2http://nl.ijs.si/telri/Vanilla/

68

http://www.cl.ut.ee/korpused/paralleel/?lang=en
http://nl.ijs.si/telri/Vanilla/

M. Fishel, H.-J. Kaalep CorporAl: Handling Overlapping Parallel Corpora (67–76)

.

.

..Corpus A

..Estonian.English

..
roses are red ,

.
roosid on punased ,

..
violets are blue ,

.
kannikesed on sinised ;

..corpora are great , .
korpused on toredad –

..
and so are you !

.
nagu sinagi !

.

..Corpus B

..Estonian.English

..
roses are red

.
roosid on punased

..
this line got lost .

kannikesed on sinised
..

< pause >
.
< paus >

..corpora are .
korpused on

..
great ! .

toredad –
..

and so are you !
.
nagu sinagi !

Figure 1. An example of overlapping parallel corpora with the correspondence of the
two corpora shown. Second sentence pair of corpus B is an erroneous alignment.

Knowing both English and Estonian, it is easy to see that the English sentence from
second sentence pair in corpus B got distorted, which makes the pair an erroneous
alignment. Without knowing either of the languages, it can still be detected that one
of the second sentence pairs in both corpora is probably erroneous – since the Estonian
parts are practically the same, while the English parts are nothing like each other.
Very simply put, this language-wise comparison is the basis of the method that we
are about to introduce.

The method involves two steps. The first step consists of aligning the correspond-
ing language parts to each other; see figure 2 (a) for an illustration. In the second step
the resulting language alignments are themselves aligned to each other. Here the aim
is to find the matching and mismatching alignment chunks. This way whenever in
one language two sentences match while in the other language the corresponding
sentences do not, this will be detected as an alignment error. See figure 2 (b) for an il-
lustration of the second step; notice the resemblance between the resulting alignment
and the correspondence of the parallel corpora in the example on figure 1.

In the following subsections we will describe in detail the two steps of the algo-
rithm, as well as sentence approximate matching.

3.1. Aligning the Corresponding Language Parts

The first step is in essence very similar to the original task of bilingual sentence
alignment itself. However, whereas the latter means comparing different languages
and therefore requires, for instance, probabilistic solutions, in this case the task is
much simpler, since both parts are in the same language and it suffices to compare
the sentences using simple text processing. The only problem is that instead of strict
comparison of the sentences, here approximate comparison is required due to possible
slight differences in different corpora.

The aligning task is therefore analogical to the longest common subsequence prob-
lem, where corpora units (i.e. sentences or paragraphs) are matched to each other.

69

PBML 94 SEPTEMBER 2010

.

.

. ..English

..English ..
roses are red

..
roses are red , ..

this line got lost
..

violets are blue , ..
< pause >

..corpora are great , ..corpora are

..
and so are you ! ..

great !
. ..

and so are you !

.

. ..Estonian

..Estonian ..
roosid on punased

..
roosid on punased , ..

kannikesed on sinised
..

kannikesed on sinised ; ..
< paus >

..
korpused on toredad – ..

korpused on
..

nagu sinagi ! ..
toredad –

. ..
nagu sinagi !

.

..Estonian

..1-1

..2-2

..∅-3

..3-4,5

..4-6
.

..English

..1-1

..2-∅

..∅-2

..∅-3

..3-4,5

..4-6

.
(a) First step: aligning the corre-
sponding language parts

.
(b) Second step: aligning the
resulting alignments

Figure 2. The two steps of processing the overlapping parallel corpora from the
example on figure 1.1. ∅ stands for an empty counterpart (in zero-to-one alignments).

Here the alignment of the two texts is computed using generalized edit distance. The
cost of substituting a unit for another equals the similarity between them (obtained
with approximate sentence matching, explained in the next subsection). In addition
all N-to-M pairs are also considered (up to a predefined limit). This enables matching
aligned units even if the segmentation level is very different in the two corpora.

3.2. Approximate Sentence Matching

(Kaalep and Veskis, 2007) use Levenshtein distance with 1% of the average of the
two sentence’s length as a threshold. Other string similarity metrics applied to written
text include several from the edit distance family (the Needleman-Wunsch metric, the
Smith-Waterman metric, etc), the Jaro metric and others.

Here we use the method of (Kaalep and Veskis, 2007), extended to generalized edit
distance. For instance the weight of replacing/inserting digits is extremely high, so
that e.g. sentences “article 3” and “article 5” will not be considered to match with
no matter what edit distance percentage threshold. On the other hand operations on
empty symbols (spaces, tabs) and punctuation have low weights. This allows to set
the percentage threshold higher without adding obvious matching errors.

70

M. Fishel, H.-J. Kaalep CorporAl: Handling Overlapping Parallel Corpora (67–76)

3.3. Aligning the Alignments

As soon as the language part alignments are obtained, their correspondence to
each other is to be determined. Although different language parts are to be compared
here, only the alignments between unit numbers are compared, which again enables
using direct comparison. In this case it is accomplished with the Levenshtein distance
of the alignment cells.

It is important to note that a mismatch between two alignments does not indicate,
which of the corpora has an erroneous alignment; instead, it shows a potential spot,
where at least one of the corpora has an error. If one of the corpora is known to
be accurately aligned, the errors of the other corpus can be corrected automatically
this way. Otherwise the spots can be manually post-processed and the errors in the
appropriate corpus – corrected.

On the other hand a match between alignments also merely indicates that the two
corpora have matching alignments. This can occur both in case of correct alignments
and coinciding erroneous alignments, though the latter is less likely (depending on
the used alignment method).

3.4. Implementation – the CorporAl Tool

The CorporAl open-source project is available from Sourceforge3. The implemen-
tation is done as a PERL script and thus can be run on any platform with a PERL
interpreter; the interface of the tool is command-line-based.

The tool name is meant to reflect the core idea of the method – “aligning” the
corpora to each other. Using the alignment between the corpora the tool generates a
new combined corpus. The exact behaviour can be controlled with input parameters:
whether to include or exclude sentences from the unique and the matching parts,
whether to skip mismatched sentence pairs or define one of the corpora as the more
trustworthy one and include sentences from it. If sentence pairs match, the side with a
higer level of segmentation is automatically included. Also it is possible to just output
the alignment of the corpora to be used for further processing.

The main direction of further development of CorporAl is extending it to support
monolingual corpora with annotation, in addition to parallel corpora. If the two over-
lapping corpora are augmented with the same annotation then both the text and the
annotation can be compared, just like the two language parts of parallel corpora.

Alternatively, if the annotations differ, only the text can be matched and not the
annotation. As a result the tool would allow to produce a text corpus with both anno-
tations, regardless of differences of the texts. Also it could be applied to parallel cor-
pora where all languages are aligned to one, like Europarl (Koehn, 2005), to produce
a corpus of any two languages without re-applying the aligners. This just requires
making the alignment of the annotation or second part of a parallel corpus optional.

3http://corporal.sf.net

71

http://corporal.sf.net

PBML 94 SEPTEMBER 2010

4. Experiments

Our final aim was to test the presented method in practice. We focused the ex-
periments on two cases of overlapping parallel corpora, described in section 2: first,
the corpus of the University of Tartu (UT) and the English-Estonian (en-et) part of
JRC-Acquis version 2.2 (JRC2) and second, the HunAlign and Vanilla versions of the
English-Estonian (en-et), English-Latvian (en-lv), Estonian-Latvian (et-lv) and German-
English (de-en) parts of JRC-Acquis version 3 (JRC3). First we present the results of
processing the corpora and then go on to testing the effect of our method on statistical
translation systems.

4.1. Processing Overlapping Parallel Corpora

We first grouped the documents in all corpora by their CELEX codes, which re-
sulted in three groups: documents unique to one of the corpora and the ones present
in both corpora in a pair. Then the common parts of the corpora were processed
with the CorporAl tool. We generated two different versions of the combination: one
(called max-size) prioritized the resulting corpus size and the other one (called max-
accuracy) prioritized the resulting accuracy – the latter thus included only the match-
ing sentence pairs, present in both corpora.

The sizes of the documents and the resulting corpora parts are presented in Table
1 and the frequencies of the types of sentence pair matches – in Table 2.

Looking at the match type frequencies it can be seen that the many-to-one matches
constitute just a small percent of all the matches (below 1% on both sides). Thus,
contrary to our initial assumption, the levels of segmentation of the UT and JRC2
corpora overlapping parts are practically the same. The same goes for the JRC3 pairs,
where the total percentage of many-to-many alignments is even lower.

An interesting observation about the JRC3 pairs is the difference between the docu-
ments included only in the Vanilla or HunAlign versions. It can be seen in Table 1 that
while the HunAlign versions of all the four pairs include only three to five documents
that are not included in the Vanilla versions, the total numbers of words and sentence
pairs in these documents are much higher than their counterparts in the Vanilla ver-
sions. In addition the total sizes of the common parts of the HunAlign versions are
bigger than the same document sets of Vanilla versions. These two facts might indi-
cate that in the HunAlign version documents and sentences were more confidently
included into the corpus than in the Vanilla versions.

As a result of similarity of the JRC3 pairs the max-size combinations are practi-
cally of the same size as the bigger HunAlign common parts (with only 100-150 extra
sentence pairs). The max-size combination of UT and JRC2 is visibly bigger than both
corpora. On the other hand the max-accuracy combinations are slightly smaller than
the source corpora in all five cases, which is caused by the portion of mismatching
and omitted sentence pairs.

72

M. Fishel, H.-J. Kaalep CorporAl: Handling Overlapping Parallel Corpora (67–76)

#docs #snt pairs #lang-1 words #lang-2 words
UT+JRC2 UT/JRC UT/JRC (·103) UT/JRC (·106) UT/JRC (·106)

en
-e

t Unique 2048/5807 134.7/205.0 3.12/4.86 2.17/3.25

Common 2009 93.2/68.2 1.9/1.7 1.3/1.1

Max-size 2009 98946 2.03 1.36

Max-acc 2009 56234 1.35 0.88

#docs #snt pairs #lang-1 words #lang-2 words
JRC3 Hun/Van Hun/Van (·103) Hun/Van (·106) Hun/Van (·106)

en
-e

t Unique 5/173 63.5/8.4 0.80/0.28 0.73/0.22

Common 23181 1247.3/1183.9 31.26/31.12 22.49/22.29

Max-size 23181 1247.4 31.26 22.49

Max-acc 22512 1084.5 18.27 20.00

en
-lv

Unique 4/183 63.5/9.1 0.80/0.26 0.75/0.30

Common 22560 1235.2/1175.8 30.84/30.77 25.34/25.10

Max-size 22560 1235.3 30.84 25.34

Max-acc 21975 1080.1 28.22 22.43

et
-lv

Unique 3/54 63.5/3.4 0.73/0.06 0.75/0.14

Common 22681 1293.7/1272.0 22.31/22.29 25.51/25.41

Max-size 22681 1293.7 22.31 25.51

Max-acc 22588 1242.3 21.67 24.44

de
-e

n

Unique 4/83 66.1/3.7 0.84/0.11 0.80/0.08

Common 23331 1272.7/1236.0 29.54/29.44 32.00/31.97

Max-size 23331 1272.8 29.54 32.00

Max-acc 22805 1189.9 27.98 30.70

Table 1. Results of processing the corpora: number and sizes of the documents in the
common parts, documents present in just one corpus and the resulting max-size and

max-accuracy combinations

UT+JRC2 JRC3 en-et JRC3 en-lv JRC3 et-lv JRC3 de-en
UT/JRC Hun/Van Hun/Van Hun/Van Hun/Van

∅ 7.1%/9.8% 12.2%/8.4% 11.7%/8.1% 3.9%/2.4% 6.1%/3.9%
0-1 0.0%/8.2% 0.0%/0.0% 0.0%/0.0% 0.0%/0.0% 0.0%/0.0%
1-0 32.5%/0.0% 0.7%/0.0% 0.7%/0.0% 0.0%/0.0% 0.3%/0.0%
1-1 59.3%/81.0% 86.8%/91.4% 87.3%/91.7% 95.8%/97.4% 93.0%/95.8%

N-M 1.0%/0.9% 0.1%/0.1% 0.1%/0.1% 0.2%/0.1% 0.4%/0.2%

Table 2. Frequency of the match types between sentence pairs of the corpora pairs;
given as proportion of sentences per match type and corpus.

73

PBML 94 SEPTEMBER 2010

4.2. Influence on Machine Translation

Whenever it is known that two corpora overlap, concatenating them is an erro-
neous solution. As a result of straightforward concatenation the sentence pairs present
in both parts of the overlap will be overrepresented since their relative frequency
will increase in comparison to the sentence pairs outside the overlap or the ones that
are present in only one corpus. The correct baseline method of combining overlap-
ping corpora is taking the non-overlapping parts of both corpora and the overlapping
part from just one of them. In our case instead of giving preference to either part of
UT+JRC2 or JRC3 pairs we used both versions of the baseline, comparing them to the
max-size and max-accuracy combinations of CorporAl.

Development and test sets were separated from the rest of the material, prior to
processing the common parts. The size of both the dev and test sets was 2500 sentence
pairs for all translation directions.

We evaluated the influence of the different corpora versions on two statistical trans-
lation systems: the first one is a phrase-based system, implemented in the Moses
toolkit (Koehn et al., 2007) and the second one – hierarchical phrase-based, imple-
mented in the Joshua toolkit (Li et al., 2009). Word alignment and language modeling
for both systems were done with GIZA++ (Och and Ney, 2003) and SRILM (Stolcke,
2002). We used the BLEU (Papieni et al., 2001) and NIST (NIST, 2002) scores to com-
pare the translation hypotheses.

The resulting scores of all the translation systems are presented in Table 3. In case
of the UT+JRC2 pairs a clear pattern is visible: although in some cases the JRC-based
results are better than the UT-based results, in general the max-accuracy, UT-based
and JRC-based results are very similar and the max-size results noticeably exceed all
three. The JRC3 pairs on the other hand do not exhibit any clear pattern. The scales of
the differences suggest that there is no significant difference between all four systems
in most cases.

Both of these opposite conclusions for UT+JRC2 and JRC3 experiments can be ex-
plained by the UT and JRC2 corpora being much more heterogenous than all the JRC3
pairs, as showed by the results of processing them, as well as by the UT+JRC2 max-size
combinations being considerably bigger than the other parts and the JRC3 combina-
tions being of the same size.

At the same time the max-accuracy results are roughly the same as the baselines
in the UT+JRC2 case. Similarly, although (Kaalep and Veskis, 2007) showed Vanilla
alignments to be of worse quality than HunAlign ones, there is no significant dif-
ference between the baselines of all the JRC3 pairs. This can be attributed to the
frequency-based re-estimation of parameters in statistical machine translation, which
results in automatic discarding of noise in the data (such as errors in sentece or word
alignments) and thus also in lower sensitivity to alignment quality.

74

M. Fishel, H.-J. Kaalep CorporAl: Handling Overlapping Parallel Corpora (67–76)

Moses Joshua

.

.39.0

.39.5

.40.0

.40.5

.41.0

.41.5

.42.0

.42.5

.43.0

.UT .JRC

.Size

.Acc

.8.25

.8.30

.8.35

.8.40

.8.45

.8.50

.8.55

.8.60
.UT+JRC2, en-et

.BLEU.NIST

.

.50.5

.51.0

.51.5

.52.0

.52.5

.53.0

.53.5

.54.0

.UT .JRC

.Size

.Acc

.9.45

.9.50

.9.55

.9.60

.9.65

.9.70

.9.75

.9.80
.UT+JRC2, et-en

.BLEU.NIST

.

.38.5

.39.0

.39.5

.40.0

.40.5

.41.0

.41.5

.42.0

.UT .JRC

.Size

.Acc

.8.15

.8.20

.8.25

.8.30

.8.35

.8.40

.8.45

.8.50
.UT+JRC2, en-et

.BLEU.NIST

.

.46.5

.47.0

.47.5

.48.0

.48.5

.49.0

.49.5

.50.0
.UT .JRC
.Size
.Acc

.9.25

.9.30

.9.35

.9.40

.9.45

.9.50

.9.55

.9.60
.UT+JRC2, et-en

.BLEU.NIST

.

.32.0

.32.5

.33.0

.33.5

.34.0

.34.5

.35.0

.35.5

.H
un

.Van

.Size

.Acc

.7.60

.7.65

.7.70

.7.75

.7.80

.7.85

.7.90

.7.95
.JRC3, en-et

.BLEU.NIST

.

.45.0

.45.5

.46.0

.46.5

.47.0

.47.5

.48.0

.48.5

.H
un

.Van

.Size

.Acc

.9.05

.9.10

.9.15

.9.20

.9.25

.9.30

.9.35

.9.40
.JRC3, et-en

.BLEU.NIST

.

.32.0

.32.5

.33.0

.33.5

.34.0

.34.5

.35.0

.35.5

.H
un

.Van

.Size

.Acc

.7.60

.7.65

.7.70

.7.75

.7.80

.7.85

.7.90

.7.95
.JRC3, en-et

.BLEU.NIST

.

.41.5

.42.0

.42.5

.43.0

.43.5

.44.0

.44.5

.45.0

.H
un

.Van

.Size

.Acc

.8.80

.8.85

.8.90

.8.95

.9.00

.9.05

.9.10

.9.15
.JRC3, et-en

.BLEU.NIST

.

.39.0

.39.5

.40.0

.40.5

.41.0

.41.5

.42.0

.42.5

.H
un

.Van

.Size

.Acc

.8.20

.8.25

.8.30

.8.35

.8.40

.8.45

.8.50

.8.55
.JRC3, en-lv

.BLEU.NIST

.

.48.5

.49.0

.49.5

.50.0

.50.5

.51.0

.51.5

.52.0

.H
un

.Van

.Size

.Acc

.9.50

.9.55

.9.60

.9.65

.9.70

.9.75

.9.80

.9.85
.JRC3, lv-en

.BLEU.NIST

.

.37.0

.37.5

.38.0

.38.5

.39.0

.39.5

.40.0

.40.5

.H
un

.Van

.Size

.Acc

.8.05

.8.10

.8.15

.8.20

.8.25

.8.30

.8.35

.8.40
.JRC3, en-lv

.BLEU.NIST

.

.44.0

.44.5

.45.0

.45.5

.46.0

.46.5

.47.0

.47.5

.H
un

.Van

.Size

.Acc

.9.00

.9.05

.9.10

.9.15

.9.20

.9.25

.9.30

.9.35
.JRC3, lv-en

.BLEU.NIST

.

.38.5

.39.0

.39.5

.40.0

.40.5

.41.0

.41.5

.42.0

.H
un

.Van

.Size

.Acc

.8.20

.8.25

.8.30

.8.35

.8.40

.8.45

.8.50

.8.55

.JRC3, lv-et

.BLEU.NIST

.

.40.5

.41.0

.41.5

.42.0

.42.5

.43.0

.43.5

.44.0

.H
un

.Van

.Size

.Acc

.8.25

.8.30

.8.35

.8.40

.8.45

.8.50

.8.55

.8.60
.JRC3, et-lv

.BLEU.NIST

.

.36.0

.36.5

.37.0

.37.5

.38.0

.38.5

.39.0

.39.5

.H
un

.Van

.Size

.Acc

.8.05

.8.10

.8.15

.8.20

.8.25

.8.30

.8.35

.8.40
.JRC3, lv-et

.BLEU.NIST

.

.38.5

.39.0

.39.5

.40.0

.40.5

.41.0

.41.5

.42.0

.H
un

.Van

.Size

.Acc

.8.20

.8.25

.8.30

.8.35

.8.40

.8.45

.8.50

.8.55
.JRC3, et-lv

.BLEU.NIST

.

.41.5

.42.0

.42.5

.43.0

.43.5

.44.0

.44.5

.45.0

.H
un

.Van

.Size

.Acc

.8.40

.8.45

.8.50

.8.55

.8.60

.8.65

.8.70

.8.75
.JRC3, en-de

.BLEU.NIST

.

.48.0

.48.5

.49.0

.49.5

.50.0

.50.5

.51.0

.51.5

.H
un

.Van

.Size

.Acc

.9.35

.9.40

.9.45

.9.50

.9.55

.9.60

.9.65

.9.70
.JRC3, de-en

.BLEU.NIST

.

.38.5

.39.0

.39.5

.40.0

.40.5

.41.0

.41.5

.42.0

.H
un

.Van

.Size

.Acc

.8.05

.8.10

.8.15

.8.20

.8.25

.8.30

.8.35

.8.40
.JRC3, en-de

.BLEU.NIST

.

.44.0

.44.5

.45.0

.45.5

.46.0

.46.5

.47.0

.47.5

.H
un

.Van

.Size

.Acc

.9.05

.9.10

.9.15

.9.20

.9.25

.9.30

.9.35

.9.40
.JRC3, de-en

.BLEU.NIST

Table 3. Results of the machine translation experiments. The BLEU scale is on the left,
and the NIST scale – on the right.

5. Conclusions

In this paper we have introduced a method for handling parallel corpora that are
based on the same source material – i.e. overlapping parallel corpora. The method
can detect matching and mismatching sentence pairs and omitted sentences. It can
cope with minor differences in the text, such as typing errors and different notations.
Also it can detect matches between several sentence pairs.

We described the CorporAl tool, which supports flexible combination of overlap-
ping corpora and analysis of their similarities and differences.

The method was tested on two pairs of overlapping parallel corpora: the JRC-
Acquis (version 2.2) with the corpus of the University of Tartu and the Vanilla and
HunAlign-based versions of the JRC-Acquis (version 3.0); in the second case we in-

75

PBML 94 SEPTEMBER 2010

cluded four language pairs. Processing the first pair resulted a bigger joint corpus
while in case of the other four language pairs the size practically did not increase.
Machine translation results showed dependence on the size and heterogeneity of the
initial corpora and low sensitivity to alignment quality.

Bibliography

Bojar, Ondřej and Zdeněk Žabokrtský. CzEng0.9: Large Parallel Treebank with Rich Annota-
tion. Prague Bulletin of Mathematical Linguistics, 92, 2009.

Kaalep, Heiki-Jaan and Kaarel Veskis. Comparing parallel corpora and evaluating their quality.
In Proceedings of MT Summit XI, pages 275–279, Copenhagen, Denmark, 2007.

Koehn, Philipp. Europarl: A parallel corpus for statistical machine translation. In Proceedings
of MT Summit X, pages 79–86, Phuket, Thailand, 2005.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proceedings of ACL’07, pages 177–180, Prague, Czech Republic, 2007.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Sanjeev Khudanpur, Lane Schwartz, Wren Thorn-
ton, Jonathan Weese, and Omar Zaidan. Joshua: An open source toolkit for parsing-based
machine translation. In Proceedings of the Fourth Workshop on Statistical Machine Translation,
pages 135–139, Athens, Greece, 2009.

NIST. Automatic evaluation of machine translation quality using n-gram co-occurrence statis-
tics. Technical report, NIST, 2002.

Och, Franz J. and Hermann Ney. A systematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51, 2003.

Papieni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of ACL’01, pages 311–318, Philadelphia,
PA, USA, 2001.

Steinberger, Ralf, Bruno Pouliquen, Anna Widiger, Camelia Ignat, Tomaž Erjavec, Dan Tufiş,
and Dániel Varga. The JRC-Acquis: A multilingual aligned parallel corpus with 20+ lan-
guages. In Proceedings of LREC’06, pages 2142–2147, Genoa, Italy, 2006.

Stolcke, Andreas. SRILM – an extensible language modeling toolkit. In Proceedings of ICSLP’02,
volume 2, pages 901–904, Denver, Colorado, USA, 2002.

Varga, Daniel, László Németh, Péter Halácsy, András Kornai, Viktor Trón, and Viktor Nagy.
Parallel corpora for medium density languages. In Proceedings of RANLP’05, pages 590–596,
Borovets, Bulgaria, 2005.

Address for correspondence:
Mark Fishel
fishel@ut.ee
University of Tartu, J. Liivi 2, 50409 Tartu, Estonia

76

The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010 77–86

Asiya: An Open Toolkit for Automatic
Machine Translation (Meta-)Evaluation

Jesús Giménez, Lluís Màrquez
TALP Research Center, Universitat Politècnica de Catalunya

Abstract
This article describes the A Toolkit for Automatic Machine Translation Evaluation and

Meta-evaluation, an open framework offering system and metric developers a text interface to
a rich repository of metrics and meta-metrics.

1. Introduction

Evaluation methods are a key ingredient in the development cycle of Machine
Translation (MT) systems (see Figure 1). They are used to identify the system weak
points (error analysis), to adjust the internal system parameters (system refinement)
and to measure the system performance, as compared to other systems or to different
versions of the same system (evaluation). Evaluation methods are not a static com-
ponent. On the contrary, far from being perfect, they evolve in the same manner that
MT systems do. Their development cycle is similar: their weak points are analyzed,
they are refined, and they are compared to other metrics or to different versions of
the same metric so as to measure their effectiveness. For that purpose they rely on
additional meta-evaluation methods.

In this article, we present A, an open toolkit aimed at covering the evaluation
needs of system and metric developers along the development cycle1. In short, A

1Asiya was the Israelite wife of the Pharaoh who adopted Moses after her maids found him float-
ing in the Nile river (see http://en.wikipedia.org/wiki/Asiya). The A toolkit is the natural evo-
lution/extension of its predecessor, the IQMT Framework (Giménez and Amigó, 2006). A is publicly
available at http://www.lsi.upc.edu/~nlp/Asiya.

© 2010 PBML. All rights reserved. Corresponding author: jgimenez@lsi.upc.edu
Cite as: Jesús Giménez, Lluís Màrquez. Asiya: An Open Toolkit for Automatic Machine Translation (Meta-)
Evaluation. The Prague Bulletin of Mathematical Linguistics No. 94, 2010, pp. 77–86.
doi: 10.2478/v10108-010-0022-6.

http://en.wikipedia.org/wiki/Asiya
http://www.lsi.upc.edu/~nlp/Asiya

PBML 94 SEPTEMBER 2010

Figure 1. System development cycle in Machine Translation

is a common interface to a compiled collection of evaluation and meta-evaluation
methods (i.e., hexagonal boxes in Figure 1). The metric repository incorporates the
latest versions of most popular metrics, operating at different linguistic dimensions
(lexical, syntactic, and semantic) and based on different similarity assumptions (pre-
cision, recall, overlap, edit rate, etc.). A also incorporates schemes for metric com-
bination, i.e., for integrating the scores conferred by different metrics into a single
measure of quality. The meta-metric repository includes both measures based on hu-
man acceptability (e.g., correlation with human assessments), and human likeness,
such as O (Lin and Och, 2004a) and K (Amigó et al., 2005).

2. Tool Description

A operates over predefined test suites, i.e., over fixed sets of translation test
cases (King and Falkedal, 1990). A test case consists of a source segment, a set of can-
didate translations and a set of manually-produced reference translations. The utility
of a test suite is intimately related to its representativity, which depends on a number
of variables (e.g., language pair, translation domain, number and type of references,
system typology, etc.). These variables determine the space in which MT systems
and evaluation metrics will be allowed to express their capabilities, and, therefore,
condition the results of any evaluation and meta-evaluation process conducted upon
them.

A requires the user to provide the test suite definition through a configuration
file. Different test suites must be placed in different folders with their correspond-

78

J. Giménez and L. Màrquez The Asiya Toolkit (77–86)

ing configuration files. Preferred input format is the NIST XML as specified in the
Metrics MaTr Evaluation Plan (Callison-Burch et al., 2010)2. For instance, the sample
configuration file in Table 1 defines source material (source.xml), candidate transla-
tions (candidates.xml), and reference translations (references.xml). If the source file
is not provided, the first reference will be used as source for those metrics which take
it into consideration. Candidate and reference files are required.

lines starting with ‘#’ are ignored

src=source.xml
sys=candidates.xml
ref=references.xml

some_metrics=-TERp METEOR-pa CP-STM-6 DP-Or(*) SR-Or(*) DR-Or(*) DR-STM-6
some_systems=system01 system05 system07
some_refs=reference02 reference04

Table 1. Sample configuration file (‘sample.config’)

A may be then called by typing the following on the command line: `Asiya.pl
sample.config'. When called without any additional option further than the name
of the configuration file, A will read the file and check its validity (i.e., whether the
defined files exist and are well-formed). No output will be delivered to the user other
than status and error messages. However, several files will be generated. Input XML
files are processed and texts are extracted and saved as plain ‘.txt’ files in the original
data folder. There will be one source file, and as many candidate and reference files as
systems and reference sets are specified in the XML file. The correspondence between
text files and document and segment identifiers is kept through simple index files
(‘.idx’).

2.1. Evaluation Options

Evaluation reports are generated using the ‘-eval’ option followed by a comma-
separated list of evaluation schemes to apply. Three schemes are currently available:

• Single metric scores
• Ulc normalized arithmetic mean of metric scores
• Queen scores as defined by Amigó et al. (2005)

2http://www.nist.gov/itl/iad/mig/metricsmatr10.cfm

79

http://www.nist.gov/itl/iad/mig/metricsmatr10.cfm

PBML 94 SEPTEMBER 2010

Several output formats are available through the ‘-o’ option. Default format is ‘-o
mmatrix’ (one system, doc or segment per line, each metric in a different column).
By default metrics are sorted according to the order as typed by the user. It is also
possible to sort them alphabetically using the ‘-sorted name’ option. Other output
formats are ‘-o smatrix’ (one metric per line, each system in a different column) and
‘o nist’ which saves metric scores into files complying with the NIST output format as
specified in the Metrics MaTr Evaluation Plan.

As an additional option, evaluation scores for the reference translations may be
also retrieved through the ‘-include_refs’ option. References will be evaluated against
all other references in the test suite.

Besides evaluation reports, A generates, for convenience, several intermediate
files:

• Metric scores: Results of metric executions are stored in the ‘./scores/’ folder
in the working directory, so as to avoid having to re-evaluate already evaluated
translations. It is possible, however, to force metric recomputation by setting the
‘-remake’ flag. Moreover, because each metric generates its reports in its own
format, we have designed a specific XML representation format which allows
us to access metric scores in a unified manner.

• Linguistic annotations: Metrics based on syntactic and semantic similarity may
perform automatic linguistic processing of the source, candidate and reference
material. When necessary, these will be stored in the original data folder so as
to avoid having to repeat the parsing of previously parsed texts.

2.2. Meta-Evaluation Options

Meta-evaluation reports are generated using the ‘-metaeval’ option followed by a
comma-separated list of metric combination schemes and a comma-separated list of
meta-evaluation criteria to apply. Five criteria are currently available:

• Pearson correlation coefficients
• Spearman correlation coefficients
• Kendall correlation coefficients
• King scores (Amigó et al., 2005)
• Orange scores (Lin and Och, 2004a)
In order to compute correlation coefficients, human assessments must be provided

using the ‘-assessments’ option followed by the name of the file containing them. The
assessments file must comply with the NIST CSV format (i.e., comma-separated fields,
one assessment per line.

By default, correlation coefficients are accompanied by 95% confidence intervals
computed using the Fisher’s z-distribution. It is also possible to compute correlation
coefficients and confidence intervals applying bootstrap resampling (Koehn, 2004),
If the number of samples is reasonably small, as it may be the case when comput-
ing correlation with system-level assessments, exhaustive resampling is feasible (‘-ci

80

J. Giménez and L. Màrquez The Asiya Toolkit (77–86)

xbootstrap’). Otherwise, the number of resamplings may be selected using the ‘-ci
bootstrap’ and ‘-n_resamplings’ options (1,000 resamplings by default). Also, the de-
gree of statistical may be adjusted using the ‘-alfa’ option. A implements also
paired metric bootstrap resampling. All metrics are compared pairwise. The propor-
tion of times each metric outperforms the other, in terms of the selected criterion, is
retrieved.

Finally, Aprovides a mechanism to determine optimal metric sets. These may
be found using the ‘-optimize’ option followed by a specific evaluation scheme and
meta-evaluation criterion (see Section 2.2).

2.3. General Options

Input Format Candidate and reference translations may be represented in a single
file or in separate files. Apart from the NIST XML format, previous NIST SGML
and plain text formats are also accepted. Input format is specified using the ‘-i’
option followed by any of the formats available (‘nist’ or ‘raw’).

Language Pair By default, A assumes the test suite to correspond to an into-English
translation task. This behavior may be changed using the ‘-srclang’ (source lan-
guage) and ‘trglang’ (target language) options. Metrics based on linguistic anal-
ysis, or using dictionaries or paraphrases, require a proper setting of these val-
ues. It is also possible to tell A whether text case matters or not. By default,
A will assume the text to be case-sensitive. This behavior may be changed
using the ‘-srccase’ (source case) ‘-trgcase’ (target case) options.

Pre-defined Sets The set of metrics to used may be specified using the ‘-metric_set’
and/or the ‘-m’ options. The ‘-metric_set’ option must be followed by the name
of the set as specified in the config file (see Table 1). The ‘-m’ option must be
followed by a comma-separated list of metric names. The effect of these options
is cumulative. Analogously, you may tell A to focus on specific system sets
(‘-system_set’ and ‘-s’) and reference sets (‘-reference_set’ and ‘-r’). The full list
of metric system and reference names defined in the test suite may be listed
using the ‘-metric_names’, ‘-system_names’ and ‘-reference_names’ options, re-
spectively3.

Other Options Another important parameter is the granularity of the results. Set-
ting the granularity allows developers to perform separate analyses of system-
level, document-level and segment-level results, both over evaluation and meta-
evaluation reports. This parameter may be set using the ‘-g’ option. Default
granularity is at the system level. The length and precision of floating point
numbers may be adjusted using the ‘-float_length’ (10 by default) and ‘-float_pre-
cision’ options (8 by default). Finally, the ‘-tex’ flag produces, when applicable,
(meta-)evaluation reports directly in LATEX format.

3The set of available metrics depends on language pair settings.

81

PBML 94 SEPTEMBER 2010

3. Metric Set

Today, A includes repository of more than 600 metrics. In the following, we
provide a brief description. We have grouped metrics according to the linguistic level
at which they operate.

• Lexical Similarity

BLEU Eight variants for differentn-gram lengths, cumulative and non-cumulati-
ve, and smoothed or not, have been considered (Papineni et al., 2001).

NIST Ten variants for differentn-gram lengths, cumulative and non-cumulative,
and smoothed or not, have been considered (Doddington, 2002).

GTM . We included three variants taking different values of the e parameter
(e ∈ {1, 2, 3}) weighting the importance of the length of matching n-grams
(Melamed et al., 2003).

METEOR Four variants, progressively adding ‘exact’, ‘stem’, ‘synonym’ and
‘paraphrase’ modules have been considered (Denkowski and Lavie, 2010).

ROUGE Eight variants, for different n-gram lengths, allowing for skip bigrams
or not, weighted or not, have been considered (Lin and Och, 2004b).

TERp Four variants, with and without paraphrasing support, have been in-
cluded (Snover et al., 2009).

Ol Lexical overlap (Giménez and Màrquez, 2010).

• Syntactic Similarity

Shallow Parsing (SP) Average lexical overlap over parts of speech, and base
phrase chunk types, and NIST score over sequences of lemmas, parts of
speech, and chunks (Giménez and Màrquez, 2010).

Dependency Parsing (DP) Head-word chain matching (Liu and Gildea, 2005)
over word forms, grammatical categories and relations, and average lex-
ical overlap between tree nodes according to their tree level, category or
relation (Giménez and Màrquez, 2010).

Constituency Parsing (CP) Average lexical overlap over parts of speech and
syntactic constituents (Giménez and Màrquez, 2010), and syntactic tree
matching (Liu and Gildea, 2005).

• Semantic Similarity

Named Entities (NE) Average lexical overlap between NEs according to their
type (Giménez and Màrquez, 2010).

Semantic Roles (SR) Average lexical overlap between SRs according to their
type, and average role overlap, i.e., overlap between semantic roles inde-
pendently from their lexical realization (Giménez and Màrquez, 2010).

Discourse Representations (DR) Average lexical and morphosyntactic overlap
between DRs according to their type (Giménez and Màrquez, 2010).

82

J. Giménez and L. Màrquez The Asiya Toolkit (77–86)

bbn- dcu- lium-
metric combo dcu combo google jhu systran rbmt3
BLEUs 0.31 0.27 0.31 0.31 0.27 0.27 0.20
NIST 7.95 7.36 7.91 8.05 7.31 7.33 6.22
GTM2 0.28 0.25 0.29 0.29 0.24 0.26 0.22
ROUGEW 0.35 0.32 0.34 0.34 0.32 0.32 0.29
-TERp -0.47 -0.50 -0.48 -0.46 -0.51 -0.51 -0.58
METEORpa 0.55 0.53 0.55 0.54 0.52 0.52 0.49
SP-NISTp 6.85 6.40 6.92 7.07 6.24 6.49 5.88
CP-STM6 0.40 0.38 0.39 0.41 0.37 0.38 0.35
DP-HWCw 0.21 0.18 0.20 0.22 0.18 0.18 0.15
DP-HWCc 0.34 0.32 0.32 0.35 0.32 0.32 0.30
DP-HWCr 0.30 0.28 0.28 0.31 0.28 0.28 0.26
DP-Or(⋆) 0.25 0.23 0.24 0.26 0.22 0.23 0.19
NE-Oe(⋆) 0.38 0.35 0.40 0.40 0.29 0.38 0.34
SR-Or(⋆) 0.24 0.20 0.23 0.24 0.20 0.20 0.18
DR-Or(⋆) 0.32 0.29 0.31 0.33 0.28 0.29 0.24
DR-Orp(⋆) 0.48 0.45 0.47 0.48 0.44 0.45 0.44
DR-STM6 0.45 0.42 0.44 0.46 0.41 0.43 0.39

Table 2. ASIYA-generated evaluation report (system level), WMT09 fr-en

4. A Use Case

In this section, we illustrate some of the A functionalities over a particular test
suite. Specifically, we have used the French-English (fr-en) translation task from the
2009 ACL Workshop on Machine Translation, WMT09, (Callison-Burch et al., 2009).
There have been three main reasons for selecting this test bed: (i) it is publicly avail-
able, (ii) it is reasonably heterogeneous, since it includes system based on different
paradigms (statistical vs. rule-based, hybrid, combined), and (iii) it is neutral, since
systems are evaluated out-of-domain, i.e., in a domain other than the training domain.

The test suite consists of 111 documents totaling 2525 segments, one reference
translation and automatic translations by 21 different systems. Human assessments
at the segment level based on different criteria are available for a subset of segments.

First, we use A to evaluate a subset of the participant systems based on a se-
lected set of metrics operating at different linguistic levels. We use the ‘-tex’ flag to
generate directly the table in LATEX format4. The output is Table 2.

4The command is the following: `Asiya.pl -v -m BLEUs,NIST,GTM-2,ROUGE-W,-TERp,METEOR-pa, SP-
pNIST,CP-STM-6,DP-HWC_w-4,DP-HWC_c-4,DP-HWC_r-4,DP-Or(*),NE-Oe(*),SR-Or(*),DR-Or(*), DR-
Orp(*),DR-STM-6 -s bbn-combo,dcu,dcu-combo,google,jhu,lium-systran,rbmt3 -eval single -o
smatrix -float_precision 2 -g sys -tex Asiya.config'.

83

PBML 94 SEPTEMBER 2010

confidence
metric ρ interval
BLEUs 0.90 (0.76, 0.97)
NIST 0.89 (0.66, 0.97)
GTM2 0.89 (0.72, 0.97)
ROUGEW 0.93 (0.80, 0.98)
-TERp 0.86 (0.66, 0.96)
METEORpa 0.91 (0.78, 0.98)
SP-NISTp 0.83 (0.58, 0.94)
CP-STM6 0.93 (0.79, 0.99)
DP-HWCw 0.91 (0.75, 0.98)
DP-HWCc 0.96 (0.88, 0.99)
DP-HWCr 0.94 (0.83, 0.99)
DP-Or(⋆) 0.93 (0.81, 0.98)
NE-Oe(⋆) 0.67 (0.29, 0.87)
SR-Or(⋆) 0.93 (0.80, 0.98)
DR-Or(⋆) 0.93 (0.77, 0.98)
DR-Orp(⋆) 0.92 (0.76, 0.98)
DR-STM6 0.93 (0.80, 0.99)

Table 3. ASIYA-generated meta-evaluation report (system level), WMT09 fr-en

Now, let us use A to evaluate a selected set of metrics. Since we count on human
assessments we can compute correlation coefficients. For this example we have used
the ‘rank’ assessments. Each assessor was presented with a set of translation outputs
to be ranked from best to worst being 1 assigned to the best output, 2 to the second
best and so on. The total number of assessments is 2,668. We take the negative rank
as a positive measure of quality. With this kind of assessments, segment-level Pear-
son correlation coefficients would not be very reliable/informative. We can, however,
compute Spearman correlation coefficients at the system level. Confidence intervals
are computed via bootstrap resampling at a 95% statistical significance5.

5. Ongoing and Future Steps

Current development of the toolkit goes in two main directions. First, we are aug-
menting the metric repository. We are incorporating new metrics and we are porting
linguistic metrics to other languages. We also plan to design and implement a mech-

5The command is the following: `Asiya.pl -v -m BLEUs,NIST,GTM-2,ROUGE-W,-TERp,METEOR-pa, SP-
pNIST,CP-STM-6,DP-HWC_w-4,DP-HWC_c-4,DP-HWC_r-4,DP-Or(*),NE-Oe(*),SR-Or(*),DR-Or(*), DR-
Orp(*),DR-STM-6 -metaeval single spearman -assessments data/rank.csv -ci bootstrap -
n_resamplings 1000 -float_precision 2 -g sys -tex Asiya.config'.

84

J. Giménez and L. Màrquez The Asiya Toolkit (77–86)

anism so users can easily incorporate their own metrics. Moreover, we are currently
implementing measures for confidence estimation (i.e., when the reference translation
is not available). Also, in the future, we plan to consider more sophisticated metric
combination schemes and alternative meta-evaluation criteria.

The second direction is on the construction of a visual interface for A. We
are designing a web application for monitoring the whole development cycle. This
application will allow system and metric developers to upload their test suites and
perform error analysis, automatic and manual evaluation, and meta-evaluation, using
their Internet browser.

Acknowledgements

This work has been partially funded by the Spanish Government (OpenMT-2, TIN-
2009-14675-C03) and the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement numbers 247762 (FAUST, FP7-ICT-2009-4-
247762) and 247914 (MOLTO, FP7-ICT-2009-4-247914).

Bibliography
Amigó, Enrique, Julio Gonzalo, Anselmo Penas, and Felisa Verdejo. QARLA: a Framework for

the Evaluation of Automatic Summarization. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL), pages 280–289, 2005.

Callison-Burch, Chris, Philipp Koehn, Christof Monz, and Josh Schroeder. Findings of the
2009 Workshop on Statistical Machine Translation. In Proceedings of the Fourth Workshop
on Statistical Machine Translation, pages 1–28, 2009.

Callison-Burch, Chris, Philipp Koehn, Christof Monz, Kay Peterson, Mark Przybocki, and Omar
Zaidan. Findings of the 2010 joint workshop on statistical machine translation and metrics
for machine translation. In Proceedings of the Joint Fifth Workshop on Statistical Machine Trans-
lation and MetricsMATR, pages 17–53, 2010.

Denkowski, Michael and Alon Lavie. Meteor-next and the meteor paraphrase tables: Improved
evaluation support for five target languages. In Proceedings of the Joint Fifth Workshop on
Statistical Machine Translation and MetricsMATR, pages 339–342, July 2010.

Doddington, George. Automatic Evaluation of Machine Translation Quality Using N-gram Co-
Occurrence Statistics. In Proceedings of the 2nd International Conference on Human Language
Technology, pages 138–145, 2002.

Giménez, Jesús and Enrique Amigó. IQMT: A Framework for Automatic Machine Translation
Evaluation. In Proceedings of the 5th International Conference on Language Resources and Evalu-
ation (LREC), pages 685–690, 2006.

Giménez, Jesús and Lluís Màrquez. Linguistic Features for Automatic MT Evaluation. To Ap-
pear in Machine Translation, 2010.

King, Margaret and Kirsten Falkedal. Using Test Suites in Evaluation of MT Systems. In
Proceedings of the 13th International Conference on Computational Linguistics (COLING), pages
211–216, 1990.

85

PBML 94 SEPTEMBER 2010

Koehn, Philipp. Statistical Significance Tests for Machine Translation Evaluation. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 388–395,
2004.

Lin, Chin-Yew and Franz Josef Och. ORANGE: a Method for Evaluating Automatic Evalua-
tion Metrics for Machine Translation. In Proceedings of the 20th International Conference on
Computational Linguistics (COLING), pages 501–507, 2004a.

Lin, Chin-Yew and Franz Josef Och. Automatic Evaluation of Machine Translation Quality
Using Longest Common Subsequence and Skip-Bigram Statics. In Proceedings of the 42nd
Annual Meeting of the Association for Computational Linguistics (ACL), 2004b.

Liu, Ding and Daniel Gildea. Syntactic Features for Evaluation of Machine Translation. In
Proceedings of ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Sum-
marization, pages 25–32, 2005.

Melamed, I. Dan, Ryan Green, and Joseph P. Turian. Precision and Recall of Machine Transla-
tion. In Proceedings of the Joint Conference on Human Language Technology and the North Amer-
ican Chapter of the Association for Computational Linguistics (HLT-NAACL), 2003.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation, RC22176. Technical report, IBM T.J. Watson Research
Center, 2001.

Snover, Matthew, Nitin Madnani, Bonnie Dorr, and Richard Schwartz. Fluency, adequacy, or
HTER? Exploring different human judgments with a tunable MT metric. In Proceedings of
the Fourth Workshop on Statistical Machine Translation, pages 259–268, 2009.

Address for correspondence:
Jesús Giménez
jgimenez@lsi.upc.edu
Universitat Politècnica de Catalunya
C/Jordi Girona, 1-3. Campus Nord. Edifici Omega, despatx S-107
Barcelona, 08028. Spain

86

The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010 87–96

An Experimental Management System

Philipp Koehn
University of Edinburgh

Abstract
We describe Experiment.perl, an experimental management system, that allows the execu-

tion of the entire training and testing pipeline of a machine translation experiment with one
configuration files. When carrying out multiple experimental runs with changed settings, Ex-
periment.perl automatically detects which steps need to be re-run and which can be re-used.

1. Introduction

Running a machine translation experiment involves many steps: preparing train-
ing data, building language and translation models, tuning, testing, scoring and anal-
ysis of the results. For most of these steps, a different tool needs to be invoked, so this
easily becomes very cumbersome. The Experiment Management System (EMS), or
Experiment.perl, for lack of a better name, makes it much easier to run experiments.
It ships with the Moses machine translation toolkit (Koehn et al., 2007).

A typical example is given in Figure 1. The graph was automatically generated by
Experiment.perl. All that needed to be done was to specify one single configuration
file that points to data files and settings for the experiment. In the graph, each step is a
small box. For each step, Experiment.perl builds a script file that gets either submitted
to a compute cluster or executed on the same machine. Note that some steps are quite
involved, for instance tuning: On a cluster, the tuning script runs on the head node a
submits jobs to the queue itself.

Experiment.perl makes it easy for multiple experimental runs with different set-
tings]. It automatically detects which steps do not have to be executed again. Experi-
ment.perl plays the same role as LoonyBin (Clark et al., 2010), but there are significant

© 2010 PBML. All rights reserved. Corresponding author: pkoehn@inf.ed.ac.uk
Cite as: Philipp Koehn. An Experimental Management System. The Prague Bulletin of Mathematical Linguis-
tics No. 94, 2010, pp. 87–96. doi: 10.2478/v10108-010-0023-5.

PBML 94 SEPTEMBER 2010

Figure 1. Workflow generated by Experiment.perl: Steps (such as run-giza are
grouped into modules (such as TRAINING). Dependencies are indicated by arrows.

Skipped steps have a pale background.

88

P. Koehn Experimental Management System (87–96)

differences in its usage. Experiment.perl uses a textual configuration file to set up an
experiment and a meta configuration file to define all possible workflows, LoonyBin
offers a graphical user interface that lets the user connect steps.

2. Design

Experiment.perl breaks up training, tuning, and evaluating of a statistical machine
translation system into a number of steps, which are then scheduled to run in paral-
lel or sequence depending on their inter-dependencies and available resources. The
possible steps are defined in the file experiment.meta. An experiment is defined by
a configuration file.

2.1. Experiment.Meta

The actual steps, their dependencies and other salient information is to be found
in the file experiment.meta. Think of experiment.meta as a ”template” file. Steps are
grouped into modules, which are:

• CORPUS: preparing a parallel corpus
• INPUT-FACTOR and OUTPUT-FACTOR: commands to create factors
• TRAINING: training a translation model
• LM: training a language model
• INTERPOLATED-LM: interpolate language models
• SPLITTER: training a word splitting model
• RECASING: training a recaser
• TRUECASING: training a truecaser
• TUNING: running minumum error rate training to set component weights
• TESTING: translating and scoring a test set
• REPORTING: compile all scores in one file

To give an example of a step definition in experiment.meta, here the parts of the
definition for LM:get-corpus and LM:tokenize:

get-corpus
in: get-corpus-script
out: raw-corpus
[...]

tokenize
in: raw-corpus
out: tokenized-corpus
[...]

89

PBML 94 SEPTEMBER 2010

Each step takes some input (in) and provides some output (out). This also es-
tablishes the dependencies between the steps. The step tokenize requires the input
raw-corpus. This is provided by the step get-corpus.

The file experiment.meta provides a generic template for steps and their interac-
tion. For an actual experiment, a configuration file determines which steps need to
be run. This configuration file is specified when invoking experiment.perl. It may
contain for instance the following:

[LM:europarl]

raw corpus file
#
raw-corpus = $europarl-v3/training/europarl-v3.en

Here, the corpus to be used for language modeling is named europarl and it is
provided in raw text format in the location $europarl-v3/training/europarl-v3.en
(the variable $europarl-v3 is defined elsewhere in the config file). The effect of this
specification in the config file is that the step get-corpus does not need to be run,
since its output is given as a file. The workflow starts with the step tokenize.

The entire definition of an experiment follows this logic, which is very similar to
the principles of a Unix Makefile. The ultimate purpose of an experiment is to gener-
ate a result file at the end. If this is not given, then scoring scripts need to be called.
Scoring scripts require the output of the decoder on the test sets. The decoder requires
a tuned model. Tuning requires a trained model. Trained models require language
models and model files, and so on. The workflow, as show in Figure 1, is generate
bottom up, following the input/output dependencies of steps.

2.2. Elements of Step Definitions

Several parameters for step definitions are used in experiment.meta:
• in and out: Established dependencies between steps; input may also be pro-

vided by files specified in the configuration.
• default-name: Name of the file in which the output of the step will be stored.
• template: Template for the command that is placed in the execution script for

the step.
• template-if: Potential command for the execution script. Only used, if a spec-

ified setting exists.
• error: Experiment.perl detects if a step failed by scanning STDERR for key words

such as killed, error, died, not found, and so on. Additional key words and
phrase are provided with this parameter.

• not-error: Declares default error key words as not indicating failures.
• pass-unless: Only if the given setting is used, this step is executed, otherwise

the step is passed (illustrated by a yellow box in the graph).

90

P. Koehn Experimental Management System (87–96)

• ignore-unless: If the given setting is used, this step is not executed. This over-
rides requirements of downstream steps.

• rerun-on-change: If similar experiment are runs, the output of steps may be
used, if input and settings are the same. This specifies settings whose change
disallows a re-use in different run.

• parallelizable: When running on a cluster or a multi-core machine, this step
may be parallelized (only if generic-parallelizer is set in the config file).

• qsub-script: If running on a cluster, this step is run on the head node, and not
submitted to the queue (because it submits jobs itself).

To complete our example, the full definition of the step LM:tokenize is below.

tokenize
in: raw-corpus
out: tokenized-corpus
default-name: lm/tok
pass-unless: output-tokenizer
template: $output-tokenizer < IN > OUT
parallelizable: yes

The step takes raw-corpus and produces tokenized-corpus. It is parallizable
with the generic parallelizer. The output is stored in the file according to the def-
inition corpus/tok. Note that the actual file name also contains the corpus name,
and the run number. In our example the tokenized corpus is stored in a file named
lm/europarl.tok.1. The step is only executed, if output-tokenizer is specified. The
template indicate how the command lines in the execution script for the steps are
formed.

2.3. Multiple Corpora, One Translation Model

We may use multiple parallel corpora for training a translation model or multiple
monolingual corpora for training a language model (or use multiple language mod-
els). Each of these have their own instances of the CORPUS and LM module. There
may be also multiple test sets in TESTING). However, there is only one translation
model and hence only one instance of the TRAINING module. The definitions in ex-
periment.meta reflects the different nature of these modules. For instance CORPUS is
flagged as multiple, while TRAINING is flagged as single.

When defining settings for the different modules, the singular module TRAINING
has only one section, while this one general section and specific LM sections for each
training corpus. In the specific section, the corpus is named, e.g. LM:europarl. When
looking up the parameter settings for a step, first the set-specific section (LM:europarl)
is consulted. If there is no definition, then the module definition (LM) and finally the
general definition (in section GENERAL) is consulted. In other words, local settings
override global settings.

91

PBML 94 SEPTEMBER 2010

2.4. Configuration File

A configuration file for an experimental run consists of a collection of settings,
one per line with empty lines and comment lines for better readability, organized in
sections for each of the modules.

The start of each section is indicated by the section name in square brackets ([TRAIN-
ING] or [CORPUS:europarl]). If the word IGNORE is appended to a section definition,
then the entire section is ignored.

The syntax of setting definition is setting = value (note: spaces around the equal
sign). If the value contains spaces, it must be placed into quotes (setting = "the
value"), except when a vector of values is implied (only used when defining list of
factors: output-factor = word pos. Comments are indicated by a hash (#).

Settings can be used as variables to define other settings:

working-dir = /home/pkoehn/experiment
wmt10-data = $working-dir/data

Variable names may be placed in curly brackets for clearer separation:

wmt10-data = ${working-dir}/data

Such variable references may also reach other modules:

[RECASING]
tokenized = $LM:europarl:tokenized-corpus

Finally, reference can be made to settings that are not defined in the configuration
file, but are the product of the defined sequence of steps. Say, in the above example,
tokenized-corpus is not defined in the section LM:europarl, but instead raw-corpus.
Then, the tokenized corpus is produced by the normal processing pipeline. Such an
intermediate file can be used elsewhere:

[RECASING]
tokenized = [LM:europarl:tokenized-corpus]

Some error checking is done on the validity of the values in the configuration file
before an experimental run is executed. All values that seem to be file paths trigger
the existence check for such files. A file with the prefix of the value must exist.

2.5. Step Files

Let us follow our example of the tokenization step in the language model module
in more detail. Recall that the LM:europarl section has a specification of raw-corpus
to $europarl-v3/training/europarl-v3.en. Since only the raw corpus, but not a
tokenized corpus is specified, Experiment.perl concludes that it needs to run the tok-
enization step.

92

P. Koehn Experimental Management System (87–96)

The directory steps contains the script that executes each step, its and -
 output, and meta information:

steps/1/LM_europarl_tokenize.1
steps/1/LM_europarl_tokenize.1.DONE
steps/1/LM_europarl_tokenize.1.INFO
steps/1/LM_europarl_tokenize.1.STDERR
steps/1/LM_europarl_tokenize.1.STDERR.digest
steps/1/LM_europarl_tokenize.1.STDOUT

The file steps/1/LM_europarl_tokenize.1 is the shell script that is run to execute
the step. The file with the extension DONE is created when the step is finished - this
communicates to the scheduler that subsequent steps can be executed. The file with
the extension INFO contains meta information - essential the settings and dependen-
cies of the step. This file is checked to detect if a step can be re-used in subsequent
experimental runs.

In case that the step crashed, we expect some indication of a fault in STDERR (for
instance the words core dumped or killed). This file is checked to see if the step was
executed successfully, so subsequent steps can be scheduled or the step can be re-
used in new experiments. Since the STDERR file may be very large (some steps create
Megabytes of such output), a digested version is created in STDERR.digest. If the step
was successful, it is empty. Otherwise it contains the error pattern that triggered the
failure detection.

2.6. Re-Use of Steps

Let us now take a closer look at re-use. If we run the experiment again but change
a settings, say, the order of the language model, then there is no need to re-run the
tokenization, but only language model training.

Here is the definition of the language model training step in experiment.meta:

train
in: split-corpus
out: lm
default-name: lm/lm
ignore-if: rlm-training
rerun-on-change: lm-training order settings
template: $lm-training -order $order $settings -text IN -lm OUT
error: cannot execute binary file

The mention of order in the list behind rerun-on-change informs experiment.perl
that this step does need to be re-run, if the order of the language model changes. Since
none of the settings in the chain of steps leading up to the training have been changed,
those can be re-used.

93

PBML 94 SEPTEMBER 2010

Figure 2. Comparing outputs from two experimental runs

If the language model order is changed and the experiment.perl is run again in the
same working directory, you will see the following files in the directory lm:

% ls -tr lm/*
lm/europarl.tok.1
lm/europarl.truecased.1
lm/europarl.lm.1
lm/europarl.lm.2

Note that a new language model was trained for this second run (lm/europarl.lm.2),
but no new tokenized and truecased corpus files. These were re-used from run 1.

Steps are re-used from previous runs, unless settings listed under rerun-on-change
are changed, one of its specified input files (if any) are changed, and if one of its previ-
ous steps are re-run. Note that if a filename is not changed, but its time stamp differs,
this triggers re-running a step. This ensures that only a minimum number of steps
are run to produce the exact same outcome as if all steps are run.

2.7. Web Interface and Analysis

Experiment.perl also offers a web interface to the experimental runs for easy access
and comparison of experimental results. The web interface gives a listing of experi-
ments and runs for each experiments, with a display of automatic metric scores, and
links to configuration files and outputs.

You can include additional analysis for an experimental run in the web interface by
specifying the setting analysis in its configuration file. This adds reports n-gram pre-
cision and recall statistics and color-coded n-gram correctness markup for the output
sentences to the web interface. See Figure 2 for an example.

The output is color-highlighted according to n-gram matches with the reference
translation. The following colors are used. The darker the color of an output word,
the higher n-gram match to the reference translation it is part of.

Additional reports are available when adding the settings analyze-coverage and
report-segmentation. The setting analyze-coverage include a coverage analysis:
which words and phrases in the input occur in the training data or the translation
table? This is reported in color coding and in a yellow report box when moving the

94

P. Koehn Experimental Management System (87–96)

mouse of the word or the phrase. Also, summary statistics for how many words occur
how often are given, and a report on unknown or rare words is generated.

The setting report-segmentation creates summary statistics about what kind of
phrase mappings are used (one word to one word, 1-2, 2-2, etc.), as well as markup of
the sentence pair with the phrase segmentation. The phrase segmentation is indicated
with black boxes around the words, and the alignment is shown when moving the
mouse on the phrases.

3. Usage
3.1. Quick Start

Experiment.perl is extremely simple to use:
• Find experiment.perl in scripts/ems
• Get a sample configuration file from someplace (for instance scripts/ems/exam-

ple/config.toy).
• Set up a working directory for your experiments for this task (mkdir does it).
• Edit the following path settings in config.toy

– working-dir
– data-dir
– moses-script-dir
– moses-src-dir
– srilm-dir
– decoder

• Run experiment.perl -config config.toy from your working directory.
• Marvel at the graphical plan of action.
• Run experiment.perl -config config.toy -exec.
• Check the results of your experiment (in evaluation/report.1)

3.2. More Examples

The exampledirectory contains some additional examples. These require the train-
ing and tuning data released for the Shared Translation Task for WMT 2010.

The examples using these corpora are
• a basic phrase based model
• a factored phrase based model
• a hierarchical phrase based model
• a target syntax model
The factored model using all the available corpora is identical to the Edinburgh

submission (Koehn et al., 2010) to the WMT 2010 shared task for English-Spanish,
Spanish-English, and English-German language pairs. The French language pairs
also used the 109 corpus, the Czech language pairs did not use the POS language
model, and German-English used additional pre-processing steps.

95

PBML 94 SEPTEMBER 2010

4. Outlook

We have been using Experiment.perl for years and are satisfied with its core func-
tionalities. In future work, we would like support job scheduling on Hadoop clusters
and extend the analysis facility.

Acknowledgments

This work was supported in part by the EuroMatrixPlus project funded by the Eu-
ropean Commission (7th Framework Programme) and in part under the GALE pro-
gram of the Defense Advanced Research Projects Agency, Contract No. HR0011-06-
C-0022.

Bibliography

Clark, Jonathan H., Jonathan Weese, Byung Gyu Ahn, Andreas Zollmann, Qin Gao, Kenneth
Heafield, and lon Lavie. The machine translation toolpack for loonybin: Automated man-
agement of experimental machine translation hyperwork. The Prague Bulletin of Mathemati-
cal Linguistics, 93:117–126, January 2010.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Christopher J. Dyer,
Ondřej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for
statistical machine translation. In Proceedings of the 45th Annual Meeting of the Association for
Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages
177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/P/P07/P07-2045.

Koehn, Philipp, Barry Haddow, Philip Williams, and Hieu Hoang. More linguistic annota-
tion for statistical machine translation. In Proceedings of the Joint Fifth Workshop on Statisti-
cal Machine Translation and MetricsMATR, pages 96–101, Uppsala, Sweden, July 2010. URL
http://www.aclweb.org/anthology/W10-1716.

Address for correspondence:
Philipp Koehn
pkoehn@inf.ed.ac.uk
School of Informatics, University of Edinburgh
10 Crichton Street
Edinburgh, EH8 9AB, United Kingdom

96

http://www.aclweb.org/anthology/P/P07/P07-2045
http://www.aclweb.org/anthology/W10-1716

The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010 97–106

A Toolkit for Visualizing the Coherence of
Tree-based Reordering with Word-Alignments

Gideon Maillette de Buy Wenniger, Maxim Khalilov, Khalil Sima’an
Institute for Logic, Language and Computation, University of Amsterdam

Abstract
Tree-based reordering constitutes an important motivation for the increasing interest in

syntax-driven machine translation. It has often been argued that tree-based reordering might
provide a more effective approach for bridging the word-order differences between source and
target sentences. One major approach (known as Inversion Transduction Grammar) allows
permuting the order of the subtrees dominated by the children of any node in the tree. In
practice, it has often been observed that the word-alignments usually cohere only to a certain
degree with this kind of tree-based reordering, i.e., there are cases of word-alignments that
cannot be fully explained with tree-based reordering when the tree is fixed a priori.

This paper describes a toolkit for visualizing alignment graphs that consist of a word-
alignment together with a source or target tree. More importantly, the toolkit provides a facility
for visualizing the coherence of word-alignment with tree-based reordering, highlighting nodes
and word-alignments that are incompatible with one another. The tool allows visualizing the
tree-based reordered source/target string as well as the reordered tree.

1. Introduction

Word-alignment (the mapping from source language words to target language
words) is the starting point for most translation systems in the Statistical Machine
Translation (SMT) (e.g. (Och and Ney, 2004; Koehn et al., 2003; Mariño et al., 2006)).
Such translation relationships among the words can be m-to-n in the most general
case, were m source words can produce n target words.

General tools have been created for the visualization of basic word align-
ment (Smith and Jahr, 2000; Germann, 2008) as well as for the manual annotation of

c⃝ 2010 PBML. All rights reserved. Corresponding author: gmaillet@science.uva.nl
Cite as: Gideon Maillette de Buy Wenniger, Maxim Khalilov, Khalil Sima’an. A Toolkit for Visualizing
the Coherence of Tree-based Reordering with Word-Alignments. The Prague Bulletin of Mathematical
Linguistics No. 94, 2010, pp. 97–106. doi: 10.2478/v10108-010-0024-4.

PBML 94 SEPTEMBER 2010

sentence pairs. The recent trend in the SMT research community towards including
syntactic information into SMT systems makes the simultaneous visualization of
alignment and parse trees increasingly more important. This combination of source
or target tree with alignment links is also known as an alignment graph (Galley et al.,
2004). One other toolkit became recently available which focuses on the alignment of
parallel treebanks, the Stockholm Tree Aligner (STA) (Volk et al., 2007).

Beyond the mere visualization of alignment graphs, there is currently an increasing
need for visualizing the coherence of tree-based reordering with word-alignment for
the purposes of understanding word-order divergence phenomena between pairs of
languages. Our tree and alignment visualization toolkit (TAVT) is aimed exactly at this
functionality. TAVT allows visualizing alignment graphs as well as the extent to which
word-alignments and the constituency parse tree are compatible with one another.
More concretely, TAVT visualizes how well reordering under the ITG constraints (Wu,
1997), while restricting the tree to be the source constituency parse (Yamamoto et al.,
2008), succeeds to arrive at monotonic word-alignments, i.e. resolves all crossing
word-alignments. Our toolkit allows visualizing the source/target permutation that
can be obtained under the assumption of ITG-based tree-reordering as well as the
incompatible nodes and word-alignments. This is especially useful for the researchers
working on tree-to-string or tree-to-tree translation, as this is exactly the data their
systems are built upon.

2. Tree and Alignment Coherence Visualizer

In this section we describe our visualization toolkit TAVT. The first function of our
toolkit is the visualization of basic word alignments without trees. However, the main
and distinguishing function of TAVT is the simultaneous visualization of trees and
alignments (alignment graphs). Finally, our toolkit enables the automatic reordering of
the source tree to optimally match the target string word order under ITG constraints,
and allows visualizing the resulting permutation as well as the nodes and alignments
incompatible with one another.
TAVT is implemented using parts of the code extracted from the package ConstTree-
Viewer – a constituency structures viewer, available on:
http://staff.science.uva.nl/~fsangati/.

TAVT itself can be downloaded from:
http://code.google.com/p/tree-alignment-visualizer/.

2.1. Basic Alignment Visualization

Visualizing the basic word alignments is done by displaying the two sentences one
beneath the other, with the aligned words being connected by colored lines. For ease
of reading in case of cluttered and crossing alignment lines, different colors are used

98

http://staff.science.uva.nl/~fsangati/
http://code.google.com/p/tree-alignment-visualizer/

Wenniger et al. Visualizing Tree Coherence of Word-Alignments (97–106)

for the alignments of the different words (see Figure 1 for an example of a human
made m to n alignment).

Figure 1: Visualization of the basic word alignments between a source and target sentence.

In our further examples we have restricted ourselves to the intersection of the
GIZA++ alignments in two directions, which is a common method to improve
precision at the price of recall. Furthermore we use IBM model 1 lexical weights
to keep only the strongest alignment of a source word, in case it is aligned to multiple
target words. These choices are arbitrary and other choices could have been made
just as well. The resulting alignments are only 1-to-1 or 1-to-0, and as a result of
the intersection they are also incomplete. While different operations such as union
allows construction of general m-to-n alignment, the modeling restriction of word-
based alignment made by GIZA++ introduces inherent artifacts that direct tree-based
alignment could overcome (Pauls et al., 2010).

2.2. Visualizing the Alignment Graph

The visualization of the alignment graph is similar to the visualization of the basic
word alignments. Rather than displaying the source words, this visualization shows
the source tree ending in the leaf nodes containing source words. The source words
are again connected by lines to their target-side counterparts.

Basic phrase-based machine translation systems work with phrase pairs that are
consistent with the word alignment: the words in a legal phrase pair are contiguous
strings consisting of words aligned to each other and not to words outside. As a
refinement, syntactic phrases are phrases that are covered by a single subtree in the
constituency parse tree (Koehn et al., 2003). From the point of view of syntactic SMT, it
is very interesting to see what subtrees of the (source) parse tree are alignment cohesive
(henceforth cohesive), i.e. correspond to the source side of a syntactic phrase pair, and
what constituents root a set of children that fail to form a contiguous phrase on the
target side. The distinguishing feature of the TAVT is that it gives insight into the
alignment cohesiveness of subtrees of the parse tree, and un-cohesiveness which occurs
when alignment spans for subtrees overlap. The overlaps imply that tree-constrained

99

PBML 94 SEPTEMBER 2010

reordering fails in the sense that ITG-based tree transductions are not sufficient to
achieve the ultimate reordering goal: a reordered source tree that has no crossing
alignments and whose lexical order matches the order of the target sentence.

Figure 2: Visualization of the alignment graph.

Tree Alignment Violations and Cohesive Nodes. We define overlapping alignment
spans, as follows:

Let A(n) → {1, · · · ,m}∗ be the alignment mapping function that maps a source leaf
node to a set of zero or more of the m possible target alignment positions.

A certain subtree rooted at node n in the alignment graph spans a range
AlignmentSpan(n) of target positions defined by the minimum and maximum
alignment position over its descending leaf source words:

Definition 2.1 (Alignment Span)
AlignmentSpan(n) B

[anmin , anmax] =

minx∈LeafNodes(n)

minax ′∈A(x) ax ′

,maxy∈LeafNodes(n)

maxay ′∈A(y) ay ′

Note that every source leaf node is in principle allowed to map to multiple target

word positions, so we have to perform a double minimization/maximization to get
the minimum and maximum over this set of sets of alignment positions.

Any source leaf node n ′ that is not descending from n but aligns to a word in the
same range [anmin , anmax] is said to "violate" the alignment span of n.

100

Wenniger et al. Visualizing Tree Coherence of Word-Alignments (97–106)

Definition 2.2 (Alignment Violation)
violates(n ′,n) B terminal(n ′)∧ n ′ < descendants(n)∧
(AlignmentSpan(n) = [anmin , anmax])∧ (anmin ≤ A(n ′) ≤ anmax)

A node n is said to be cohesive if it has no alignment violation, in other words that
node alone aligns to the contiguous target side of its associated phrase pair.

Alignment violations are indicated by displaying every "violated" subtree in the
alignment graph in purple, and showing a list of violating words (V.W.) behind the
node label. A symbol consisting of two crossing arrows, just below the root of every
subtree that is violated further emphasizes the alignment violations. The violating
word itself is accented by an italic purple font, and its alignment is drawn as a striped
line to further emphasize its overlap with the alignment range of the other subtree
(see Figure 2).

2.3. Optimal tree-constrained source reordering

Displaying how the source tree can be optimally reordered to match the target
word order is the goal of the third component of our visualization toolkit. In the
tree reordering, we assume that the original parse tree structure must be preserved,
the same assumption as made in (Khalilov and Sima’an, 2010). The only allowed
operation is the permutation of the child nodes under a parent node (Yamamoto et al.,
2008). Given this limited reordering freedom and the alignment spans of different
nodes, the tree nodes can be reordered to get a modified tree that better matches
the target word order. To do so, every non-terminal node in the tree is visited and
every pair of child nodes c1 and c2 is compared. c1moves before c2 if and only if the
alignment span of c1 precedes the alignment span of c2, denoted as AlignmentSpan(c1)
< AlignmentSpan(c2) and defined as:

Definition 2.3 (Alignment Span Precedence)
AlignmentSpan(c1) = [a1min, a1max] < AlignmentSpan(c2) = [a2min, a2max]
B (a1min < a2min)∧ (a1max < a2min)

Two alignment spans can only be compared if they do not overlap and the one span
strictly begins and ends before the other. Note that this is automatically the case if at
least one of the two source nodes associated with these alignment spans is cohesive.
And so the circle closes. Cohesive nodes are important since they imply a reordering is
possible that will put the source phrases covered by these nodes at the right position,
matching the target word position of that phrase (but not necessarily recursively the
right order within the phrase). Alignment Violations are similarly important, since they
imply un-cohesiveness and thus show were the tree-based reordering scheme fails, be
it for alignment errors or simply linguistic complexities.

The example in Figure 3 illustrates the reordering visualization. It shows an
alignment graph with multiple crossing alignments due to the fact that the phrase

101

PBML 94 SEPTEMBER 2010

Figure 3: Visualization of the tree-constrained reordering.

“when I have received your letter” → “nadat ik uw brief ontvangen heb” moves from the
end of the English source sentence almost completely to the beginning in the Dutch
translation. Furthermore there are three words : “,” , “shall” and “be” that cause
alignment violations with other subtrees in the alignment graph. In the reordered
tree, a thick horizontal line indicates that some of the child nodes under a subtree root
are reordered, while those child nodes that really moved to a new position are further
emphasized by a diamond just above the node. Unaligned source words like “have”
in the example do not directly constrain the word order. However,when the subtrees
they belong to move to a new position, they move with them, so their position in
the reordered tree is just as well unambiguous. Notice, that in the subtree that roots
the phrase “be pleased · · · received your letter” not all the children have comparable

102

Wenniger et al. Visualizing Tree Coherence of Word-Alignments (97–106)

alignment spans since the subtree covering “pleased to look into the facts of this case”
has an alignment span that overlaps with that of its sibling node that covers “be”.
In contrast, the alignment span of the other sibling covering “when I have received
your letter” strictly precedes the span of both other siblings, and is thus moved to
the front. Therefore, the word order becomes much more like the target word order
by performing the reordering procedure, even though overlapping alignment ranges
prevent all crossing alignments from being resolvable.

3. Usability

Visualization is generally an effective way for representing and (re-)organizing
multi-source information. TAVT is a toolkit that intends to manage word alignment
and syntactic information and help users process translation content more efficiently.
At the design level, we tried to make our toolkit as intuitive and easy to use as
possible. The entire toolkit is written in Java and requires no installation of external
libraries. Different aspects of TAVT usability are considered below:

Alignment visualization. At the most basic level TAVT is convenient to browse
easily through the different alignments and corresponding parse trees in the data set.
This gives a lot of insight in the data in relatively short time and consequently helps
in designing effective translation systems.

Alignment and tree visualization. The visualization of trees in addition to the basic
alignments helps in different ways. Subtrees are expected to be aligned as word
blocks most of the time, if this does not happen it is a clear indication of discrepancy
between word alignment and syntactic bilingual segmentation, or alternatively an
alignment or parse error.

In this concern, our work has a fair amount of overlap with the STA tool, presented
in (Volk et al., 2007). However the focus and functionality of the TAVT toolkit and
STA tool differ significantly. While STA visualizes parallel treebanks with alignments,
TAVT visualizes alignment graphs which assume only one tree is available. For
translation this is often a more realistic assumption, since for many languages no
reliable parsers exist. Our goals in developing this application are centered on getting
insight into the parallel corpus, dealing with alignment problems, and marking where
and how the word reordering takes place and what kind of tree transformations
could support it. Therefore we provide functionality for the visualization of tree
reordering and order conflicts resulting from subtrees with overlapping alignment
spans. Another difference is that STA requires an available parallel treebank, in
which case it is very useful, however in practice this implies such a treebank must
be (manually) build. In contrast, our toolkit works with automatically extracted

103

PBML 94 SEPTEMBER 2010

information: GIZA++ alignment and parse trees produced by any constituency
parser.

Tree-constrained word reordering visualization. One more important field of TAVT
application is the word reordering task at the pre-translation step (Collins et al., 2005;
Costa-jussà and Fonollosa, 2006; Xia and McCord, 2004). Here, the word reordering
problem is attacked by introducing the pre-processing step into the SMT system,
in which the input is rearranged in order to make the source sentence word order
resemble that of the target language. Many of these reordering systems exploit
syntactic representations of source and target texts and that is where our visualization
toolkit can be an asset. The visualization of reordering by means of child node
permutations gives a precise idea about how far one can get towards a corpus free of
crossing alignments with this transformation to the target word order.

4. Conclusions

TVTA is an open-source visualization toolkit targeted especially to researchers,
developers and students working in the field of SMT. Our toolkit goes beyond what
other visualization tools offer: by the incorporation of trees in the visualization TVTA
gives a lot of meaningful information that other alignment visualization tools do not
provide. The extra information is expected to be useful in the research towards better
translation systems, and in testing whether certain hypotheses about the translation
patterns of a certain language pair actually hold in the data.

5. Future Work

The TVTA visualization framework presents many opportunities for future work.
In this section, we describe some of the paths we wish to investigate in the future.

Heuristics in subtree reordering. How should one decide which of two child nodes
with overlapping alignment spans should go first in the parse tree? Currently we are
preserving their order as it is, since the overlap in alignment spans causes these spans
to be incomparable. However, this might not always be the best way to deal with it.
We have some ideas how we might define order preferences for such incomparable
alignment spans. One idea would be to take the alignment weights into account in
combination with the target positions of the aligned words in the two spans, and then
define a heuristic reordering preference based on these. This is especially important
if we want to go beyond mere visualization and learn reordering rules such as it is
done in (Khalilov and Sima’an, 2010).

Tree modification. Another idea for an extension would be to incorporate other tree
transduction operations, such as insertion and deletion of nodes. Transformation by

104

Wenniger et al. Visualizing Tree Coherence of Word-Alignments (97–106)

a minimum number of such operations would produce a transformed source tree τs ′

that roots the source order in a new order such that the alignments are all non-crossing,
while staying as close as possible to the original tree. Visualization of such operations
would give a good idea about what combination of operations allows what level of
alignment disentanglement. Then with this insight, a more optimal trade-off between
level of coverage and computational complexity could be made.

Alignment refinement. Continuing in the same direction, yet another idea is to
explore the change of alignments through local re-alignment operations or a whole
extra re-alignment phase in the translation process such as described by (Wang et al.,
2010). Rather than blindly following the alignments and transforming our trees to
match them, we should take into consideration the fact that certain alignments are
wrong and the tree can help us to find these. Indeed, recent research in alignment
and machine translation builds on the insight that alignments and tree transductions
should be optimized simultaneously instead of being factored into two independent
steps (Burkett et al., 2010; Pauls et al., 2010). Extensions to the visualization toolbox
may indeed be helpful to get insight into the effect of (automatic) re-alignment
operations, possibly in combination with simultaneous tree reordering, and how
this helps to improve the translation process.

Acknowledgement

This project was supported in part by the Project "Machine Translation When Exact
Pattern Match Fails" as part of "free competition for the exact sciences" funded by the
Dutch organization for scientific research (NWO) under project number 612066929.
The authors wish to thank Federico Sangati who was so kind to make his tree
visualization software available on top of which our toolkit has been built.

Bibliography

Burkett, D., J. Blitzer, , and D. Klein. Joint parsing and alignment with weakly synchronized
grammars. In Proc. of the 11th Annual Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL), 2010.

Collins, M., P. Koehn, and I. Kučerová. Clause restructuring for statistical machine translation.
In Proc. of the 43rd Annual Meeting on Association for Computational Linguistics (ACL), pages
531–540, 2005.

Costa-jussà, M. R. and J. A. R. Fonollosa. Statistical machine reordering. In Proc. of the 2006
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 70–76, 2006.

Galley, M., M. Hopkins, K. Knight, and D. Marcu. What’s in a translation rule? In Proc. of the
Human Language Technology Conference and the North American Association for Computational
Linguistics (HLT-NAACL), pages 273–280, 2004.

105

PBML 94 SEPTEMBER 2010

Germann, U. Yawat: yet another word alignment tool. In Proc. of the 46th Annual Meeting of the
Association for Computational Linguistics on Human Language Technologies (ACL-HLT), pages
20–23, 2008.

Khalilov, M. and K. Sima’an. A discriminative syntactic model for source permutation via tree
transduction. In Proc. of The Fourth Workshop on Syntax and Structure in Statistical Translation
(SSST-4) at the 23rd International Conference on Computational Linguistics (COLING), pages –
to appear, 2010.

Koehn, P., F.J. Och, and D. Marcu. Statistical phrase-based translation. In Proc. of the 2003
Conference of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology (HLT-NAACL), 2003.

Mariño, J. B., R. E. Banchs, J. M. Crego, A. de Gispert, P. Lambert, J. A. R. Fonollosa, and
M. R.Costa-jussà. N-gram based machine translation. Computational Linguistics, 32(4):527–
549, 2006.

Och, F. and H. Ney. The alignment template approach to statistical machine translation.
Computational Linguistics, 30:417–449, 2004.

Pauls, A., D. Klein, D. Chiang, and K. Knight. Unsupervised syntactic alignment with inversion
transduction grammars. In Proc. of 11th Annual Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL 2010), 2010.

Smith, Noah A. and Michael E. Jahr. Cairo: An alignment visualization tool. In Proc. of the 2nd
Conference on Language Resources and Evaluation (LREC), page 549551, 2000.

Volk, M., J. Lundborg, and M. Mettler. Alignment tools for parallel treebanks. In In Proc. of The
Linguistic Annotation Workshop at the Association for Computational Linguistics (LAW-ACL),
2007.

Wang, W., J. May, K. Knight, and D. Marcu. Re-structuring, re-labeling and re-aligning for
syntax-based machine translation. Computational Linguistics, 36:247–277, 2010.

Wu, D. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23:377–404, 1997.

Xia, F. and M. McCord. Improving a statistical MT system with automatically learned rewrite
patterns. In Proc. of the 20th international conference on Computational Linguistics (COLING),
pages 508–514, 2004.

Yamamoto, H., H. Okuma, and E. Sumita. Imposing constraints from the source tree on itg
constraints for smt. In Proc. of the Second Workshop on Syntax and Structure in Statistical
Translation (SSST ’08), page 19, 2008.

Address for correspondence:
Gideon Maillette de Buy Wenniger
gmaillet@science.uva.nl
Institute for Logic, Language and Computation
University of Amsterdam
Science Park 904
1098 XH Amsterdam, Netherlands

106

The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010

INSTRUCTIONS FOR AUTHORS

Manuscripts are welcome provided that they have not yet been published else-
where and that they bring some interesting and new insights contributing to the broad
field of computational linguistics in any of its aspects, or of linguistic theory. The sub-
mitted articles may be:

• long articles with completed, wide-impact research results both theoretical and
practical, and/or new formalisms for linguistic analysis and their implementa-
tion and application on linguistic data sets, or

• short or long articles that are abstracts or extracts of Master’s and PhD thesis,
with the most interesting and/or promising results described. Also

• short or long articles looking forward that base their views on proper and deep
analysis of the current situation in various subjects within the field are invited,
as well as

• short articles about current advanced research of both theoretical and applied
nature, with very specific (and perhaps narrow, but well-defined) target goal in
all areas of language and speech processing, to give the opportunity to junior
researchers to publish as soon as possible;

• short articles that contain contraversing, polemic or otherwise unusual views,
supported by some experimental evidence but not necessarily evaluated in the
usual sense are also welcome.

The recommended length of long article is 12–30 pages and of short paper is 6-15
pages.

The copyright of papers accepted for publication remains with the author. The
editors reserve the right to make editorial revisions but these revisions and changes
have to be approved by the author(s). Book reviews and short book notices are also
appreciated.

The manuscripts are reviewed by 2 independent reviewers, at least one of them
being a member of the international Editorial Board.

Authors receive two copies of the relevant issue of the PBML together with the
original pdf files.

The guidelines for the technical shape of the contributions are found on the web
site http:// ufal.mff.cuni.cz/pbml.html. If there are any technical problems, please
contact the editorial staff at pbml@ufal.mff.cuni.cz.

