
The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 37–46

Training Phrase-Based Machine Translation Models on the Cloud
Open Source Machine Translation Toolkit Chaski

Qin Gao, Stephan Vogel
InterACT Lab, Language Technologies Institute, Carnegie Mellon University, 407 S. Craig Street, Pittsburgh, PA 15213,

United States

Abstract
In this paper we present an opensource machine translation toolkit Chaski which is ca-

pable of training phrase-based machine translation models on Hadoop clusters. The toolkit
provides a full training pipeline including distributed word alignment, word clustering and
phrase extraction. The toolkit also provides an extended error-tolerance mechanism over stan-
dard Hadoop error-tolerance framework. The paper will describe the underlying methodology
and the design of the system, together with instructions of how to run the system on Hadoop
clusters.

1. Introduction

Statistical machine translation relies heavily on data. As the amount of data be-
come larger, the time spent on model training becomes longer. On large scale tasks
such as GALE, which scales up to 10 million sentence pairs and more than 300 million
words, training on a single machine with GIZA++ (Och and Ney, 2003) and Moses
(Koehn et al., 2007) can take more than one week. By applying multi-thread tech-
nology to GIZA++, significant speedup can be achieved when multi-core computers
are used. However, even with the latest Multi-thread GIZA++ (MGIZA++) (Gao and
Vogel, 2008), training a large scale system still requires 5 to 8 days.

A typical phrase-based machine translation training pipeline consists of three ma-
jor steps: preparing the corpus, word alignment and phrase extraction/scoring. Among
these steps, the most time-consuming ones are word alignment and phrase extrac-
tion/scoring. Different stages requires different kinds of resources. Take the Moses
toolkit as an example. The first step, data preprocessing for word alignment, typi-

© 2010 PBML. All rights reserved. Corresponding author: qing@cs.cmu.edu
Cite as: Qin Gao, Stephan Vogel. Training Phrase-Based Machine Translation Models on the Cloud: Open
Source Machine Translation Toolkit Chaski. The Prague Bulletin of Mathematical Linguistics No. 93, 2010,
pp. 37–46. ISBN 978-80-904175-4-0. doi: 10.2478/v10108-010-0004-8.

PBML 93 JANUARY 2010

cally takes 2 to 3 hours, and most of the time is consumed by word clustering, which
scales linearly to vocabulary size and quadratic to number of classes1. The next step,
word alignment, can be split into two stages, the first is generating co-occurrence table
which contains all possible word pairs which appear in the corpus, and the second is
training IBM models and outputting alignments. The co-occurrence table generation
task consumes a large amount of memory. In our profile, running it on a ten mil-
lion sentence Chinese-English corpus consumed 20GB memory, which may already
be a problem for most commodity machines. Again, when training IBM models with
GIZA++, the memory usage is essentially smaller but the CPU time becomes the dom-
inant factor. After the alignment is generated, phrase extraction and scoring suffers
from a different problem, the I/O bottleneck. When running on large data, phrase ex-
traction requires writing individual phrases onto disk, and later, during scoring stage
the phrases will be sorted two times on source or target phrase so as to estimate fea-
ture values of each phrase pair. If the size of extracted phrase pairs fits into memory,
then internal sorting can be used, however the size of uncompressed phrase pairs can
easily grow to 100 GB, as a consequence the sort program needs to write and read
temporary files which also adds to the burden of disk I/O. It is the reason why phrase
extraction, being a relatively simple process, takes also more than two days to finish
on a the Chinese-English corpus described above.

With the rapid development of computer clusters, the computational resource is
considered abundant. Among the different parallel frameworks, MapReduce is at-
tracting more and more attention (Dean and Ghemawat, 2008). In this framework,
two functions, Mapper and Reducer are defined. The Mapper processes raw input
and outputs intermediate key-value pairs. The key-value pairs are then sorted and
all pairs with the same key will be fed into a reducer instance. With the opensource
Hadoop system2, one can easily set up an error-tolerant cluster with commodity com-
puters, and commercial services such as Amazon EC2 make it even easier to access
large Hadoop clusters at small cost. There has been some work on porting machine
translation tools to Hadoop: Dyer et al (Dyer et al., 2008) implemented distributed
training for IBM 1 and HMM word alignment models based on Hadoop; Venugopal
et al (Venugopal and Zollmann, 2009) built an end-to-end syntactic augmented ma-
chine translation system on Hadoop. However, there is still no complete toolkit that
can handle the whole phrase-based machine translation training pipeline on clusters.
In this work we provide a software package toolkit, which ports the whole machine
translation training pipeline onto Hadoop clusters, including:

1. Distributed word clustering, as the preprocessing step for word alignment.
2. Distributed word alignment, for training IBM model 1 to 4 and HMM model.
3. Distributed phrase extraction, to extract phrases and score phrase pairs on the

cluster.

1In Moses, the default number of classes are 50.
2Apache Hadoop, http://hadoop.apache.org/

38

Q. Gao, S. Vogel PBMT Training on the Cloud (37–46)

Word Clustering
Preprocessing for
Word Alignment

Word Alignment Phrase Extraction Scoring Phrases

Corpus Preprocess
(mkcls, step 1)

Symmetrized Align-
ment (step 3)

Chaksi Pipeline

Moses Pipeline

Distributed
Word clustering

Distributed
Word alignment

Distributed
Phrase extraction

Figure 1. Components in Chaski toolkit and its counter parts in Moses pipeline. The
dashed boxes are outputs in Moses pipeline, dashed arrows mean you can take Moses

output of the component in Moses and continue training using Chaski.

The final output of the system is a Moses-compatible phrase table and lexicalized
reordering model.

In order to handle the training efficiently and reliably on the cluster, the toolkit also
takes into account the problem of error-tolerance. MapReduce frameworks such as
Hadoop provide primitive error/exception handling mechanism by simply re-running
failed jobs. In practice this mechanism does not work well for complex NLP tasks,
because exceptions are not necessarily caused by “unexpected” hardware/software
problems that can be fixed by restarting. For this kind of exceptions special actions
need to be taken so as to recover the training process. In the Chaski system we imple-
mented a cascaded fail-safe mechanism that can apply pre-defined recovery actions
to ensure successful training with minimal manual intervention.

In section 2 we will introduce the methodology and implementation of each com-
ponent in the toolkit. Section 3 provides a brief tutorial of how to setup and run the
toolkit. Section 4 presents experimental results on run time and translation, and sec-
tion 5 concludes the paper.

2. System implementation

The Chaski toolkit consists of three major components, distributed word cluster-
ing, distributed word alignment and distributed phrase extraction. Figure 1 shows the
pipeline of the system. At the boundaries of each stage, the toolkit is compatible with
Moses file formats. In other words, each of the components can be replaced by Moses
counter parts. The dashed arrows in Figure 1 demonstrate alternative pipelines. In
the remaining part of the section we will first introduce distributed world alignment,
then phrase extraction and scoring and finally the cascaded fail-safe mechanism. For
distributed word clustering, we re-implemented the algorithm proposed by (Uszkor-
eit and Brants, 2008), and we refer interested readers to that paper.

39

PBML 93 JANUARY 2010

2.1. Distributed word alignment

GIZA++ is a widely used word alignment tool. It uses EM algorithm to estimate
parameters for IBM models (Brown et al., 1993) and HMM model (Vogel et al., 1996).
Given a sentence pair (fJ

1, eI
1), where fJ

1 and eI
1 are source and target sentence with J

and I words respectively, an alignment a on the sentence pair is defined as:

a ⊆ AJ
I = {(j, i) : j = 1, · · · , J; i ∈ [0, I]} (1)

in case that i = 0 in a link (j, i) ∈ a, it represents that the source word j aligns to an
empty target word e0. In IBM models, the translation probability is defined as the
summation of the probabilities of all possible alignments between the sentence pair:

P(fJ
1 |e

I
1) =

∑
a⊆AJ

I

P(fJ
1 , a|e

I
1) (2)

and IBM models consists of several parametric forms of P(fJ
1|eI

1) = pθ(fJ
1, aJ

1|eI
1). The

parameters θ can be estimated by maximum likelihood estimation on training corpus
with EM algorithm. The optimal alignment under the current parameter set θ̂ is called
Viterbi alignment, as defined in 3, and a large number of state-of-the-art translation
systems utilize the Viterbi alignment for phrase or rule extraction.

â
J
1 = arg max

a
J

1

pθ̂(fJ
1 , a

J
1 |e

J
1) (3)

The algorithm in GIZA++ is an iterative process, and each iteration can be divided
into two steps, E-step and M-step. During E-step, the current parameter set θ̂ is used to
estimate posteriors of all possible alignments (or a set of n-best alignments for model
3,4 and 5) of all sentence pairs in the training corpus. Then on M-step the posterior of
events are summed up and normalized to produce a new parameter set. E-step, which
scales linearly to number of sentence pairs, can be time consuming when the size of
corpus is large. However, because each sentence pair can be processed independently,
it is easy to be parallelized. M-step is relatively fast, however, the step is easily becom-
ing I/O bound in distributed environments if large number of posteriors need to be
transferred. In our previous work (Gao and Vogel, 2008), we implemented a multi-
thread version of GIZA++ called MGIZA++, and a distributed version, PGIZA++.
While MGIZA++ achieved significant speed-up, PGIZA++ suffers from I/O bottle-
neck in practice. In the new implementation presented in the paper, Hadoop File
System (HDFS) is used to collect counts and re-distribute models, and the normal-
ization is implemented as MapReduce tasks, the distributed nature of HDFS greatly
improved the efficiency of count collection and re-normalization.

In addition to the I/O bottleneck, when moving towards distributed word align-
ment, the memory limitation is also a blockage. Hadoop clusters usually limit the
memory every process can use, but certain models such as lexical translation model

40

Q. Gao, S. Vogel PBMT Training on the Cloud (37–46)

p(fj|ei), is usually too large if no filtering is done. The size of the table is proportional
to the source and target vocabulary, hence related to the sizes of chunks of the training
corpus. Therefore it is important to estimate the memory footprint and dynamically
adjust the sizes of chunks.

The distributed word alignment in Chaski works as follows. First the input corpus
is split into chunks. The sizes are dynamically determined by the number of distinct
word pairs, which is proportional to the memory footprint. After the chunks are gen-
erated, a number of tasks will be started, each handles the E-step of one chunk. The
counts are written directly onto HDFS from individual tasks, and the M-step MapRe-
duce tasks are started after all E-step tasks finish. Different M-step MapReduce tasks
are implemented for different models with similar ideas that all the counts appear-
ing in the denominator of the normalization formulae will be processed by a same
reducer. For example, the counts of lexical translation probability p(fj|ei) is a triplet
t = (fj, ei, c(fj|ei)), and the normalization formula is p̂(fj|ei) =

∑
f=fj,e=ei

c(fj|ei)∑
f=fj

c(fj|ei) .
Therefore we define fj as the key in Mapper output, so (fj, e, c(fj|ei)),∀e will go to
one reducer, and the reducer has enough information to perform normalization. Af-
ter normalization is done, the new model will be written to HDFS and the E-step tasks
of next iteration will fetch the model and filter it according to the chunk’s vocabulary.

2.2. Distributed phrase extraction

Phrase extraction takes the symmetrized word alignments as input and extracts
phrases base on pre-defined heuristics. After phrase pairs are extracted, features
are assigned to phrase pairs in the scoring phase. Commonly used features include
phrase translation probabilities and lexical translation probabilities. Assume a phrase
pair (Ei, Fj), where E = e1, · · · , eK, F = f1, · · · , fL, e1..K and f1..L are words in source/
target languages. For phrase translation probabilities, which include two features
(source-to-target and target-to-source), the features are defined as:

PTs→t(Ei, Fj) =
#(Ei, Fj)

#(Ei)
(4)

PTt→s(Ei, Fj) =
#(Ei, Fj)

#(Fj)
(5)

where #(Ei, Fj) is the count of occurrences of the phrase pair in the corpus, #(Ei), #(Fj)
are counts of occurrences of source or target phrase in the corpus respectively.

For lexical translation probabilities, which is also bi-directional, we have the defi-
nition:

LTs→t(Ei, Fj) =

K∏
k=1

(
δ|A(ek)|

|A(ek)|

∏
fl∈A(ek)

p(fl |ek) + (1−δ|A(ek)|)p(0|ek)

)
(6)

LTt→s(Ei, Fj) =

L∏
l=1

(
δ|A(fl)|

|A(fl)|

∏
ek∈A(fl)

p(ek |fl) + (1−δ|A(fl)|)p(0|fl)

)
(7)

41

PBML 93 JANUARY 2010

where A(ek) is target word that has alignment with ek, and p(0|ek) is the probability
of ek aligned to empty word (not aligned) and δ(|A(ek)|) = 0 if A(ek) is empty.

Generally the features can be classified into three categories according to how it
can be calculated. For PTs→t, we need all the phrase pairs with a same source phrase,
which requires sorting on source phrases, for PTt→s, reversely we need phrase pairs
be sorted on target side phrases. Finally the lexical weights can be calculated individ-
ually for each phrase pair. Therefore, to get all the four features we need to sort the
whole phrase table twice, which can be done in two MapReduce tasks. As shown in
Figure 2, the first mapper performs phrase extraction, and output the target phrases
as keys, source phrases as values. The MapReduce framework automatically sorts the
output on target phrases, and the reducer, which has all the phrase pairs of the same
target phrase, can calculate PTt→s(Ei, Fj). To make the output compact, we do not
store all instance of a same phrase pairs, instead we store the phrase pairs with the
number of occurrences of the phrase pair. The second mapper works on the output
of the first step, the only operation it performs is switching the keys to source phrase,
and output both the target phrase pair and the count of the phrase pair. Again the
MapReduce framework will sort the output by source phrases, and the reducer can
estimate PTs→t(Ei, Fj). The lexical translation probabilities can be estimated in either
reducer, but in implementation we put it on the second reducer. In addition, lexical-
ized reordering table can be generated within the pipeline, the reordering features are
similar to lexical translation probabilities, and is estimated in the second reducer.

2.3. Error-tolerance mechanism

Error-tolerance is an essential part of distributed computing. Hadoop already pro-
vides primitive error-tolerance mechanism which is able to re-run failed tasks. How-
ever, in many cases, the errors cannot be recovered only by restarting on the same
configuration, in such cases the mechanism does not help.

To handle this, we developed a special error tolerance mechanism in Chaski. If
error happens, a sequence of actions will be taken to recover the pipeline. The actions
will be taken in a cascaded way, first the system will try to re-run tasks on failed data
chunks and if it fails for a given number of times, then it will try to reduce the chunk
sizes for word alignment or enable disk-based cache for phrase extraction. Finally, if
specified by user, the system will try to ignore a certain number of chunks, or stop
the pipeline. After user fixed the problem, the pipeline can be resumed from where it
stops. This is especially useful for the word alignment step, so that users do not need
to restart from beginning.

3. Usage of the software

The toolkit is released under two separated packages, a Java package for Chaski
and a C++ package for MGIZA++. Standalone Chaski is capable of distributed word

42

Q. Gao, S. Vogel PBMT Training on the Cloud (37–46)

Phrase

Extraction

Symmetrized

Alignments

Phrase

Extraction

Phrase

Extraction

.

.

.

Score T->S

PT Feature

Score T->S

PT Feature

Dummy

Mapper

.

.

.

Dummy

Mapper

Dummy

Mapper
Score S->T

PT Feature

and Lexicon

Features

Score S->T

PT Feature

and Lexicon

Features

Phrase

Table

Phrase Extraction/Scoring Pipeline

Mapper ISplit Corpus Sort on Target Reducer I Sort on Source Reducer II

Figure 2. The flowchart of phrase extraction tasks, the dashed arrows represent
sorting operations performed by MapReduce framework.

clustering, to perform word alignment MGIZA++ is required. As illustrated in Fig-
ure 1, there are multiple alternative pipelines. Chaski can perform full training from
raw input data or only perform phrase extraction with the symmetrized alignments
generated elsewhere.

After installation of both packages, we need to define two environment variables:
$QMT_HOME=<directory where MGIZA++ is installed>
$CHASKI_HOME=<directory where Chaski is installed>

3.1. Pipeline 1: perform full training

The input of the pipeline is the source and target corpus file. Optionally the user
can specify the word cluster files and ignore the word clustering step. In addition to
the corpus files, the user also need to specify a root directory on HDFS where the user
has full priviliges, and we denote is as $ROOT.

Chaski uses commandline interface and a configure file to get parameters, and
supporting scripts are provided to make configuration and training easy. To train the
model user need to follow the following three steps: 1) generate the config file, 2)
modify the config file if necessary, 3), run the training script. To generate the config
file for full training, just run:

$CHASKI_HOME/scripts/setup-chaski-full SOURCE-CORPUS \
TARGET-CORPUS $ROOT > chaski.config

and a config file chaski.config will be generated in current directory and then the
user can fine-tune the parameters. After the parameter file is ready, the user can call
the training script to start training:

$CHASKI_HOME/scripts/train-full chaski.config [first-step] [last-step]

There are two optional options first-step and last-step which can be used to re-
sume training or bypass certain steps. The final output will be stored on HDFS:

$ROOT/moses-phrase : Phrase table in Moses format
$ROOT/moses-reorder : lexicalized reordering in Moses format

43

PBML 93 JANUARY 2010

$ROOT/extract : Extracted phrases
$ROOT/lexicon : The lexicon tables in Moses format
$ROOT/training/S2T/Align : GIZA alignment directory, source-to-target

/T2S/Align : GIZA alignment directory, target-to-source

3.2. Pipeline 2: phrase extraction only

If the user only wants to run phrase extraction, then in addition to source and tar-
get corpus files, the symmetrized word alignments must be supplied. Similar to full
training pipeline, another script is used to set up config file:

$CHASKI_HOME/scripts/setup-chaski SOURCE-CORPUS
TARGET-CORPUS ALIGNMENT $ROOT > chaski.config

and the script to run the training is:
$CHASKI_HOME/scripts/extract chaski.config [first-step] [last-step]

The output will be in the same directory as listed above, but it will not contain GIZA
alignment directories.

3.3. Configuration

Limited by the length of the paper, we only list several important parameters the
user should be aware of:

• heap The Java heap size for every job, the Hadoop installation may have limita-
tions on the value, for large corpus you need to increase the value but it should
not exceed the limitation imposed by the system.

• memorylimit The memory limitation for lexical translation table in the word
alignment step, which is used to determine the size of chunks. Similarly the
limitation should not exceed the limitation of Hadoop installation, but setting it
too small will generate too many chunks and the overhead of loading parame-
ters may impact the training speed.

• train Training sequence of distributed word alignment. The format of the train-
ing sequence is as follows: the number of iterations run on individual child is
specified by characters 1,2,3,4 and H, and the global normalization is specified
by *. For example train=1*1*1*1*1*H*H*H*H*H*3*3*3*4*4*4* will perform
five model 1 iterations, five HMM iterations, and three model 3/4 iterations,
and the normalization will take place after each iteration.

4. Experiments

4.1. Run time comparison

We compared running word alignment using MGIZA++ on quad-core Xeon CPU
with running distributed word alignment using Chaski. The corpus used in the exper-
iment is the GALE Arabic-English training corpus, which contains 6 million sentence

44

Q. Gao, S. Vogel PBMT Training on the Cloud (37–46)

Table 1. Run time comparison of MGIZA++ and Chaski

Run time
Model 1 HMM Model 3 Model 4 1-To-4

System Total Iter Total Iter Total Iter Total Iter
EN-AR 4.25h 0.85h 17.5h 3.50h 5.75h 1.15h 19.2h 3.85h 46.7hMGIZA AR-EN 4.03h 0.80h 15.8h 3.15h 5.86h 1.17h 21.8h 4.35h 47.0h
EN-AR 2.28h 0.46h 2.10h 0.42h 0.97h 0.32h 1.13h 0.38h 6.49hChaski AR-EN 2.45h 0.49h 2.40h 0.48h 1.22h 0.41h 1.27h 0.42h 7.34h

pairs and 200 million words. We ran 5 model 1 iterations, 5 HMM iterations, 3 model
3 iterations and 3 model 4 iterations. We ran Chaski on Yahoo!’s M45 cluster, which
has 400 nodes, each has 6 cores. The corpus is split into 125 chunks. Table 1 shows
the run time comparison of MGIZA++ and Chaski. As we can see, we can cut the run
time to less than 8 hours by using Chaksi.

We performed phrase extraction with Chaski and Moses on the same corpus, for
Moses we used 16G memory in sorting, which is still not enough for loading all phrase
pairs so external sort was triggered. The entire phrase extraction task took 21 hours,
while with Chaski we finished the process in 43 minutes with 100 mappers and 50
reducers.

4.2. Translation result comparison

To compare the translation results, we used NIST MT06 evaluation set (1797 sen-
tences about 50000 tokens) as tuning set and MT08 evaluation set (1360 sentences and
about 45000 tokens) as test set, table 2 shows the BLEU scores of tuning and decod-
ing using alignments and phrase table generated from different tools. “Phrase Table
(Tune)” column lists the phrase table used in MERT and “Phrase Table (Test)” is the
phrase table used in decoding. In the experiment a small tri-gram language model is
used because we are mainly focus on the validity of the result rather than high BLEU
score. As we can see, using phrase tables from Moses or Chaski has minimal differ-
ence due to different precision or float number formats, direct comparison on phrase
table showed no phrase pair has different feature value if rounded to first four digits.
Also, distributed word alignment outputs similar BLEU scores, although out of 6 mil-
lion sentence pairs, 12.9 thousand sentence pairs have at least one different alignment
link, the performance is generally unchanged.

5. Conclusion

In the paper we present a distributed training system, Chaski, for phrase based
machine translation system runs on top of the Hadoop framework. The training time
of word alignment is reduced from 47 hours to 8 hours and the time of phrase extrac-
tion/scoring from 21 hours to 43 minutes by using the system. The output phrase

45

PBML 93 JANUARY 2010

Table 2. Translation Results

Word Aligner Phrase Table (Tune) Phrase Table (Test) BLEU MT06 BLEU MT08
MGIZA Moses Moses 45.48 42.51
MGIZA Moses Chaski 45.40 42.51
MGIZA Chaski Chaski 45.75 42.46
MGIZA Chaski Moses 45.73 42.43
Chaski Chaski Chaski 45.33 42.49

tables are compatible with the Moses decoder. The system enables utilizing large
clusters to train phrase-based machine translation models efficiently.

Acknowledgement

This work is supported by NSF Cluster Exploratory project (CluE- INCA, NSF08560),
and we thank Yahoo! for providing M45 cluster for the research.

Bibliography

Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. The
mathematics of statistical machine translation: Parameter estimation. In Computational Lin-
guistics, volume 19(2), pages 263–331, 1993.

Dean, Jeffrey and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008.

Dyer, Chris, Aaron Cordova, Alex Mont, and Jimmy Lin. Fast, easy, and cheap: Construction of
statistical machine translation models with MapReduce. In Proceedings of the Third Workshop
on Statistical Machine Translation, pages 199–207, June 2008.

Gao, Qin and Stephan Vogel. Parallel implementations of word alignment tool. In Proceedings
of the ACL’08 Software Engineering, Testing, and Quality Assurance Workshop, 2008.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proceedings of ACL’07, pages 177–180, June 2007.

Och, Franz J. and Hermann Ney. A systematic comparison of various statistical alignment
models. In Computational Linguistics, volume 1:29, pages 19–51, 2003.

Uszkoreit, Jakob and Thorsten Brants. Distributed word clustering for large scale class-based
language modeling in machine translation. In Proceedings of ACL-08: HLT, pages 755–762,
June 2008.

Venugopal, Ashish and Andreas Zollmann. Grammar based statistical mt on hadoop: An end-
to-end toolkit for large scale pscfg based mt. The Prague Bulletin of Mathematical Linguistics,
(91):67–78, 2009.

Vogel, Stephan., Hermann Ney, and Christoph Tillmann. HMM based word alignment in sta-
tistical machine translation. In Proceedings of COLING’96), pages 836–841, 1996.

46

	Introduction
	System implementation
	Distributed word alignment
	Distributed phrase extraction
	Error-tolerance mechanism

	Usage of the software
	Pipeline 1: perform full training
	Pipeline 2: phrase extraction only
	Configuration

	Experiments
	Run time comparison
	Translation result comparison

	Conclusion

