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Abstract

Local semantic labels are relevant to the verb meaning in questibile global semantic labels are relevant
across different verbs and verb meanings. We show that igebzantic labels from different frameworks are not
necessarily compatible and argue that, therefore, cogimald be annotated with local semantic labels and that
global semantic labels should then be automatically atedtasing framework-specific lexicons.

1 Introduction

The development of the Penn Treebank (PTB) (Marcus, Santaridd Marcinkiewicz, 1993; Marcus et
al., 1994) has had an immense effect on the development wfahddnguage processing (NLP) by pro-
viding training and testing data for approaches based omimadearning, including statistical models.
It has inspired other treebanking efforts in many languaigetuding the Prague Dependency Treebank
(PDTB) (Bbhmova et al., 2001; Haji¢ et al., 2001). Howewnce the development of the PTB, it has
become clear that for many NLP applications, parsing to avel lef representation is needed that is
“deeper” than the surface-syntactic phrase structureeoP{hiB. Furthermore, work in generation using
machine learning cannot use the PTB because the représeritatoo shallow as a starting point for
generation. Thus, a more richly annotated corpus is ne@u@dsticular, a corpus that includes certain
semantic notions. Annotation efforts for languages othantEnglish have been able to incorporate
this requirement from the beginning. For example, the PDAdRuides both the Analytical and the Tec-
togrammatical level of representation. However, for Estglisuch resources have been created only
recently . One such resource is the PropBank (Kingsburym@&aland Marcus, 2002), which superim-
poses an annotation for verbal predicates and their argisraad adjuncts on the PTB. In the PropBank,
the annotation of the relation between verb and dependélatcal”, i.e., only relevant to a single verb
meaning. However, for many applications we need a “globaihantic labeling scheme such as that
provided by the Tectogrammatical Representation (TR) ®RDBTB, with labels such a&CT (actor)
andORIG (origin) whose meaning is not specific to the verb. The guoestrises whether and how the
PropBank can be extended to reflect global semantic inféomat

The direct motivation for this paper is the observation byi¢daa and Kucerova (2002) that the
global semantics of the Tectogrammatical Representali®) ¢f the Prague school cannot be derived
directly from the local semantics of the PropBank, sinceo@sinot contain sufficient detail: TR makes
distinctions not made in the PropBank. The authors sugbasittmay, however, be derivable from the
PropBank with the aid of an intermediary representation &b uses global semantic labels such as
Lexical-Conceptual Structure (LCS), or VerbNet (VN). Themosal is worth investigating: it seems
reasonable to derive TR labels from other representatibgbbal semantics. While TR, LCS, and VN
use different labels, we expect there to be some consistémryexample, LCSrc should correspond
to VerbNetSource and TRORIG. While the three representations — TR, LCS, VN — are based
on different approaches to representing the meaning of &rsex all three approaches assume that
there is a sharable semantic intuition about the meaninpeofdlation between a verb and each of its
dependents (argument or adjunct). Of course, the semaitigis themselves differ (as in the case of



src, Source, and ORIG), and furthermore, often one approach makes finer-graimgthctions than
another, for example VN has one categdiiye, while TR has many subcategories, includifigL
(temporal length) andHWHEN (time point) and so on. Nonetheless, in these cases, trezatifflabel
sets are compatible in meaning, in the sense that we can @efine-to-many mapping between label
sets in the different frameworks. More precisely, we expaet of three situations to hold for a given
pair of labels from label setd andB:

e A label a in A corresponds to exactly one labeln B, andb corresponds only ta (bijective
case).

e Alabelain A corresponds to a set of labdisin B, and each elemeitof B corresponds only to
a (one-to-many case).

e Alabelbin B corresponds to a set of labelsin 4, and each elementof A corresponds only to
b (many-to-one case).

The case in which there are overlapping meanings, wjitlhom A corresponding té; andb, from
B, anda, from A corresponding té, andbs from B3, should be excluded.

There are two positions one may take. Given that global seoclabels express relationships which
are meaningful across verbs, and assuming that reseaiclu#fferent frameworks share certain seman-
tic intuitions, we may claim that labels are (possibly) catifgle across framewaorks. On the other hand,
we may claim that in such difficult semantic issues, it is asmmable to expect different frameworks to
have converged on label sets with compatible meanings. SHue iis not just one of academic interest
— it is also of great practical interest. If the usefulnesgafsing is to be increased by developing
semantically annotated corpora (a very costly process,important to know whether an annotation
in, for example, LCS will allow us to automatically derive @rpus annotated in TR. If not, the value of
a corpus of LCS labels will be reduced, since it will be retévi@ a smaller community of researchers
(those working in the framework of LCS). While to some reshars the answer to the question of
inter-framework compatibility of labels may be intuitivebbvious, we are not aware of any serious em-
pirical study of this question. Such a study must necegshelcorpus-based or experimental, as only
the data will reveal how the frameworkisetheir labels (as opposed to defining them), which is what
this question is about.

In this paper, we present the results of investigating tleiomship between PropBank, TR, LCS,
and VN labels based on an annotated corpus. The conclusiguiverward is that global semantic
labels are not only framework-specific, but also lexicatljosyncraticwithin each framework. This
means that labels are not compatible between frameworldlsj@mot necessarily express the same se-
mantic intuition. (It of course does not mean that thesel$abee used inconsistently within any one
framework.) As a result, we argue that corpora should nonbetated in terms of global semantic la-
bels (such as TR, LCS, or VN). Instead, we argue that corguald be annotated with local semantic
labels (as has already been done in the PropBank), and gleirantic labels should be generated auto-
matically using framework-specific lexicons (i.e., vegesific lists of label mappings for arguments).
Such lexicons represent an important resource in their aytn. r

This paper is structured as follows. We start by introduaingocabulary to talk about types of
resources in general in Section 2. We then present foureiffevays of labeling corpora with seman-
tic information: PropBank in Section 3, TR in Section 4, et in Section 5, and LCS in Section'6.
While these approaches are part of larger theories of symdexical semantics, we are for the purpose
of this paper only interested in the label set they use to @b@dhe relation between a verbal predicate
and its arguments and adjuncts; we will therefore refer ésehtheories in a reductive manner as “la-
beling schemes”. We then compare the global-semanticitegosthemes to each other in Section 7 and

These labeling schemes in themselves are not the origind pvesented in this paper, we summarize them here for the
convenience of the reader. The original work is investigathe relation between and among them.



loads loaded

subj obj prepobj prepobj subj prepobj fw
J0|hn hl’:\y in|t0 b|y h(|';1y in|to i|s
co|mp co|mp CO||”np
tru|cks J0|hn tru|cks
John loads hay into trucks Hay is loaded into trucks by John

Figure 1: Surface syntactic representation for the senteimc(1)

find labeling to be lexically idiosyncratic and framewonesific. In Section 8 we return to the original
guestion of Hajitova and Ku€erova (2002) and reportxpeements using machine learning to derive
rule sets for annotating a corpus with TR labels. Thesetsesahfirm the conclusions of Section 7.

2 Typesof CorpusLabels

Surface syntax reflects the relation between words at the surface levelsidenthe following pair of
sentences, whose structure is shown in Figure 1:

(1) a. John loads hay into trucks
b. Hay is loaded into trucks by John

In this example, where two sentences differ only in the vaitéhe verb, the first two arguments
of the verb,Johnandhay, have different roles depending on voice. The (dependeepsesentation
recoverable from the) PTB has a surface-syntactic labslthgme, though deeper labels can be inferred
from tags and traces.

Deep syntax normalizes syntactically productive alternations (thdsat apply to all or a well-
defined class of verbs, not lexically idiosyncraticallyhig primarily refers to voice, but (perhaps) also
other transformations such as dative shift. The deep-sifatepresentation for the two trees in Figure 1
(i.e., the two sentences in (1) is shown in Figure 2. Howdterdeep-syntactic representation does not
capture verb-specific alternations, such as the contamment alternation found witload:

(2) a. John loads hay into trucks

b. John loads trucks with hay

In these two sentences, the semantic relationship betveewetb and its three arguments is the
same in both sentences, but they are realized differenti{astically: hayis the deep direct object in
one,trucksin the other. This is shown in the two trees in Figure 3.

Instead, we can choose numerical labalgQ, argl, ...) on the arguments which abstract away
from the syntactic realization and only represent the séimeelation between the particular verb mean-
ing and the arguments. Thekeal semantic labels have no intrinsic meaning and are significant only
when several syntactic realizations of the same verb mgaarim contrasted. An example is shown in
Figure 4.

Now consider the following two sentences:

(3) a. John loads hay into trucks

b. John throws hay into trucks



load load

subj obj obj2 subj obj obj2
| | | | | |
John hay truck John hay truck
John loads hay into trucks Hay is loaded into trucks by Johnny

Figure 2: Deep-syntactic representation

load load
subj obj obj2 subj obj2 obj
| | | | | |
John hay truck John hay truck
John loads hay into trucks John loads trucks with hay

Figure 3: Deep-syntactic representation: missed gearataln

load

I

arg0 arg2 argl

| | |
John hay truck

Figure 4: Local semantic representation for both (2a) abgl (2



load/throw

agent theme goal

|
John hay  truck

Figure 5: Global semantic representation for (3a) (Wtdd) and (3b) (withhrow); the labels used are
for illustrative purposes

Semantically, one could claim that (3b) merely adds manmerrnation to (3a), and that therefore
the arguments should have the same relationships to theirvénle two cases. However, since these
are different verbs (and fortiori different verb meanings) there is no guarantee that thé $sraantic
arc labels are the same. Irgbobal semantic annotation, the arc labels do not reflect syntax at all, and
are meaningful across verbs and verb meanings. The labildstrgeneralizations about the types of
relations that can exist between a verb and its argumentihentepresentation in Figure 5 applies to
sentences (3a) and (3b).

3 PropBank

The PropBank (Kingsbury, Palmer, and Marcus, 2002) anesthie Penn Wall Street Journal Treebank
Il with dependency structures (or ‘predicate-argumentictures), using sense tags for each word and
local semantic labels for each argument and adjunct. Thevagt labels are numbered and used con-
sistently across syntactic alternations for the same veréning, as shown in Figure 4. Adjuncts are
given special tags such as TMP (for temporal), or LOC (foatives) derived from the original anno-
tation of the Penn Treebank. In addition to the annotatedusprPropBank provides a lexicon which
lists, for each meaning of each annotated verbroitsset i.e., the possible arguments in the predicate
and their labels. An example, the entry for the vkidk, is given in Figure 6. The notion of “meaning”
used is fairly coarse-grained, and it is typically motiehfeom differing syntactic behavior. Since each
verb meaning corresponds to exactly one roleset, theses taeroften used interchangeably. The roleset
also includes a “descriptor” field which is intended for useinnly annotation and as documentation, but
which does not have any theoretical standing. Each entoyiatdudes examples. Currently there are
frames for about 1600 verbs in the corpus, with a total of 2402sets.

4 Tectogrammatical Representation

The Tectogrammatical Representation (TR) of the Pragued@¢8gall, Hajicova, and Panevova, 1986)
is a dependency representation that contains only autogienf@meaning-bearing) words. The arcs are
labeled with rich set of labels. What distinguishes TR fraimeo labeling schemes is that it is hybrid:
the deep subject and deep object of a verb are always givelalibs ACT (for actor) andPAT (for
patient), respectively. The deep indirect object is givea of three label€=FF(ect), ADDR(essee), or
ORIG(in). Other arguments and free adjuncts are drawn from fig2oglobal semantic labels, such

2The FrameNet project (Baker, Fillmore, and Lowe, 1998) seesantic labels which are local, but apply not to one verb
meaning, but to a set of verb meanings that refer to the saameef(i.e., situation). For examplevly, sell, costand so on all
refer to the commercial transaction frame, realizing déffe participants of the frame in different syntactic wakwever,
since the frame elements such Bisyer or Rate (=price) do not refer to an abstract notion of the relatigmdfetween a
proposition and its argument, but rather to a specific seedissand a specific argument, the approach is closer in &pait
local semantic approach. Perhaps a better term for Franvedigd be “regional semantics”.



ID kick.01

Name drive or impel with the foot

VN/Levin | 11.4-2,17.1,18.1,23.2
classes 40.3.2,49

Number | Description

0 Kicker
Roles 1 Thing kicked
2 Instrument

(defaults to foot)
Example | [John] tried [*trace*;]arco to kick
[the footballl\rc1

Figure 6: The unique roleset faick

PropBank TR
Role Description| Form label
0 Bidder subject ACT
1 Target for EFF
to AIM
2 Amount bid | object PAT

Figure 7: TR extension to PropBank entry fmd, roleset name “auction”

asAlM, BEN(eficiary), LOC(ation), MAN(ner), and a large number of temporal adjuncts suchiis
(temporal length) andHWHEN (time point).

For the TR, we have a small gold standard. Approximately A &htences of the PTB were anno-
tated with TR dependency structure and arc labels. A totabdfifferent labels are used in this corpus.
The sentences were prepared automatically by a computgranméabokrtsky and Kucerova, 2002)
and then corrected manually. We will refer to this corpushastRGS (which should not be confused
with the PDTB, which is a much larger corpus in Czech), andhéodode as AutoTR. It uses heuristics
that can access the full PTB annotation.

In addition, there is a lexicon of tectogrammatical entfi@sEnglish based on (a subset of) the
PropBank lexicon. The mapping was done for 662 predicaleP@Bank entries that were done by
January 2002). Every entry contains an original PropBaxik#d information with examples, informa-
tion about Levin class membership and appropriate teatogratical mapping. The mapping is only
defined for entries that are explicitly listed in the oridiRsopBank entry; no others were created. Fig-
ure 7 shows the entry for the vellid. Note that the mapping to TR is indexed both on the Propbank
argument and on the syntactic realization (“form”), so @l may becomeéeFF or AIM, depending
on the preposition that it is realized with.

We evaluated the quality of the PropBank-to-TR lexicon bgnparing results on those arguments
in the TRGS whose verbs are also in the lexicon (727 argunmstances). The AutoTR program has
an error rate of 15.3% on this data, while the lexicon’s erate is only 12.2%. We performed an error
analysis by randomly sampling 15 instances (of the 89 etrm® instances, there were inconsistencies
between the lexicon and the TRGS. (Of these, one instancéuwbermore inconsistent in the TRGS.)
In four instances, there appeared to be an error in the lexidad in two instances, there was an error
in our automatic alignment of the data due to a mismatch ofyimeactic analysis in the TRGS and in
the PTB. We conclude that all these problems are in prindipéble.



Actor, Agent, Theme, Patient, Asset, Attribute,
Beneficiary, Cause, Destination, Experiencer,
Instrument, Location, Material, Patient, Prod-
uct, Recipient, Source, Stimulus, Time, Topic

Figure 8: Inventory of thematic role labels used in VerbNet

5 VerbNet

VerbNet (Kipper, Dang, and Palmer, 2000) is a hierarchieabexicon with syntactic and semantic
information for English verbs, using Levin verb classes/{hgl1993) to systematically construct lexical
entries. The first level in the hierarchy is constituted by driginal Levin classes, with each class
subsequently refined to account for further semantic antasyia differences within a class. Each
node in the hierarchy is characterized extensionally bgétsof verbs, and intensionally by a list of
the arguments of those verbs and syntactic and semantrenafmn about the verbs. The argument list
consists of thematic labels from a set of 20 possible suaiddiven in Fig. 8), and possibly selectional
restrictions on the arguments expressed using binaryqaedi. The syntactic information maps the list
of thematic arguments to deep-syntactic arguments. Tharg#information for the verbs is expressed
as a set (i.e., conjunction) of semantic predicates, suahosisn, contact, transfeinfo.2 Currently, all
Levin verb classes have been assigned thematic roles atat8grirames, and 123 classes, with more
than 2500 verbs, are completely described, including $@irantic predicates.

In addition, a PropBank-to-VerbNet lexicon maps the rdesé PropBank to VerbNet classes, and
also the PropBank argument labels in the rolesets to Verkinebatic role labels. Fig. 9 shows an
example of the mapping of rolesigistall.01 with VerbNet clasput-9.1 The mapping is currently not
complete: some verb meanings in PropBank have not yet beppedaothers are mapped to several
VerbNet classes as the PropBank verb meanings are someatoaeser than or simply different from
the VerbNet verb meanings (many PropBank rolesets are lmsadinancial corpus and have a very
specific meaning).

PropBank VN
Role  Description label
0 Putter Agent

1 Thing put Theme
2 Where put | Destination

| VerbNet-Levin class 9.1 |

Figure 9: Entry in PropBank-to-VerbNet lexicon fout (excerpt)

Using this lexicon, we have augmented the PropBank-arewt@enn Treebank with VerbNet an-
notations automatically. In theory, we could simply lookthe corresponding VerbNet argument for
each annotated PropBank argument in the corpus. Howewse Hre several impediments to doing
this. First, the PropBank annotation of the Penn Treebaek dot currently include the roleset, i.e., the
verb meaning: of all the PropBank-annotated verbs in the $R@ only 74.7% of cases do we have
access to the PropBank meaning (roleset). Second, bedaais&rdpBank-to-VerbNet lexicon is not
yet complete (as just described), only 42.1% of verbs (irtgtg) have exactly one VerbNet-Levin class
assigned to them. Therefore, only 46.1% of argument inetanan be assigned VerbNet thematic roles
automatically (18 different labels are used) However, theecage will increase as (i) PropBank anno-
tates rolesets in the corpus and (ii) the annotation of tlopPank lexicon with VerbNet information

3Both for VerbNet and LCS, the semantic information abouheasb is not directly germane to this paper.



Verb | jog
Class | 51.3.2.a.ii
Theta| _th,src(),goal()

Figure 10: LCS definitions gbg (excerpt)

progresses. In principle, there is no reason why we canim¢wse a near 100% automatic coverage of
the hand-annotated PropBank arguments in the Penn Treabtmi{erbNet thematic roles.

6 Lexical Conceptual Structure

Lexical Conceptual Structure (LCS) is a compositional igusion with language-independent proper-
ties that transcend structural idiosyncrasies (Jackéntl@83; Dorr, 1997). LCS captures the semantics
of a lexical item through a combination of semantic struet{apecified by the shape of the graph and
its structural primitives and fields) and semantic contspe¢ified through constants). The semantic
structure of a verb is something the verb inherits from itsihe&erb class, whereas the content comes
from the specific verb itself.

The lexicon entry for one sense of the English vgdpis shown in Figure 10. This entry includes
several pieces of information such as the word’s semantit ¢lass, its thematic roles (“Theta” — in
this caseth, src, andgoal), and the LCS itself (not shown here, as it is not directlyvaht to this
paper). The LCS specifies how the arguments — identified hy timematic roles — contribute to the
meaning of the verb.

Figure 11 contains a list of thematic roles. The theta-rplec#ication indicates the obligatory and
optional roles by an underscore)(@nd a comma, (), respectively. The roles are ordered in a canonical
order normalized for voice (and dative shift): subject;ealbj indirect object; etc, which corresponds to
surface order in English. Thus, thi_loc grid is not the same as th#c_th grid (The box holds the
ball as opposed tdhe water fills the bgx

agent, theme, experiencer, information, src
(source),goal, perceived item,pred (identifica-
tional predicate)]ocational predicatemod-poss
(possessed item modifierjnod-pred ( property
modifier)

Figure 11: Inventory of LCS thematic roles (extract)

To derive LCS thematic labels for arguments and adjuncthénRropBank, we make use of the
Lexical Verb Database (LVD). This resource contains hamustructed LCSs organized into semantic
classes — a reformulated version of the semantic classeswim| 1993). The LVD contains 4432 verbs
in 492 classes with more specific numbering than the oridieain numbering (e.g., “51.3.2.a.ii"), a
total of 11000 verb entries. For the mapping, we used as kdgstihe LVD both the lexeme and
the Levin class as determined by VerbNet (see Section S)studf the class name to account for the
different extensions developed by Verbnet and LCS. Eachréieyns a set of possible theta grids for
each lookup. We then form the intersection of the two setgetoat the theta grid for the verb in its
specific meaning. If this intersection is empty, we insteaiinf the union. (This complex approach
maximizes coverage.) We then map to each argument a setgiblgotheta roles (note that even if there
are two possible theta grids, one of the arguments may et®dvsame role under both). This approach
yields 54.7% of verb instances in the TRGS with a unique tyeith and 47.7% of argument/adjunct
instances, with a unique theta role. (The lower figure isyprebly due to the fact that verbs with



Predict| From || No mlex | With mlex n
VN LCS 30.3% 13.0% | 399
LCS VN 22.8% 9.5% | 399
TR VN 36.1% 14.4% | 97
VN TR 56.7% 8.3% | 97
TR LCS 42.3% 20.5%| 78
LCS TR 41.0% 11.5%| 78

Figure 12: Error rates for predicting one label set from haptwith and without using featumalex
(the governing verb’s lexemey; is the number of tokens for the study

fewer arguments are more likely to have unique theta gril¢gtal of 13 LCS roles are used for these
instances.

| VN label | TRIlabel| tokens| types| sample verbs |
Topic EFF 29 2 say X
Predicate | EFF 12 7 view Y as X
AIM 2 2 use Y to do X
CPR 1 1 rank Y as X
COMPL 1 1 believe Y that X
LOC 1 1 engage Y in X
Attribute EFF 4 3 rate Y X
EXT 1 1 last X
THL 1 1 last X
DIFF 1 1 fall X
LOC 1 1 price Y at X

Figure 13: Exhaustive mapping of three VerbNet labels to d@ikels other thadCT and PAT (the
argument being labeled ¥§

7 Relation Between Semantic Labels

We now address the question of how similar the three anoatathemes are, i.e., the semantic part
of TR, LCS, and VerbNet. To test the correspondence betwkdralgsemantic labels, we use Ripper

(Cohen, 1996) to predict one label set, given another. Usisgt of attributes, Ripper greedily learns

rule sets that choose one of several classes for each daBesatise in this section we are using Ripper
to analyze the data, not to actually learn rule sets to afplynseen data (as we do in Section 8), we
report here the error rate on the training data.

For these experiments, we use all arguments from the TRGSwaine also labeled in the PropBank,
1268 data points. For VN and LCS, we exclude all data pointghiith either the predictor label or the
predicted label are not available from the mappings desdrib Sections 4, 5, and 6, respectively. In
the case of TR (which is always available), we exclude caststive ACT and PAT features, as they
are determined syntactically. If there is a one-to-oneespondence between two label sets, we expect
a zero error rate for both directions; if the corresponddaaene-to-many (i.e., one label set is more
detailed than the other), we expect a zero error rate foraat ene direction.

Instead, what we find are error rates between 22.8% and 560f%ll directions. Crucially, we
find these error rates greatly reduced (with error reduatemging between 51% and 85%) if we also
allow the lexeme of the governing verb to be a feature. Theltseare summarized in Figure 12. All
differences are significant, using the usual Ripper testdtfierence between the results must be larger



than twice the sum of each run’s standard deviation). Asa&xrplein each pair, the richer label set (as
measured by the number of labels used in the TRGS) is betteedicting the less rich label set.

By way of illustration, we will look in more detail at the wawn which three VN labelsTopic,
Predicate, andAttribute, map to TR categories. The data is summarized in Figure A3.we can
see, for all three labels, the most common TR label (and ircéise ofTopic, the only TR label) is
EFF. However, closer inspection reveals this not to be the cdseNet makes a distinction between
the communicated contentdhn said he is happwvhich is aTopic, aPredicate of another dependent
of the verb they view/portray/describe the sales force as a criticaegswherea critical assetis a
predicate true of the sales force), and/Astribute of another actant of the verlthgy value/estimate
the order at$326 million/rate the bond AAX TR considers all these cases toBeFects of an act of
communication or judgment. Conversely, TR makes a distindietween aEFFect of a human action
(of communication or judgment, sudhey value/estimate the order 826 million/rate the bond AAA
and different types of states of affairs, for examplelBFerence (JAL stock has fallen 33¥®r a length
of time (THL, the earth quake lasted 15 secopdBo VN, these are alttributes.

But note that in nearly all cases considered in the tablednri€i 13, the governing verb determines
the label assignment both for TR and \fNthus, both in the general Ripper experiments and in these
specific examples, we see that there is no general mappinggathe labels; instead, we must take the
governing verb into account. We conclude that assigninglsails both framework specific and lexically
idiosyncratic within each framework.

Fi nal hypot hesis is:
RIGif fw=fromand vn!=_ (2/1).
CAUS i f fw=because (2/0).
COND if fw=if (3/0).
MDD i f | emma=probably (2/0).
DIR3 if pb=AR& and pba=DI R (2/0).
AIMif fw=to and vrole=adj (12/4).
MANN i f pba=M\R (20/1).
ADDR i f pb=AR&2 and vn=Reci pi ent and
| emma! =bl ane and | enma! =article (7/0).
ADDR i f | etma=audi ence (2/1).
ADDR i f m enma=assure and pb=ARGL (2/0).
TWHEN i f pba=TMP (55/6).
EFF i f vn=Topi c and m emma=say (25/0).
EFF if vrole="2" and fw=as (12/1).
ACT if vrole="0" (366/16).
default PATC (502/67).

Figure 14: Sample generated rule set (excerpt — “fw” is tmefion word for the argument, “mlex” the
governing verb’s lexeme, “pba” the modifier tag from the P&reebank)

8 Predicting TR Labels

We now turn to experiments for learning rule sets for chapdiR labels from all other labels (the
task described by Hajicova and Kuc€erova (2002), thgial inspiration for this work). We again use
Ripper, as in Section 7. The task is to predict the TR labal, vaa experiment with different feature

“We exclude tokens whose TR labels &@T or PAT, as these labels are determined entirely syntactically.

SIntuitively, a predicateis a function from entities to truth values, while atiributeis a function from entities to an open
set of possible values (such as dollar amounts).

5The exceptions are in TRise Y to do Xs sometime&FF, sometimedIM, while last Xis sometime&XTent, sometimes
temporal lengthTHL). We assume these are labeling inconsistencies.



sets. Given our analysis in Section 7, we predict that usthgroglobal semantic labels, i.e., VN or
LCS, will notimprove performance. However, we expect syntactic (inolydexical) features and local
semantic features (PropBank) to contribute to performantle observe that it is not clear what the
topline is, given some inconsistency in the gold standdu& gkperience reported above from very small
hand-inspected data sets suggests an inconsistency taénaen 5% and 10%.

We use the following syntactic featurd3T B lean (argument lemma, governing verb’s lemma, part-
of-speech, and function word, if anygull PTB (PTB lean + TR label of mother, extended tag of PTB,
node labels of path to root)fRole (the deep-syntactic argument, as derived from the PTB by hea
percolation and voice normalization); aAditoTR, the computer script AutoTR writtem to determine
TR labels. We also use these semantic features: PropBark, /&bNet. A sample rule set (with
features PTB-lean, Vrole, Propbank, and VerbNet) is shawigure 14. The rules are checked from
top to bottom, when one applies the listed label is chosere Atmbers in parentheses indicate the
number of times the rule applies correctly (before the $lasil incorrectly (after the slash). Clearly,
there is some overfitting happening in this particular red€for example, in the rule to choogdDR
if the lemma isaudience.

The results for the machine learning experiments are sumetam Figure 15. These are based
on five-fold cross-validation on a set of 1268 data pointeg¢gharguments of the TRGS labeled by
PropBank, with mismatches related to different syntacgatment of conjunction removed). Note that
because of the greedy nature of Ripper, a superset of featiay (and often does) produce worse
results than a subset. In general, any two results aretstaliis significant if their difference is between
three and five; there are too many combinations to list alm@ared to the baseline of the hand-written
AutoTR code, the combination of PTB Lean, Vrole, and PropBanovides an error reduction of 24.5%
with respect to a (possibly unrealistic) 0% error toplindeTerror reduction is 75.8% with respect to
default baseline of always choosiRgT, the most common label (i.e., running Ripper with no featyre
and the 0% topline.

Semantics| None | PropBank| PB&LCS | PB&VN
Syntax
None 59.23%| 24.30% | 23.27% | 22.25%
Vrole 30.44%| 19.80% | 18.38% | 17.75%
PTB 18.15%| 15.70% | 16.17% | 16.02%
PTB & Vrole 16.09% | 15.14% | 15.46% | 14.67%
PTB Lean & Vrole| 16.80% | 14.36% | 15.15% | 14.51%

Figure 15: Results (error rate) for different combinatiohsyntactic features (left column) and semantic
features (top row); baseline error rate using hand-wrigatoTR code is 19.01%.

We now highlight some important conclusions (all are dfiaffly significant unless otherwise
stated). First, some syntax always helps, whether or not ave Bemantics (compare the rows la-
beled “None” and any of the rows below it). This is not sunpgs as some of the TR labelACT and
PAT) are defined fully syntactically. Second, the PTB-leandsaset does as well as the full PTB set,
no matter what semantic information is used (compare robealdal “PTB & Vrole” and “PTB Lean &
Vrole”). In particular, the TR label of mother, the extendad of the PTB, and the node labels of path
to root do not help. Third, using the PropBank improves ongigist syntactic information (compare
the columns labeled “None” and “PropBank” — not all pairw@amparisons are statistically signifi-
cant). Fourth, as predicted, there is no benefit to addingadjkemantic information once local semantic
information is used (compare the column labeled “PropBdnkthe columns labeled “PB&LCS” and
“PB&VN”).

In related work, Gildea and Jurafsky (2002) predict genEraimeNet labels (similar to the VN or
LCS labels). They achieve an error rate of 17.9% using noraamantic information. While this



error rate is similar to the ones we report here (in the roveld “None”), there are some important
differences: their testing data only contains seen présc@nlike ours), but our task is facilitated by
the fact that the most common labels in TR are defined syntdigti

9 Conclusions

As we have seen, there are problems in mapping among Verh&, and TR. Most truly global
semantic labels are both framework-specific and lexicdilysiyncratic: different frameworks (and pos-
sibly researchers in the same framework) do not divide upplaee of possible labels in the same way.
As a result, in automatically labeling a corpus with TR |aheising LCS or VerbNet does not improve
on using only syntactic (including lexical) and local set@imformation, contrary to the suggestion of
Hajicova and Kucerova (2002). While this may at firstradéke an unfortunate conclusion, we note
that the solution seems to be fairly simple: the creatiorericbns. Lexicons are useful (even crucial)
for consistent annotation, they are general repositoridimguistic knowledge, and they can be used
for many NLP tasks. Thus the creation of lexicons along wiingle set of annotations is a simple
way to allow for translation to other annotation framewgrkisice the lexical idiosyncracies are taken
into account in the lexicon. For example, if we have a ProgBsiyle annotation for our corpus, and
a (framework-specific, lexically idiosyncratic) PropBatuk lexicon, wher€l is the desired labeling
scheme, then we can automatically relabel the corpus wihatbels ofl”. Human intervention will
only be required whefi’ makes finer distinctions in verb or argument meaning tharstheme used
for the annotation of the corpus. This approach can also &é& when!” represents a very domain- or
task-specific labeling, in which case annotating a whol@usijust with these labels would be a very
large investment with little prospect for resuse, as thellkvould probably not be reusable by other
projects.
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