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Abstract
The neural framework employed for the task of neural machine translation (NMT) usually

consists of a stack of multiple encoding and decoding layers. However, only the source feature
representation from the top-level encoder layer is leveraged by the decoder subnetwork during
the generation of target sequence. Thesemodels do not fully exploit the useful source represen-
tations learned by the lower-level encoder layers. Furthermore, there is no guarantee that the
top-level encoder layer encodes all the necessary source information required by the decoder for
the target generation. Inspired by recent advances in deep representation learning, this paper
proposes a Multi-Layer Multi-Head Attention (MLMHA) module to exploit the different source
representations from the multi-layer encoder subnetwork. Specifically, the decoder is allowed
a more direct access to multiple encoder layers during the target generation. This technique
further improves the translation performance of the model. Also, exposing multiple encoder
layers enhances the flow of gradient information between the two subnetworks. Experimental
results on two IWSLT language translation tasks (Spanish-English and English-Vietnamese)
and WMT’14 English-German demonstrate the effectiveness of allowing the decoder access
to representations from multiple encoder layers. Specifically, the MLMHA approaches ex-
plored in this paper achieve improvements up to+0.71, +0.75 and +0.49 BLEU points over the
Transformer baselinemodel on the English-German, Spanish-English, and English-Vietnamese
translation tasks respectively.

1. Introduction
Neuralmachine translation (NMT) architectures (Luong et al., 2015; Vaswani et al.,

2017; Gehring et al., 2017) have achieved significant improvement over statistical ma-
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chine translation techniques (Och et al., 1999; Callison-Burch et al., 2011; Koehn and
Schroeder, 2007) without the need for extensive feature engineering. The backbone
of these architectures is the encoder-decoder framework. The task of the encoder sub-
network is the generation of the semantic information from the source sequence. On
the other hand, the decoder is charged with the target sequence generation based on
the source semantic representation captured by the encoder.

Recent state-of-the-art (SOTA) NMT models (Vaswani et al., 2017; Gehring et al.,
2017) implement each of the encoder and decoder subnetworks as a stack of multi-
ple layers. The propagation of information between the two subnetworks becomes
difficult as the number of layers increases. To minimize this problem, recent models
(Vaswani et al., 2017; Gehring et al., 2017) employ shortcut connections such as resid-
ual units (He et al., 2016) between the layers to enhance the flow of information across
the multiple layers. Furthermore, recent works (Raganato et al., 2018; Belinkov et al.,
2017) also have revealed that each encoding layer extracts different levels of abstrac-
tion of the source representation. For example, Belinkov et al. (2017) evaluated rep-
resentations extracted from different encoder layers on tasks such as part-of-speech
tagging (POS) and semantic tagging. They argue that the lower-level encoder lay-
ers focus more on learning word-level information/properties whilst the higher-level
layers encode more semantic information. All these representations can be exploited
to further improve the task of sequence to sequence (seq2seq) generation. However,
current NMTmodels generate the target sequence based on representation from only
the top-level encoding layer. These models fail to fully explore the multiple useful
source representations generated in the lower-level encoder layers during the target
generation. A problem with this approach is that there is little to no guarantee that
the necessary source information required by the decoder subnetwork is encoded in
the top-level encoder layer (Wang et al., 2018; Dou et al., 2018).

Research works from the field of computer vision (Yu et al., 2018; Huang et al.,
2017) have proven the benefits and the performance impact of exploiting represen-
tations from multiple top-level and lower-level layers. Inspired by this, several fea-
ture aggregation techniques have been proposed to improve the performance of NMT
models (Dou et al., 2018; Wang et al., 2018; Bapna et al., 2018). These aggregation ap-
proaches focus on generating a single source representation as a combination of all
representations from the multiple encoder layers. Even though these techniques pro-
vide a simple way to exploiting the multiple source representations, this work argues
that allowing the decoder more direct access to the encoding layers can further im-
prove the flow of gradient information and enhance the overall performance of the
model. This paper is motivated by the findings in our previous work (Ampomah
et al., 2019).

In our previous work, the performance of an RNN based seq2seq model was im-
proved by performing the neural attention computations jointly across source repre-
sentations from all encoding layers. The encoder employed comprised of multiple
Bidirectional LSTM (BiLSTM) layers whilst the decoder consisted of a single LSTM
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layer. Allowing the decoder more direct access to the stack of encoder layers signifi-
cantly improved the performance of the model on the task of paraphrase generation.
This work aims at enhancing the translation performance of a current SOTA model,
namely the Transformer architecture (Vaswani et al., 2017), on the more challeng-
ing task of translating sentences from one language to another. Unlike (Ampomah
et al., 2019), both the encoder and decoder subnetworks of the Transformer model
employed in this work consist of multiple layers. Each of the decoding layers employs
an encoder-decoder multi-head attention (MHA) sublayer to learn the source-target
context information based on the source representation from the top-level encoder
layer. To generate the contextual information based on the n source representations
from the multiple encoder layers, the standard encoder-decoder multi-head attention
sublayer is replaced with a MLMHA sublayer. The n source representations are ag-
gregated by a Source Feature Collector module based on the outputs from the top-n
encoding layers. The MLMHA module allows each decoding layer to interact with
different levels of abstraction of the source sequence to further improve the transla-
tion quality. This also enhances the propagation of gradient information between the
encoder-decoder subnetworks as each encoder layer receives error signals from all
the decoding layers. Experimental results on two IWSLT language translation tasks
(Spanish-English and English-Vietnamese) andWMT’14 English-German translation
demonstrate the effectiveness of allowing each decoding layer direct access to repre-
sentations from multiple encoder layers. The contributions of this work are:

• proposing the Multi-Layer Multi-Head Attention module which allows the de-
coding layers to exploit source representations captured by multiple encoding
layers.

• demonstrating consistent improvement over models exploiting only the source
representation from the top-level encoder layer.

• providing analysis on the encoder to understand the impact of exposing all en-
coder layers to the decoder subnetwork.

• providing analysis on the impact of varying the number of encoder layers out-
puts (n) that are considered by the MLMHA module within the decoding lay-
ers.

The remainder of the paper is organized as follows: Section 2 briefly reviews the
related works and Section 3 provides a background to neural machine translation.
The Multi-Layer Multi-Head Attention approaches are presented in Section 4. The
experiments conducted are presented in Section 5, and the results are compared and
discussed in Section 6. Also, Section 7 presents a detailed analysis performed to in-
vestigate the impact of exploiting multiple source representations from the encoder
subnetwork via the MLMHA unit. Finally, the conclusion is presented in Section 8.
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2. Related works

The proposedMLMHA framework is motivated by research and advances in deep
representation learning. Effective propagation of gradient information across themul-
tiple layers of a neural network can significantly improve its performance at learning
a given task. To achieve this, several techniques including residual connections (He
et al., 2016), highway network connections (Srivastava et al., 2015) and dense connec-
tions (Huang et al., 2017) have been extensively explored in areas such as computer
vision and NLP. These approaches improve the propagation of features and error
information across the multiple layers of the neural network via direct information
paths between the layers. The simplicity and effectiveness of these skip-connection
techniques allow for easy integration and have become the standard for SOTA mod-
els for learning problems employing neural networks. With respect to machine trans-
lation, models such as the self-attention based Transformer model (Vaswani et al.,
2017), CNN based ConvS2S (Gehring et al., 2017) and LSTM/GRU based model (Wu
et al., 2016) achieved SOTA performance by employing residual connections between
the layers. As noted by Irie et al. (2019) and Vaswani et al. (2017), the performance of
the Transformer model significantly degrades when trained without residual connec-
tions between the multiple sublayers. Across these models, source representations
from the lower-level encoding layers are not considered during the target generation
as only the top-level encoder layer’s output is passed to the decoding subnetwork.

Makinguse of source representations frommultiple encoding layers has been shown
to improve the generalization performance of deep NMT models. To learn better
source representation, (Wang et al., 2018) presents three information fusion tech-
niques to combine representations from multiple encoding layers via a single infor-
mation fusion layer. Similarly, (Dou et al., 2018) explored different representation
aggregation approaches to combine source features generated from different encoder
layers. To ensure that all layers capture diverse source information, they further pro-
posed to train the neural model with a diversity promoting auxiliary learning ob-
jective. The static layer aggregation approaches from (Dou et al., 2018; Wang et al.,
2018) (such as the linear feature combination method) as argued by Dou et al. (2019)
sometimes ignore useful contextual information that can improve performance. In
response, they propose dynamic layer aggregation with routing-by-agreement mech-
anisms where each decoding layer receives a different aggregation of source repre-
sentations from each of the encoding layers. Similarly, Bapna et al. (2018) proposed
Transparent Attention Mechanism where different joint source representation is gen-
erated for each decoding layer. Specifically, for a model with N encoding and M

decoding layers, M different joint source representations are generated (one for each
decoding layer) from theweighted combination of outputs from all the encoder layers
including the word embedding layer. Via the Transparent Attention Mechanism, Bapna
et al. (2018) were able to train (2-3x) deeper NMT models. The performance gain is
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attributed to the Transparent Attention Mechanism easing the optimization of deeper
models.

A common theme among these works is the generation of a single source feature
representation as an aggregation of representations fromdifferent encoder layers. The
decoder layers perform the source-target attention computations based on the aggre-
gated joint source representation. These layer aggregation approaches provide a sim-
plistic mechanism to enhance the source-target attention mechanism whilst improv-
ing the flow of gradient information from the decoding subnetwork to the encoding
layers. In contrast, this work hypothesizes that providing the decoding network more
direct access to representations from each encoding layer can further improve the
performance of the model and further enhance gradient flow to each encoder layer.
Specifically, this work proposes to perform the neural attention computations directly
across outputs from different encoding layers via a Multi-Layer Multi-Head Attention
module.

3. Background

The goal of a seq2seq generation model is to generate the target sequence y =
(y1, · · · , yN) of lengthN given a source sequence x = (x1, · · · , xM) of lengthM, where
xi is the ith source token and yt is the tth target word. The parameters of the model
are learned by maximizing the likelihood function:

P (y | x; θ) =

N∏
t=1

P (yt | y<t, x; θ) (1)

where y<t = y1, · · · , yt−1 is the generated target sub-sequence. Typically, seq2seq
models employ an encoder-decoder architecture to model P (y | x; θ). The encoder gen-
erates the source semantic representation he from a given sentence x. Specifically, for
each source token xi, a distributed representation vector ei ∈ Rd, where d is the di-
mension of the vector, is generated by the word embedding layer. Based on the source
embedding vectors Ex = [e1, e2, · · · , eM], the encoder generates the hidden represen-
tation he = [he

1, h
e
2, · · · , he

M]. The target sequence y is generated by the decoder based
on the output of the encoder. During the decoding step t, the decoder computes the
probability distribution of the target token yt based on the output of the encoder and
the partial target sequence y<t = y1, · · · , yt−1 as shown in Eq. (1).

The majority of earlier seq2seq architectures are RNN based models (Bahdanau
et al., 2015; Cho et al., 2014; Ampomah et al., 2019), but recently architectures em-
ploying CNN (Gehring et al., 2017) and self-attention (Vaswani et al., 2017; Shaw
et al., 2018) have gained significant attention.
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3.1. The Transformer Model

In this work, all experiments and discussions are based on the recently proposed
Transformer model (Vaswani et al., 2017). However, the explored attention mecha-
nisms are applicable to other architectures including RNN (LSTM/GRU) basedmod-
els (Bahdanau et al., 2015; Cho et al., 2014) and CNN (Gehring et al., 2017). The
encoder and decoder subnetworks of the Transformer architecture employ attention
mechanisms and a standard feed-forward network to model sequences of arbitrary
length without the need for a recurrent unit or CNN. The attention operation em-
ployed across the different layers are based on the multi-head attention (MHA) (see
Section 3.1.1).

The encoder subnetwork is composed of a stack of L identical layers. Each encod-
ing layer consists of a multi-head self-attention sublayer and a position-wise feed-forward
sublayer (FFN) sublayer. To ease training and improve performance, residual connec-
tion (He et al., 2016) and layer normalization layer (LayerNorm) (Ba et al., 2016) are
employed around each sublayer. Formally, the output of each layer l (Hl

e) is com-
puted as:

Sle = LayerNorm
(
MHA(Hl−1

e , Hl−1
e , Hl−1

e ) +Hl−1
e

)
Hl

e = LayerNorm
(
FFN(Sle) + Sle

) (2)

where Sle is the output of the multi-head self-attention sublayer computed based on
the source sentence representation of the preceding encoder layer (l− 1).

The decoder is also composed of a stack of L identical layers. Unlike the encoder
subnetwork, each decoding layer consists of three sublayers. Similar to the encoding
layer, it has multi-head self-attention and FFN sublayers, however, in between them is
an encoder-decoder MHA sublayer. The encoder-decoder MHA sublayer is employed to
perform attention computations over the output of the encoder HL

e . Specifically, the
output of each decoding layer l (Hl

d) is computed as:

Sld = LayerNorm
(
MHA(Hl−1

d , Hl−1
d , Hl−1

d ) +Hl−1
d

)
,

El
d = LayerNorm

(
MHA(Sld, H

L
e , H

L
e) + Sld

)
,

Hl
d = LayerNorm

(
FFN(El

d) + El
d

) (3)

where Sld is the output of the multi-head self attention sublayer computed from the
target representation from the preceding decoder layer (l− 1). El

d is the output of the
multi-head encoder-decoder attention sublayer generated based on Sld and HL

e . The
top-level layer output (HL

d) of the decoder is used by a linear transformation layer to
generate the target sequence. Specifically, the linear transformation layer via softmax
activation computes the output probability distribution over the target vocabulary.
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3.1.1. Multi-Head Attention (MHA)

A neural attention mechanism is a crucial component in seq2seq architecture for
many sequence generation problems including document summarization (Al-Sabahi
et al., 2018) and NMT (He et al., 2018; Bahdanau et al., 2015) etc. The Transformer
model uses the scale dot-product attention function. This takes three vectors as input,
namely the queries Q, values V and keys K. It maps a given query and key-value
pairs to an output which is the weighted sum of the values. The weights indicate the
correlation between each query and key. This attention is shown as follows:

Attention(Q,K, V) = softmax(α)V
α = score (Q,K)

score(Q,K) =
Q× K⊺
√
dk

(4)

where K ∈ RJ×dk is the key, V ∈ RJ×dv is the value and Q ∈ RZ×dk is the query. Z
and J are the lengths of the sequences represented by Q and K respectively. dk and
dv are the dimension of the key and value vectors respectively. The dimension of the
query is also dk to allow for the dot-product operation. The division of Q × K⊺ by√
dk is done to scale the result of the product operation hence stabilizing the compu-

tation (Vaswani et al., 2017). The overall attention weight distribution is obtained by
applying the softmax(·) operation to the attention score α ∈ RZ×J.

For better performance, the Transformer architecture uses MHA which is com-
posed of Nh(number of attention heads) scaled dot-product attention operations.
Given the Q,K, and V , the multi-head attention is computed as follows:

MHA(Q,K, V) = O

O = HWo

H = Concat (head1, head2, · · · , headNh
)

headh = Attention(QW
Q
h , KWK

h , VW
V
h )

(5)

where QW
Q
h , KWK

h , and VWV
h are projections of the query, key and value vectors re-

spectively for the hth head. The projections are performed with the matrices WQ
h ∈

Rdmodel×dk , WK
h ∈ Rdmodel×dk and WV

h ∈ Rdmodel×dv . The inputs to the MHA(·)
are K ∈ RJ×dmodel , V ∈ RJ×dmodel and Q ∈ RZ×dmodel . headh ∈ RJ×dv is the re-
sult of the scaled dot-product operation for the hth head. The Nh scaled dot-product
operations are combined by the concatenation function Concat(·) to generate H ∈
RZ×(Nh·dv). Finally, the output O ∈ RZ×dmodel is generated from the projection of
H using the weight matrix Wo ∈ R(Nh·dv)×dmodel . The multi-head attention has the
same number of parameters as the vanilla (single-head) attention if

dk = dv =
dmodel

Nh
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Figure 1: Illustration of the proposed approach to exploiting source representations
from multiple encoding layers. X is the input sequence. yt is the target token gen-
erated at step t and y<t is the generated target sub-sequence. Fs is a list of source
sentence representations obtained by the Source Feature Collector module. The value
of Ū = [Ū0, Ū1], (where Ūi ∈ {0, 1}) controls the attention computation across the
source representations in Fs.

.
In a conventional encoder-decoder architecture (Vaswani et al., 2017;Gehring et al.,

2017; Bahdanau et al., 2015) only the source representation from the top-level encod-
ing layer is passed to the decoding subnetwork during the target sequence genera-
tion. As the depth of the network increases, it becomes difficult to efficiently train the
model due to vanishing and exploding gradients. Furthermore, the encoder employs
the entire stack of layers to learn the source semantic information. For a model with
a single layer encoder subnetwork, there is a higher possibility that the top-level layer
captures most of the necessary information needed to generate the target sequence.
In contrast, for a deeper network, there is no guarantee that the last encoder layer’s
output is the best representation for the target generation due to the nature of infor-
mation flow across the different time steps and the multiple layers (Wang et al., 2018;
Dou et al., 2018). This work presents approaches to exploit source representations
learned by multiple layers in the encoder to enhance the flow of information between
the encoder and decoder subnetwork during both the forward and backward propa-
gation.
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4. Approach

The overall goal is to allow the decoder subnetworkdirect access tomultiple encod-
ing layers to further enhance the translation performance of the model. To this end,
eachdecoding layer receives a list of source sentence representations Fs = [f1, f2, · · · , fn]
aggregated by the Source Feature Collector module as shown in Fig. 1.

The Source Feature Collector returns a list of source representations Fs aggregated
from outputs of the top n encoding layers. n is considered as a hyperparameter in
this work. It is noteworthy that if n = L, then Fs contains out representations from
all layers in a L-layer encoder subnetwork. The seq2seq model (Vaswani et al., 2017;
Bahdanau et al., 2015; Gehring et al., 2017) using only the top-level encoder output
HL

e corresponds to setting n = 1. In addition to Fs, each decoder layer receives a
binary vector Ū = [Ū0, Ū1], where Ūi ∈ {0, 1}. Ū controls how the attention compu-
tations are performed across the multiple encoder representations in Fs. Specifically,
the values of Ū0 and Ū1 determine the strategy employed to generate the contextual
representation base on all the source representations in Fs. In this work, four multi-
layer attention strategies are explored.

Formally, the encoder-decoder multi-head attention sublayer is extended to con-
sider the multiple source representations Fs. To this end, the encoder-decoder MHA
is replaced with aMLMHAmodule as shown in Fig. 2. The computations across each
decoder layer (see Eq. (3)) is re-formulated as follows:

Sld = LayerNorm
(
MHA(Hl−1

d , Hl−1
d , Hl−1

d ) +Hl−1
d

)
,

El
d = LayerNorm

(
MLMHA(Sld, F

s, Ū) + Sld
)
,

Hl
d = LayerNorm

(
FFN(El

d) + El
d

) (6)

4.1. Multi-Layer Multi-Head Attention (MLMHA)

MLMHAemploys two sub-modules, namely theAttentionAggregationUnit and the
Context Generator, to perform the attention computations across all representations in
Fs as shown in Fig. 2. TheAttention Aggregation Unit outputs a list of attention weights
α = [α1, α2, · · · , αn], where αi is the multi-head attention weight with respect to fi.
Specifically, αi is calculated as:

αi = Concat
(
αi
1, α

i
2, · · · , αi

Nh

)
αi
h = score

(
QW

q
h , KW

k
h

) (7)

where αi
h is the attention score with respect to the attention head h and fi. QW

q
h , and

KWk
h are, respectively, the projections of the query (Sld) and key (fi) vectors for the hth

attention head. The projections are performed with the matrices Wq
h ∈ Rdmodel×dk ,

Wk
h ∈ Rdmodel×dk .
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Figure 2: Illustration of a decoder layer with Multi-Layer Multi-Head Attention
(MLMHA) sublayer to perform the attention computation across multiple features Fs
received from the encoding stack. α = [α1, α2, · · · , αn] is the list of attention weights
(where αi corresponds to attention weight with respect to fi in Fs), andOc is the joint
context vector across all features in Fs.

Based on the α and Fs, the Context Generator computes the joint contextual repre-
sentationOc. The operation of the Context Generator is controlled by the values of Ū0,
and Ū1. To be specific, Ū0 controls the generation of the context vector ci ∈ RZ×dmodel

with respect to fi. Depending on the value of Ū0, the MLMHA module computes the
ci using either a “layer-specific-attention” weight or a “joint-attention” weight. For
the case of Ū0 = 1, cih ∈ RZ×dk (the context vector for the attention head h with
respect to fi) generated using the layer-specific-attention weight softmax(αi

h) as:

cih = softmax(αi
h) · VWv

h (8)

where VWv
h is the transformation of the value vector (fi) with the projection weight

Wv
h ∈ Rdmodel×dk . In contrast, for the case of Ū0 = 0, a joint-attention weight α̂ is

employed to obtain ci for each fi. α̂ is calculated as:

α̂ = softmax(
n∑

i=1

αi) (9)

Analogous to Eq. (8), cih is computed with α̂ as:

cih = α̂h · VWv
h (10)
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In summary, the ci with respect to fi is calculated as:

ci = Concat
(
ci1, c

i
2, · · · , ciNh

)
cih =

{
softmax(

∑n
i=1 α

i)
h
· VWv

h Ū0 = 0

softmax(αi
h) · VWv

h Ū0 = 1

(11)

As shown above, the cih with respect to each fi is generated using the layer-specific-
attention weight (softmax(αi

h)) when Ū0 = 1. In contrast for Ū0 = 0, the cih is com-
puted with the joint-attention weight (softmax(

∑n
i=1 α

i)
h
).

Given the contexts C = [c1, c2, · · · , cn] computed across source representations in
Fs, a joint contextual Oc is generated as a combination of all vectors in C. The choice
of combination function (either contexts-concatenation or contexts-summation) is de-
termined by the Ū1. When Ū1 = 0, the Oc is generated from the concatenation of all
the contextual representations (contexts-concatenation) in C. However for Ū1 = 1,
Oc is obtained via the summation of the representations (contexts-summation) in C.
The Oc is formulated as:

Oc = ĈWo

Ĉ =

{
Concat

(
c1, c2, · · · , cn

)
Ū1 = 0∑n

i=1 c
i Ū1 = 1

(12)

where Wo ∈ Rdc×dmodel is the projection matrix for transforming the intermediate
context representation Ĉ ∈ RZ×dc into Oc ∈ RZ×dmodel . It is noteworthy that the di-
mension size dc is equal to dmodel when contexts-summation (Ū1 = 1) is employed.
In contrast, it is equal to n · dmodel for contexts-concatenation (Ū1 = 0). In sum-
mary, the value of the binary vector Ū = [Ū0, Ū1] (where Ūi ∈ {0, 1}) presents four
possible configurations of the MLMHA module in the decoder layer. For simplicity,
the model M-ij denotes the configuration where Ū0 = i and Ū1 = j as summarized
in Table 1. As shown, the M-00 and M-01 models generate the context cih using the
joint-attention weight whilst the layer-specific-attention weights are employed by the
M-10 and M-11 models. The contexts-summation approach is employed by the M-01
and M-11 models to output contextual representation Oc. In contrast, for the M-00
and M-10 models, the contexts-concatenation approach is employed.

5. Experimental Setup

5.1. Datasets

The MLMHA strategies explored in this work are evaluated on the following lan-
guage translation tasks: Spanish-English (briefly, Es-En), English-Vietnamese (briefly,
En-Vi), and English-German (briefly, En-De).
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Models Ū0 Ū1 cih Oc

M-00 0 0 softmax(
∑n

i=1 α
i)

h
· VWv

h Concat
(
c1, c2, · · · , cn

)
M-01 0 1 softmax(

∑n
i=1 α

i)
h
· VWv

h

∑n
i=1 c

i

M-10 1 0 softmax(αi
h) · VWv

h Concat
(
c1, c2, · · · , cn

)
M-11 1 1 softmax(αi

h) · VWv
h

∑n
i=1 c

i

Table 1: Models based on the configurations of the MLMHA as determined by the
values of Ū0 and Ū1. cih is the context vector for the attention head h with respect to
fi and Oc is the overall context vector across the n source representations in Fs.

For the Es-En task, the dataset employed is from the IWSLT 2014 evaluation cam-
paign1 (Cettolo et al., 2014). The training set comprises of 183k training sentences
pairs, and the tst 2014 split is used as the test set. The validation consisting of about
5593 sentence pairs is created by concatenating dev2010, tst2010, tst2011, and tst2012
splits. For the En-Vi translation task, the dataset is from the IWSLT 2015 English-
Vietnamese track (Cettolo et al., 2015). The training set consists of 133k sentence pairs.
The validation and test sets are from the TED tst 2012 (1553 sentences) and TED tst
2013 (1268 sentence pairs), respectively. For the En-De task, the models are trained
on the widely-available WMT’14 dataset comprising of about 4.56 million sentence
pairs for training. Following (Dou et al., 2018; Gehring et al., 2017), the newstest2013
and newstest2014 are used as the validation and test sets respectively.

To alleviate the Out-of-Vocabulary (OOV) problem, a shared vocabulary2 gener-
ated via byte-pair-encoding (BPE)3 (Sennrich et al., 2016) is employed to encode the
source and target sentences. In the case of Es-En, the shared vocabulary comprises
of about 34k sub-word tokens. For the En-Vi and En-De translation tasks, the shared
vocabulary consists of 21k and 32k sub-word tokens respectively.

5.2. Model Setup

The experiments on the IWSLT tasks are conducted based on the small configura-
tion of the Transformer architecture (Vaswani et al., 2017) with the word embedding
dimension, hidden state size, and the number of attention heads set as 256, 256 and 4
respectively. The position-wise FFN has a filter of a dimension of 1024. The models
trained on the Es-En and En-Vi tasks consists of a 4-layer encoder subnetwork and

1https://wit3.fbk.eu/mt.php?release=2014-01
2The original casing for the tokens in each sentence is preserved
3https://github.com/rsennrich/subword-nmt

62

https://wit3.fbk.eu/mt.php?release=2014-01
https://github.com/rsennrich/subword-nmt


I. Ampomah, S. McClean, Z. Lin, G. Hawe MLMHA (51–82)

4-layer decoder subnetwork. For experiments on the En-De, the base configuration is
employed due to the size of the dataset. Specifically, the hidden size, filter size and
the number of attention heads are 512, 2048, and 8 respectively. Both the encoder and
decoder subnetworks have 6 layers. For experiments on each dataset, the value of the
hyperparameter n for the Source Feature Collector is set to the number of layers present
in the encoder i.e. n = L. That is, on the En-De, and IWSLT tasks n is set as 6 and 4
respectively.

5.3. Training and Inference

For the En-De task, the models are trained for 160k iterations with a batch size of
4960 tokens and a maximum sequence length is limited to 200 sub-word tokens. On
the IWSLT tasks (En-Vi and Es-En), all models are trained with a batch size of 2048
tokens for a total of 200k iterations. Besides, the maximum sub-word token length is
limited to 150 sub-word tokens. The optimizer employed to train the models in this
work is the Adam optimizer (Kingma and Ba, 2014) (with β1 = 0.9, β2 = 0.98, ϵ =
109). Following (So et al., 2019), single-cosine-cycle with warm-up is employed as the
learning rate scheduling algorithm.

During inference, the target sentences are generated via beam search. For the
IWSLT translation tasks, a beam size of 6 and a length penalty of 1.1 is employed. On
the WMT’14 En-De task, the beam size of 4 and a length penalty of 0.6 is employed.
common practice, the translation quality on the WMT’14 En-De, case-sensitive deto-
kenized BLEU (Papineni et al., 2002) computed with mteval-v13a.pl4 is employed as
the evaluation metric. For the Es-En, case-sensitive BLEU metric with multi-bleu.pl5
is used for the evaluations. Finally, the translation quality for the En-Vi is reported
based on the case-sensitive BLEU score computed with sacreBLEU6 (with the signa-
ture BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.13). The sta-
tistical significance is analyzedwith paired bootstrap resampling (Koehn, 2004) using
compare-mt7 (Neubig et al., 2019)with 1000 resamples. The source codewill bemade
available at https://github.com/kaeflint/Multi-layerMHA.

5.4. Baselines

The Transformer network (Vaswani et al., 2017) is employed as our main base-
line models. However across the different languages under consideration, the perfor-
mance of the MLMHA based models are compared to relevant NMT related works

4https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v13a.pl
5https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
6https://github.com/mjpost/sacrebleu
7https://github.com/neulab/compare-mt
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including Layer Aggregation based models. For these models, the source-target atten-
tion module of each decoder layer receives a joint source representation generated
from a combination of the outputs from all the encoder layers. The joint source repre-
sentation provides each decoding layer an in-direct access to multiple encoding lay-
ers. The layer aggregation approaches considered in this work are the Linear Feature
Combination (Dou et al., 2018; Ampomah et al., 2019), the Transparent Attention Mech-
anism (Bapna et al., 2018) and the Iterative Feature Combination (Dou et al., 2018). For
the Linear Feature Combination, a single joint source representation generated from the
weighted combination of the outputs from the encoder layers is passed to all the lay-
ers within the decoding subnetwork. Each weight Wl ∈ Rdmodel×dmodel controls the
contribution of the lth encoder layer. In contrast, for a model with N encoding and
M decoding layers, Transparent Attention Mechanism defines single weight parameter
W ∈ R(N+1)×M to generateM different joint source representations (one for each de-
coding layer) from the weighted combination of outputs from all the encoder layers
including the word embedding layer. The Iterative Feature Combination proposed by
Dou et al. (2018) generates the joint source representation by combining the outputs
from the encoder layers in an iterative fashion starting from the lower-level layers.
At each combination step s, an aggregation module consisting of a FFN, LayerNorm
and residual connections is employed tomerge the output from the previous step and
the output from encoder layer s. Under the Transparent Attention Mechanism and our
MLMHA, the decoder receives multiple source representations. For the Transparent
Attention Mechanism, a joint source representation, generated from a weighted com-
bination of the outputs from all the encoder layers is passed to each decoder layer.
However, for the MLMHA mechanism, the outputs from multiple encoder layers are
passed directly to each decoder layer without any modification.

6. Results

This section presents the performance evaluations of the MLMHA strategies pro-
posed in this work on the three language translation tasks. For each language pair, the
performance obtained for our MLMHA basedmodels is compared to results from ex-
isting NMT models. The results on the WMT’14 En-De task are summarized in Table
2. For the IWSLT tasks, Table 3 and Table 4 presents the results on the Es-En and En-Vi
tasks respectively. In each table, the value in parentheses represents the translation
performance gain over the Transformer baseline model reimplemented in this work.
On each translation task, the results obtained for each configuration of the MLMHA
shows the impact of the choice of the values of Ū0 and Ū1.

As shown in Table 2, only the Iterative Feature Combination produced a statisti-
cally significant gain over the Transformer baseline among the layer aggregation ap-
proaches. The Transparent Attention produced marginal gain (+0.13 BLEU) whilst
with the Linear Feature Combination, the performance reduced by −0.13 BLEU. For
the Transformer models trainedwithMLMHA, the two contexts-concatenation based

64



I. Ampomah, S. McClean, Z. Lin, G. Hawe MLMHA (51–82)

Model #Params (M) Train BLEU

Transformer 61.2 3.65 28.37

With Layer Aggregation
Transformer + Linear Feature Combination 62.8 3.55 28.24 (−0.13)
Transformer + Iterative Feature Combination 77.0 3.11 28.79 (+0.42)†
Transformer + Transparent Attention 61.2 3.53 28.48 (+0.13)

With MLMHA
M-00 92.7 2.66 28.80 (+0.43)†
M-01 84.9 2.74 28.54 (+0.17)
M-10 92.7 2.59 29.08 (+0.71)‡
M-11 84.9 2.70 28.51 (+0.14)

Existing NMT Systems
8-Layer RNN (Wu et al., 2016) - - 26.30
ConvSeq2Seq (Gehring et al., 2017) - - 26.36
Transformer-Base (Vaswani et al., 2017) 65.0 - 27.31
Transformer+EM Routing (Dou et al., 2019) 144.8 - 28.81
Transformer+Layer Aggregation (Dou et al., 2018) 121.1 - 28.78
Layer-wise Coordination (He et al., 2018) - - 28.33

Table 2: Evaluation of translation performance on the WMT’14 English-German (En-
De). #Params and Train respectively denote the number of trainable model parame-
ters and the training speed in terms of number of steps/second. “‡” and “†” indicate
statistically significant difference with ρ < 0.01 and ρ < 0.05, respectively.

models (M-00 and M-10) achieved significant gains of +0.43 BLEU and +0.71 BLEU.
In contrast, the performance of contexts-summation based models (M-01 and M-11)
are statistically insignificant. Table 3 summarizes the performance gains of the M-
ij models on the IWSLT Spanish-English task. As shown, both the layer aggregation
based (except the Layer Feature Combination) and ourMLMHAmodels significantly
improve the performance of the Transformer model. Compared to the layer aggrega-
tion models, our MLMHA models produced a higher gain in the translation perfor-
mance. On this dataset, the overall best performance was achieved by the M-00. On
the En-Vi translation task, only the M-00, M-01, Iterative Feature Combination and
the Transparent Attention approaches produced significant translation quality gains.

The translation results presented in Tables 2 to 4 demonstrate the potential per-
formance gain of leveraging source representations from multiple encoding layers.
However, the improvement in translation performance is shown to be dependent on
the approach employed to exploit the multiple source representations. On the En-De
and Es-En tasks, providing the decoder direct access to themultiple encoder layers via
the MLMHA is shown to outperform (in most cases) the indirect access provided by
the layer aggregation techniques. However on the En-Vi dataset, only the M-00 and
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Model BLEU
Transformer 39.80

With Layer Aggregation
Transformer + Linear Feature Combination 39.92 (+0.12)
Transformer + Iterative Feature Combination 40.31 (+0.51)†
Transformer + Transparent Attention 40.25 (+0.45)†

With MLMHA
M-00 40.99 (+1.19) †
M-01 40.61 (+0.81) †
M-10 40.57 (+0.77) †
M-11 40.55 (+0.75) †

Existing NMT Systems
UEDIN (Cettolo et al., 2014) 37.29
Tied Transformer (Xia et al., 2019) 40.51
Layer-wise Coordination (He et al., 2018) 40.50

Table 3: Evaluation of translation performance on the IWSLT Spanish-English (Es-
En). “†” indicates statistically significant difference with ρ < 0.05.

M-01 models achieved comparable performance to the the layer aggregation mod-
els. Among our proposed models, the M-11 has the overall worse performance with
the only significant gain achieved on the Es-En task. In contrast, the M-00 shows a
better generalization ability as it consistently achieved statistically significant gains
across the different translation tasks. The translation performance can be attributed
to the joint-attention weight and contexts-concatenation techniques employed by the
M-00 model as shown Table 1. The joint-attention weight is collaboratively com-
puted across the multiple encoder layers’ outputs. Compared to employing the layer-
specific-attention weights, generating the context representation ci via this strategy
enhances information sharing across the encoder layers, further improving the ro-
bustness of the NMT model. Unlike contexts-summation (Ū1 = 1), the contexts-
concatenation technique preserves much of the contextual information required for
the translation task (see Section 7.2). The performance gain via the MLMHA comes
at a higher computational cost in terms of the number of parameters and training
speed as shown in Table 2. The layer aggregation approaches have lower impact on
the training speed. For example, the Linear Feature Combination and Transparent
Attention techniques degrade the speed by about 0.12 steps/second. TheMLMHA in-
troduce additional trainable parameters as each decoder layer employs n different set
of weights to compute the attention weights. The M-00 and M-10 models have larger
number of parameters due to the contexts-concatenation strategy. This decreases the
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Model BLEU
Transformer 30.58

With Layer Aggregation
Transformer + Linear Feature Combination 30.91 (+0.33)
Transformer + Iterative Feature Combination 31.13 (+0.55)†
Transformer + Transparent Attention 31.16 (+0.58)†

With MLMHA
M-00 30.88 (+0.30)†
M-01 31.07 (+0.49)†
M-10 30.71 (+0.13)
M-11 30.78 (+0.17)

Existing NMT Systems
Luong & Manning (Luong and Manning, 2015) 23.30
NPMT (Huang et al., 2018) 27.69
NPMT + LM (Huang et al., 2018) 28.07

Table 4: Evaluation performance on the IWSLT English-Vietnamese translation task.
“†” indicates statistically significant difference with ρ < 0.05.

training speed as more effort is required to efficiently optimize the parameters of the
MLMHA based models. Section 7.2 further investigates the computational complex-
ities of the MLMHA. Overall, based on the translation performance summarized in
Tables 2 to 4, this work recommends the MLMHA with contexts-concatenation strat-
egy to combine the contextual representations generated across the outputs from the
encoder layers. The joint-attentionweight technique is recommended for shallow net-
works of fewer number of layers, however for deeper networks, we suggest using the
layer-specific-attention weight to compute the contextual representation ci with re-
spect to each source representation in Fs.

7. Analysis

Table 5 shows sample translations from theM-ijmodels and the Transformer base-
line on the En-De translation task . This section presents further analyses performed
to better understand the impact of the proposed MLMHA strategies on the perfor-
mance of the Transformer model. This includes analysis to understand (a) impact on
the translation quality for eachM-ij configuration with respect to the source sentence
length, (b) the impact of varying the number of source representations considered
(the hyperparameter n from the Source Feature Collector module) on the performance
of the MLMHA strategies, (c) impact on the encoder self-attention with respect to
each MLMHA configuration and (d) an ablation study is conducted to understand
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Source The Aachen resident suffered serious injuries and had to be taken to the hos-
pital for treatment.

Target Der Aachener erlitt schwere Verletzungen und musste zur Behandlung ins
Krankenhaus gebracht werden.

Baseline Der Wohnsitz Aachen erlitt schwere Verletzungen und musste in das
Krankenhaus für die Behandlung gebracht werden.

With MLMHA
M-00 Der Aachener Resident erlitt schwere Verletzungen und musste zur Behand-

lung ins Krankenhaus gebracht werden.
M-01 Der AachenerWohnsitz erlitt schwere Verletzungen undmusste zur Behand-

lung ins Krankenhaus gebracht werden.
M-10 Der Aachener Einwohner erlitt schwere Verletzungen und musste zur Be-

handlung ins Krankenhaus gebracht werden.
M-11 Der Wohnsitz Aachens erlitt schwere Verletzungen und musste in das

Krankenhaus gebracht werden.

Source When the fire service arrived, the flames were already bursting out of a win-
dow.

Target Als die Feuerwehr eintraf, schlugen die Flammen bereits aus einem Fenster.
Baseline Als der Feuerwehr eintrat, wurden die Flammen bereits aus einem Fenster

begraben.
With MLMHA

M-00 Als der Feuerdienst eintraf, platzten die Flammen bereits aus einem Fenster.
M-01 Als der Feuerdienst eintraf, brannten die Flammen bereits aus einem Fenster.
M-10 Als der Feuerwehr eintraf, platzten die Flammen bereits aus einem Fenster.
M-11 Als der Feuerdienst ankam, brannten die Flammen bereits aus einem Fenster.

Table 5: Sample translations on the En-De task from the Transformer baseline and our
MLMHA based models.

the contribution of each encoder layer to the overall translation performance of each
M-ijmodel. These analyses are performed on theWMT’14 En-De due to the size of the
dataset as well as the number of layers employed to train the models. For simplicity,
each analysis is based on the only Transformer baseline and our M-ij models.

7.1. Length of source sentence

Capturing efficiently the contextual information, as well as the long-distance de-
pendencies between the tokens of the source sentence, can significantly enhance the
translation quality on longer sentences (Dou et al., 2018). Following (Luong et al.,
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Figure 3: BLEU scores on the WMT’14 En-De test set for the Transformer baseline
model, and theMLMHAmodels with respect to the different source sentence lengths.

2015), sentences of similar lengths (in terms of the number of source tokens) are
grouped together. The choice of range for the grouping is based on the sentence
lengths (the number of sub-word tokens in each source sentence) across the En-De
test set. About 62% of the sentences (1,839) have sequence lengths less than 31 sub-
word tokens. Therefore, the comparison presented in this section is based on the
following sentence length groups: <10, 10-20, 20-30, 30-40, 40-50 and >50. For each
group, the BLEU score is calculated for outputs from themodels under consideration.
As can be seen in the Fig. 3 , the performance of the baselinemodel (Transformer) gen-
erally improves with increasing input sentence lengths especially for lengths between
10 and 40 sub-word tokens. The Transformer model via the self-attention sublayers is
able tomodel or capture the contextual information and global dependencies between
the tokens irrespective of their distances or locations within the input sentence.

As shown in Fig. 3, across the sentences with lengths greater than 10, some of
our models generally outperform the baseline model. This is true especially in the
case of the M-10 model. It achieves the overall best translation performance for sen-
tences longer than 20 tokens. The performance of theM-10 andM-00models improve
consistently with increasing sentence length. The M-01 achieved the best translation
quality on sentences with less than 10 tokens. However, similar to the baseline, per-
formance degrades for sentences with lengths between 10 and 20 before improving
for a longer sentence. Besides, among the MLMHA models, it has the overall worse
performance on sentences with lengths between 10 and 40. The M-11 model, on the
other hand, performed poorly on the shorter sentences (less than 10 tokens) with the
lowest BLEU score (25.91). This might explain the lower BLEU score of the contexts-
summation based models (M-01 and M-11) as shown in Table 2. Overall, the perfor-
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Models #Params (M) Train BLEU

Baseline
B0 61.2 3.65 28.37
B1 86.5 2.95 28.49
B2 90.7 2.60 28.59

M-00

n=2 67.5 3.41 28.43
n=3 73.8 3.18 28.53
n=4 80.1 3.03 28.72
n=5 86.4 2.77 28.66
n=6 92.7 2.65 28.80

M-01

n=2 66.0 3.45 28.82
n=3 70.7 3.20 28.76
n=4 75.4 3.06 28.66
n=5 80.1 2.93 28.46
n=6 84.9 2.74 28.54

M-10

n=2 67.5 3.39 28.42
n=3 73.8 3.15 28.41
n=4 80.1 3.01 28.59
n=5 86.4 2.76 29.12
n=6 92.7 2.59 29.08

M-11

n=2 66.0 3.44 28.72
n=3 70.7 3.16 28.71
n=4 75.4 3.01 28.60
n=5 80.1 2.83 28.62
n=6 84.9 2.70 28.51

Table 6: Impact of n (the number of encoding layers considered by the Source Feature
Collector module) on the performance of our MLMHA based models. B0, B1 and B2
refers to the Transformer baselinemodel trainedwith different configurations in terms
of the number of layers and the filter size FFN sublayer.

mance of theM-ijmodels obtained across the different groupsmotivates the hypothe-
sis that the MLMHA sublayers within the decoding subnetwork further improves the
performance of the self-attention sublayers of the encoder at capturing efficiently and
effectively the global dependencies between words of the input sentence. Section 7.3
explores the impact of the MLMHA on self-attention unit of each encoding layer.
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7.2. Impact of the hyperparameter n
As shown in the Tables 2 to 4, performing the encoder-decoder multi-head atten-

tion acrossmultiple source representations extracted fromdifferent encoding layer (in
most cases) significantly improves the performance of the NMT model. This section
investigates the impact of varying the value of n (i.e. using only the representations
from the top n encoding layers) from 2 to 6. Specifically, each MLMHA based model
is trained with different values of n. The results are summarized in Fig. 4. As seen,
for all the models, there is (in most cases) a significant change in performance as the
value of n increases from 1 to 6. As mentioned in Section 4, n = 1 correspond to the
Transformer baseline model which employs output from only the top-level encoder
layer.

Model Complexity
The training speed or computation speed of any given model is affected by the

model size, the optimizer employed as well as any other computations that directly
modify or alter the formulation of the network structure (Popel and Bojar, 2018). As
shown in Section 4.1, MLMHAapproach introduces new trainable parameters as each
decoding layer employs n different set of weights to perform the attention computa-
tions across the multiple encoding layers. Therefore, to investigate the impact of the
number of parameters on the overall training speed, we train two additional Trans-
former baseline models (B1 and B2) with different configurations. Specifically, the
model B0 is the original Transformer from Table 2. The baseline B1 is trained with
hidden size, filter size and the number of attention heads set as 512, 4098 and 8 re-
spectively. The main difference between B0 and B2 models is that B2 employs four
additional encoding anddecoding layers to generate the target translations. As shown
in Table 6, increasing the number of parameters generally results in a decrease in the
training speed. The new parameters introduced by B1 and B2 configurations degrade
the training speed by about 19.2% and 28.77% respectively.

Among the our proposedmodels, theM-00 andM-10 have theworst training speed
compared to the M-01 and M-11 models. The number of new parameters is depen-
dent on the strategy employed to generate the joint context Oc (see Eqs. (7) to (12))
across the multiple representations from the encoder subnetwork. When n = 6, the
MLMHA introduces about 23.7M new parameters due the n different weights em-
ployed to perform the MHA operations across each encoder output as shown in Eq.
7 and Eq. 8. Finally for the contexts-concatenation based M-ij models (with Ū1 = 0),
a further 7.8M new parameters are introduced due to the concatenation operation
on the context representations C = [c1, c2, · · · , cn]. As shown in Table 6, for our
MLMHA models, as the value of n increases, there is a corresponding reduction in
the training speed from about 7.13% (when n = 2) to 29.04% (for n = 6). The con-
figurations of the B1 and B2 models result in similar increase in the number of pa-
rameters as that of the MLMHA model (when n = 6). For example, the B1 model
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Figure 4: Variation in the translation quality across our MLMHA based models for
different values of n ≤ L.

has roughly the same number of parameters as the M-01 andM-11 models. However,
the training speed of these contexts-summation models is (slightly) slower than B1.
This is attributed to the additional attention computations and aggregations across
the multiple encoding layers.

Translation Quality

Generally, the performance of a neural network model can be improved by either
adding more layers or increasing the size of the hidden layers. As shown in Table 6,
adding four encoding and decoding layers (in the case of B2) enhanced the translation
quality by about +0.2 BLEU. For all our models, the improvement in the translation
quality across the different values of n comes with an increase in the number of pa-
rameters as a result of the additional attention computations. However, unlike B1 and
B2 models, we attribute the improvement in the BLEU score to the MLMHA sublayer
computing a joint contextual representation Oc from the multiple source representa-
tions from the encoder. For example the M-10 (when n = 5) and the B1 have roughly
identical number of parameters, however whilst M-10 model significantly improves
the performance of B0 by +0.75 BLEU (ρ < 0.01), the B1 achieved a marginal im-
provement of 0.12 BLEU.

The values of n and Ū are shown to affect the overall translation performance of
the MLMHA models. The performance of the contexts-concatenation based models
(M-00 andM-10) generally improves as the number of encoder layers considered (n)
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increases. TheseMLMHAmodels achieve their best performance for the values ofn >

4 and theirworst performancewhenn < 4. In contrast, the contexts-summation based
models (with Ū1 = 1), M-01, andM-11 achieved their highest performancewhen n =
2, but the performance degrades for n > 2 (with the minimum BLEU score at n = 6

for M-11 and at n = 5 for the M-01 model). Specifically, the M-01 and M-11 models
achieve their highest performancewhen only outputs from the top two encoder layers
are considered. Unfortunately, these models show no statistically significant BLEU
improvement over the baselines (B1 andB2)with a comparable number of parameters
when n = 6. Among the contexts-concatenation models, only the M-10 achieved
significant improvement of +0.52 BLEU (ρ < 0.05) over the B2 baseline model.

Unlike the contexts-concatenation basedmodels, the performance of contexts-sum-
mation based models decreases as the value of n increases. This can be attributed to
the fact that for themodels with Ū1 = 1, the summation of the contextual information
calculated across the source features Fs has the risk of losing some important contex-
tual information for larger values of n. The context concatenation operation, on the
other hand, preserves much of the contextual information which as shown in Table 6
improves themodel’s performance for larger values ofn. Overall, the results obtained
by the MLMHA models prove that performing the encoder-decoder attention across
multiple encoder layers can further improve the performance of the NMTmodel. But
the performance gain comes at a higher computational cost especially in the case of
M-00 and M-10 models.

7.3. Impact on the Encoder’s Self-attention

The performance of the encoding layers depends on the ability of the multiple
heads of the self-attention unit within each layer to capture the necessary structural
information. These attention heads capture structural information at varying degrees.
As noted by Raganato et al. (2018) and Vig and Belinkov (2019), while some self-
attention heads focus on long-distance relationships, other heads capture the shorter
distance relationships between the input tokens. This allows the Transformer model
to capture effectively the structural information for the given source sentence to im-
prove the performance (Raganato et al., 2018). As stated earlier, the operations of the
MLMHA module within each decoding layer affects how the source information is
processed across the layer of the encoder subnetwork. Following (Vig and Belinkov,
2019), this hypothesis is tested by analyzing the attention entropy as well as the atten-
tion distance spanned by the multiple attention heads within each encoding layer’s
self-attention unit.

The mean distance D̄l
h spanned by the attention head h with respect to the encod-

ing layer l is computed as the weighted average distance between token pairs in all
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sentences in a given corpus X. That is:

D̄l
h =

∑
x∈X

∑|x|

i=1

∑i
y=1 w

h
i,j · (i− j)∑

x∈X

∑|x|

i=1

∑i
y=1 w

h
i,j

(13)

where wh
i,j is attention weight from the input token xi to xj for the attention head h.

i and j denotes the locations of tokens xi and xj in the source sentences. Aggregating
the attention distance for each head, the mean attention distance spanned D̄l with
respect to the encoding layer l is calculated as:

D̄l =
1

Nh

·
Nh∑
h=1

D̄l
h (14)

where Nh denotes the number of attention heads employed within the layer.
The mean attention distance does not offer any information on the distribution of

the attention weight across the input tokens for a given attention head. The attention
head with a higher mean attention distance can be concentrating on similar token
sequences which might be further apart from each other (Vig and Belinkov, 2019;
Ghader and Monz, 2017). To measure the concentration or the dispersion pattern of
an attention head h within layer l for the input token xi, the entropy of the attention
distribution (Ghader and Monz, 2017), El

h(xi) for the attention head h is computed
as:

El
h(xi) = −

i∑
j=1

wh
i,j logwh

i,j (15)

Similar to the attention distance spanned, the mean entropy of attention distribution
for the encoding layer l is calculated as:

El(xi) =
1

Nh

Nh∑
h=1

El
h(xi) (16)

Attention heads with higher entropy are termed as having a more dispersed atten-
tion pattern while the lower the entropy, the more concentrated the attention weight
distribution.

The attention distance and entropy of attention distribution analysis are performed
based on the attention weights generated for 1500 randomly sampled sentences from
the En-De task’s test split (newstest2014). Fig. 5 and Figs. 6 and 7 show the mean
attention distance span and mean entropy of attention distribution for every atten-
tion head with respect to each encoding layer for the Transformer baseline and our
MLMHA models respectively. As shown, while some heads focus on the shorter-
distance relationships, other heads capture the longer-distance relations among the
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Figure 5: Variation of of the mean attention distance span and attention distribution
entropy with respect to the encoding layers and the attention heads for the Trans-
former baseline. (a) Mean attention distance. (b) Entropy of attention distribution.
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Figure 6: Variation of the mean attention distance span for the attention heads across the
encoding layers with respect to the MLMHA models: (a) M-00, (b) M-01, (c) M-10, and (d)
M-11.

input tokens. Similarly, the entropy of the attention distribution also varies across the
layers and even for attention heads within the same layer. This is consistent with the
findings of (Vig and Belinkov, 2019; Ghader and Monz, 2017). Figs. 8 and 9 show the
mean average attention distance and entropy for all the self-attention heads across the
layers of the encoder respectively. Each plot compares between the Transformer base-
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Figure 7: Variation of the entropy of attention distribution for the attention heads across the
encoding layers with respect to the MLMHA models: (a) M-00, (b) M-01, (c) M-10, and (d)
M-11.

line and aMLMHAmodel, the variations of the attention distance span and attention
entropy across the encoding layers.

For the Transformer baseline, the majority of attention heads with a higher mean
attention span and a more diverse attention distribution are across the first layer. But
a highermean attention distance does not always imply diverse attention distribution.
In the subsequent layers, there are a number of attention heads with a higher distance
span but with much more concentrated attention weights distribution. For example,
layer 2 attention head 1 and head 8 have the highest mean attention spans (14.34 and
14.87 respectively) but with the lowest mean entropy scores (0.0085 and 0.0094). As
noted by (Vig and Belinkov, 2019), attention heads with higher mean attention dis-
tance span concentrate their attention on words in repeated phrases at different lo-
cations within the input sentence. This could explain their lower entropy of weight
distribution across the sequence of input tokens. Attention heads with diverse or con-
centratedweight distribution and lower attention distance span focusmore on nearby
tokens. Clearly, these heads with varying mean attention distance and entropy allow
the Transformer to efficiently learn/capture variable structural information across its
layers. This explains the superiority of the Transformer model over other seq2seq ar-
chitectures such as RNN (Luong andManning, 2015; Bahdanau et al., 2015) andCNN
(Gehring et al., 2017).
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Figure 8: Variation of the average mean attention distance with respect to each encoder layer
for the Transformer baseline model and our MLMHA models: (a) M-00, (b) M-01, (c) M-10,
and (d) M-11. Each plot represents the average of all the attention head mean distance with
respect to each encoder layer and model.

For the M-ij models, the impact of the different MLMHA approaches (employed
by the decoder subnetwork) on the self-attention unit within the associated encoding
layer is of greater interest. As shown in Figs. 6 to 9, exposing all the encoding layers
to the decoding subnetwork can alter how the source information is learned across
the encoder subnetwork. The change in terms of the average mean attention distance
span and entropy of attention weight distribution for the multiple attention heads
across the different encoder layers is dependent on the value of the Ū0 as evident
from Figs. 8 and 9. For example, as displayed in Figs. 9a and 9b and Figs. 8a and 8b,
the joint-attentionweightmodels (M-00 andM-01) have concentrated attention heads
with shorter attention distance span across the intermediate layers 3 ≤ l ≤ 5. These
intermediate layers are used to learn the short-range (local) contextual information
within the neighborhood of the input source tokens. In contrast, the layer-specifi-
atention weight models (M-10 and M-11) employs the first few layers (l ≤ 3) to learn
the short-term information whilst the upper layers model the long distance interac-
tion between the input tokens as shown in Figs. 9c and 9d and Figs. 8c and 8d. Over-
all, each MLMHA strategy is shown to modify how source information is captured
across the multiple attention heads and layers in the encoder as shown by attention
distance and entropy of attention weight distribution. This further enhances the net-
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Figure 9: Variation of the average entropy of head attention distribution across the encoding
layers for the Transformer baseline model and our MLMHA models: (a) M-00, (b) M-01, (c)
M-10, and (d) M-11. Each plot represents the average entropy of head attention distribution
per encoder layer.

work’s performance at learning the source semantic information needed to improve
the translation quality.

7.4. An ablation study: Encoder Layer Dependency

The translation performance of the MLMHAmodels reported in Table 2 are based
on exposing all the encoding layers to the decoder (i.e. n = L). However, it is worth
understanding the contribution of each encoder layer to the overall performance of
each model. To this end, the translation quality of each MLMHA model is evaluated
while masking the entry in Fs corresponding to the encoder layer of interest. Here,
masking an entry in Fs implies replacing the corresponding fi with zeros. If the per-
formance without the output of the encoder layer l (i.e. Hl

e) is significantly worse
than the full model, then the Hl

e is clearly important. In contrast, Hl
e is considered

redundant if the difference in translation performance is comparable.
Table 7 shows the difference in performance of our proposed models for each

masked output of the encoder. As shown in most cases masking one of outputs of the
encoder layers significantly degrades the translation quality. For example, without
the output of the first encoder layer, the performance of both M-00 and M-01 model
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Models
Layer M-00 M-01 M-10 M-11

1 -15.25‡ -24.99‡ -0.83‡ -0.26
2 -0.49† -0.19 -1.32‡ -1.13‡
3 -0.27 -0.09 -1.05‡ -0.83‡
4 0.03 0.13 -1.00‡ -1.43‡
5 -1.79‡ -0.81‡ -1.50‡ -1.34‡
6 -9.85‡ -1.49‡ -1.09‡ -0.10

Table 7: Difference in BLEU scores for each encoding layer masked (i.e. replacing the
corresponding fi ∈ Fs with zeros) with respect to the MLMHA models when n = L.
“‡” and “†” indicate statistically significant difference with ρ < 0.01 and ρ < 0.05,
respectively. The base-BLEU scores for the M-00, M-01, M-10 and M-11 are 28.80,
28.54, 29.08 and 28.51, respectively.

decreases by −15.25 BLEU and −24.99 BLEU, respectively. Surprisingly without the
output from the encoder layer 4, there is a marginal improvement (not statistically
significant) in the translation quality of these models. Notably, the source representa-
tions from first and final encoding layers are shown to be redundant to the translation
performance of the M-11 model, however, the outputs from these layers have statisti-
cally significant impact on the overall performance of the M-00, M-01 and M-10 mod-
els. Overall, the results in Table 7 demonstrates that forM-00, M-01 andM-11models,
the outputs from some of the encoder layers are redundant during testing and can be
removed without significantly reducing the translation quality. Consistent with the
observation in Section 7.2, the translation performance of the M-10 model is shown
to be highly dependent on source representations from all encoder layers. Removing
the output of any of these layers cause statistically significant change in performance.

8. Conclusion
In this work, the performance of the Transformer model is improved by exploit-

ing multiple source representations captured by different encoding layers. Specifi-
cally, the decoding subnetwork is allowed direct access to the entire stack of encod-
ing layers to extract better source-target contextual information. This technique also
improves the flow of gradient information between the two subnetworks. Experi-
mental results on IWSLT tasks (Spanish-English and English-Vietnamese) and on the
WMT’14 English-German translation task show that the proposed MLMHA module
can further improve the performance of the Transformer baseline. However, the anal-
ysis performed reveals that the performance gain is dependent on the values of the
binary vector Ū and n (the number of encoding layers considered by the MLMHA
module). Overall, the MLMHA with joint-attention weight (Ū0 = 0) showed better
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generalization than with Ū0 = 1 across all the translation tasks under consideration.
Further analysis also reveals that directly exposing the layers of the encoder subnet-
work alters significantly how the global and local source contextual information is
captured by the self-MHA sublayer employed within each encoder layer.

Futureworks include evaluating the performance of theMLMHAmodule on other
NLP tasks such as document summarization and machine reading comprehension.
Another interesting direction will consider investigating the potential performance
gain from the combination of theMLMHAmodule andLayerAggregation approaches
such as the Transparent Attention (Bapna et al., 2018).
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