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Abstract
Word association is an important part of human language. Many techniques for capturing

semantic relations between words exist, but their ability to model word associations is rarely
tested in a real application. In this paper, we evaluate three models aimed at different types of
word associations: a word-embedding model for synonymy, a point-wise mutual information
model for word collocations, and a dependency model for common properties of words. The
quality of the proposed models is tested on English and Czech by humans in an online version
of the word-association game “Codenames”.

1. Introduction

Association is one of the basic mechanisms of human memory. It is based on the
past experience of a man and existing relationship between the phenomena of the
real world (Morkovkin, 1970). A well-known word game called “Word associations”
involves an exchange of words that are associated together. Its idea is based on the
connection and production of other words in spontaneous response to a given word.
In another version of the game, the associations between words must be strictly obvi-
ous, rather than the usual “first word that comes to mind”, which can often require
explaining how it is connected with the previous word.

Word associations can also be used in psychology or psychiatric evaluations. Jung
(1910) theorized that people connect ideas, feelings, experiences and information by
way of associations. Gough (1976) believes that word association can reveal some-
thing of a person’s subconsciousmind as it showswhat things they associate together.
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Words can be associated in many different ways, some of them are listed in the
following overview:

• Synonyms: A synonym is a word that expresses the same concept as another
word. For example, drink is a synonym ofbeverage.

• Hypernyms: We say that A is a hypernym of B if A describes a set of concepts
thatB belongs to. For example, fruit is a hypernymof apple because apple belongs
to the set of objects described by the word fruit.

• Hyponyms: The opposite of a hypernym. The word apple is a hyponym of fruit
because apple is a type of fruit.

• Co-hyponyms: The co-hyponym relation refers to words that have a hypernym
in common such as knife and fork which are both hyponyms of the word utensil.

• Meronyms: A meronym is a word that is a part or member of another. For
example, sentence is a meronym of text because a sentence is usually part of a
text.

• Holonyms: A holonym is the opposite of a meronym. Text is a holonym of the
word sentence.

• Collocate: A collocation is a set of words that co-occur more often than would
be expected by random chance. The individual members of such a set are called
collocates. For example, the individual words code and source are collocates be-
cause of their frequent co-occurrence in the compound word source code.

Word associations can also vary in strength based on the direction of the associa-
tion. For example, the word Eiffel would be very strongly related to the word tower:
when someone says Eiffel, tower immediately springs to mind. However, this relation
does not hold as strongly when inverted. If someone says tower, words like building
and tall spring to mind much more quickly than Eiffel. Similarly, brick is related to
tower, but not to Eiffel. As such, word association cannot be treated as a symmetric or
transitive relation.

Modelling these different types of word associations computationally is very chal-
lenging. There are many ways in which words can be associated. Gathering all of
these associations for each individual word in a language is an immense task. In fact,
we argue that it is infeasible to encode all such relations in manually constructed on-
tologies and databases. Two of them are given in Section 2.

Instead, in Section 3, we propose three unsupervised methods for modelling dif-
ferent types of word associations using large amounts of text as a source: a word-
embedding model for synonymy, a point-wise mutual information model for word
collocations, and a dependency model for common properties of words.

Themain goal of thiswork is to evaluate the performance of the proposedmethods.
Since we do not have any appropriate annotated data, we test our models directly by
humans through a simplified online game called “Codenames”. It is a single-player
version of a very popular word association board game of the same name. In short,
one player gives one-word hints to some of the words given on the board and the
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other player guesses. The game itself and the evaluation procedure is described in
Section 4.

In Section 5wedescribemethods on how to employ the associationmeasures in the
Codenames game. In Section 6 we provide a detailed analysis of the performance of
our models and two ensemble models which try to combine all the models together.
A concise overview of our findings is given in Section 7. We also mention several
promising directions for future research.

2. Association Databases

One of the approaches for computational word association that we considered is
the use of ontologies and databases. We could rely completely on the word associa-
tions provided bymanually entered data to build ourmodels. Even thoughwe finally
decided not to use them in our system, we detail two of these approaches below.

2.1. WordNet

WordNet (Fellbaum, 1998) is a collection of synsets grouped into a semantic hi-
erarchy. A synset is a collection of one or more words with the same meaning, i.e.
synonyms. Because of the information it encodes, it excels at strict relations such as
hypernyms, hyponyms, meronyms and holonyms. This would be a great addition
to our application and a fruitful area for future research on computational models
of word associations. For example, continent would be a useful hint for both Africa
and Australia. However, it falls short when considering more free associations such
as Frodo and ring, which cannot be classified as either hypernym, hyponym, meronym
or holonym and is thus not captured in WordNet.

WordNet is not suitable for our purposes because it does not capture as many rela-
tions as wewould like and is not as extensible as data-drivenmethods, which are able
to capture even pop culture references such as the relation between Frodo and ring.

2.2. University of South Florida Free Association Norms

The University of South Florida Free Association Norms (Nelson et al., 2004) is
a database of free associations containing 72,000 word pairs collected from almost
750,000 responses produced by over 6,000 participants. More than 5,000 stimulus
words were tested. While this is a great resource for human responses on word as-
sociation, it has too many gaps to be suitable for a computational model. Even when
we look at all the responses in addition to the 5,000 stimulus words, words that occur
in the original Codenames board game such as Amazon, Greece and horseshoe do not
occur in the database at all. These gaps can only be filled by repeating the experiment
with these words as stimulus words. Moreover, this database exists only for English,
limiting the applicability of this approach for other languages.

37



PBML 114 APRIL 2020

Although it is not suitable as a basis for a complete computational model, it is still
useful as a resource on human word association. The database of word associations
could be used to compare how similar the predictionsmade by a computationalmodel
are to human-level associations. While we do not perform this particular comparison
ourselves, it could serve as an interesting evaluation metric for future work.

We think ontologies and association databases contain too many blind spots and
often fail to encode unorthodox or out-of-the-box relations that would nonetheless be
considered valid associations by humans. Building these resources also requires a lot
of manual work and knowledge of the language involved, which becomes a recurring
cost as semantic shifts occur in the existing vocabulary and new words enter the lan-
guage. As such, we turn our focus towards automated methods for the extraction of
word associations in the rest of this paper.

2.3. Other Related Works

Thawani et al. (2019) propose a novel word embeddings evaluation task by em-
ploying a large word association dataset called Small World of Words (De Deyne et al.,
2018). It contains Word association and participant data for 100 primary, secondary,
and tertiary responses to 12,292 cues, collected from over 90,000 participants.1

3. Methods

In this section, we propose three data-driven methods that can be used for mea-
suring how much two words may be associated each to other.

We are not aware of any work in which more complex word-association models
were built. We know of only one earlier attempt in this area, which is a Master thesis
byObrtlík (2018). However, they useword embeddings, which cover only synonymic
relations. We describe this method in Section 3.1. Human word associations are not
limited to this type of relation alone. Take, for example, the words ice and cream in a
collocate such as ice cream. Therefore, in Sections 3.2 and 3.3, we propose two other
methods based on word collocations.

3.1. Word Embeddings

Word embeddings are vector representations of words that are used in neural net-
works processing of textual data. They capture semantic similarity: words that occur
in a similar context have a similar meaning and are grouped together in the word-
embeddings vector space. Word embeddings capture synonymy, which makes them
useful for word association. To create such embeddings efficiently, Mikolov et al.
(2013) introduce the skip-gram model with negative sampling. Since then many ad-
ditions to this technique have been proposed, such as adding topic information (Liu

1https://smallworldofwords.org/en/project
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et al., 2015) and deriving the embeddings from dependency-based contexts (Levy
and Goldberg, 2014).

For ourword-associationmodel, we useword embeddings enrichedwith subword
information as described by Bojanowski et al. (2017). This method is called fastText
and adapts the skip-gram model with negative sampling to represent a word as a
combination of the character n-grams it contains. The benefit of this approach is that
the representations of character n-grams are global and shared between all words, so
more accurate representations for rare words are obtained. The fastText embeddings
are available in many languages, which makes it easier to build the same model for
other languages.2

The pre-trainedmodel provides over 2.5millionword embeddings for English and
600,000 for Czech. We cut down on the size of this collection considerably to limit the
computation time needed to compare against all of these embeddings when scoring a
word. The model is ordered according to the word frequencies. To avoid clutter and
make sure that we do not include words that people might not know, we limit the
number of word embeddings in our model to the top 10, 000 words, sorted by their
unigram frequency in Wikipedia.

For measuring similarity of two given words a and b represented by word embed-
dings A and Bwe compute the cosine distance as follows:

cosine_distance(a, b) =
∑n

i=1 AiBi√∑n
i=1 A

2
i

√∑n
i=1 B

2
i

3.2. Sentence-level Collocations

A different type of word association may be covered by computing word co-occur-
rences. We can see this when we look at the collocation Eiffel Tower. When somebody
says “Eiffel”, we quickly think “Tower”.

To find these collocations we need a large amount of text and ameasure of associa-
tion. The text is taken from the training sections of the CzEng 1.7 corpus (Bojar et al.,
2016).3 CzEng is a large parallel corpus for Czech and English, containing roughly
57 million sentence pairs and over 600 million words. The corpus bundles a large
amount of data, including but not limited to text from subtitles, EU legislation, fiction
and web pages.

For measuring word collocations we use pointwise mutual information (PMI)

PMI(a, b) = log
2

p(a, b)

p(a)p(b)
,

2https://github.com/facebookresearch/fastText/blob/master/docs/pretrained-vectors.md
3http://ufal.mff.cuni.cz/czeng/

39

https://github.com/facebookresearch/fastText/blob/master/docs/pretrained-vectors.md
http://ufal.mff.cuni.cz/czeng/


PBML 114 APRIL 2020

where p(a, b) is the probability that b occurs after a and p(a) is the probability of
seeing a. For practical purposes we make a slight modification to the usual definition
of PMI and say that p(a, b) is the number of times b occurs before or after a. This way
the direction of the relation does not matter for the strength of the association.4

Experimentallywe find that simple bigrams as described above do not form a good
model. Finding a good collocate for one word is easily done, but finding good collo-
cates formultiplewords, is rarely successful because there is too little overlap between
collocates. What is a frequent collocate for one word, is almost never a frequent col-
locate for another. The problem here is that related words are often separated by
function words in the text, which means they do not form a bigram and are not seen
as a collocation.

To solve this we propose a collocation model over sentence-level word pairs. We
define p(a, b) as the probability that a and b occur in the same sentence. This provides
a much broader scope for co-occurrences, which increases the chance of overlapping
collocates when trying to find a high scoring collocate for multiple words. The up-
side of sentence-level collocations is that the model contains more word pairs, which
means we will discover pairs we have not seen in the simple bigram method. For the
bigrams we have seen before, we expect to get PMI values that are closer to the real
distribution.

Our method works with morphological lemmas of words. We introduce a fre-
quency cutoff5 into our model, if a unigram has a lower frequency than this cutoff, we
exclude it. In our experiments, we use a frequency cutoff of 1,000, which means the
model does not consider hints that occur less than one thousand times in the corpus.
Such a model takes roughly the 16,000 most frequent words in CzEng.

3.3. Dependency-level Collocations

In the sentence-level model, we considered many word pairs, many of those have
nothing in common. To reduce noise, we introduce dependency-level collocationsmodel,
in which the considered word pairs are restricted to words between which there is a
dependency relation. We define count(x, y) as the number of times y and x occur in
the same sentence and have a dependency relation.

4Arthur will be just as related to king as king is to Arthur. Even though it might be feasible to extract
the direction of the relation from the syntactic makeup of the collocation or its syntactic context, this falls
outside of the scope of this paper. We instead choose to generalize and say that the co-occurrence of two
words counts equally towards either direction regardless of context.

5The frequency cutoff is an important factor in the quality of themodel. Setting the cutoff too high results
in a model that is too general and cannot accurately target any particular word on the board. Setting the
cutoff too lowwill result in very obscure words entering the model, which is problematic if these words fall
outside the vocabulary of a player. A cutoff that is too low will also suffer from data sparsity. For example,
if a word occurs only once or twice in the data, it has a high PMI value for the words it co-occurs with,
even though the real distribution might be much different. In this case, the PMI value is most likely not
representative of the actual distribution.
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The CzEng corpus we use has already been annotated with syntactic and semantic
information. The annotation is separated into the analytical layer and the tectogram-
matical layer. The syntactic trees were created automatically by the Treex6 pipeline.
For our purposes, we use the tectogrammatical trees, which exclude function words
so content words are related through dependency edges directly. This is very useful
for our dependency-level method. We work only with tectogrammatical lemmas and
ignore all special tectogrammatical nodes with lemmas starting with a hash sign (#).
Additionally, we strip away information about reflexivity of verbs from the lemmas
which is encoded with _se and _si.

The dependency-level collocations are bidirectional, the hint can be both the de-
pendent as well as the head of the dependency relation. Whether the direction of the
dependency relation plays a role in the quality of the model, would be an interesting
direction for future research.

4. Evaluation

The task of word association is the retrieval of associated lexical items in response
to a word prompt. In order to make this task more appealing to participants, we
test word association by humans in the context of a word association game called
Codenames (Chvátil, 2015).7 The game is available in many languages, but we focus
our efforts on English and Czech because these languages are well represented in our
group of participants.

4.1. Codenames Board Game

The game is played in two teams of 2 ormore players, each team has one spymaster
and one or more agents. The game board consists of 25 cards with a word written on
it. There are nine cards that belong to the team that starts the game, eight that belong
to the opposing team, seven neutral cards and one assassin card, which loses the game
for the team that selects it. Both spymasters get to see which cards belong to which
team, but the agents do not. Each turn one of the spymasters gives a hint to their
agents for one or more cards that belong to their team. The spymaster also gives a
number that signals to how many of their own cards the hint is related. The agents
then proceed to guess cards until they select one that does not belong to their team
or they voluntarily end their turn because they do not see any more cards that are
related to the hints that their spymaster has given.

The goal of the game is to turn over all of the cards that belong to your team.
As a spymaster, you help achieve this goal by giving hints to your agents that are
associated with your own cards and unambiguous as possible. As an agent, you will

6http://ufal.mff.cuni.cz/treex
7https://czechgames.com/en/codenames/
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Figure 1. A regular game of Codenames

try to turn over as many cards of your own team as possible using the hints given
by your spymaster, without selecting any cards that do not belong to your team and
avoiding the assassin at all cost. The game ends when either team has turned over
all of their cards, in which case that team wins, or one of the teams has selected the
assassin in which case that team loses.

A regular game of Codenames along with the board pieces used to play the game
can be seen in Figure 1. The blue and red spy cards are used to cover words that have
been selected during the game. The card in the top left corner is visible only to the
spymasters and showswhich cards belong to which team. There are some restrictions
to the hint that the spymaster can give. The hint has to be one word and cannot be
any morphologically related form of a visible word on the board. For example, if one
of the words on the table is fly and it has not been selected yet, it disallows hints such
as fly, flown, flight and butterfly.

The aim of the spymaster is to provide hints that are related to the cards belonging
to their team. When playing the game with other people, it can be quite challenging
to give a good hint for multiple words, say mozart, 3, and even more so to correctly
guess symphony, concert and pianowhen you get such a hint as an agent.

4.2. Our Implementation of the Game

There also exists a two-player variant, which is detailed in the rule book of the
board game.8 For our purposes, we adapt this two-player version into a version for
one human player (the agent) and a computer (the spymaster) who gives hints to
the human player. The game is made more regular by putting the computer and the
player on the same team and introducing a dummy team that opposes them. The

8https://czechgames.com/files/rules/codenames-rules-en.pdf

42

https://czechgames.com/files/rules/codenames-rules-en.pdf


Micha de Rijk and David Mareček Modelling Word Associations (35–57)

Figure 2. Screenshot of our online implementation of the game.

dummy team turns over one of their own cards at random during their turn and then
passes the game back to the player.

Our implementation of the game as a tool for evaluatingword-associations is avail-
able online9 and the code is available on GitHub10. It includes code for running the
web application, generating models and the anonymized data from our experiments.
A major focus while designing the application was to increase the number of games
played, so we can collect more data for evaluation.

A screenshot of our implementation is given in Figure 2. Weuse blue for the players
own cards, red for the enemy team’s cards, yellow for the neutral cards and black to
indicate the assassin. Gray cards have not been selected by the player yet and can be
of any type. The status bar on the top right shows the name of the AI that generates
the hints. On the bottom left the player can see the current hint as well as a history of
the previous hints provided by the AI. On the bottom right we show the current turn,
the score that the player would achieve if they guessed all of their cards in this turn
and the number of own cards that the player has left. “End turn” allows the player to
end their turn without selecting an incorrect card.

4.3. Evaluation Metrics

We establishmicro-averaged precision, recall and f-score formeasuring the quality
of individual models tested on the Codenames game. The true positives are the cards

9https://ufal.mff.cuni.cz/david-marecek/codenames/
10https://github.com/mderijk/codenames
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clicked by the playerwhichwere their own, false positives are the cards that the player
clicked which were not their own, and the false negatives are the cards that the player
should have clicked but didn’t.

We also provide a baseline win rate for completeness. Although this statistic is
useful, it also demands much more data to arrive at accurate results. As such, it is
less suitable for our purposes since gathering enough data to compute this measure
would require a lot of time. We therefore do not consider this metric for our models.
By considering the decisions taken by the player instead of tallying howmany games
were won and lost, we are able to provide more accurate metrics and evaluate models
using fewer games.

5. Aggregation of Scores

The three methods proposed in Section 3 give us a similarity score: a number that
describes howmuch two givenwords are associatedwith each other. However, for the
purpose of evaluation, we will need to generate hints that are associated potentially
with multiple words at once and not associated with the enemy words. Therefore,
we have to find a way to aggregate these similarity scores into one number, which we
will call the aggregate score. We also refer to aggregation as weighting because of the
weights that are applied to the similarity scores when they are fed to the aggregation
method.

Our general strategy is to split the similarity scores into four groups: own, enemy,
neutral and assassin. Each containing the similarity scores for the hint and a word
from the player’s own cards, the enemy’s cards, the neutral cards or the assassin cards,
respectively. Another categorization we make is a more simple one. We divide the
words on the board into positive and negative words, where the player’s own words
are the positive words while all other words are the negative words.

The simplest aggregationmethod is to sum the similarity scores for all the positive
words. This works well because the more related a word is to the hint the more it
contributes to the aggregated score. The problem with this approach is that it does
not take the negative scores into account at all. For a hint with 3 positive words with a
score of 10, there might also be a negative word with a score of 15. This is problematic
because a playerwill be very likely to choose the negativeword over one of the positive
words, thus making an incorrect decision and wasting a turn. This last point reveals
an important point in the decision-making process: selecting certain types of cards is
worse than others. Thus, when choosing a hint, we should also factor the type of card
into the equation.

For this purpose, we introduceweights. Theseweights consist of four integers, one
for player, enemy, neutral and assassin scores. The similarity scores for each category
are multiplied by their category-specific weight before they are fed to the aggregation
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method.

similarity_score(hint,word) ∗weight(category(word))

For example, if the model is considering the hint apple, and there is the positive
word pie, which has a PMI score of 14.051 for apple, and a negative word tasty, let’s
say the assassin, with a similarity score of 9.468. Now we apply the weights, say 1
for positive words, and 2 for negative words. The similarity score of the assassin in
relation to the hint becomes 18.936 instead of 9.468, and the score for the positiveword
is still 14.051. The aggregationmethod can then decide that 18.936 > 14.051 and reject
the hint because the risk that the player will select the assassin is too high.

In the next sections, we show several weighting schemes which can be applied to
the relatedness scores of the models (PMI and cosine distance) to find the best hint in
a game. The different weighting schemes are different functions for aggregating the
similarity scores of the words in a game given a potential hint. They give different pri-
orities to different types of cards. All our models use the same weights: the positive
and the neutral words are multiplied by 1, the negative words by 1.2, and the assas-
sin word is multiplied by 2. We would really like to avoid the assassin because this
ends the game immediately, hurting our recall considerably. We also want to avoid
clicking enemy cards because it costs the player a turn. Clicking a neutral card is not
as bad because it is similar to getting a new hint by ending the turn and we also get
to eliminate another card from play without penalty.

5.1. Combined Maximum

To calculate CombinedMaxwe first determine a threshold by taking themaximum
similarity score from the list of negative words N. We then sum the scores from the
list of positive words P that are above the threshold to get the aggregate score.

CombinedMax(P,N) =

P∑
x

{
x if x ≥ max(N)

0 otherwise

This way a hint only scores well if it relates to many words that are more similar to
the hint than the most similar negative word. This implicit negative threshold is the
most distinctive feature of this model.

This method is very sensitive to the weights we apply to the negative words. If
we set the weights too high, this method is very good at finding the blind spots of
a model. For example, for a collocations model, it might find a hint for which there
is one positive word with a high PMI score while the rest of the scores are zero. The
reason that this happens is that when the weights are high, there are very few positive
words that can cross the implicit negative threshold if there is a negative word with a
score higher than zero. Therefore, the chance that the model will find a hint for which
all words have a PMI value of zero except for one positive word, is very high.
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5.2. Mean Difference

The Mean Difference method simply takes the difference between the averaged
score of the positive cards P and the averaged score of the negative cards N.

MeanDiff(P,N) =

∑P
x x

|P|
−

∑N
y y

|N|

The problem with Mean Difference arises when there is a high variance within
one of the classes. For instance, it does not account for situations where there is one
negative word that has a really high similarity score with the hint and overshadows
the positive words leading the player to click an incorrect card. As such, it is not as
good at the start of the game when the mean can obscure negative words with high
similarity if it is surrounded by many negative words with low similarity to the hint.
Near the end of the game, this method becomes much better because each peak in
similarity of individual words is reflected more strongly in the mean of either class.

5.3. Most Similar

This weighting method is different from the others since it does not aggregate
the similarity scores of the positive and negative words. Rather, the most_similar
method in Gensim11 (Řehůřek and Sojka, 2010) works by performing vector arith-
metic, adding the embeddings of the positive words to each other and subtracting the
negative vectors. The method then returns the words whose vectors are closest to the
resulting point.

This method performs well in targeting positive words. However, because it sub-
tracts negative vectors and literally ”stays away” from the negativewords, it can easily
suffer fromone simplemistake: including toomany negativewords. In otherwords, it
assigns too much weight to negative words and starts generating hints that are specif-
ically not referring to negative words, rather than providing hints that are similar to
the positive words. To resolve this issue we let it take only the assassin word into
account for the negative words.

5.4. Top-n

The top-n (n ∈ 1, 2, 3) methods are an adaptation of the CombinedMax function.
The formula is the same, except for the fact that P is restricted to the n highest values
in P. The distributional characteristics of these functions are very interesting because
we have some control over its behaviour by setting n. If we take the Top-1method, we
will simply get the hint with the highest similarity score among all pairs of hint and

11https://radimrehurek.com/gensim/
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target words. This results in hints with very large similarity scores which are usually
highly associative. The Top-2 method is generally more mixed, with one hint with a
high similarity score and one hint with a moderate similarity score. And if we look at
the Top-3 method, we often get three words with moderately high similarity scores.
Of course, there is a lot of variation depending on the number of words still on the
board. The top-n methods are still similar to CombinedMax in the sense that they
only have an upper bound n and no lower bound. A top-n is also allowed to give
hints for less than n words.

6. Results

In this section, we show the evaluation results of the proposed word association
models and aggregation methods. Since we used an iterative approach in the design
of our methods, we dedicate one section to each iteration of models. In Section 6.1
we establish a baseline for our models by Monte Carlo simulation. Then we analyze
the results of the first test run in Section 6.2 and discuss the improvements we made
to our models in Section 6.3. The Top-n models are combined in Section 6.4. Finally,
we discuss the performance of a combination of a word embedding and collocation
model in Section 6.5.

6.1. Random Baseline

The baseline is set by a scenario in which hints do not provide any help to the
player whatsoever, which is equivalent to the situation where there are no hints at all
and cards are chosen randomly by the player.12 Weperform aMonte Carlo simulation
of playing the game by repeatedly selecting cards at random. We simulate 10 million
games in this way, from which we obtain the results displayed in the first row of Ta-
ble 1. The baseline for the win rate, the chance to win the game by selecting cards at
random, is 0.39%. This is a very low number, on average this means the player wins
only one game out of 257 games.

If the generated hints provide any semantic meaning related to the player’s words
more so than to the other team’s words, we would expect the average win rate to be
higher than the baseline. The same can be said for precision, recall and f-score.

6.2. Initial Models

The results for our initial models are shown in Table 1. All of our models perform
above the baseline, which means they are better than random chance. Globally, it
seems that better results were obtained for Czech. We hypothesize that this is caused

12The end turn button that is present in the game is not modelled as a possible action because a player
clicking cards randomly does not gain any additional information from getting a new hint, while the op-
posing team does have the opportunity of turning over an additional card.
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Player decisions
Setup CZ EN

Aggregation P R F1 P R F1

Random baseline
— 0.389 0.339 0.362 0.389 0.339 0.362

Word embeddings
MostSimilar 0.616 0.753 0.677 0.563 0.607 0.584
CombinedMax 0.558 0.578 0.568 0.567 0.606 0.586

Sentence-level collocations
CombinedMax 0.507 0.490 0.498 0.500 0.466 0.482

Dependency-level col.
CombinedMax 0.629 0.654 0.641 0.547 0.497 0.521
MeanDiff 0.575 0.636 0.604 0.546 0.544 0.545

Table 1. Micro-averaged precision, recall and f-score for our initial models.

by the fact that our group of English speaking players consists mostly of second lan-
guage learners, while most of the players for Czech were native speakers.

Comparing the f-scores for Czech, we can see that the best method is theWordEm-
beddings with MostSimilar aggregation (0.677), followed by the two Dependency
level collocations models (0.641 and 0.604), and then the WordEmbeddings model
with CombinedMax aggregation (0.568). For English, the best models are both ag-
gregations of WordEmbeddings (0.584, 0.586), followed by Dependency-level collo-
cations (0.521, 0.545).

The Sentence-level collocations were outperformed by the other two models for
both languages with f-scores of 0.498 and 0.482. Even though we expected that the
lack of data for the dependency model might hurt its performance, it seems that the
constraints on the word pairs lead to more accurate results. In the following evalua-
tions, we do not continue with the Sentence-level collocation model, since it did not
prove to be promising. Although it contains many more word pairs, dependencies
seem to capture more accurate relations between words thus producing better hints.

6.3. Improved Models

In this section, we improve our dependency and word embedding models by in-
troducing new aggregation methods. We start with the Top-1 aggregation method,
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Player decisions
Setup CZ EN

Aggregation P R F1 P R F1

Random baseline
— 0.389 0.339 0.362 0.389 0.339 0.362

Sentence-level collocations
CombinedMax 0.507 0.490 0.498 0.500 0.466 0.482

Dependency-level col.
CombinedMax 0.629 0.654 0.641 0.547 0.497 0.521
MeanDiff 0.575 0.636 0.604 0.546 0.544 0.545
Top-1 0.722 0.633 0.675 0.693 0.678 0.685
Top-2 0.621 0.778 0.691 0.646 0.711 0.677
Top-3 0.552 0.644 0.595 0.655 0.611 0.632

Word embeddings
MostSimilar 0.616 0.753 0.677 0.563 0.607 0.584
CombinedMax 0.558 0.578 0.568 0.567 0.606 0.586
Top-1 0.789 0.789 0.789 0.768 0.735 0.751
Top-2 0.608 0.690 0.647 0.614 0.735 0.669
Top-3 0.574 0.626 0.599 0.667 0.786 0.722

Table 2. Micro-averaged precision, recall and f-score for our improved models.

which always tries to find a hint for only one word.13 At this point, we introduce a
number that shows howmany target words the hint relates. We show this number to
the player together with the hint for all models other than the initial models evaluated
in Section 6.2. For the Top-2 and Top-3 methods, it might be the case that they do not
manage to find a hint for the intended amount of words. In such cases, the number
provided by the model will reflect the actual number of words that it has managed to
target with the given hint. The results are shown in Table 2.

During testing, we notice a major effect of knowing the number of words that the
system is hinting at. The player now knows when they have exhausted a hint and can
stop using it. If the hint was for only one word and the player has selected this card,
they will now press the end turn button to gain a new hint whereas previously they
might have continued guessing using the same hint which would have been similar
to random guessing.

13It is not possible to win the game this way through association alone because the maximum number
of hints a player can get is 8, which can be achieved by manually ending the turn 7 times in a row. Even
though this is not as fun for our participants, it provides a useful baseline.
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For the Dependency model, we can see that the Top-1 and Top-2 models provide
a significant improvement over the previous models for both Czech and English. The
Top-3 model outperforms the original CombinedMax only for English, while it is sig-
nificantlyworse for Czech. The Top-2 dependencymodel achieves a noteworthy recall
compared to the other dependency models. In this case, high recall means that play-
ers on average getmuch closer to turning over all of their cards andwinning the game.
The Top-1 models achieve the highest precision across the board. This is not surpris-
ing, it is easy to give a good hint for one word, but much harder to give a good hint
for two or more words and still have the player guess both of them.

For the WordEmbedding models, we see that the Top1 model performed best for
both Czech and English. The Czech Top-3 model performs poorly similar to the De-
pendency models, however, the English Top-3 model performs very well. The Top-2
word embedding models are considerably worse than their Top-1 counterparts, con-
trary to what we see for the dependency models.

We observe across all models that the Top-1model has higher precision than recall
and for the Top-2 and Top-3 models this relation swaps and the recall is higher than
the precision. The only anomaly is the English Top-3. Curiously, its precision is much
higher than for the Czech model.

6.4. Threshold Models

Wewould like to build a model that can give hints for 1, 2, and 3 words depending
on the situation. Naturally, we would like to prioritize hints that target more words,
sowe propose a thresholdmodel which gives hints using the Top-3model while these
hints score above some threshold and switches to the Top-2 model when no hint from
the Top-3 model passes this threshold anymore. Similarly, it will switch to the Top-1
model if the score threshold for the Top-2 model can no longer be surpassed by any
hint. In order to build thismodel, wewill first need to determine adequate thresholds.

To determine these thresholds we studied the decisions made by players playing
with the Top-1, Top-2, and Top-3 dependency models. For each method, we manu-
ally select a threshold value that reasonably separated hinted positive cards from the
others.

We create the thresholdmodels Top-N for both Dependency-level collocations and
Word embeddings. A model consists of three submodels which we have already
tested individually so we can see if there is an improvement. Hints are chosen by
querying the Top-3, Top-2 and Top-1 models in that order and selecting the first hint
from the model that passes its respective threshold, defaulting to the Top-1 model if
none of the thresholds is passed.

Table 3 compares the results of the Top-Nmodels and individual models. The De-
pendency model performed very poorly, it did not manage to outperform even the
worst individual model, which was the Top-3 model. The performance of the En-
glish model is exceptionally bad when contrasted with the performance of its worst
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Player decisions
Setup CZ EN

Aggregation P R F1 P R F1

Random baseline
— 0.389 0.339 0.362 0.389 0.339 0.362

Dependency-level col.
Top-1 0.722 0.633 0.675 0.693 0.678 0.685
Top-2 0.621 0.778 0.691 0.646 0.711 0.677
Top-3 0.552 0.644 0.595 0.655 0.611 0.632
Top-N 0.598 0.585 0.591 0.570 0.476 0.519

Word embeddings
Top-1 0.789 0.789 0.789 0.768 0.735 0.751
Top-2 0.608 0.690 0.647 0.614 0.735 0.669
Top-3 0.574 0.626 0.599 0.667 0.786 0.722
Top-N 0.673 0.623 0.647 0.738 0.679 0.707

Table 3. Micro-averaged precision, recall and f-score for the threshold models.

submodel and performs much worse than the Czech model in this regard. We hy-
pothesize that the lower threshold for the English Top-3 model has contributed sig-
nificantly to this poor performance. For the Czech model, there was a much smaller
gap between the threshold of the Top-3 and Top-2 model. In addition, we can say that
the threshold method has not had the desired effect. While we would expect that the
Top-N model would perform equally or better than the worst performing model, our
English dependency model performed much worse than the worst individual model.

For the WordEmbeddings model, the picture looks slightly better. The Top-N
models perform worse than the best individual models, but better than the worst in-
dividual model. While this performance is certainly better than that of the Top-N
Dependency model, it does not improve over the best individual model in any way.
When we look at Figure 3 we see that the threshold model did not prevent the player
from selecting cards with low similarity scores. The number of positive cards selected
which were not hinted at in the current turn is much higher, which explains why the
model has higher precision than the Top-2 and Top-3 models. Therefore, we conclude
that the threshold system successfully improves the precision of the model. However,
this happened at the cost of the recall. And it still performsworse than the Top1model
across all statistics.

All Top-N models suffered in terms of recall when compared to the individual
models. None of them has higher recall than the lowest recall of any of their submod-
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Figure 3. Similarity scores for each card clicked by players across several games for the
Czech Top-N word embedding model

els. Precision, on the other hand, increased considerably in comparison to the Top-3
and Top-2 models.

The threshold model did not live up to expectations because it did not prevent
the player from clicking on cards with low similarity scores in regards to the hint. We
suspect that the thresholdswe selectedwere far fromoptimal and adifferent ensemble
approach might achieve better results. Finding a good way to combine the Top-1,
Top-2, and Top-3 methods to achieve the same or better performance than either of
the individual methods is an interesting direction for future research.

6.5. Combined Models

Lastly, we would like to test a model that combines both the dependency collo-
cations model and the word embedding model. Since the threshold system turned
out to be a poor ensembling method, we have to consider a new way in which we
can combine our models. One method is to find a mapping between PMI values and
cosine similarity. However, one of these measures is normalized and the other is not
and their scales are radically different, so this relationship can be hard to find through
trial-and-error and is in the worst case non-linear. Instead, we choose to perform en-
sembling through mutual agreement, where we let both models predict hints until
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Player decisions
Setup CZ EN

Aggregation P R F1 P R F1

Random
Baseline 0.389 0.339 0.362 0.389 0.339 0.362

Dependency-level col.
Top-N 0.598 0.585 0.591 0.570 0.476 0.519

Word embeddings
Top-N 0.673 0.623 0.647 0.738 0.679 0.707

Dependency col. & Word emb.
Top-N combined 0.642 0.678 0.659 0.711 0.697 0.704

Table 4. Micro-averaged precision, recall and f-score for the combined Top-N dependency
and word embedding model.

one of the models gives a hint that the other model has also predicted for the current
board state.

We expect an ensemble model that combines word embeddings and collocations
to perform better than the individual models since they both model different types of
association. Word embeddings capture similarity while collocations usually capture
other types of relations. Combining the best of both models should lead to better
results.

We test an ensemblemodel that combines the Top-N dependency and Top-Nword
embedding models described in Section 6.4. In Table 4 we can see the results of com-
bining dependency and word embedding models by finding hints through mutual
agreement between models. The combined model performed similarly to the best
models included in themwith an f-score of 0.659 for Czech and 0.704 for English. The
f-score of the Top-N word embedding model is slightly lower for Czech (0.647) and
slightly higher for English (0.707).

Although these results are promising, they do not significantly improve the results
of the models they combine. The model is successful at mimicking the performance
of the best submodel, but it does not select the best hint from either model depending
on what is best in a given situation. This is due to the ensembling method used. As
such, more research on good ensembling methods is needed to find models that do
improve above the performance of their internal parts.

In Table 5we show the number of games played and the number of decisionsmade
for eachmodel. The number of decisions for amodel is the sum of all the cards clicked
by players in the games played with that model.
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Player decisions
Setup CZ EN

Aggregation #G #D #G #D
Sentence-level collocations

CombinedMax 17 148 62 520
Dependency-level col.

CombinedMax 17 159 68 556
MeanDiff 18 179 67 601
Top1 10 79 10 88
Top2 11 124 10 99
Top3 10 105 10 84
TopN 10 92 10 86

Word embeddings
most_similar 22 242 65 630
CombinedMax 25 233 77 741
Top1 10 90 13 112
Top2 14 143 13 140
Top3 11 108 13 138
TopN 10 98 11 103

Dep. collocations & WE
TopN - mutual 10 95 11 97

Table 5. The number of games played (#G) and the number of decisions (#D) made for
all models tested.
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7. Conclusions

We have provided both a theoretical and practical framework for the evaluation
of computational models of word associations. We started out by establishing a base-
line for the task of Codenames with a single human player. After this, we explored
several methods all of which performed well above the baseline. The restriction on
syntactically dependent words proved a definite improvement over broad sentence-
level word pairs for the collocation model for both evaluated languages.

Large improvements to our model were made by aggregating the similarity scores
of the words on the board and weighting them more cleverly. Our best Dependency
models achieved an f-score of 0.691 for Czech and 0.685 for English. TheWordEmbed-
dingmodels based on the same aggregation technique, in turn, outclassed thesemod-
elswith f-scores of 0.789 and 0.751 for Czech andEnglish, respectively. Themodel that
got closest to helping the player turn over all their cards, was the Top-2 Dependency
model for Czech with a recall of 0.778. For English, the best model in this regard was
the Top-3 Word Embeddings model with a recall of 0.786.

We made several attempts to build ensemble models that combine the best per-
forming models to boost their performance. We were not successful in this regard,
our Top-N dependency model achieved f-scores of 0.591 and 0.519 for Czech and En-
glish respectively. The Top-N word embeddings performed better, with an f-score of
0.647 for Czech and 0.707 for English, but neither outperformed the best individual
Top-nmodel for their respective language. A final attempt at combining dependency
and word embedding models by finding hints through mutual agreement between
models performed similarly to the best models included in them with an f-score of
0.659 for Czech and 0.704 for English. Although these results are promising, we be-
lieve that many better ensembling methods still remain.

We have shown that both dependency-level collocation models and word embed-
dingmodels can provide hints of considerable quality, given the right constraints. De-
pendency models manage to capture several types of relations between words which
the player is able to pick up on, while the word embedding models excel at finding
semantically similar hints.

8. Future Work

We have provided an overview of only the most basic methods and we believe
that many improvements can still be made to achieve better performance on the Co-
denames word association task. For example by finding better ensemble methods to
combine models that give hints for a different number of words, as well as success-
fully combining models of different types such as collocation and word embedding
models.

The methods we use are themselves simple baselines for the technique that they
are based on. There exist many more measures of association other than pointwise
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mutual information (see Pecina (2010) for an extensive list of such association mea-
sures) and there have beenmany improvements in recent years over the fastText word
embeddings that we tested, many of which might surpass our best word embedding
models when compared. This could be a fruitful direction for future research.

The same framework can be used to analyze the effect of time taken between re-
ceiving the word prompt and making a decision. We did not incorporate any timing
mechanism in our application, so it is not possible to extract this type of information
from our dataset. However, it is easy to modify the application and record this data
as well, so this is nonetheless an interesting avenue for future work.

While this paper was mainly focused on the computational side of word associ-
ation, it must be noted that a human baseline for the Codenames word association
task would be very useful to give more context to the results achieved on this task.
Similarly, comparing the predictions made by the models to human-level word asso-
ciations would be a useful direction in this area.
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