
L. Aufrant, G. Wisniewski PanParser (Supplementary)

Supplementary A. Built-in transition systems

In the following, we document all transition systems built in PanParser, along with
their cost. s and s ′ denote top elements of the stack σ, b denotes the head of buffer
β, and P is the set of edges representing the partially built tree. The tokens that are
not words are the padding tokens (<start> and Root). For the action costs, we also
provide compact representations of each setting yielding non-zero costs, using σ to
represent ‘any stack element’ (and β for ‘any buffer element’) and h∗

w is the reference
head of word w.

The partial and short-spanned systems are new transition systems designed as part
of PanParser. All others are drawn from the literature, but in general their properties
had not yet been studied for both Root positions.

A.1. ArcEager

Shift (σ, b|β, P) ⇒ (σ|b, β, P) if b is a word
Left (σ|s, b|β, P) ⇒ (σ, b|β, P + (b → s)) if s is a word and s is unattached
Right (σ|s, b|β, P) ⇒ (σ|s|b, β, P + (s → b))
Reduce (σ|s, β, P) ⇒ (σ, β, P) if s is attached

Table 1: Action semantics for the ArcEager transition system.

Case with Root in first position When the Root token is in first position, the upper
description of the ArcEager system (Nivre, 2004) requires some amendments.1

First, if affects the preconditions of some actions. Indeed, Shift becomes illegal
when the buffer contains a single element, because afterwards it cannot be attached,
and the final configuration with Root token requires an empty stack. Similarly, Right
is illegal when the buffer contains a single element and at least one word in the stack
is unattached.

Second, as shown in Figure 1, it makes the system non-arc-decomposable, as Gold-
berg and Nivre (2013) does not hold anymore. There is exactly one configuration
which embeds arc incompatibilities. It is the case when the reference ascendance of
the last word in sentence (nN) consists in any number of buffer tokens followed by a
stack element, and deeper in the stack (including nN’s ancestor) at least one word is
still unattached. Because of the extra preconditions, in that case at least one ances-
tor of nN will not get its correct head, but will instead be promoted as head of the
unattached stack element. Figure 2 illustrates this configuration.

1To the best of our knowledge, this topic is not addressed in the literature.

1

Supplementary for PBML 111 OCTOBER 2018

Shift (σ, b|β) σ
↷

b b if h∗
b is in stack

(σ, b|β) σ
↶

b children of b that are in stack and unattached

Left (σ|s, b|β) s
↶

β s if h∗
s is in buffer but not on top

(σ|s, β) s
↷

β children of s that are in buffer

Right (σ, b|β) b
↶

β b if h∗
b is in buffer but not on top

(σ|s, b|β) σ
↷

b b if h∗
b is in stack but not on top

(σ, b|β) σ
↶

b children of b that are in stack and unattached

Reduce (σ|s, β) s
↷

β children of s that are in buffer

(a) Tokens that explicitly lose their head.

Shift (σ|s, b|β) ?
↷

b b if h∗
b is on the left and the stack is not empty

Left (⊥|s, b|β) ?
↷

b b if h∗
b is on the left and the stack contains a single token

Right (σ, b|b ′|β) b
↶

? b if h∗
b is on the right and the buffer contains at least two tokens

Reduce (⊥|s, b|β) ?
↷

b b if h∗
b is on the left and the stack contains a single token

(b) Tokens whose specified head direction is explicitly forbidden.

Table 2: Action cost of the ArcEager transition system.

....Root ..Doc .., ..you ..gotta ..listen ..to ..me.......

(a) Reference parse tree.

....Root ..listen ..| ..to ..me.
stack

.
buffer

(b) Stack and buffer of the (already suboptimal) con-
figuration to evaluate; ‘listen’ is unattached. Possible
actions are Right, Left and Shift.

....Root ..· · · ..listen ..to ..me...

(c) Case Right: best parse with
Reduce-Left-Right-Reduce af-
terwards.

....Root ..· · · ..listen ..to ..me...

(d) Case Left: best parse with
Right-Right-Reduce-Reduce
afterwards.

....Root ..· · · ..listen ..to ..me...

(e) Case Shift: afterwards
Left-Left-Right-Reduce is en-
forced.

Figure 1: Counter-example to arc-decomposability of the ArcEager transition system
with Root in first position.

2

L. Aufrant, G. Wisniewski PanParser (Supplementary)

....Root ..· · · ..si ′· · ·si ..· · · ..| ..· · · ..nj ..· · · ..· · · ..· · · ..nN

.
stack

.
buffer

.....

Figure 2: Prototype of arc incompatibilities for ArcEager with Root in first position.

Consequently, non-arc-decomposability adds a (relaxed) cost of 1 if the parser is
in this configuration, or will be put in this configuration by the given action. More
precisely, a single arc incompatibility is inserted the first time that an ancestor of the
last token is shifted, or attached to a stack containing at least one unattached word.

Additional cost: head direction constraints As an experimental feature, the ArcEa-
ger system provides the possibility to compute the action cost when only the depen-
dency direction is known. This mostly allows to parse under simpler constraints, for
instance built using typological knowledge. Table 2b documents the additional cost
incurred by such annotations.

A.2. ArcHybrid

Shift (σ, b|β, P) ⇒ (σ|b, β, P) if b is a word
Left (σ|s, b|β, P) ⇒ (σ, b|β, P + (b → s)) if s is a word
Right (σ|s ′|s, β, P) ⇒ (σ|s ′, β, P + (s ′ → s))

Table 3: Action semantics for the ArcHybrid transition system.

The ArcHybrid system has been proposed by Kuhlmann et al. (2011) as a compro-
mise between ArcStandard and ArcEager properties.

In this system, changing the Root position has no effect on preconditions, since
the top of the stack can always be attached, either on the left or on the right. The cost
is also unchanged, as the ArcHybrid system is always arc-decomposable.

A.3. ArcStandard

For the ArcStandard system, originally designed by Nivre (2003), note that there
is no precondition on Shift. Indeed, when the Root token is in last position, it must be
shifted to receive its children and reach a final configuration. The dynamic oracle for
this system directly computes Cost as a loss difference, following the methodology
proposed by Goldberg et al. (2014).

3

Supplementary for PBML 111 OCTOBER 2018

Shift (σ|s, b|β) σ
↷
b b if h∗

b is in stack but not on top
(σ, b|β) σ

↶
b children of b that are in stack and unattached

Left (σ|s, b|β) s
↶

β s if h∗
s is in buffer but not on top

(σ|s ′|s, β) s ′
↷

s s if h∗
s is the second stack element

(σ|s, β) s
↷

β children of s that are in buffer

Right (σ|s, β) s
↶

β s if h∗
s is in buffer

(σ|s, β) s
↷

β children of s that are in buffer

Table 4: Action cost of the ArcHybrid transition system: tokens that explicitly lose
their head.

Shift (σ, b|β, P) ⇒ (σ|b, β, P)
Left (σ|s ′|s, β, P) ⇒ (σ|s, β, P + (s → s ′)) if s ′ is a word
Right (σ|s ′|s, β, P) ⇒ (σ|s ′, β, P + (s ′ → s))

Table 5: Action semantics for the ArcStandard transition system.

A.4. NonMonotonicArcEager

Shift (σ, b|β, P) ⇒ (σ|b, β, P) if b is a word
Left (σ|s, b|β, P) ⇒ (σ, b|β, P + (b → s)) if s is a word
Right (σ|s, b|β, P) ⇒ (σ|s|b, β, P + Temporary(s → b)) if b is a word
Reduce (σ|s ′|s, β, P) ⇒ (σ|s ′, β, P + (s ′ → s))

Table 6: Action semantics for the NonMonotonicArcEager transition system.

The NonMonotonicArcEager system (Honnibal et al., 2013) is in fact very similar
to ArcHybrid, with the Right transition renamed as Reduce and a second shift transi-
tion, called Right. However, even if both have the same expressivity and search space,
at feature level the NonMonotonicArcEager system allows to enrich the representa-
tion with knowledge of highly probable heads, which may help some decisions.

Still, this does not affect the action cost, which is the same as for ArcHybrid. Ta-
ble 7b provides additional costs for head direction constraints, similarly to the ArcEa-
ger case.

4

L. Aufrant, G. Wisniewski PanParser (Supplementary)

Shift (σ|s, b|β) σ
↷

b b if h∗
b is in stack but not on top

(σ, b|β) σ
↶

b children of b that are in stack and unattached

Left (σ|s, b|β) s
↶
β s if h∗

s is in buffer but not on top
(σ|s ′|s, β) s ′

↷
s s if h∗

s is the second stack element
(σ|s, β) s

↷
β children of s that are in buffer

Right (σ|s, b|β) σ
↷

b b if h∗
b is in stack but not on top

(σ, b|β) σ
↶

b children of b that are in stack and unattached

Reduce (σ|s, β) s
↶
β s if h∗

s is in buffer
(σ|s, β) s

↷
β children of s that are in buffer

(a) Tokens that explicitly lose their head.

Left (⊥|s, b|β) ?
↷

b b if h∗
b is on the left and the stack contains a single token

(σ|s ′|s, β) ?
↷

s s if h∗
s is on the left and the stack contains at least two tokens

Reduce (σ|s, b|β) s
↶

? s if h∗
s is on the right and the buffer is not empty

(⊥|s, b|β) ?
↷

b b if h∗
b is on the left and the stack contains a single token

(b) Tokens whose specified head direction is explicitly forbidden.

Table 7: Action cost of the NonMonotonicArcEager transition system.

Shift (σ, b|β, P) ⇒ (σ|b, β, P) if b is a word
Left (σ|s, b|β, P) ⇒ (σ, b|β, P + (b → s)) if s is a word and s is unattached
Right (σ|s, b|β, P) ⇒ (σ|s|b, β, P + (s → b))
Reduce (σ|s, β, P) ⇒ (σ, β, P) if s is a word

Table 8: Action semantics for the ArcEagerPartial transition system.

A.5. ArcEagerPartial

ArcEagerPartial is our proposal for an ArcEager parser that learns to reproduce
partial annotations, i.e. it both learns syntactic knowledge based on the provided an-
notations, and learns which tokens should remain unannotated because of a lack of
information. This is close to confidence-based learning, except that the confidence
criterion is embedded in the training data.

In practice, the ArcEagerPartial system extends ArcEager with the possibility to
predict empty attachments as part of the system, and the final output is consequently
a partial tree by design.

Empty attachments are encoded by Shift+Reduce: the word is put on the stack as
usual, can receive children, but then is popped before receiving its own head. Conse-

5

Supplementary for PBML 111 OCTOBER 2018

Shift (σ, b|β) σ
↷

b b if h∗
b is in stack

(σ, b|β) σ
↶

b children of b that are in stack and unattached

Left %
↷

s
↶
% s if no h∗

s

(σ|s, b|β) s
↶

β s if h∗
s is in buffer but not on top

(σ|s, β) s
↷

β children of s that are in buffer

Right %
↷
b
↶
% b if no h∗

b

(σ, b|β) b
↶

β b if h∗
b is in buffer but not on top

(σ|s, b|β) σ
↷

b b if h∗
b is in stack but not on top

(σ, b|β) σ
↶

b children of b that are in stack and unattached

Reduce (σ|s, β) s
↶

β s if h∗
s is in buffer and s is unattached

(σ|s, β) s
↷

β children of s that are in buffer

Table 9: Action cost of the ArcEagerPartial transition system: tokens that explicitly
lose their head.

quently, the only modification to the system semantics is to relax the precondition on
Reduce actions, and allow them even on unattached words.

The impact is stronger on the action cost. Compared to ArcEager, it indeed adds
two cases of non-zero cost: when a word whose reference attachment is empty re-
ceives a head (to enforce reproduction of empty attachments), and when an unattached
word is reduced while its reference head is still somewhere in the buffer (which cannot
happen with ArcEager).

Note that when the dynamic oracle is used to filter actions based on partial con-
straints, the cost incurred by empty attachments is ignored, otherwise the partial tree
could never be completed.

Finally, regarding the Root position, it does not affect ArcEagerPartial as it does
for ArcEager, because with the relaxed precondition, it is always possible to reduce
stack elements to reach a final configuration. The system is consequently always arc-
decomposable.

A.6. ArcHybridPartial

ArcHybridPartial applies the same ideas of partial parsing, but on the ArcHy-
brid system. In this case, there are only three actions, but it is in fact not possible to
encode empty attachments with three actions. So, we extend the transition set with
an additional Reduce action, which operates as in ArcEagerPartial: it pops the first
stack element, even if it is unattached (which is necessarily the case here).

6

L. Aufrant, G. Wisniewski PanParser (Supplementary)

Shift (σ, b|β, P) ⇒ (σ|b, β, P) if b is a word
Left (σ|s, b|β, P) ⇒ (σ, b|β, P + (b → s)) if s is a word
Right (σ|s ′|s, β, P) ⇒ (σ|s ′, β, P + (s ′ → s))
Reduce (σ|s, β, P) ⇒ (σ, β, P) if s is a word

Table 10: Action semantics for the ArcHybridPartial transition system.

Shift (σ|s, b|β) σ
↷

b b if h∗
b is in stack but not on top

(σ, b|β) σ
↶

b children of b that are in stack and unattached

Left %
↷

s
↶
% s if no h∗

s

(σ|s, b|β) s
↶

β s if h∗
s is in buffer but not on top

(σ|s ′|s, β) s ′
↷
s s if h∗

s is the second stack element
(σ|s, β) s

↷
β children of s that are in buffer

Right %
↷

s
↶
% s if no h∗

s

(σ|s, β) s
↶

β s if h∗
s is in buffer

(σ|s, β) s
↷

β children of s that are in buffer

Reduce (σ|s, β) s
↶

β s if h∗
s is in buffer

(σ|s ′|s, β) s ′
↷
s s if h∗

s is the second stack element
(σ|s, β) s

↷
β children of s that are in buffer

Table 11: Action cost of the ArcHybridPartial transition system: tokens that explicitly
lose their head.

The resulting system consists in one shift action and three reduce actions, each one
encoding a different attachment of s (s ′, b and empty). Compared to ArcEagerPar-
tial, the semantics of each action are better singled out.

For the basic actions, the cost of ArcHybridPartial is the same as ArcHybrid, aug-
mented with enforcement of empty attachments (again, not in case of constraint-based
filtering). The cost of Reduce is the same as the basic Right, except that it also penal-
izes reducing tokens whose head is on the left (i.e. when a Right is required).

A.7. Short-spanned dependencies

Finally, we also propose transition systems that only learn and predict the short-
est dependencies. These systems, ArcEagerSpan and ArcHybridSpan, are based on
the partial systems ArcEagerPartial and ArcHybridPartial, and parameterized by a
maximum dependency length (at parser initialization time). For instance, if the max-
imum length is 1, the parser will only predict attachments to neighbouring tokens,

7

Supplementary for PBML 111 OCTOBER 2018

leaving unattached the tokens that typically have long distance attachments in the
training data.

The constraint on dependency length only affects the action preconditions by for-
bidding Left and Right actions which would create too long dependencies. Other-
wise, it is completely identical to the partial systems. The cost is also the same, be-
cause long dependencies are filtered out from the reference as a preprocessing step,
thus resulting in partial annotations containing only short dependencies.

8

L. Aufrant, G. Wisniewski PanParser (Supplementary)

Supplementary B. Code examples

B.1. Parser usage

To train and test a new parser:
load a CoNLL-X or CoNLL-U treebank
from dependency_parser import read_conll
with open("en-train.conllu", "rt") as fh:

dataset = read_conll(fh)
train a new parser with default parameters
from dependency_parser import train_dependency_parser
from misc.io import FrogressListener # for better display (optional)
parser = train_dependency_parser(None, dataset, n_epoch, listener=FrogressListener)
annotate an input dataset and dump it in a CoNLL-U file
from dependency_parser import process_dependency_parser
from conll.io import wt, feat2col
with open("out.conllu", "wt") as out:

wt(out, process_dependency_parser(parser, newdataset), preprocess=feat2col)
print the parser UAS
from dependency_parser import eval_dependency_parser
print(eval_dependency_parser((parser, testset)))

The default is an (unlabeled) ArcEager perceptron parser with a beam of size 8, the
Root token in last position, Zhang and Nivre (2011)’s feature templates (augmented
with transition history), a global dynamic oracle and the early-update strategy.

To change these parameters:
parser = train_dependency_parser(dict(system="NonMonotonicArcEagerLabeled", root_first=True,

beam=16, delexicalized=True), dataset, n_epoch, strategy="maxv")
equivalent to
from functools import partial
from dparser.features import zn11_features
delex_fts = partial(zn11_features, delexicalized=True)
parser = NonMonotonicArcEagerLabeledBeamParser(delex_fts).with_beam(16).with_root_first(True)
train_dependency_parser(parser, dataset, n_epoch, strategy="maxv")

To use the greedy-specific implementation:
from dparser.features import zn11_features
parser = train_dependency_parser(dict(beam=None), dataset, n_epoch)
equivalent to
parser = ArcEagerLocalParser(zn11_features)
train_dependency_parser(parser, dataset, n_epoch)

To define a custom transition system:
import dependency_parser, custom_system
from dparser.perceptron_parser import PerceptronParser
class CustomBeamParser(custom_system.BeamParser, PerceptronParser): pass
dependency_parser.CustomBeamParser = CustomBeamParser # add to built-in scope
parser = train_dependency_parser(dict(system="Custom", foo=bar), dataset, n_epoch)

9

Supplementary for PBML 111 OCTOBER 2018

To define a custom oracle/update strategy:
import dependency_parser as dp
def strategies(parser, strategy, builtin=dp.strategies):

(time_limit, check_cut_edge, check_single_reference, oracle, restart,
exploration_rate, beam_update, remember_bad_beams) = builtin(parser, strategy)
if strategy == "customstrategy":

oracle, time_limit, restart = EARLY_LONGEST_PREFIX, 4, True
return (time_limit, check_cut_edge, check_single_reference, oracle, restart,

exploration_rate, beam_update, remember_bad_beams)
def exploration_strategy(strategy, itn, n_epoch, builtin=dp.exploration_strategy):

exploration_rate = builtin(strategy, itn, n_epoch)
if strategy == "customstrategy":

exploration_rate = 3*itn/epoch
return exploration_rate

replace built-in
dp.strategies = strategies
dp.exploration_strategy = exploration_strategy

parser = train_dependency_parser(None, dataset, n_epoch, strategy="customstrategy")

To extend the binary feature representations with pre-trained embeddings:
extend binary features with embeddings
embeddings = {"<UNK>": [0,0.9,0.5,1], "DeLorean": [1,0,0.1,0],

"Chicken": [0.8,0.1,0.3,1]}
custom_features = partial(zn11_features, embeddings=embeddings)

To have three parsers voting on each decision (with ties broken by parser1), first
train the parsers separately, and then do:
from classifier.vote import VoteClassifier
parser1.model = VoteClassifier((parser1.model, 1.1), (parser2.model, 1), (parser3.model, 1))
now parser1 acts according to the vote of all three parsers
print(eval_dependency_parser((parser1, testset)))

B.2. Tagger usage

from dependency_parser import read_conll
with open("en-train.conllu", "rt") as fh:

dataset = read_conll(fh)
with open("en-test.conllu", "rt") as fh:

testset = read_conll(fh)

train and evaluate a perceptron tagger
from tagger.postagger import train_pos_tagger, eval_pos_tagger
from tagger.perceptron_postagger import PerceptronPOSTagger
from conll.io import feat2tag # to retain only coarse PoS tags
tagger = train_pos_tagger(PerceptronPOSTagger(), feat2tag(dataset), n_epoch)
print(eval_pos_tagger((tagger, feat2tag(testset))))

10

L. Aufrant, G. Wisniewski PanParser (Supplementary)

tagging and parsing pipeline
from tagger.neural_postagger import FeedForwardPOSTagger
tagger = train_pos_tagger(FeedForwardPOSTagger(), feat2tag(dataset), n_epoch_tag)
to train on predicted tags
from tagger.postagger import process_pos_tagger
dataset = process_pos_tagger(tagger, dataset)
parser = train_dependency_parser(None, dataset, n_epoch_parse)
annotate new data
with open("en.conllu", "rt") as fh:

newdataset = read_conll(fh)
from conll.io import wt, tag2col
with open("out.conllu", "wt") as out:

wt(out, process_pos_tagger(tagger, newdataset), preprocess=tag2col)

B.3. Built-in utilities for error analysis

ignore PUNCT (default), INTJ, SYM and X tokens in evaluation
eval_dependency_parser((parser, testset), ignore_tags=["PUNCT", "INTJ", "SYM", "X"])

fine-grained scores depending on the (reference) in-tree depth of the tokens,
capped to 4
eval_dependency_parser((parser, testset), by_type=MDEPTH)

fine-grained scores for PoS tag pairs, e.g. attachment score over the nouns whose
head is a verb
from misc.xp import uas_bitable
uas_bitable(eval_dependency_parser((parser, testset), by_type=(POS, HEADPOS)))
the same, but only for tokens whose head is on the right
uas_bitable(eval_dependency_parser((parser, testset), by_type=(POS, HEADPOS),

subset=(DIRECTION, "+")))

fine-grained scores for all PoS-disambiguated words with "mark" attachment, i.e.
keys are "except-ADP", "except-SCONJ", "like-ADP", "like-SCONJ", "with-ADP", etc.
from misc.xp import scores
scores(eval_dependency_parser((parser, testset), by_type=[WORD, "-", POS],

subset=(LABEL, "mark")))

compute corpus statistics both on the direction-disambiguated head PoS for each
child PoS ("2pos+dir" key), and on the dependency length ("L" key)
eval_dependency_parser(testset, by_type={"L": LENGTH,

"2pos+dir": (POS, [HEADPOS, DIRECTION])}, out=STATS)

confusion matrix on the head PoS
from misc.xp import confusion_matrix
confusion_matrix(eval_dependency_parser((parser, testset), by_type=HEADPOS, out=CONFUSION))

attachment agreement of two parsers, for each gold label
eval_dependency_parser([(p1, testset), (p2, testset)], by_type=LABEL, out=COMPARE)[2]

11

Supplementary for PBML 111 OCTOBER 2018

Supplementary C. Code-level architecture

Since all components of a parser continuously interact during training and predic-
tion, the desired modularity is not natively achievable when implementing a parser;
in PanParser, it is ensured by additional layers of abstraction, together with specific
implementation choices. We briefly describe our approach in the following, provid-
ing technical details on three key aspects: the core framework that lets all components
interact (§C.1), its extension to support beam search and global training (§C.2), as well
as how the class hierarchy is leveraged to enable algorithmic combinations (§C.3).

C.1. Structured prediction framework

The whole framework revolves around the AbstractStructuredPredictor class,
from which all taggers and parsers inherit. Its design is based on the idea of corou-
tines: the components interact via Python generators, each representing a different
kind of data (prediction configurations, update configurations, predicted classes, out-
put annotations, etc., as well as batched versions of all). This is what allows the clas-
sifier to be considered as a black box: it simply feeds from a stream of configurations,
and provides a stream of predictions. The role of the AbstractStructuredPredictor
class is to plug these generators together, and to add a feedback loop so that a given
prediction can be both used as an output, and reused (by the task-specific component)
to compute the next configuration.

Task-specific components Designing a task-specific component consists in imple-
menting two methods. The xs method returns (given an input sentence) a function
mapping a stream of classifier predictions to a (multiplexed) stream of feature vectors
to classify and of output predictions (e.g. a tag or the k-best parse trees). xys does
the same for training, i.e. yielding feature vectors to classify, as well as update pairs.
Additionally, polish can be overridden: it does nothing by default, but can add post-
processing of the final output, for instance gathering all tags into a list or selecting the
top hypothesis of a k-best list.

The base class has another method to implement, _defaultmodel, but this is done
when plugging the wanted classifier: it builds and returns a new classifier, initialized
with the dataset.

Framework API A system built with this framework can then be used with only
two methods, train and process. The former takes care of epochs, sampling, cross-
validation and post-training refinements like averaging. The latter initiates dataset
annotation, with pre- and post-processing to fill the appropriate slots with the tags,
heads or labels predictions.

System customization There are two ways to add optional behaviors or parameters.
The first is the strategy, epoch_strategy and sample_strategy methods: based on a

12

L. Aufrant, G. Wisniewski PanParser (Supplementary)

strategy identifier and knowledge of the epoch, they return additional training pa-
rameters that AbstractStructuredPredictor ultimately feeds to xys. By default they
are placeholders, overwritten by custom functions in train_dependency_parser and
train_pos_tagger.

The second is a series of hooks, gathered in a Callback object sent to the train, xys
and xs methods. They are called in various crucial places (before and after epochs,
sample processing, updates, evaluation, etc.) and can be used for additional monitor-
ing, or for more evolved purposes like on-the-fly subsampling.

Evaluation utilities The AbstractStructuredPredictor class also provides several
basic utilities for evaluation and error analysis. The eval_routine function collects
fine-grained accuracies for arbitrary category criteria, and matrix_routine builds a
confusion matrix with such arbitrary groupings. compare_routine and
matrix_compare_routine compare these measures between two systems. Finally,
stats_routine provides various statistics on the dataset itself, using the same kind
of criteria. All these functions operate on annotated datasets; testset annotation is
rather handled at the level of eval_dependency_parser and eval_pos_tagger.

C.2. Beam search and global training strategies

Beam parsers are also based on the structured prediction framework, but they re-
quire extra generic functionalities, which the AbstractBeamStructuredPredictor class
provides.

The lookahead method is in charge of the actual beam search. Given a stream of
classifier predictions and an initial state for the beam (in most cases, a single configu-
ration), it repeatedly extends the beam until an erroneous state is found, then yields
all subsequent states, until final configurations. It consequently returns a multiplexed
generator of feature vectors to classify, and erroneous states (i.e. k-best hypotheses).
Using generators makes decoding lazy, so that in case of early update it can stop after
the first error and no extra computation is done. At each extension of the beam, looka-
head also enriches the hypotheses with aggregated information on the action costs, so
that erroneous states are detected in constant time. Note that the gold actions are
those with minimum cost and not zero cost: Appendix A of the paper explains why.

The _infer method is in charge of searching for update configuration pairs. Given
a stream of classifier predictions and a sentence, it repeatedly calls lookahead (ini-
tially, on an empty configuration), processes the erroneous states to find an update
pair, then selects a new initial configuration and goes on, until the sentence is pro-
cessed. Here again, restart is lazy. To select update configurations, _infer applies the
specified training strategy, thanks to three oracle utilities: forced_decoding to per-
form a lookahead with gold actions only, lookfurther to search for a max-violation
state among those returned by lookahead, and refchoice to select a positive configu-
ration when there are several.

13

Supplementary for PBML 111 OCTOBER 2018

When no error criterion is given (at prediction time), by design lookahead and
_infer perform a single decoding pass, until full processing.

In the AbstractBeamParser class, the search and learn methods (returned respec-
tively by xs and xys) both use _infer. search gets a beam of final hypotheses and
extracts the k-best parse trees from these derivations. learn, for each update pair,
goes through their history to extract feature vectors for classifier updates.

C.3. Class hierarchy

Because it focuses on modularity and maximal code factorization, PanParser con-
tains a lot of Python classes, each bringing an additional piece of parser design.

For instance, the ArcEager.Parser class registers the set of transitions into the
parser, forwarded to the classifier as possible classes by PerceptronParser, ArcEa-
ger.TransitionSystem defines the legal transitions in a given configuration and their
action cost, while ArcEager.BeamParse provides their semantics, i.e. the effect of each
action on the parse configuration, and how to output a parse tree based on the deriva-
tion.

For this reason, and as a reference, we picture in Figure 3 the full class hierarchy
of two parser classes: ArcEagerBeamParser for a standard case, and ArcEagerPartial-
LabeledBeamParser for a particularly complex case.

14

L. Aufrant, G. Wisniewski PanParser (Supplementary)

..object.

AbstractStructuredPredictor

.

AbstractBeamStructuredPredictor

.

structured_prediction

.

AbstractParser

.

AbstractBeamParser

.

JointParser∗

.

LabeledParser

.

PerceptronParser∗

.

LabeledPerceptronParser

.

dparse
r

.

ArcEager.Parser

.

ArcEager.BeamParser†

.

ArcEagerPartial.BeamParser†

.

transition_system

.

ArcEagerBeamParser

.

ArcEagerPartialLabeledBeamParser

.

dependency_parser

(a) Parser classes.

..object.

AbstractClassifier

.

JointClassifier

.

Perceptron

.

cla
ssi

fier

(b) Classifier classes.

..object.

AbstractBeamParse

.

BeamStackBufferState

.
dparser

.

AbstractTransitionSystem

.

ArcEager.TransitionSystem

.

ArcEagerPartial.TransitionSystem

.

ArcEager.BeamParse

.

ArcEagerPartial.BeamParse

.

transitio
n_system

(c) Parse configuration classes.

Figure 3: Class hierarchy for the ArcEagerPartialLabeledBeamParser and ArcEager-
BeamParser classes, which are those actually used to build and train parsers. Classes
denoted in bold with ∗ contain references to classifier classes (JointClassifier and
Perceptron). Classes denoted in bold with † contain references to parse configuration
classes (BeamParse classes). Package names are indicated in blue.

15

Supplementary for PBML 111 OCTOBER 2018

Bibliography

Goldberg, Yoav and Joakim Nivre. Training Deterministic Parsers with Non-Deterministic Or-
acles. Transactions of the Association for Computational Linguistics, 1:403–414, 2013. ISSN 2307-
387X. URL https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/145.

Goldberg, Yoav, Francesco Sartorio, and Giorgio Satta. A Tabular Method for Dynamic Oracles
in Transition-Based Parsing. Transactions of the Association for Computational Linguistics, 2:
119–130, 2014. ISSN 2307-387X. URL https://tacl2013.cs.columbia.edu/ojs/index.php/
tacl/article/view/302.

Honnibal, Matthew, Yoav Goldberg, and Mark Johnson. A Non-Monotonic Arc-Eager Tran-
sition System for Dependency Parsing. In Proceedings of the Seventeenth Conference on Com-
putational Natural Language Learning, pages 163–172, Sofia, Bulgaria, 8 2013. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/W13-3518.

Kuhlmann, Marco, Carlos Gómez-Rodríguez, and Giorgio Satta. Dynamic Programming Al-
gorithms for Transition-Based Dependency Parsers. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Technologies, pages 673–
682, Portland, Oregon, USA, 6 2011. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P11-1068.

Nivre, Joakim. An Efficient Algorithm for Projective Dependency Parsing. In Proceedings of the
8th International Workshop on Parsing Technologies, IWPT 2003, Nancy, France, 2003.

Nivre, Joakim. Incrementality in Deterministic Dependency Parsing. In Keller, Frank, Stephen
Clark, Matthew Crocker, and Mark Steedman, editors, Proceedings of the ACL Workshop Incre-
mental Parsing: Bringing Engineering and Cognition Together, pages 50–57, Barcelona, Spain, 7
2004. Association for Computational Linguistics.

Zhang, Yue and Joakim Nivre. Transition-based Dependency Parsing with Rich Non-local Fea-
tures. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 188–193, Portland, Oregon, USA, 6 2011. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-2033.

16

https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/145
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/302
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/302
http://www.aclweb.org/anthology/W13-3518
http://www.aclweb.org/anthology/P11-1068
http://www.aclweb.org/anthology/P11-2033

	Built-in transition systems
	ArcEager
	ArcHybrid
	ArcStandard
	NonMonotonicArcEager
	ArcEagerPartial
	ArcHybridPartial
	Short-spanned dependencies

	Code examples
	Parser usage
	Tagger usage
	Built-in utilities for error analysis

	Code-level architecture
	Structured prediction framework
	Beam search and global training strategies
	Class hierarchy

