
The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018

EDITORIAL BOARD

Editor-in-Chief

Jan Hajič

Editorial staff

Martin Popel
Ondřej Bojar

Editorial Assistant

Kateřina Bryanová
Jana Hamrlová

Editorial board

Nicoletta Calzolari, Pisa
Walther von Hahn, Hamburg
Jan Hajič, Prague
Eva Hajičová, Prague
Erhard Hinrichs, Tübingen
Philipp Koehn, Edinburgh
Jaroslav Peregrin, Prague
Patrice Pognan, Paris
Alexandr Rosen, Prague
Petr Sgall, Prague
Hans Uszkoreit, Saarbrücken

Published twice a year by Charles University (Prague, Czech Republic)

Editorial office and subscription inquiries:
ÚFAL MFF UK, Malostranské náměstí 25, 118 00, Prague 1, Czech Republic
E-mail: pbml@ufal.mff.cuni.cz

ISSN 0032-6585

© 2018 PBML. Distributed under CC BY-NC-ND.

http://creativecommons.org/licenses/by-nc-nd/3.0/

The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018

CONTENTS

Articles

Using Tectogrammatical Annotation for Studying
Actors and Actions in Sallust’s Bellum Catilinae
Berta González Saavedra, Marco Passarotti

5

Enriching VALLEX with Light Verbs: From Theory to Data and Back Again
Václava Kettnerová, Markéta Lopatková, Eduard Bejček, Petra Barančíková

29

PanParser: a Modular Implementation for Efficient
Transition-Based Dependency Parsing
Lauriane Aufrant, Guillaume Wisniewski

57

An Easily Extensible HMM Word Aligner
Jetic Gū, Anahita Mansouri Bigvand, Anoop Sarkar

87

A Probabilistic Approach to Error Detection&Correction
for Tree-Mapping Grammars
Tim vor der Brück

97

NMT-Keras: a Very Flexible Toolkit with a Focus
on Interactive NMT and Online Learning
Álvaro Peris, Francisco Casacuberta

113

Open Source Toolkit for Speech to Text Translation
Thomas Zenkel, Matthias Sperber, Jan Niehues, Markus Müller, Ngoc-Quan Pham,
Sebastian Stüker, Alex Waibel

125

© 2018 PBML. Distributed under CC BY-NC-ND.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 111 OCTOBER 2018

Instructions for Authors 136

4

The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018 5–28

Using Tectogrammatical Annotation for Studying
Actors and Actions in Sallust’s Bellum Catilinae

Berta González Saavedra,a Marco Passarottib

a Dep. de Filología Clásica, Universidad Autónoma de Madrid, Spain
b CIRCSE Research Centre. Università Cattolica del Sacro Cuore, Milan, Italy

Abstract
In the context of the Index Thomisticus Treebank project, we have enhanced the full text

of Bellum Catilinae by Sallust with semantic annotation. The annotation style resembles the
one used for the so called ”tectogrammatical” layer of the Prague Dependency Treebank. By
exploiting the results of semantic role labeling, ellipsis resolution and coreference analysis, this
paper presents a network-based study of the main Actors and Actions (and their relations) in
Bellum Catilinae.

1. Introduction
Since the second half of the nineties, the research area dealing with enhancing

linguistic data with syntactic annotation (”treebanking”) has faced a turn from con-
stituency-based to dependency-based annotation schemata. The result is the current
availability of several dependency treebanks for quite a number of languages. Most of
these are now part of Universal Dependencies (http://universaldependencies.org/),
an ever growing collection of dependency treebanks for several different languages
following a cross-linguistically consistent annotation schema, which is in the process
of becoming the standard de facto in the field.

The large majority of the currently available treebanks includes data taken from
contemporary books, magazines, journals and, mostly, newspapers. Such data are

This paper is an extended version of the work presented by Passarotti and González Saavedra (2017) at
the Sixteenth Edition of the International Workshop on Treebanks and Linguistic Theories (TLT-16), 23-24
January 2017, Prague, Czech Republic.

© 2018 PBML. Distributed under CC BY-NC-ND. Corresponding author: marco.passarotti@unicatt.it
Cite as: Berta González Saavedra, Marco Passarotti. Using Tectogrammatical Annotation for Studying Actors and
Actions in Sallust’s Bellum Catilinae. The Prague Bulletin of Mathematical Linguistics No. 111, 2018, pp. 5–28.
doi: 10.2478/pralin-2018-0005.

http://universaldependencies.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 111 OCTOBER 2018

used for different purposes in both theoretical and computational linguistics, the most
widespread being supporting and evaluating theoretical assumptions with empirical
evidence and providing data for various tasks in stochastic Natural Language Pro-
cessing (NLP), like inducing grammars and training/testing tools.

Throughout the last decade, a small but constantly growing bunch of dependency
treebanks for ancient languages was built. In this respect, the main treebanks now
available are those for Latin and Ancient Greek, with The Ancient Greek and Latin
Dependency Treebank (AGLDT) (Bamman and Crane, 2011), the Index Thomisticus
Treebank (IT-TB) (Passarotti, 2011) and the PROIEL corpus (Haug and Jøhndal, 2008).
Moreover, dependency treebanks are available also for other ancient languages, like
Gothic and Old Church Slavonic (part of PROIEL), and Hittite (Inglese, 2015). Such
linguistic resources for ancient languages support studies in historical linguistics to-
gether with a number of treebanks that include texts representing different diachronic
phases of modern languages. Examples are the York-Toronto-Helsinki corpus (Tay-
lor, 2007) and the Penn Corpora of Historical English (Taylor and Kroch, 1994; Kroch
et al., 2004), the MCVF corpus for French (Martineau, 2008), the Tromsø Old Russian
and OCS Treebank (Eckhoff and Berdicevskis, 2015) and RRuDi for Russian (Meyer,
2011), and the Mercurius Treebank for Early High New German (Demske, 2007).

Unlike those for modern languages, treebanks for ancient languages tend to in-
clude literary, historical, philosophical and/or documentary texts. This makes the
very use of such resources peculiar. Indeed, instead of exploiting data to draw (cross-
)linguistic generalizations, the users of such treebanks are more interested in the lin-
guistic features of the texts themselves available in the corpus. For instance, there is
more interest and scientific motivation in exploiting the treebanked texts of Sophocles
to study their specific syntactic characteristics than in using the evidence provided by
such texts as sufficiently representative of Ancient Greek, which they are not.

Not only the use of data is different, but also users are. Indeed, it is quite un-
common that scholars from literature, philosophy or history make use of linguistic
resources like treebanks for modern languages in their research work. Instead, they
represent some of the typical users of treebanks for ancient languages as well as of
diachronic treebanks. Such resources become even more useful for this kind of users
from the Humanities when they are enhanced also with a semantic layer of annota-
tion, on top of the syntactic one. This is due to the large interest of such scholars in
semantic interpretation of texts through syntax.

In this area, the Index Thomisticus Treebank project has recently enhanced a selec-
tion of texts taken from the IT-TB and the AGLDT with semantic annotation. This
paper describes the dependency-based annotation style applied on these data and
presents a use case of exploitation of them for literary analysis purposes. In partic-
ular, by using the results of semantic role labeling, coreference analysis and ellipsis
resolution applied on the source data, the analysis focuses on the main Actors and
Actions in Sallust’s Bellum Catilinae.

6

González Saavedra, Passarotti Using Tectogrammatical Annotation (5–28)

Written probably between 43 and 40 BCE, Bellum Catilinae tells the story of the
so called Second Catilinarian Conspiracy (63 BCE), a plot, devised by Catiline and
a group of aristocrats and veterans, to overthrow the Roman Republic.1 One of the
masterpieces of the Latin literature, Bellum Catilinae has been object of several and ex-
haustive studies, especially by historians of the Roman republican period and scholars
in Latin Literature and Linguistics. From a historical perspective, particular attention
has been paid to the intention of Sallust when writing his book (Conley, 1981) as well
as to the amount of historical incongruences in his text (Syme, 1964). In addition,
multiple contributions focus on various aspects of the language of Sallust (Batstone,
2010; Schröder, 2015; Tannenbaum, 2005).

The figure of Catiline has always fascinated the general public, particularly because
of the complexities of his character as organizer of the conspiracy. Thus, a significant
number of works deal with Sallust’s depiction of Catiline, most of the times comparing
it to the one provided by Cicero in his In Catilinam, which was no doubt the most
important source for Sallust while writing Bellum Catilinae.2

Precisely because of such kind of portrayals, throughout the centuries the image
of Catiline was deformed to the point that modern scholars often considered him an
evil character (Earl, 1958) as well as the personification of ambition and greed (Mc-
Conaghy, 1974). Contrary to these approaches, Ann Thomas Wilkins (1994) proposed
in the nineties to read Sallust’s treatment of the character of Catiline in a more com-
plex way, according to which the author would be using the conspiracy of Catiline
with the clear intention to show the decadence of Rome. In the view of Wilkins, the
purposes of Sallust lay on the structure of the work, as she creates an antithesis be-
tween the first part of the account -where Catiline’s conspiracy is presented from the
perspective of Roman oligarchy– and the second part –where the distinction between
the revolutionaries and the members of the establishment is already blurred. To this
aim, Wilkins focuses on the distribution of the book, considering narrative periods,
discourses, moral digressions and, most of all, how the descriptive words used for
and by the main characters become common for both sides.

Moving from such a linguistic-based approach, we believe that analyzing the main
Actors and Actions in Bellum Catilinae through the (deep) semantic annotation of the
entire text of Sallust can provide a strong empirical support helping historians and
Literature scholars to shed some further light on Sallust’s portrayal of Catiline.

1The text of Bellum Catilinae available from the AGLDT is the one edited by Ahlberg (1919). It includes
10,936 words and 701 sentences. In this paper, English translations of Bellum Catilinae are taken from Ram-
sey (2014).

2On this question, see Broughton (1936) and Waters (1970). An interesting perspective is provided by
Syme (1964; page 73), who defends that Cicero is not the only author Sallust used for the compilation of
Bellum Catilinae.

7

PBML 111 OCTOBER 2018

2. Data

In the context of the Index Thomisticus Treebank project hosted at the CIRCSE re-
search centre of the Università Cattolica del Sacro Cuore in Milan, Italy (http://
itreebank.marginalia.it/), we have added a new layer of semantic annotation on
top of a selection of syntactically annotated data taken from the IT-TB and the Latin
portion of the AGLDT (González Saavedra and Passarotti, 2014).

In particular, around 2,000 sentences (approx. 27,000 words) were annotated out
of Summa contra Gentiles of Thomas Aquinas (IT-TB). The entire Bellum Catilinae of
Sallust (BC) and small excerpts of 100 sentences each from texts of Caesar and Cicero
were annotated from the AGLDT.

2.1. Annotation Style

The style of the semantic layer of annotation used in the IT-TB project is based
on Functional Generative Description (FGD) (Sgall et al., 1986), a dependency-based
theoretical framework developed in Prague and intensively applied and tested while
building the Prague Dependency Treebank of Czech (PDT) (Hajič et al., 2000).

The PDT is a dependency-based treebank with a three-layer structure. The (so
ordered) layers are a “morphological layer” (morphological tagging and lemmatiza-
tion), an “analytical” layer (annotation of surface syntax) and a “tectogrammatical”
layer (annotation of underlying syntax). Both the analytical and the tectogrammati-
cal layers describe the sentence structure with dependency tree-graphs, respectively
named analytical tree structures (ATSs) and tectogrammatical tree structures (TGTSs).

In ATSs every word and punctuation mark of the sentence is represented by a node
of a rooted dependency tree. The edges of the tree correspond to dependency relations
that are labelled with (surface) syntactic functions called “analytical functions” (like
Subject, Object etc.).

TGTSs describe the underlying structure of the sentence, conceived as the seman-
tically relevant counterpart of the grammatical means of expression (described by
ATSs). The nodes of TGTSs include autosemantic words only (represented by “tec-
togrammatical lemmas”: “t-lemmas”), while function words and punctuation marks
collapse into the nodes for autosemantic words. Semantic role labeling is performed
by assigning to nodes semantic role tags called “functors”. These are divided into two
classes according to valency: (a) arguments, called “inner participants”, i.e. obliga-
tory complementations of verbs, nouns, adjectives and adverbs: Actor,3 Patient, Ad-

3The definition of Actor in the PDT is semantically quite underspecified, as it refers to “the human
or non-human originator of the event, the bearer of the event or a quality/property, the experiencer or
possessor” (Mikulová et al., 2006; page 461).

8

http://itreebank.marginalia.it/
http://itreebank.marginalia.it/

González Saavedra, Passarotti Using Tectogrammatical Annotation (5–28)

dressee, Effect and Origin; (b) adjuncts, called “free modifications”: different kinds
of adverbials, like Place, Time, Manner etc.4

Also coreference analysis and ellipsis resolution are performed at the tectogram-
matical layer and are represented in TGTSs through arrows (coreference) and newly
added nodes (ellipsis). In particular, there are two kinds of coreference: (a) “gram-
matical coreference”, in which it is possible to pinpoint the coreferred expression on
the basis of grammatical rules (mostly with relative pronouns) and (b) “textual coref-
erence”, realized not only by grammatical means, but also via context (mostly with
personal pronouns).

2.2. From Analytical to Tectogrammatical Layer

2.2.1. Converting from ATSs to TGTSs in the Index Thomisticus Treebank Project

The workflow for tectogrammatical annotation in the IT-TB project is based on
TGTSs automatically converted from ATSs.5 The TGTSs that result from the conver-
sion are then checked and refined manually by two annotators. The conversion is
performed by adapting to Latin a number of ATS-to-TGTS conversion modules pro-
vided by the NLP framework Treex (Žabokrtský, 2011).6

Relying on ATSs, the basic functions of these modules are the following:
a. to collapse ATSs nodes of function words and punctuation marks, as they no

longer receive a node for themselves in TGTSs, but collapse into the nodes for
autosemantic words;

b. to assign ”grammatemes”, i.e. semantic counterparts of morphological cate-
gories (for instance, pluralia tantum are tagged with the number grammateme
”singular”);

c. to resolve grammatical coreferences;
d. to assign semantic roles.
Tasks (a) and (b) are quite simple and the application of the modules that are re-

sponsible for them results in good accuracy on average. Collapsing nodes for function

4The organization of functors into inner participants and free modifications is further exploited by link-
ing textual tectogrammatical annotation with fundamental lexical information provided by a valency lexi-
con that features the valency frame(s) for all those verbs, nouns, adjectives and adverbs capable of valency
that occur in the treebank. The valency lexicon of Latin, called Latin Vallex (Passarotti et al., 2016), was built
in corpus-driven fashion, by adding to the lexicon all the valency-capable words that annotators progres-
sively got through. A similar approach to build a valency lexicon based on treebank annotation is that of
PDT-Vallex for Czech (Urešová, 2009).

5The guidelines for analytical annotation of the IT-TB (as well as of the Latin portion of the AGLDT)
are those of Bamman et al. (2007). The guidelines for tectogrammatical annotation are those of the
PDT (Mikulová, 2006), with a few modifications for representing Latin-specific constructions (http://
itreebank.marginalia.it/doc/Guidelines_tectogrammatical_Latin.pdf).

6See González Saavedra and Passarotti (2014) for details on ATS-to-TGTS conversion in the IT-TB and,
especially, for an evaluation of the accuracy of the conversion process.

9

http://itreebank.marginalia.it/doc/Guidelines_tectogrammatical_Latin.pdf
http://itreebank.marginalia.it/doc/Guidelines_tectogrammatical_Latin.pdf

PBML 111 OCTOBER 2018

words and punctuations relies on the structure of the ATSs given in input. In this re-
spect, Latin does not feature any specific property requiring for modifications of the
ATS-to-TGTS conversion procedure available in Treex and already applied to other
languages. Assigning grammates is a task strictly related with the lexical properties
of the nodes in TGTSs. Thus, we are in the process of populating the modules that as-
sign grammatemes with lists of words (lemmas) that are regularly assigned the same
grammatemes.

The automatic processing of task (c) results from the application of a number of
modules aimed to resolve only the grammatical coreference that shows the simplest
possible construction occurring in ATSs, i.e. the one featuring an occurrence of a rel-
ative pronoun directly depending on the main predicate of the relative clause. How-
ever, this construction is highly frequent for relative clauses. For instance, among the
326 occurrences of the relative pronoun qui in the portion of the IT-TB featuring tec-
togrammatical annotation, 176 present this construction and are correctly assigned
their grammatical coreference by the conversion modules. The remaining 150 occur-
rences either lack grammatical coreference or do occur in more complex construc-
tions.

Figure 1. ATS of the
sentence “Sed maxume

adulescentium
familiaritatem adpetebat”

(BC 14.5).

In order to assign semantic roles automatically (task
(d)), we rely both on analytical functions and on lexical
properties of the ATSs nodes. For instance, all the nodes
with analytical function Sb (Subject) that depend on an
active verb are assigned functor ACT (Actor), and all the
main predicates of subordinate clauses introduced by
the conjunction si ’if’ are assigned functor COND (Con-
dition).

2.2.2. Examples of ATSs and TGTSs from Bellum Catilinae

In this section we report a number of examples of
ATSs and TGTSs from BC.

Figure 1 shows the ATS for the sentence “Sed [but]
maxume [most of all] adulescentium [of the young] fa-
miliaritatem [intimacy] adpetebat [sought]” (BC 14.5)
(“But most of all [Catiline] sought the intimacy of young
men”).

The ATS in Figure 1 features as many nodes as the
words of the sentence (5) plus the root node, which
reports the ID of the sentence in the Latin portion of
the AGLDT (“a-” here means “analytical”) and it is as-
signed by default the analytical function AuxS (Sen-

10

González Saavedra, Passarotti Using Tectogrammatical Annotation (5–28)

Figure 2. TGTS of the sentence “Sed maxume adulescentium familiaritatem adpetebat”
(BC 14.5).

tence). Nodes are arranged from left to right according to the order of the words
in the sentence. Each node is assigned an analytical function.7

The TGTS shown in Figure 2 features all the nodes of the corresponding ATS plus
one. This newly added square node results from both ellipsis resolution and corefer-
ence analysis.

As for the former, the square node fills the position for a missing argument of the
verb adpeto. Here “missing” means that the argument is not explicitly represented
by either a lexical item or a phrase in the text. In this sentence, the verb adpeto is
considered a word with two arguments, which are represented respectively by an
Actor (ACT: missing) and a Patient (PAT: familiaritas).

As for the latter, the newly added node for the missing Actor is assigned t-lemma
#PersPron,8 which means that the node represents the missing occurrence of a per-

7Coord: coordination. Pred_Co: coordinated main predicate. Adv: adverbial modifier (adjunct). Obj:
direct or indirect object (argument). Atr: attributive.

8#PersPron is the t-lemma assigned to nodes representing possessive and personal pronouns (including
reflexives). Sets of different morphological lemmas can be grouped under the same t-lemma in TGTSs. This

11

PBML 111 OCTOBER 2018

sonal pronoun (like is ’he’), which is permitted by the pro-drop nature of Latin. The
node is linked via a textual coreference to the last previous occurrence of the lemma
catilina, which represents its denotation.

In Figure 2, nodes are arranged from left to right reflecting information structure
according to Topic-Focus Articulation, moving from Topic (left) to Focus (right).9 Each
node is assigned a functor and a so called “semantic part of speech”. The occurrence
of the lemma magnus (form maxume) represents an EXT (Extent), i.e. an adjunct that
expresses manner by specifying extent or intensity of the event or a circumstance.
The semantic part of speech for this occurrence is that for gradable adverbs that can
be negated. Familiaritas is a denominating semantic noun (n.denot) further specified
by another noun acting as a restrictor of its head in the TGTS (functor: RSTR). Finally,
sed is a an adversative (ADVS) coordinating connective (coap).

Figure 3. ATS of the sentence “Sed
iuventutem, quam, ut supra diximus,
illexerat, multis modis mala facinora

edocebat” (BC 16.1).

The main predicate of the sentence
is assigned the so called “sentential
modality”, which consists in speech act
annotation. In the TGTS shown in Fig-
ure 2, the sentence is an “enunciation”
(enunc).

Figure 3 shows the ATS for the
sentence “Sed [but] iuventutem [the
young], quam [whom], ut [as] supra
[above] diximus [we said], illexerat [he
had ensnared], multis [many] modis
[ways] mala [bad] facinora [crimes] edo-
cebat [he taught]” (BC 16.1) (“The young
men whom he had ensnared, as I have
mentioned above, were instructed by
him in wicked deeds of many forms”).

The only analytical functions in Fig-
ure 3 that do not occur also in Fig-
ure 1 are AuxX (assigned to punctua-
tion marks) and AuxC (for subordinat-
ing conjunctions). Figure 4 shows the
corresponding TGTS.

In this sentence, catilina is Actor of
two verbs: illicio and edoceo. In both
cases, pronoun dropping and ellipsis
resolution is performed. The Actor of

is the case, for instance, of morphological lemmas aliquis ’someone’, quis ’who?’ ’which?’, quisquis ’whoever’
and unusquisque ’each’, which are all assigned t-lemma quis.

9For details about Topic-Focus Articulation, see Mikulová et al. (2006; pages 1118-1188)

12

González Saavedra, Passarotti Using Tectogrammatical Annotation (5–28)

Figure 4. TGTS of the sentence “Sed iuventutem, quam, ut supra diximus, illexerat,
multis modis mala facinora edocebat” (BC 16.1).

edoceo is linked via a textual coreference to that of illicio, which is in turn textually core-
ferred to the previous occurrence of catilina. Equally, the newly added node standing
for the Patient of the verb dico is linked to illicio, because what “we have said above”
is that “he had ensnared the young men”. Figure 4 shows also a grammatical corefer-
ence holding between the relative pronoun qui (Patient of illicio) and the noun juventus
(Addresse of edoceo). As for the functors, LOC is assigned to Locatives answering the
question “where?” and it is here further specified by the subfunctor “above” (supra).
MANN is a functor for such an adjunct that expresses manner (modis). Finally, it is
worth noting that the TGTS of Figure 4 does not include the node for the function
word ut, which collapses into that for the autosemantic word dico.

13

PBML 111 OCTOBER 2018

Figure 5. ATS of the sentence “cum eo
se consulem initium agundi facturum”

(BC 21.4).

Figure 5 shows the ATS for the sentence
“cum [with] eo [him] se [himself] consulem
[consul] initium [beginning] agundi [of act-
ing] facturum [would have made]” (BC 21.4)
(“[Catiline promised that] as consul with
him, he would launch his undertaking”),
which presents a case of predicate ellipsis.

The sentence is an objective subordinate
clause lacking the predicate of its governing
clause (“[Catiline promised that]”). In ATSs,
this is represented by assigning the analyti-
cal function ExD (External Dependency) to
the main predicate of the sentence. In the
ATS of Figure 5, the node for facturum is as-
signed ExD, because here facturum depends
on a node that is missing and, thus, it is “ex-
ternal” to the current tree.10

Figure 6 shows the TGTS for this sen-
tence. The TGTS resolves the ellipsis of the
main clause. Three sentences before this one
in the text, Sallust writes “Catiline polliceri”
(“Catiline promised [to men]”). The sentence in BC 21.4 still depends on this clause.
Once resolved the ellipsis of polliceor, the TGTS must represent its arguments. Among
these, both the Actor and the Addresse result from ellipsis resolution: Catiline is the
Actor and the men (homo) are the Addresse. The Patient of polliceor, instead, is repre-
sented by the entire objective subordinate clause of BC 21.4. In this clause, the Actor
is again Catiline, as it is represented by the textual coreference of the node depending
on facio which is assigned t-lemma #PersPron: this node is not newly added because
it is textually represented by the reflexive pronoun se. The Patient of facio is initium,
which is specified by a restrictor (RSTR; the verb ago) governing a newly added node
for a General Actor (#Gen). Such Actor is assigned when its denotation cannot be re-
trieved contextually, which mostly happens when impersonal clauses are concerned,
like in this case (literaly: “the beginning of acting”).

The prepositional phrase “cum eo” (“with him”) is represented in the TGTS of
Figure 6 by the node for is (form eo), while that for the preposition cum collapses.
The personal pronoun is is linked with a previous occurrence of the proper name
Antonius via a textual coreference and it is assigned functor ACMP, which is used
for the adjuncts that express manner by specifying a circumstance (an object, person,

10The analytical function Atv is assigned to verbal attributes, i.e. (predicative) complements not partici-
pating in government (consulem). AuxP is used for prepositions (cum).

14

González Saavedra, Passarotti Using Tectogrammatical Annotation (5–28)

Figure 6. TGTS of the sentence “cum eo se consulem initium agundi facturum” (BC 21.4).

event) that accompanies (or fails to accompany) the event or entity modified by the
adjunct.

In TGTSs, predicative complements (functor: COMPL) are adjuncts with a dual
semantic dependency relation. They simultaneously modify a noun and a verb. The
dependency on the verb is represented by means of an edge. In Figure 6, this is the
edge that connects facio with consul. The dependency on the noun is represented by
means of a specific complement reference, which is graphically represented by an
arrow (going from consul to #PersPron in Figure 6).

15

PBML 111 OCTOBER 2018

3. Methodology

One of the added values of tectogrammatical annotation is that it provides infor-
mation that, although it is accessible to readers, is explicitly missing in the text. For
instance, looking at the example sentence whose ATS and TGTS are shown in Figures
5 and 6 respectively, we see that there is no explicit occurrence of Catiline playing the
role of Actor of a verb. Instead, if we exploit tectogrammatical annotation, we can
retrieve that actually that sentence carries (implicit) information about the fact that
Catiline performs two different Actions (namely, polliceor and facio).

Tectogrammatical annotation puts us in the condition to answer the basic research
question of the work described in this paper: “who does what in Bellum Catilinae?”.
In other words, what we look for are all the couples Actor-Action in BC regardless of
the fact that they do explicitly occur in the text.11

3.1. Querying the Data

All data can be freely downloaded from the website of the IT-TB project. The
treebanks can be queried through an implementation of the PML-TQ search engine
(Prague Markup Language – Tree Query) (Štěpánek and Pajas, 2010). We ran a bunch
of queries in order to retrieve all the couples Actor-Action in BC. The basic query just
searches for all the Actors of a verb:

t-node $n0 := [gram/sempos = 'v',
echild t-node $n1 := [functor = 'ACT']];

This query searches for all the nodes of a TGTS (t-node, named $n0) that are as-
signed PoS verb (gram/sempos = v') and govern either directly or indirectly (echild) a
t-node ($n1) with functor ACT (functor = 'ACT').12 The query does not limit the out-
put to nodes with an explicit textual correspondence, but includes also those newly
added in TGTSs, as result of ellipsis resolution.

The output resulting from the query above needs further refinement, as it features
several cases of both relative and personal pronouns whose denotation is resolved in
TGTSs by coreference analysis. For instance, three Actor-Action couples result from
the TGTS of Figure 6: #PersPron-polliceor, #PersPron-facio and #Gen-ago. While #Gen
is a General argument whose denotation cannot be retrieved contextually, both the
#PersPron nodes are assigned a textual coreference in the TGTS, thus enabling to re-
place them with the t-lemma they are coreferent with. In particular, the newly added

11In this work, we consider Actions as represented by verbs only. Deverbal nominalizations are thus
excluded.

12Direct or indirect government is set in order to retrieve Actors occurring in coordinated constructions
(headed by the coordinating element).

16

González Saavedra, Passarotti Using Tectogrammatical Annotation (5–28)

Figure 7. TGTS of the phrase “Omnis homines, qui sese student praestare ceteris
animalibus [...]” (BC 1.1).

#PersPron node depending on polliceor is directly linked via textual coreference with
its antecedent (catilina), while the #PersPron node depending on facio shows an indi-
rect linking with its antecedent by passing through the other #PersPron node.

We ran a number of queries to replace in the output of the basic query all core-
ferred #PersPron t-lemmas with those of the nodes they are linked with via textual
coreference. Then we did the same for all coreferred t-lemmas of relative pronouns,
which are linked with their antecedent via grammatical coreference.

Not only such queries must consider both direct and indirect linking, as well as
textual and grammatical coreference, but they also have to address mixed indirect
coreferences. For instance, this is the case of the first noun phrase in the first sentence
of BC: “Omnis [all] homines [men], qui [who] sese [themselves] student [be eager]
praestare [to stand out] ceteris [others] animalibus [animals] [...]” (BC 1.1) (“All hu-
mans who are keen to surpass other animals [...]”). Figure 7 shows the portion of the
TGTS for the first sentence of BC concerning this phrase.

17

PBML 111 OCTOBER 2018

Figure 8. A graphical query in PML-TQ.

From Figure 7, one can see that the denotation (homo) of the #PersPron node play-
ing the role of Actor of praesto is retrieved (a) indirectly, by passing through the node
for qui, and (b) in mixed fashion, i.e. via a textual coreference (from #PersPron to qui)
plus a grammatical coreference (from qui to homo).

A model of such kind of complex queries is the following (graphically represented
in Figure 8):

t-node $n0 := [functor = 'ACT',

eparent t-node $n2 := [gram/sempos = 'v'],

coref_text.rf t-node $n1 := [coref_gram.rf t-node $n3 := []]];

The t-node named $n0 is an Actor that depends either directly or indirectly (eparent)
on t-node $n2, which is a verb. $n0 has a textual coreference with $n1, which in turn
has a grammatical coreference with $n3. In the TGTS of Figure 7, $n2 is the node for
praesto, $n0 is the #PersPron node depending on praesto, $n1 is qui and $n3 is homo.
By just printing in the output of the query the t-lemma for node $n3, it is possible to
replace #PersPron with homo in the list of the Actor-Action couples.13

3.2. Networking the Data

Once built the list of all the Actor-Action couples and having enhanced each cou-
ple with its frequency of occurrence in the TGTSs of BC, we induced automatically a
network from the list.

In order to build the network out of the tectogrammatical annotation of BC, we
applied the method developed by Ferrer i Cancho et al. (2004). According to this

13The longest coreference chain we found in BC includes 5 textual coreferences.

18

González Saavedra, Passarotti Using Tectogrammatical Annotation (5–28)

Figure 9. The tecto-based subnetwork for cato and certo.

method, a dependency relation appearing in the source treebank is converted into an
edge in the network and two vertices are linked in the network if they appear at least
once in a dependency relation in the treebank. The edges are directed according to the
direction of the dependency relation in the treebank. In the case of our network, the
vertices are Actors and Actions, and the edges are the dependency relations holding
between Actors and Actions. The edges are directed from the Actors to the Actions.

The network is built by accumulating sentence structures from the treebank. The
treebank is parsed sentence by sentence and new vertices are added to the network.
When a vertex is already present in the network, more links are added to it.

The result is a ”tecto-based” network containing all the dependencies between Ac-
tors and Actions in the input treebank. Edges are weighted by frequency, i.e. each
connection between two vertices is enhanced with the number of its occurrences in
the source TGTSs.

Figure 9 shows the portion of the tecto-based network concerning the Actor cato
and the Action certo ’to fight’. The node for cato is connected to all the Actions that
cato performs in BC via outgoing edges enhanced with the frequency of the connection
they represent; for instance, from Figure 9 one can understand that cato performs the
Action represented by certo five times. Conversely, the node for certo is connected to
all the Actors that perform such Action via ingoing edges.

19

PBML 111 OCTOBER 2018

Figure 10. The tecto-based network of
Bellum Catilinae.

The full tecto-based network of BC is
shown in Figure 10. The nodes of this
network represent all the Actors and the
Actions of BC, while its edges are all the
dependency relations holding between
them in the source TGTSs.

In the following, we first use some
topological properties of the tecto-based
network of BC to study Actors and Ac-
tions in BC. Then, we run a clustering
analysis of its vertices with the highest
out-degree (i.e. the Actors reported in
Table 1) to understand if they can be
properly organized into homogeneous
groups defined by the set of the vertices
they are connected to via outgoing edges
(i.e. the Actions they perform).

4. Results and Discussion

4.1. Actors and Actions

Table 1 reports the main Actions and the main Actors in BC. These are defined as
the vertices in the tecto-based network with the highest out-degree (Actors) and in-
degree (Actions) respectively.14 In other words, this means that the main Actors are
those that perform the highest number of different Actions and, conversely, the main
Actions are those performed by the highest number of different Actors.15

Beside Actions and the number of their different Actors, Table 1 reports also the
total number of occurrences of each Action and, among these, the number of gener-
ated occurrences (resulting from ellipsis resolution). The case of convenio ’to come
together’ is worth noting, as it turns out that it has 20 different Actors for just 8 occur-
rences (2 of which are generated). This happens because in some of its occurrences
convenio has more than one Actor, like for instance in the sentence “eo [there] con-
venere [to come together] senatorii [senatorial] ordinis [order] P. Lentulus Sura , P.

14In a network, the degree of a vertex s is the number of its edges, i.e. different relations holding between
s and other vertices in the network. In a directed network (like the tecto-based network here concerned),
the degree results from the sum of the out-degree, which labels the number of edges that are directed from
the vertex, and of the in-degree, which labels the number of edges that are directed to the vertex.

15The absence of verbs like possum ’can’ and volo, velle ’to want’ in Table 1 is due to the treatment of
modal predicates in TGTS (see Mikulová, 2006, pp. 318–320). Not coreferred Actors are excluded from
Table 1. These are the General Actor (#Gen) and those pronouns that do not undergo coreference analysis in
TGTSs, i.e. indefinite and interrogative pronouns (like alius and quis), as well as both explicit and generated
personal pronouns of first and second person.

20

González Saavedra, Passarotti Using Tectogrammatical Annotation (5–28)

Action Actors Occ. Generated

sum 179 268 38
habeo 43 84 10
facio 39 87 4
convenio 20 8 2
dico 18 41 9
do 18 22 3
hortor 16 11 2
venio 14 11 0
coepio 13 18 7
puto 13 10 0
peto 13 12 0
cognosco 13 20 0

Actor Actions Occ. Generated

catilina 133 61 6
cicero 33 18 0
homo 32 40 3
res 24 147 4
petreius 20 3 0
lentulus 20 27 6
consul 20 32 0
caesar 20 13 0
populus 19 18 0
curius 19 5 0
vulturcius 18 10 0
vir 18 16 0
animus 18 59 2

Table 1. Main Actions (left) and Actors (right).

Autronius , L. Cassius Longinus , C. Cethegus , P. et Ser . Sullae Ser. filii , L. Vargun-
teius , Q. Annius , M. Porcius Laeca , L. Bestia , Q. Curius” (BC 17.3) (“There were
present from the senatorial order [...]”).

Not surprisingly, Catiline is the star of BC, being the Actor of 133 different Actions
(i.e. verbs) in 61 occurrences (6 out of which are generated). Traditionally, together
with Catiline, the three other main characters of BC are considered to be Caesar, Cato
and Cicero, who give the main speeches reported in the text. If we look at the Actions
each of them performs and focus on those that Catiline only performs (i.e. those not
shared with the others), we can see which Actions are peculiar of Catiline. These are
represented by the verbs dimitto ’to send out’ and paro ’to prepare’.

Interestingly enough, dimitto and paro not only correspond to the Actions per-
formed by Catiline only (and not also by Caesar, Cato or Cicero), but they are also
those Actions that Catiline most frequently performs (6 times), just after facio ’to make’
(10) and habeo ’to have’ (7), and more than sum ’to be’ (5) and video ’to see’ (5). If for
dimitto this result is biased by a case of ellipsis resolution applied on a multiple co-
ordination in one sentence,16 paro offers a wider range of occurrences. By exploiting

16”Igitur [Catilina] C. Manlium Faesulas atque in eam partem Etruriae [dimisit], Septimium quendam
Camertem in agrum Picenum [dimisit], C. Iulium in Apuliam dimisit, praeterea alium alio [dimisit], quem
ubique opportunum sibi fore credebat” (BC 27.1) (”He, therefore, dispatched Gaius Manlius to Faesulae
and that region of Etruria, a certain Septimius of Camerinum to the Picene district, and Gaius Julius to
Apulia; others too to other places, wherever he believed that each would be serviceable to him”). The
three occurrences of dimisit put in square brackets are generated in the TGTS of this sentence via ellipsis
resolution. Catilina is generated as well, playing the role of Actor of all the generated occurrences of dimisit.

21

PBML 111 OCTOBER 2018

semantic role labeling, we can know what Catiline prepares in BC. The most frequent
Patients of the occurrences of paro in BC with Catiline as Actor are the following: arma
’implements of war’ ’weapons’, incendium ’burning’, insidiae ’trap’ and interficio ’to de-
stroy’. Such Patients of paro show the complexity of the character of Catiline, who is
depicted somewhere negatively (mostly in the first half of BC) and somewhere else
positively. In fact, while looking at the Patients of paro, we see that Catiline is not only
someone who prepares malitious acts (insidias parare), but he also encourages the rev-
olutionaries to the arms (arma parare), which is presented by Sallust under a positive
light, as Wilkins (1994) points out (page 51).

Given that Catiline plays the role of Actor in BC more than three times more than
Cicero, one can expect that most of the Actions performed by Cicero are common with
Catiline and that these Actions are more frequently performed by Catiline than by
Cicero. Actually, there are some deviations from such trend. The most clear example
is the verb refero ’to bear back’ ’to report’, whose Actor is Cicero in two occurrences
while Catiline does never perform it. Moreover, there are three verbs that feature
Cicero as Actor more than once and more than Catiline. These are cognosco ’to know’
and praecipio ’to take in advance’ ’to warn’. Both these verbs have Cicero as Actor
twice and Catiline once. Finally, the Action most frequently performed by Cicero (3)
is represented by the verb iubeo ’to give an order’ ’to command’. Also Catiline is Actor
of iubeo, but only in two occurrences.

4.2. Clustering the Actors

Clustering is a technique that deals with finding a structure in a collection of data.
In particular, clustering is the process of organizing objects (called “observations”)
into groups (“clusters”) whose members are similar in some way. One of trickiest
issues in clustering is to define what ‘similarity’ means and to find a clustering algo-
rithm that computes efficiently the degree of similarity between two objects that are
being compared.

Hierarchical clustering is a specific method of cluster analysis that seeks to build
a hierarchy of clusters. Hierarchical clustering can be performed by following two
main strategies: (a) agglomerative (bottom-up): each observation starts in its own
cluster, and pairs of clusters are merged as one moves up the hierarchy; (b) divisive
(top-down): all observations start in one cluster, and splits are performed recursively
as one moves down the hierarchy.

In this work, we apply hierarchical agglomerative clustering to compute the de-
gree of similarity/dissimilarity between the Actors reported in Table 1. Such degree
is obtained by comparing Actors by the Actions they perform. First, we compute the
amount of shared and non-shared Actions between the members of all the possible
couples of Actors. Then, we compare the distribution of shared and not shared Ac-

22

González Saavedra, Passarotti Using Tectogrammatical Annotation (5–28)

tions by their relative frequency.17 As for the distance measure, the analysis is run on
document-term matrices by using the cosine distance18

d(i; i’) = 1 - cos{(xi1, xi2, ..., xik), (xi’ 1, xi’ 2, ..., xi’ k)} .

The arguments of the cosine function in the preceding relationship are two rows,
i and i’, in a document-term matrix; xi j and xi’ j provide the number of occurrences of
verb j (j =1, ..., k) in the two sets of Actions corresponding to rows i and i’ (“profiles”).
Zero distance between two sets (cosine = 1) holds when two sets with the same profile
are concerned (i.e. they have the same relative conditional distributions of terms). In
the opposite case, if two sets do not share any word, the corresponding profiles have
maximum distance (cosine = 0).

As for clustering, we run a “complete” linkage agglomeration method. While
building clusters by agglomeration, at each stage the distance (similarity) between
clusters is determined by the distance (similarity) between the two elements, one from
each cluster, that are most distant. Thus, complete linkage ensures that all items in a
cluster are within some maximum distance (or minimum similarity) to each other.

Roughly speaking, according to our clustering method, Actors that share a high
number of Actions with similar distribution are considered to have a high degree of
similarity and, thus, fall into the same or related clusters. Figure 11 plots the results.

Looking at Figure 11, it turns out that there are three main clusters.
Moving from top to bottom, the first cluster includes the two most similar Ac-

tors according to the Actions they perform. These are cicero and consul ’consul’. This
happens although BC includes several occurrences of consul that are not referred to
Cicero. Actually, Marcus Tullius Cicero is the consul par excellence in Roman politi-
cal history and he was the only consul among the Actors considered here, as Caesar
would become consul for the first time in 59 BCE, four years after the facts told in BC.
The second most similar couple of Actors is the one including catilina and lentulus.
Catiline was the one who devised the conspiracy narrated in BC. Publius Cornelius
Lentulus was one of the main conspirators. In particular, he took the place of Cati-
line as chief of the conspirators in Rome, when Catiline had to leave the city after the
famous second speech of Cicero In Catilinam. The two characters are, thus, strictly
related. This is further confirmed by the following words of Cato’s speech, which
closely connect the decision to be taken by the Senate about Lentulus with that about
the army of Catiline: ”Qua re quom de P. Lentulo ceterisque statuetis, pro certo ha-
betote vos simul de exercitu Catilinae et de omnibus coniuratis decernere” (BC 52.17)

17All the experiments were performed with the R statistical software (R Development Core Team, 2012).
More details about the clustering method used here can be found in Passarotti and Cantaluppi (2016).

18A document-term matrix is a mathematical matrix that holds frequencies of distinct terms for each
document. In a document-term matrix, rows correspond to documents in the collection and columns cor-
respond to terms.

23

PBML 111 OCTOBER 2018

Figure 11. Clustering the Actors.

(”Be assured, then, that when you decide the fate of Publius Lentulus and the rest,
you will at the same time be passing judgment on Catiline’s army and all the conspir-
ators”). In this respect, the destinies of Lentulus and Catiline are not only linked to
each other, but they are also strictly bound to the outcome of the conspiracy. Indeed,
as Wilkins (1994; page 95) points out, Lentulus’s execution on one side and the death
of Catiline on the other represent respectively the first and the last step in the failure
of the conspiracy.

In the same larger cluster are curius and populus ’people’. Quintus Curius was an-
other conspirator, although his role was actually ambivalent. Being a friend of Cati-
line, he took part in the conspiracy, but at the same time it was because of him that
it was foiled. According to Sallust, Curius, to boast with his mistress Fulvia, told her
the details of the conspiracy, which she informed Cicero about. Moreover, Curius
accused Caesar of being a conspirator. Such an undefined role is played also by “the
people”. In those passages where Sallust talks about “the Roman people” ’populus
romanus’, these are mostly positively depicted. Conversely, there are also places in

24

González Saavedra, Passarotti Using Tectogrammatical Annotation (5–28)

BC where the people act badly. Finally, Titus Vulturcius, a conspirator playing a sub-
ordinate role in the plot, falls into the same cluster, standing quite apart from the
others.

The second cluster includes just two lemmas: animus ’soul’ and res ’thing’. These
are the only not human Actors, among the ones considered here.

The third cluster features two couples of Actors. The first includes lemmas homo
’human being’ ’man’ and vir ’adult male’ ’man’, which are semantically strictly re-
lated, standing in hypernym/hyponym relation. The second couple is formed by pe-
treius and caesar. Marcus Petreius plays a positive role in BC, having led the senatorial
forces in the victory over Catiline in Pistoia. It is worth noting that such a positive
character in the plot gets clustered together with Caesar. The future dictator Gaius
Iulius Caesar hoped for the success of the second conspiracy of Catiline, just like he
did for the first. However, Sallust’s intent is to lift Caesar of any suspicion of a possi-
ble link with Catiline. He emphasizes the Caesar’s concern for legality, depicting him
(together with Cato) as the faithful guardian of “mos maiorum”, the core, unwritten
code of Roman traditionalism. Putting Caesar under such a positive light is strictly
connected to the fact that, while BC was being written, Caesar was deified by decree
of the Roman Senate (on 1st January 42 BCE), after his assassin on the Ides of March
44 BCE.

5. Conclusion and Future Work

In the context of the work presented in this paper, there are two main open issues
to address in the near future. First, we must enhance data with coreference analysis
of either explicit or generated first and second personal pronouns. This is needed be-
cause BC features speeches given by different characters, which makes the reference
of such pronouns change across the text. Second, our work must consider also Ac-
tions represented by (deverbal) nouns together with their either explicit or generated
Actors, which tend to occur as subjective genitives.

As far as the interpretation of some specific aspects of BC is concerned, we have
shown that using tectogrammatical annotation for studying the Actors and the Ac-
tions of the plot can clarify to some extent how Sallust conceived Catiline’s portrayal.
In this respect, future work must focus specifically on the Actions performed by Cati-
line, by taking into consideration the structure of the book in order to determine the
evolution of the character throughout the chapters. Also, performing the tectogram-
matical annotation of Cicero’s In Catilinam would help to compare the two portrayals
of Catiline.

More generally speaking, the work described here represents a case study showing
how much useful a treebank enhanced with semantic annotation can be for literary
studies. In this respect, there is still much to do. On one side, still too few literary
texts provided with such annotation layer are currently available. On the other, the
use of linguistic resources like treebanks remains dramatically confined in the area

25

PBML 111 OCTOBER 2018

of computational and theoretical linguistics, not impacting other communities which
might largely benefit from such resources.

To overcome the former, one desideratum is building NLP tools able to provide
good accuracy rates of semantic annotation across different domains. As for the lat-
ter, developers of treebanks based on literary data and/or texts written in ancient
languages must more and more get in touch with different kinds of domain experts
from the Humanities, like philologists, historical linguists, philosophers, historians
and scholars in literature. Indeed, across the last few years, this looks like a growing
trend, with several events and special issues of scientific journals dedicated to differ-
ent topics in computational linguistics and the Humanities. We hope that this is just
the beginning of a fruitful joint work.

Acknowledgements

This research is supported by the Italian Ministry of Education, University and
Research (MIUR), FIR-2013 project ”Developing and Integrating Advanced Language
Resources for Latin” (ID: RBFR13EWQN).

Bibliography

Ahlberg, Axel W. C. Sallusti Crispi. Catiline, Iugurtha, Orationes Et Epistulae Excerptae De Historiis.
Teubner, Leipzig, 1919.

Bamman, David and Gregory Crane. The Ancient Greek and Latin Dependency Treebanks. In
Language Technology for Cultural Heritage, pages 79–98. Springer, 2011. URL https://doi.
org/10.1007/978-3-642-20227-8_5.

Bamman, David, Marco Passarotti, Gregory Crane, and Savina Raynaud. Guidelines for the
Syntactic Annotation of Latin Treebanks. Tufts University Digital Library, Boston, MA,
2007. URL https://itreebank.marginalia.it/doc/2007_Passa+Bamman+Crane+Raynaud_
Guidelines%20Tb.pdf.

Batstone, William. Word at War: The Prequel. In Citizens of Discord: Rome and Its Civil Wars,
pages 45–72. OUP USA, 2010.

Broughton, Thomas RS. Was Sallust Fair to Cicero? In Transactions and Proceedings of the Amer-
ican Philological Association, pages 34–46. JSTOR, 1936.

Conley, Duane F. The Interpretation of Sallust Catiline 10. 1-11. 3. Classical Philology, 76(2):
121–125, 1981.

Demske, Ulrike. Das MERCURIUS-Projekt: Eine Baumbank für das Frühneuhochdeutsche.
Sprachkorpora: Datenmengen und Erkenntnisfortschritt, pages 91–104, 2007. URL https://doi.
org/10.1515/9783110439083-007.

Earl, Donald C. The political thought of Sallust. PhD thesis, University of Cambridge, 1958.
Eckhoff, Hanne Martine and Aleksandrs Berdicevskis. Linguistics vs. digital editions: The

Tromsø Old Russian and OCS Treebank. Scripta & e-Scripta, 14:15, 2015.

26

https://doi.org/10.1007/978-3-642-20227-8_5
https://doi.org/10.1007/978-3-642-20227-8_5
https://itreebank.marginalia.it/doc/2007_Passa+Bamman+Crane+Raynaud_Guidelines%20Tb.pdf
https://itreebank.marginalia.it/doc/2007_Passa+Bamman+Crane+Raynaud_Guidelines%20Tb.pdf
https://doi.org/10.1515/9783110439083-007
https://doi.org/10.1515/9783110439083-007

González Saavedra, Passarotti Using Tectogrammatical Annotation (5–28)

Ferrer i Cancho, Ramon, Ricard V Solé, and Reinhard Köhler. Patterns in syntactic dependency
networks. Physical Review E, 69(5):051915, 2004. URL https://doi.org/10.1103/physreve.
69.051915.

González Saavedra, Berta and Marco Passarotti. Challenges in enhancing the Index Thomisti-
cus treebank with semantic and pragmatic annotation. In Proceedings of the Thirteenth In-
ternational Workshop on Treebanks and Linguistic Theories (TLT-13). Department of Linguistics,
University of Tübingen, pages 265–270, 2014. URL http://tlt13.sfs.uni-tuebingen.de/
tlt13-proceedings.pdf#page=273.

Hajič, Jan, Alena Böhmová, Eva Hajičová, and Barbora Vidová Hladká. The Prague Depen-
dency Treebank: A Three-Level Annotation Scenario. In Treebanks: Building and Using Parsed
Corpora, pages 103–127. Kluwer, 2000.

Haug, Dag and Marius Jøhndal. Creating a parallel treebank of the old Indo-European Bible
translations. In Proceedings of the Language Technology for Cultural Heritage Data Workshop
(LaTeCH 2008), pages 27–34. ELRA, 2008. URL http://www.lrec-conf.org/proceedings/
lrec2008/workshops/W22_Proceedings.pdf#page=31.

Inglese, Guglielmo. Towards a Hittite Treebank. Basic Challenges and Methodological Re-
marks. In Proceedings of the Workshop on Corpus-Based Research in the Humanities (CRH), pages
59–68. Institute of Computer Science of the Polish Academy of Sciences, 2015.

Kroch, Anthony, Beatrice Santorini, and Lauren Delfs. The Penn-Helsinki Parsed Corpus of
Early Modern English (PPCEME). Department of Linguistics, University of Pennsylvania.
CD-ROM. Department of Linguistics, University of Pennsylvania, CD-ROM, 2004.

Martineau, France. Un corpus pour l’analyse de la variation et du changement linguistique.
Corpus, 7, 2008.

McConaghy, Mary Lee Sivess. Sallust and the Literary Portrayal of Character. UMI, Washington,
1974.

Meyer, Roland. New wine in old wineskins?—Tagging Old Russian via annotation projection
from modern translations. Russian linguistics, 35(2):267–281, 2011. URL https://doi.org/
10.1007/s11185-011-9075-x.

Mikulová, Marie et al. Annotation on the Tectogrammatical Layer in the Prague Dependency Treebank.
Institute of Formal and Applied Linguistics, Prague, Czech Republic, 2006. URL https:
//ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/t-layer/pdf/t-man-en.pdf.

Passarotti, Marco. Language Resources. The State of the Art of Latin and the Index Thomisticus
Treebank Project. In Corpus anciens et Bases de données, pages 301–320. Presses universitaires
de Nancy, 2011.

Passarotti, Marco and Gabriele Cantaluppi. A Statistical Investigation into the Corpus of
Seneca. In Latinitatis Rationes. Descriptive and Historical Accounts for the Latin Language, pages
684–706. De Gruyter, 2016.

Passarotti, Marco and Berta González Saavedra. The Treebanked Conspiracy. Actors and Ac-
tions in Bellum Catilinae. In Proceedings of the 16th International Workshop on Treebanks and
Linguistic Theories, pages 18–26, 2017. URL http://www.aclweb.org/anthology/W17-7605.

27

https://doi.org/10.1103/physreve.69.051915
https://doi.org/10.1103/physreve.69.051915
http://tlt13.sfs.uni-tuebingen.de/tlt13-proceedings.pdf#page=273
http://tlt13.sfs.uni-tuebingen.de/tlt13-proceedings.pdf#page=273
http://www.lrec-conf.org/proceedings/lrec2008/workshops/W22_Proceedings.pdf#page=31
http://www.lrec-conf.org/proceedings/lrec2008/workshops/W22_Proceedings.pdf#page=31
https://doi.org/10.1007/s11185-011-9075-x
https://doi.org/10.1007/s11185-011-9075-x
https://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/t-layer/pdf/t-man-en.pdf
https://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/t-layer/pdf/t-man-en.pdf
http://www.aclweb.org/anthology/W17-7605

PBML 111 OCTOBER 2018

Passarotti, Marco, Berta González Saavedra, and Christophe Onambele. Latin Vallex. A
Treebank-based Semantic Valency Lexicon for Latin. In LREC, 2016. URL http://www.
lrec-conf.org/proceedings/lrec2016/pdf/96_Paper.pdf.

R Development Core Team. R: A language and environment for statistical computing. Foundation
for Statistical Computing, Vienna, Austria, 2012.

Ramsey, John T. Sallust. The war with Catiline. The war with Jugurtha. Harvard University Press,
The Loeb Classical Library 116, Cambridge, MA, 2014.

Schröder, Wilt Aden. Zu Sallust, Catilina 3, 3 (und zum Gedankengang des Proömiums). In
Lemmata: Beiträge zum Gedenken an Christos Theodoridis, pages 203–219. Walter de Gruyter
GmbH & Co KG, 2015.

Sgall, Petr, Eva Hajičová, and Jarmila Panevová. The Meaning of the Sentence in its Semantic and
Pragmatic Aspects. D. Reidel, Dordrecht, NL, 1986.

Štěpánek, Jan and Petr Pajas. Querying Diverse Treebanks in a Uniform Way. In Proceedings of
the Seventh conference on International Language Resources and Evaluation (LREC 2010), pages
1828–1835. ELRA, 2010. URL http://www.lrec-conf.org/proceedings/lrec2010/pdf/381_
Paper.pdf.

Syme, Ronald. Sallust. University of California Press, Berkeley, 1964.
Tannenbaum, RF. What Caesar Said: Rhetoric and History in Sallust’s Coniuratio Catilinae 51.

In Roman Crossings: Theory and Practice in the Roman Republic, pages 209–223. Classical Press
of Wales, 2005.

Taylor, Ann. The York—Toronto—Helsinki parsed corpus of old english prose. In Creating and
digitizing language corpora, pages 196–227. Springer, 2007. URL https://doi.org/10.1057/
9780230223202_9.

Taylor, Ann and Anthony S Kroch. The Penn-Helsinki Parsed Corpus of Middle English. MS.
University of Pennsylvania, 1994. URL http://www.ling.upenn.edu/mideng/documentation/
manual.ps.

Urešová, Zdeňka. Building the PDT-VALLEX valency lexicon. In On-line proceedings of the fifth
Corpus Linguistics Conference. University of Liverpool, 2009. URL http://ufal.ms.mff.cuni.
cz/pcedt2.0/publications/Uresova2011.pdf.

Waters, Kenneth H. Cicero, Sallust and Catiline. Historia: Zeitschrift für Alte Geschichte, H. 2:
195–215, 1970.

Wilkins, Ann Thomas. Villain or hero: Sallust’s portrayal of Catiline, volume 15. Peter Lang Pub
Inc, 1994.

Žabokrtský, Zdeněk. Treex – an open-source framework for natural language processing. In In-
formation Technologies – Applications and Theory, pages 7–14. Univerzita Pavla Jozefa Šafárika
v Košiciach, 2011. URL http://ceur-ws.org/Vol-788/paper2.pdf.

Address for correspondence:
Marco Passarotti
marco.passarotti@unicatt.it
Università Cattolica del Sacro Cuore. Largo Gemelli, 1 - 20123 Milan, Italy

28

http://www.lrec-conf.org/proceedings/lrec2016/pdf/96_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/96_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/381_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/381_Paper.pdf
https://doi.org/10.1057/9780230223202_9
https://doi.org/10.1057/9780230223202_9
http://www.ling.upenn.edu/mideng/documentation/manual.ps
http://www.ling.upenn.edu/mideng/documentation/manual.ps
http://ufal.ms.mff.cuni.cz/pcedt2.0/publications/Uresova2011.pdf
http://ufal.ms.mff.cuni.cz/pcedt2.0/publications/Uresova2011.pdf
http://ceur-ws.org/Vol-788/paper2.pdf

The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018 29–56

Enriching VALLEX with Light Verbs:
From Theory to Data and Back Again

Václava Kettnerová, Markéta Lopatková, Eduard Bejček, Petra Barančíková
Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics, Prague, Czechia

Abstract
This paper summarizes results of a theoretical analysis of syntactic behavior of Czech light

verb constructions and their verification in the linguistic annotation of a large amount of these
constructions. The concept of LVCs is based on the observation that nouns denoting actions,
states, or properties have a strong tendency to select semantically underspecified verbs, which
leads to a specific rearrangement of valency complementations of both nouns and verbs in the
syntactic structure. On the basis of the description of deep and surface syntactic properties of
LVCs, a formal model of their lexicographic representation is proposed here. In addition, the
resulting data annotation, capturing almost 1,500 LVCs, is described in detail. This annotation
has been integrated in a new version of the VALLEX lexicon, release 3.5.

1. Introduction

Light verb constructions (LVCs) pose a serious challenge for both theoretical lin-
guistics and NLP tasks due to their syntactic complexity. The major challenges raised
by LVCs can be overcome by a lexicographic representation allowing for their effi-
cient handling in both theoretical and computational linguistics. Developing a formal
model of such representation thus represents a crucial task of the current lexicogra-
phy.

In this paper, we present a formal model of the lexicographic description of LVCs
designed for the valency lexicon of Czech verbs VALLEX, summarizing findings par-
tially presented esp. in Kettnerová and Lopatková (2015); Kettnerová et al. (2016); Ket-
tnerová (2017); Kettnerová and Lopatková (2017b), and in Kettnerová and Lopatková

© 2018 PBML. Distributed under CC BY-NC-ND. Corresponding author: kettnerova@ufal.mff.cuni.cz
Cite as: Václava Kettnerová, Markéta Lopatková, Eduard Bejček, Petra Barančíková. Enriching VALLEX with Light
Verbs: From Theory to Data and Back Again. The Prague Bulletin of Mathematical Linguistics No. 111, 2018,
pp. 29–56. doi: 10.2478/pralin-2018-0006.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 111 OCTOBER 2018

(2017a). This model, based on a thorough theoretical research into Czech LVCs and
grounded in an in-depth analysis of corpus data using the Functional Generative De-
scription (FGD, see esp. Sgall et al., 1986), has been applied in an extensive annotation
of Czech LVCs allowing us to verify theoretical adequacy of the adopted postulates
and their further modification. This annotation has been integrated in the VALLEX
lexicon, release 3.5.

LVCs represent a type of complex predicates where two syntactic elements – a light
verb and a predicative noun, adjective, adverb (or verb esp. in Asian languages) –
function together as a single predicative unit. The syntactic structure of an LVC is then
determined by both the light verb and the other predicative element. For example,
the structure with the light verb dát ‘to give’ is determined not solely by the verb,
which provides three valency complementations, namely ACT (matka ‘mother’), ADDR
(děti ‘children’), and CPHR (příkaz ‘order’), see example (1), but also by the noun příkaz
‘order’, which contributes PAT (uklidit ‘to clean up’) to the structure.1

(1) MatkaACT dala dětemADDR příkazCPHR ukliditPAT pokoj.
‘Mother gave children an order to clean their room up.’

The question how valency complementations of light verbs and predicative ele-
ments participate in the syntactic structure formation of LVCs is a central issue of
any syntactic theory attempting to provide their comprehensive analysis. Despite be-
ing addressed in many theoretical frameworks, see e.g., argument merger formulated
within the Government Binding theory (Grimshaw and Mester, 1988), argument fu-
sion (Butt, 2010) and argument composition within the Lexical-Functional Grammar
(Hinrichs et al., 1998), and the study by Alonso Ramos carried out within the Meaning↔ Text Theory (Alonso Ramos, 2007), this issue is still far from being clear. The main
difficulty in arriving at a more uniform analysis of LVCs lies in the fact that a defini-
tional characterization allowing for their cross-linguistic identification is still missing.
In some analyses, LVCs are then mixed up with control constructions, or even with
auxiliary verbs – such misinterpretations clearly lead to inconsistent conclusions (see
esp. Butt and Geuder, 2001).

In this paper, we aim at contributing to better understanding the syntactic struc-
ture formation of Czech LVCs, making use of the theoretical framework of FGD. We
limit our focus to LVCs composed of light verbs and predicative nouns expressed as
their direct object, as these LVCs are the most central and frequent ones in Czech.
We demonstrate that the syntactic formation of these LVCs is compositional, namely
that the syntactic structure of an LVC can be inferred from syntactic properties of the
predicative noun and the light verb forming the given LVC on a rule basis. Further, we

1Compare with the syntactic structure with the full verb dát consisting of ACT (matka ‘mother’), ADDR
(děti ‘children’), and PAT (čokoláda ‘chocolate’), see the following example:

MatkaACT dala dětemADDR čokoláduPAT.
‘Mother gave children chocolate.’

30

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

show that the coreference relation between valency complementations of predicative
nouns and light verbs represents a key characteristic of LVCs.

As has been already reflected in the literature (see e.g., Radimský, 2010), an intu-
itive clue lying in paraphrasability of LVCs by single verbs does not represent a reliable
criterion for their identification as there is a number of broadly accepted LVCs with-
out a suitable paraphrase (e.g., udělat dojem ‘to make an impression’, nést vinu ‘to be
at fault’, mít názor ‘to have an opinion’); on the contrary, some full verb collocations
can be paraphrased by single verbs (e.g., uložit do hrobu ‘to lay to rest; lit. to lay into
the grave’ – pohřbít ‘to tomb’). Therefore we consider the syntactic compositionality
together with the coreference relation between verbal and nominal valency comple-
mentations as a definitional criterion for delimiting LVCs in our research.

The paper is structured as follows. First, the valency lexicon of Czech verbs, VAL-
LEX, and its theoretical background – the valency theory of FGD – are introduced
(Section 2). Second, the results of the theoretical analysis of Czech LVCs are summa-
rized (Section 3). On the basis of these results, a formal model of the lexicographic
representation of LVCs is proposed (Section 4). Third, the application of this model
to the annotation of a large amount of linguistic data is described and the resulting
annotated data are characterized (Section 5). The last section provides a short sum-
mary.

2. VALLEX and the Valency Theory of FGD

VALLEX, a valency lexicon of Czech verbs, takes the Functional Generative De-
scription (FGD) as its theoretical background. FGD represents a dependency oriented
framework which adopts a stratificational approach to the language description (Sgall
et al., 1986). One of the main concept of FGD is represented by the tectogrammatical
layer – the deep syntactic layer. The core of this layer is represented by valency, an
ability of a word to open a certain number of valency positions for other dependent
units. The valency theory of FGD has been elaborated from the 70th esp. by Jarmila
Panevová (see esp. Panevová, 1974–75, 1980, 1994) and applied in several valency lexi-
cons: VALLEX, a valency lexicon of Czech verbs (Lopatková et al., 2016),2 PDT-Vallex,
a valency lexicon linked to the family of Prague Dependency Treebanks (Urešová,
2011),3 and EngVallex, a valency lexicon representing the part of the annotation of the
Prague Czech-English Dependency Treebank.4

In the valency theory of FGD, actants and free modifications are distinguished.
Actants (be they obligatory, or optional) represent valency complementations char-

2http://ufal.mff.cuni.cz/vallex (http://hdl.handle.net/11234/1-2307)
3http://ufal.mff.cuni.cz/pdt-vallex-valency-lexicon-linked-czech-corpora
(http://hdl.handle.net/11858/00-097C-0000-0023-4338-F)

4http://ufal.mff.cuni.cz/engvallex-english-valency-lexicon-linked-corpora
(http://hdl.handle.net/11858/00-097C-0000-0023-4337-2)

31

http://ufal.mff.cuni.cz/vallex
http://hdl.handle.net/11234/1-2307
http://ufal.mff.cuni.cz/pdt-vallex-valency-lexicon-linked-czech-corpora
http://hdl.handle.net/11858/00-097C-0000-0023-4338-F
http://ufal.mff.cuni.cz/engvallex-english-valency-lexicon-linked-corpora
http://hdl.handle.net/11858/00-097C-0000-0023-4337-2

PBML 111 OCTOBER 2018

acterizing the word in a unique way; as such they have to be listed in its valency
frame. Five actants are recognized: ACT, PAT, ADDR, ORIG, and EFF. A higher number
of free modifications is determined on the basis of their semantic features (e.g., tem-
poral, spatial, causal, etc.); only obligatory ones characterize a word in a unique way
and thus they have to be part of its valency frame as well (see esp. Panevová, 1994;
Lopatková and Panevová, 2006). Morphemic forms of actants are determined by a
governing word (as such they have to be indicated in its valency frame) while forms
of free modifications stem from their semantic type (as a result, they do not have to
be provided in the valency frame) (Lopatková and Panevová, 2006).

The VALLEX lexicon, attempting to provide a comprehensive description of valen-
cy behavior of Czech verbs, represents the most elaborated lexicon developed within
FGD. For purposes of the description of language phenomena at the lexicon-grammar
interface, this lexicon has been divided into two components: a lexical part (the data
component), providing information specific to individual lexical units, and a gram-
mar part (the grammatical component), capturing regular patterns of Czech verbs in
the form of formal rules (thus being a part of the overall grammar of Czech).

Data component provides the information on valency structure of Czech verbs in their
individual senses. The key organizing concept of this lexicon is represented by the lex-
eme, an abstract twofold unit associating lexical forms of a verb with its lexical units
(individual senses). Each lexical unit is assigned the syntactic and semantic informa-
tion. VALLEX stores more than 6,760 lexical units of verbs (counting aspectual coun-
terparts separately 10,900 lexical units) contained in more than 2,730 lexemes. These
lexemes are represented by almost 4,600 verb lemmas.

The crucial information on the valency structure of individual lexical units is pro-
vided in the form of valency frame. Valency frame is modeled as a sequence of va-
lency slots, each slot standing for one valency complementation. Each slot of a valency
complementation is characterized by a functor (a syntactico-semantic label marking
the relation of the valency complementation to its governing verb, as e.g., ACT, ADDR,
PAT, LOC etc.) and by the information on obligatoriness. In addition, the informa-
tion on morphemic forms is provided for actants, indicating possible surface syntac-
tic expression of the given complementation in active, unreciprocal and irreflexive
constructions.

Each lexical unit can be described by other relevant syntactic and syntactico-se-
mantic information, e.g., on control, reflexivity, reciprocity, diatheses, alternations,
syntactico-semantic class membership.

Grammar component stores grammatical rules which instantiated by the information
provided by the data component of the lexicon allow for obtaining all possible surface
syntactic manifestations of lexical units of verbs, namely their passive, reciprocal and
reflexive structures.

32

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

As we show below, the division into the lexical and grammar component has ap-
peared to be relevant also for the description of LVCs as they represent a typical lan-
guage phenomenon bridging these two parts of the language description.

3. Theoretical Analysis of LVCs

In this section, we provide a comprehensive theoretical account of both deep (Sec-
tion 3.1) and surface structure formation of LVCs (Section 3.2), grounded in FGD.

3.1. Deep Syntactic structure of LVCs

The deep syntactic structure of LVCs consists of valency complementations of both
predicative nouns (Section 3.1.1) and light verbs (3.1.2). In addition, it is character-
ized by coreference between valency complementations of light verbs and predicative
nouns (Section 3.1.4).

3.1.1. Valency Frames of Predicative Nouns

As predicative nouns, deverbal nouns (e.g., plán ‘plan’, hněv ‘rage’, nedůvěra ‘dis-
trust’, nenávist ‘hate’, svědectví ‘evidence’), deadjective nouns (e.g., vděčnost ‘gratitude’,
žárlivost ‘jealousy’), and primary nouns (e.g., láska ‘love’) occur. Predicative nouns de-
note actions, states (deverbal and primary nouns), and properties (deadjective nouns).
Deverbal and deadjective predicative nouns typically inherit the valency structure
from their base verbs and adjectives, respectively. The valency structure of primary
nouns can be accounted for on the basis of the valency structure of verbs with cor-
responding meanings (e.g., láska ‘love’ and milovat ‘to love’). The number and type
of valency complementations of predicative nouns (i.e., their functors and obligatori-
ness) thus remain the same (see esp. Kettnerová et al., 2017). Only morphemic forms
of their complementations usually undergo changes, reflecting their usage in nominal
structures. Compare, e.g., the valency frame of the predicative noun obava ‘fear’ (5)
and its nominal structure (7) with the frame of its base verb obávat se ‘to fear; to be
afraid’ (2) and its verbal structure (4).

(2) obávat se ‘to fear; to be afraid’: ACTnom PATgen,inf,dcc

(3) ACTV ⇔ ‘Experiencer’
PATV ⇔ ‘Stimulus’

(4) Věřící lidéACT.nom se méně obávají smrtiPAT.gen.
‘BelieversACT are less afraid of deathPAT.’

(5) obava ‘fear’: ACTgen,pos PATpřed+instr,z+gen,inf,dcc

(6) ACTN ⇔ ‘Experiencer’
PATN ⇔ ‘Stimulus’

33

PBML 111 OCTOBER 2018

(7) obavy věřících lidíACT.gen ze smrtiPAT.z+gen

‘believers’ACT fear of deathPAT’

Each valency complementation of a predicative noun corresponds to a semantic
participant of the situation denoted by the noun. Semantic participants of a noun are
typically identical to the participants characterizing its base verb (or a semantically
corresponding verb). For example, the valency complementations ACT and PAT of the
predicative noun obava ‘fear’ are mapped onto the semantic participant ‘Experiencer’,
a sentient entity experiencing fear, and ‘Stimulus’, evoking the given emotion, respec-
tively, as complementations of its base verb obávat se ‘to fear; to be afraid’, see (6) and
(3), respectively.5

3.1.2. Valency Frames of Light Verbs

Light verbs, as semantically impoverished verbs (e.g., Jespersen, 1965; Grimshaw
and Mester, 1988; Butt and Geuder, 2001), denote only general semantic scenarios.
They typically inherit valency characteristics from respective full verb counterparts
– while one of their valency position is reserved for predicative nouns (this position
is labeled with the CPHR functor in FGD), other valency complementations acquire
semantic specifications in LVCs via coreference with valency complementations of
predicative nouns (see esp. Alonso Ramos, 2007); Section 3.1.4 discusses this feature
in more detail.6 The only exception represented by ‘Causator’ is discussed below in
this Section.

Let us compare the valency frame of the full verb mít ‘to have’ (8) and the frame of
the light verb mít ‘to have’ (10) and their example sentences (9) and (12), respectively.
The full verb refers to a possession of an object by an owner (its valency complementa-
tions are mapped onto the semantic participants: ACT onto ‘Owner’ and PAT onto ‘Pos-
session’). In contrast, the light verb, denoting a general scenario, does not have any
semantic participants semantically specifying its valency complementations. Their
complementations are semantically specified just in LVCs, by entering in coreference
with nominal complementations. For example, in the LVC mít obavu ‘to be afraid;
lit. to have a fear’, the verbal ACT attains its semantic saturation via coreference with
the nominal ACT, namely it refers to ‘Experiencer’, see the valency frame (5) and the
mappings (6) and (11).

(8) mít ‘to have’: ACTnom PATacc

(9) PetrACT.nom má nový důmPAT.acc.
‘PeterACT has a new housePAT.’

5In examples below, the ⇔ arrows indicate the mapping between valency complementations and se-
mantic participants; the ≡ sign indicates predicative nouns filling the CPHR position; the ↔ arrows are
reserved for coreferential relations between verbal and nominal valency complementations.

6The possible reduction of valency frames of light verbs is discussed in Kettnerová and Lopatková (2013).

34

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

(10) mít ‘to have’: ACTnom CPHRacc

(11) mít obavu ‘to be afraid’:
ACTV ↔ ACTN ⇔ ‘Experiencer’

PATN ⇔ ‘Stimulus’
obava ‘fear’ ≡ CPHRV

(12) PetrACT.nom má ze zkouškyPAT.z+gen obavyCPHR.acc.
‘PeterACT is afraid of the examPAT.’

The only exception when light verbs contribute their semantic participant to LVCs
is represented by light verbs with a causative function – these verbs contribute the se-
mantic participant ‘Causator’ to LVCs. This participant instigates the events expressed
by predicative nouns with which the given light verbs combine. For example, the light
verb poskytovat ‘to provide’ has the causative function in the LVC poskytovat příležitost
‘to provide an opportunity’. The valency frame of this verb is provided in (13). This
light verb provides the given LVC with the ‘Causator’ which is mapped onto its ACT.
This ‘Causator’ serves as an instigator of the situation expressed by the noun příležitost
‘opportunity’, see mapping (16) and example (17).

(13) poskytovat ‘to provide’: ACTnom ADDRdat CPHRacc

(14) příležitost ‘opportunity’: ACTgen,pos PATgen,k+dat,na+acc,pro+acc,inf,dcc

(15) našeACT.poss příležitost zamyslet sePAT.inf nad tím, co je to vina
(16) poskytovat příležitost ‘to provide an opportunity’:

‘Causator’ ⇔ ACTV

ADDRV ↔ ACTN ⇔ ‘Agent’
příležitost ‘opportunity’ ≡ CPHRV

PATN ⇔ ‘Future_action’
(17) Jeho skutekACT.nom námADDR.dat poskytl příležitostCPHR.acc zamyslet sePAT.inf nad tím, co je to

vina.
‘His actACT gave usADDR an opportunityCPHR to thinkPAT about what is guilt.’

3.1.3. Semantic vs. Syntactic Center of LVCs

The syntactic center of LVCs is represented by the light verb, which can – in contrast
to the predicative noun – create a finite clause. However, the semantic core of LVCs is
formed by the predicative noun, which contributes its semantic participants to LVCs.

Selecting a particular light verb, the predicative noun can employ its semantic par-
ticipants in the syntactic structure of a finite clause. Moreover, the choice of a light
verb affects the perspective from which the situation expressed by the predicative
noun is viewed (see esp. Kettnerová and Lopatková, 2015). Compare, e.g., the LVC
poskytnout dotaci ‘to give a grant’ in (18) and the LVC získat dotaci ‘to obtain a grant’ in

35

PBML 111 OCTOBER 2018

(19) where each time a different semantic participant of the noun dotace ‘grant’ occu-
pies the most prominent subject position: the LVC poskytnout dotaci ‘to give a grant’
is perspectivized from the point of view of ‘Agent’ (vláda ‘government’) whereas the
LVC získat dotaci ‘to obtain a grant’ is presented from the perspective of ‘Recipient’
(město ‘town’):

(18) VládaACT poskytla městuADDR dotaciCPHR 7 milionůPAT korun.
‘The governmentACT gave a grantCPHR of 7 millionPAT crowns to the townADDR.’

(19) MěstoACT získalo od vládyORIG dotaciCPHR 7 milionůPAT korun.
‘The townACT obtained a grantCPHR of 7 millionPAT crowns from the governmentORIG.’

3.1.4. Coreference and its Key Role in LVCs

As already mentioned in Section 3.1.2, in LVCs semantically underspecified va-
lency complementations of light verbs obtain their semantic specifications – the prin-
cipal role in this process is played by coreference between valency complementations
of the predicative noun and the light verb.

The most prominent coreferential relation is the one between ACT of a predicative
noun with a certain complementation of the light verb. Its prominence is also em-
pirically attested by the corpus material provided by the Prague Dependency Tree-
bank (PDT, Bejček et al., 2013):7 from 1,695 LVCs with predicative nouns expressed
as prepositionless accusative objects of light verbs in PDT, 1,609 LVCs (95% in total)
are characterized by the coreference of the nominal ACT and a certain verbal comple-
mentation; the remaining 5% represents rather annotation errors (see Kettnerová and
Bejček, 2016). The presence of a pair of ACT of the predicative noun and a certain va-
lency complementation of the light verb referring to the same extralinguistic entity
can be thus adopted as a definitional criterion for delimiting LVCs. See the test of
coreference in Radimský (2010) as well.

Semantically underspecified valency complementations of a light verb can enter
into different coreferential relations, depending on valency structure of the predica-
tive nouns selecting the given verb. For example, in the valency frame of the light verb
přinést ‘to bring’ in its non-causative function, the ACT and ADDR are semantically un-
saturated, see the valency frame of this verb in (20). Three types of coreference of
this ACT and ADDR with complementations of predicative nouns are attested in the
corpus data, as shown below by simplified dependency trees. Additional two types
of coreference appear for the given verb with causative function, when the ‘Causator’
is mapped onto the verbal ACT. Table 1 below provides more examples of LVCs with
the given verb for all the mentioned types of coreference.

I. ACTV – ACTN & ADDRV – ADDRN

First, the ACT of the light verb přinést ‘to bring’ corefers with the nominal ACT and the

7http://ufal.mff.cuni.cz/pdt3.0/ (http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3)

36

http://ufal.mff.cuni.cz/pdt3.0/
http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

přinést.PRED
‘bring’

průvodce.ACT
‘guide’

návštěvník.ADDR
‘visitor’

zámek.PAT

‘castle’
poutavý.RSTR

‘attractive’

výklad.CPHR

‘explanation’

ACT ADDR historie.PAT

‘history’

Figure 1. The simplified dependency tree of the LVC ‘přinést výklad’ ‘to bring an
explanation’ in sentence (24) (the dashed arrows link coreferring valency

complementations).

ADDR of the verb corefers with the nominal ADDR. This type of coreference is char-
acteristic, e.g., of the LVC přinést výklad ‘to bring an explanation’. See the simplified
dependency tree of its example sentence (24) in Figure 1. The valency frames of the
light verb (20) and of the predicative noun (21) and the scheme of the mapping of
semantic participants in the given LVC (23) are provided below.

(20) přinést ‘to bring’: ACTnom ADDRdat CPHRacc

(21) výklad ‘explanation’: ACTgen,pos,instr,od+gen ADDRdat PATgen,pos,o+loc,dcc

(22) průvodcůvACT.poss poutavý výklad historiePAT.gen návštěvníkůmADDR.dat zámku
‘guide’sACT attractive explanation of historyPAT to visitorsADDR of the castle’

(23) přinést výklad ‘to bring an explanation’:
ACTV ↔ ACTN ⇔ ‘Speaker’
ADDRV ↔ ADDRN ⇔ ‘Recipient’

výklad ‘explanation’ ≡ CPHRV

PATN ⇔ ‘Information’
(24) PrůvodceACT.nom přinesl návštěvníkůmADDR.dat zámku poutavý výkladCPHR.acc historiePAT.gen.

‘The guideACT brought an attractive explanationCPHR of history to visitorsADDR of
the castle.’

II. ACTV – ACTN & ADDRV – PATN

The second type represents an infrequent type,8 characterizing, e.g., the LVC přinést
efekt ‘to bring an effect’, see the dependency tree in Figure 2 of its example sentence
(28).

8PAT with predicative nouns in these cases often corresponds to cognitively shifted ADDR.

37

PBML 111 OCTOBER 2018

přinést.PRED
‘bring’

jaký.RSTR‘
which’

efekt.CPHR

‘effect’

evropský.RSTR

‘European’

unie.ADDR

‘Union’
Brexit.ACT

‘Brexit’

ACT PAT

Figure 2. The simplified dependency tree of the LVC ‘přinést efekt’ ‘to bring an effect’ in
sentence (28).

(25) efekt ‘effect’: ACTgen,pos PATna+acc,pro+acc

(26) efekt BrexituACT.gen na Evropskou uniiPAT.na+acc

‘an effect of BrexitACT on the European UnionPAT’
(27) přinést efekt ‘to bring an effect’:

ACTV ↔ ACTN ⇔ ‘Influencer’
ADDRV ↔ PATN ⇔ ‘Influencee’

efekt ‘effect’ ≡ CPHRV

(28) Jaký efektCPHR.acc přinese BrexitACT.nom Evropské uniiADDR.dat?
‘Which effectCPHR brings BrexitACT to the European UnionADDR?’

III. ACTV – PATN & ADDRV – ACTN

The third type of coreference is typical of, e.g., the LVC přinést zklamání ‘to bring dis-
appointment’, see the dependency tree in Figure 3 of example sentence (32).

(29) zklamání ‘disappointment’: ACTgen,pos PATnad+instr,z+gen,inf,dcc

(30) zklamání občanůACT.gen z výsledkůPAT.z+gen voleb
‘disappointment of citizensACT by the resultsPAT of the elections’

(31) přinést zklamání ‘to bring disappointment’:
ACTV ↔ PATN ⇔ ‘Stimulus’
ADDRV ↔ ACTN ⇔ ‘Experiencer’

zklamání ‘disappointment’ ≡ CPHRV

(32) VýsledkyACT.nom voleb přinesly občanůmADDR.dat zklamáníCPHR.acc.
‘The resultsACT of the elections brought disappointmentCPHR to citizensADDR.’

Besides its non-causative function, the light verb přinést ‘to bring’ can serve as the
causative verb as well (see Section 3.1.2). The ‘Causator’ provided by this light verb is

38

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

přinést.PRED
‘bring’

výsledek.ACT

‘result’
občan.ADDR
‘citizen’

volby.PAT

‘election’

zklamání.CPHR

‘disappointment’

ACT PAT

Figure 3. The simplified dependency tree of the LVC ‘přinést zklamání’ ‘to bring
disappointment’ in sentence (32).

mapped onto its ACT. Thus the only remaining semantically underspecified comple-
mentation in the valency frame of the given verb is the ADDR, see the valency frame
in (20). LVCs with the causative light verb přinést ‘to bring’ are then characterized by
two types of coreference.

IV. ‘Causator’: ACTV & ADDRV – ACTN

This type is characteristic of, e.g., the LVC přinést poznatek ‘to bring knowledge’, see
the dependency tree of example sentence (36) in Figure 4.

(33) poznatek ‘knowledge’: ACTgen,pos PATgen,k+dat,o+loc,dcc ORIGz+gen

(34) našeACT.gen poznatky o voděPAT.o+loc na Marsu
‘ourACT knowledge about waterPAT on Mars’

(35) přinést poznatek ‘to bring knowledge’:
‘Causator’ ⇔ ACTV

ADDRV ↔ ACTN ⇔ ‘Cognizer’
poznatek ‘knowledge’ ≡ CPHRV

PATN ⇔ ‘Content’
(36) SondaACT.nom námADDR.dat přinesla poznatkyCPHR.acc o voděPAT.o+loc na Marsu.

‘The space probeACT brought usADDR knowledgeCPHR about waterPAT on Mars.’

V. ‘Causator’: ACTV & ADDRV – PATN & LOCV – ACTN

This coreference characterizes, e.g., the LVC přinést přízeň ‘to bring favor’, see the de-
pendency tree in Figure 5 representing example sentence (40).

(37) přízeň ‘favor’: ACTgen,pos PATdat,k+dat,pro+acc,vůči+dat

(38) přízeň publikaACT.gen ke zpěvákoviPAT.k+dat

favor of audienceACT to the singerPAT

39

PBML 111 OCTOBER 2018

přinést.PRED
‘bring’

sonda.ACT

‘probe’
nám.ADDR

‘us’

Mars.LOC

‘Mars’

poznatek.CPHR

‘knowledge’

ACT voda.PAT

‘water’

Figure 4. The simplified dependency tree of the LVC ‘přinést poznatek’ ‘to bring
knowledge’ in sentence (36).

(39) přinést přízeň ‘to bring favor’:
‘Causator’ ⇔ ACTV

ADDRV ↔ PATN ⇔ ‘Stimul’
LOCV ↔ ACTN ⇔ ‘Experiencer’

přízeň ‘favor’ ≡ CPHRV

(40) Zdařilé turnéACT.nom přineslo zpěvákoviADDR.dat přízeňCPHR.acc u publikaLOC.u+gen.
‘The successful tourACT brought the singerADDR favorCPHR of an audience.’

přinést.PRED
‘bring’

turné.ACT

‘tour’
zpěvák.ADDR
‘singer’

zdařilý.RSTR
‘successfull’

přízeň.CPHR
‘favor’

ACT PAT

publikum.LOC

‘audience’

Figure 5. The simplified dependency tree of the LVC ‘přinést přízeň’ ‘to bring favor’ in
sentence (40).

Ambiguous mappings
Several light verbs can function ambiguously in a single LVC with respect to non-cau-
sative and causative function. For example, the light verb přinést ‘to bring’ in the LVC
přinést zklamání ‘to bring disappointment’ can serve either as non-causative, see above

40

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

type III (mapping (31) and example (32)), or as causative one. The latter case belongs
to type IV as it exhibits the same coreference as e.g the LVC přinést poznatek ‘to bring
knowledge’, see the coreference in (41) and example (42).

(41) přinést zklamání ‘to bring disappointment’:
‘Causator’ ⇔ ACTV

ADDRV ↔ ACTN ⇔ ‘Experiencer’
PATN ⇔ ‘Stimulus’

zklamání ‘disappointment’ ≡ CPHRV

(42) Radikální dietaACT.nom JaněADDR.dat přinesla jen další zklamáníCPHR.acc z vlastního selháníPAT.z+gen.
‘Radical dietACT brought JaneADDR disappointmentCPHR by her own failurePAT.’

type I. ACTV – ACTN & ADDRV – ADDRN

přinést ‘to bring’: důkaz ‘evidence’, informace ‘information’, nabídku ‘offer’, návod ‘instruction’,
odpověď ‘answer’, podnět ‘impulse’, ponaučení ‘lesson’, výklad ‘explanation’, zprávu ‘message’;

type II. ACTV – ACTN & ADDRV – PATN

přinést ‘to bring’: efekt ‘effect’;

type III. ACTV – PATN & ADDRV – ACTN

přinést ‘to bring’: neklid ‘uneasiness’, potěšení ‘pleasure’, potíž ‘trouble’, problém ‘trouble’,
prospěch ‘benefit’, překvapení ‘surprise’, radost ‘to bring happiness’, uspokojení ‘satisfaction’,
užitek ‘benefit’, úleva ‘relief’, útěcha ‘comfort’, zklamání ‘disappointment’;

type IV. Causator: ACTV & ADDRV – ACTN

přinést ‘to bring’: mír ‘calm’, možnost ‘opportunity’, neklid ‘uneasiness’, neštěstí ‘bad luck’,
obživa ‘living’, omezení ‘restriction’, pokrok ‘progress’, popularita ‘popularity’, potěšení ‘pleasure’,
textitpotíž ‘trouble’, poznatek ‘insight’, problém ‘trouble’, prospěch ‘benefit’, přátelství ‘friend-
ship’, překvapení ‘surprise’, radost ‘happiness’, riziko ‘risk’, smůla ‘bad luck’, štěstí ‘happiness’,
uspokojení ‘satisfaction’, uznání ‘recognition’, užitek ‘benefit’, úleva ‘relief’, úspěch ‘success’,
úspora ‘savings’, útěcha ‘comfort’, výhoda ‘advantage’, zisk ‘profit’, zjištění ‘findings’, zklamání
‘disappointment’, zkušenost ‘experience’;

type V. Causator: ACTV & ADDRV – PATN & LOCV – ACTN

přinést ‘to bring’: přízeň ‘favor’.

Table 1. Examples of LVCs with the verb ‘přinést’ ‘to bring’ for all relevant types of
coreference.

41

PBML 111 OCTOBER 2018

3.2. Surface Syntactic Structure

The surface structure formation of LVCs shares the same basic principle as sur-
face constructions with full verbs according to which each semantic participant is ex-
pressed on the surface just once.

When a semantic participant in LVCs corresponds either to a valency complemen-
tation of the predicative noun, or to a complementation of the light verb (in case of
causative light verbs), the situation is obvious: the surface syntactic expression of such
semantic participant can be stipulated only by morphemic forms of the valency com-
plementation (be it nominal, or verbal) to which the given participant corresponds.

However, when a semantic participant is mapped onto a valency complementation
of the predicative noun and at the same time (via coreference) onto a complementa-
tion of the light verb, it raises a question which of the coreferring valency comple-
mentations is expressed on the surface. In these cases, morphemic forms prescribed
by individual valency complementations serve as an important clue for the identifi-
cation of the valency complementations expressed on the surface. As the analysis of
extensive corpus data corroborates, these semantic participants are mostly expressed
on the surface as valency complementations of the light verb.

For example, let us analyze the surface structure of the LVC uložit úkol ‘to give
a task’ in (47): from the semantic participants characterizing this LVC, ‘Speaker’ and
‘Recipient’ are mapped onto the ACT and ADDR of the predicative noun and at the same
time via coreference onto the ACT and ADDR of the light verb as well, respectively (the
scheme of the mapping (46)). ‘Speaker’ is expressed in the surface structure of the
given LVC as the subject corresponding to the verbal ACT as its morphemic form (the
nominative case) unequivocally determines, see ACT in the valency frame of the light
verb in (43) and ACT in the frame of the noun in (44).

As for ‘Recipient’, its dative case does not unequivocally indicate the surface posi-
tion: as both the verbal ADDR and the nominal ADDR can have the form of the dative
case, see the valency frames of the light verb (43) and the predicative noun (44), it can
be either an indirect object with the function of the verbal ADDR, or an attribute with
the function of the nominal ADDR. Thus a question arises which of these complemen-
tations the given dative case expresses. The surface syntactic behavior of this com-
plementation in diatheses indicates that it can be accounted for as the verbal ADDR:
verbal complementations – in contrast to nominal ones – are sensitive to surface syn-
tactic shifts in diatheses. When recipient passive diathesis is applied to the LVC uložit
úkol ‘to give a task’, the given ADDR changes its form from the dative into the nomina-
tive, see (48), which clearly manifests that it is the ADDR governed by the light verb.
Moreover, the possibility of word order changes (compare (47) and (49)) supports its
analysis as verbal ADDR as well.

‘Obligation’, mapped just onto the PAT of the predicative noun, can be expressed
only as the attribute as morphemic forms of the given complementation require, see
the valency frame of the noun (44).

42

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

(43) uložit ‘to give’: ACTnom ADDRdat CPHRacc

(44) úkol ‘task’: ACTgen,pos,od+gen ADDRgen,dat,pos,pro+acc PATinf,dcc

(45) učitelůvACT.pos úkol žákůmADDR.dat narýsovatPAT.inf krychli
‘teacher’sACT task to studentsADDR to drawPAT a cube’

(46) uložit úkol ‘to give a task’:
ACTV ↔ ACTN ⇔ ‘Speaker’
ADDRV ↔ ADDRN ⇔ ‘Recipient’

úkol ‘task’ ≡ CPHRV

PATN ⇔ ‘Obligation’
(47) UčitelACT.subj.nom uložil žákůmADDR.inobj.dat úkolCPHR.obj.acc narýsovatPAT.attr.inf krychli.

‘The teacherACT gave studentsADDR a taskCPHR to drawPAT a cube.’
(48) ŽáciADDR.subj.nom dostali od učiteleACT.inobj.od+gen uložen úkolCPHR.obj.acc narýsovatPAT.attr.inf krychli.

‘The studentsADDR were assigned a taskCPHR by the teacherACT to drawPAT a cube.’
(49) ŽákůmADDR.inobj.dat učitelACT.subj.nom uložil úkolCPHR.obj.acc narýsovatPAT.attr.gen krychli.

3.2.1. Double Expression of a Semantic Participant

There are basically two exceptions from general principles underlying the surface
realization of semantic participants. First, in rare cases a semantic participant mapped
onto the ACT of a predicative noun and at the same time onto the ACT of a light verb
can be expressed twice on the surface. For example, in the LVC přinést výklad ‘to bring
an explanation’ in (50), the ‘Speaker’ is expressed twice in the surface structure, as the
subject with the function of the verbal ACT and at the same time as an attribute with
the function of the nominal ACT.

(50) PrůvodceACT.subj.nom přinesl návštěvníkůmADDR.inobj.dat zámku svůjACT.attr.pos vlastní
výkladCPHR.obj.acc historiePAT.attr.gen.
‘The guideACT brought hisACT own explanationCPHR of history to visitorsADDR of the
castle.’

3.2.2. Semantic Participants Mapped onto an Optional Free Modification of the Light
Verb

Second, in those cases in which a semantic participant is mapped onto an actant
of the predicative noun and via coreference onto an optional free modification of the
light verb, the given semantic participant can be realized either as the nominal valency
complementation, or as the verbal one.

For example, in the LVC probouzet vzpomínku ‘to raise memory’, three semantic par-
ticipants can be expressed on the surface: ‘Causator’ contributed to the LVC by the
causative light verb probouzet ‘to raise’ and two semantic participants – ‘Cognizer’

43

PBML 111 OCTOBER 2018

and ‘Experience’ – provided by the predicative noun vzpomínka ‘memory’, see the va-
lency frame of the given light verb in (51) and the frame of the noun in (52). The
LVC probouzet vzpomínku ‘to raise memory’ is characterized by the coreference of the
ACT of the predicative noun with the optional LOC of the light verb, see the scheme
of the mapping of participants in (54). As a result, this semantic participant can be
expressed on the surface either as the verbal LOC (realized on the surface as a local
adverbial), see example (55), or as the nominal ACT (expressed on the surface as an
attribute), see example (56).

(51) probouzet ‘to raise’: ACTnom,inf,dcc CPHRacc LOC

(52) vzpomínka ‘memory’: ACTgen,pos PATna+acc,dcc

(53) mojeACT.pos vzpomínka na mládíPAT.na+acc

‘myACT memory of (my) youthPAT’
(54) probouzet vzpomínku ‘to raise memory’:

‘Causator’ ⇔ ACTV

vzpomínka ‘memory’ ≡ CPHRV

LOCV ↔ ACTN ⇔ ‘Cognizer’
PATN ⇔ ‘Experience’

(55) HudbaACT.subj.nom ve mněLOC.adv.v+loc probouzela vzpomínkyCPHR.obj.acc na mládíPAT.attr.na+acc.
musicACT in meLOC raised memoriesCPHR on youthPAT

(56) HudbaACT.subj.nom probouzela mojeACT.attr.pos vzpomínkyCPHR.obj.acc na mládíPAT.attr.na+acc.
musicACT raised myACT memoriesCPHR on youthPAT

‘The music raised my memories of my youth.’

3.2.3. Principles Governing the Expression of Semantic Participants

The principles governing the expression of semantic participants in the surface
structure of LVCs can be summarized as follows:9

• A semantic participant mapped onto a single valency complementation is ex-
pressed in a surface syntactic position:

– of the respective valency complementation of the predicative noun (be it
actant, or free modification),

– of the respective valency complementation of the light verb (representing
‘Causator’).

• A semantic participant mapped onto two coreferring valency complementations
is expressed in a surface syntactic position:

– either of the respective valency complementation of the light verb (be it
actant, or free modification),

9As the double expression of a semantic participant in LVCs discussed above in Section 3.2.1 is highly
restricted, it is not reflected in the given principles.

44

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

– or of the respective valency complementation of the predicative noun if the
coreferring verbal complementation is an optional free modification.

4. Formal Model of Lexicographic Representation of LVCs

The lexicographic representation of LVCs requires a close cooperation of both the
lexical and the grammar part of the language description. In this section, we describe
how the information on LVCs is reflected in the data and grammar component of
the VALLEX lexicon, see above Section 2. As we have demonstrated above, the deep
and surface syntactic structure of LVCs can be inferred from valency structures of
both light verbs and predicative nouns and coreferential relations between individual
valency complementations on the rule basis. These rules, described in the grammar
component of the lexicon, operate on the information provided by its data component.

4.1. Data Component

In the data component, three special attributes have been introduced providing
the information necessary for deriving deep and surface syntactic structure of LVCs.

Attribute lvc. The data component of the VALLEX lexicon stores lexical units of both
predicative nouns and light verbs,10 providing their core valency characteristics in the
form of valency frames, as described in Section 3.1.1 and 3.1.2. The respective lexical
units are interlinked via the special attribute lvc: with each lexical unit of a predicative
noun, this attribute provides references to lexical units of the light verbs selected by
the given noun, whereas with each lexical unit of a light verb, links to the predicative
nouns with which the light verb combines are provided.

Attribute map. This attribute is provided within lexical units of light verbs. It stores
the information on coreference between valency complementations of light verbs and
complementations of predicative nouns – the coreference is represented as a set of
pair(s) of coreferring valency complementations, the valency complementations being
represented by their respective functors (and for user’s convenience indicated in the
lower index either as V, or as N, distinguishing verbal complementations from nominal
ones).

Attribute instig. This attribute is provided within lexical units of causative light
verbs – it gives the valency complementation from the respective valency frames onto

10Although collocations of predicative nouns with light verbs form multiword lexical units, we use here
the term lexical units to refer to individual predicative nouns and light verbs, stressing their compositional
possibilities. We are aware that in case of light verbs, this term is not, strictly speaking, correct: light verbs
are not able to occur outside the collocation with predicative nouns (giving evidence of their semi-lexical
status). However, from the formal point of view, light verbs can be treated similarly as individual senses of
full verbs.

45

PBML 111 OCTOBER 2018

which the semantic participant ‘Causator’ is mapped, the given complementation be-
ing represented by its respective functor.

Each valency frame of a light verb is assigned with a set of pair(s) or triplet(s) (if
the attribute instig is relevant) of the above given attributes, distinguishing differ-
ent coreference relations and eventually causative function of the light verb; relevant
pairs (or triplets) are differentiated by Arabic numerals. In addition, each set is ac-
companied with examples illustrating individual LVCs. See the lexical entry of the
light verb uložit ‘to impose’ in Figure 8 and the entry of the predicative noun úkol
‘task’ in Figure 7.

4.2. Grammar Component

In the grammar component, formal rules governing both the deep and surface
structure formation of LVCs are stored, operating on the information provided by the
data component, as follows:

The deep syntactic structure of LVCs consists of:
(i) all valency complementations of the light verb provided by its valency frame

(attribute frame),
(ii) all valency complementations of the predicative noun provided by its valency

frame (attribute frame),
(iii) coreferential relations between individual valency complementations of the light

verb and complementations of the predicative noun (attribute map).

The surface syntactic structure of LVCs comprises:11

A. syntactic positions of all valency complementations of the light verb, namely:
(i) the syntactic position of the predicative noun

(its morphemic form is given by the CPHR valency complementation),
(ii) the syntactic position of ‘Causator’, if relevant

(its morphemic form is given by the valency complementation provided in
the attribute instig),

(iii) the syntactic position(s) of other valency complementations which corefer
with complementations of the predicative noun (only optional free modi-
fications may remain unexpressed)
(morphemic forms of these positions are given by the respective valency
complementations provided in the attribute map).

B. syntactic positions of those valency complementations of the predicative noun
that satisfy the following conditions:

11These principles summarize the surface structure formation of LVCs on which further surface syntactic
operations leading to deletion of valency complementations can be applied due to their optionality, actual
ellipsis, generalization etc.

46

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

(iv) the syntactic position(s) of the valency complementations that do not core-
fer with any complementations of the light verb
(morphemic forms of these positions are given by the respective valency
complementations of the predicative noun),

(v) the syntactic position(s) of the valency complementations that corefer with
optional free modifications of the light verbs not expressed on the surface
(morphemic forms of these positions are given by the respective valency
complementation of the predicative noun).12

5. Annotation of LVCs in VALLEX

5.1. Lexical Stock

Each LVC is formed by a collocation consisting of a predicative noun and a light
verb. The large amount of such collocations in Czech is not easily manageable, thus,
some selection criteria had to be determined at the beginning of the annotation pro-
cess. For the identification of the collocations representing LVCs, we first had to iden-
tify an inventory of verb lemmas already stored in the VALLEX lexicon that can func-
tion as light verbs. For this purpose, we used the valency lexicon PDT-Vallex (Urešová,
2011). In this lexicon, valency frames of light verbs are indicated by the functor CPHR,
labeling the valency position of predicative nouns. On this basis, we automatically
identified 124 verb lemmas that have at least one valency frame in PDT-Vallex with
the CPHR functor. The intersection of verb lemmas obtained from PDT-Vallex and
of verb lemmas contained in VALLEX was 105 in total. As VALLEX treats aspectual
counterparts of verbs as a single verb lexeme, respective aspectual counterparts have
been added (if not already in the list). The resulting number of 145 verb lemmas has
formed the inventory of verbs selected for the further annotation.

To identify the most frequent and most salient predicative nouns which select the
given light verbs, we used the Sketch Engine (Kilgarriff et al., 2014), a corpus tool al-
lowing users to obtain summaries of words’ grammatical and collocational properties.
A balanced corpus of synchronous texts SYN201013 was used as the material base. In
the first step, the collocation lists of all selected verb lemmas were obtained. From
these lists, only the nominal collocates expressed as direct object in the accusative case
(representing the central and most frequent cases of light verb collocations in Czech)
were selected: almost 3,050 noun lemmas (21 nouns on average for a verb lemma); see
also Kettnerová et al. (2016).

12In rare cases, the syntactic position of the nominal ACT coreferring with the verbal ACT is expressed in
the surface structure (typically as a possessive pronoun), in addition to its expression in the verbal position
according to principle (Aiii), compare Section 3.2.1 and example (50).

13Czech National Corpus – SYN2010. Institute of the Czech National Corpus, Faculty of Arts, Charles
University, Prague 2010. Available from http://www.korpus.cz.

47

http://www.korpus.cz

PBML 111 OCTOBER 2018

souhlas
‘consent’

dátpf, dávatimpf

‘to give’

dostatpf, dostávatimpf

‘to get’

projevitpf, projevovatimpf

‘to show’

udělitpf, udílet/udělovatimpf

‘to grant’

vydatpf, vydávatimpf

‘to issue’

vyjádřitpf, vyjadřovatimpf

‘to express’

vyslovitpf, vyslovovatimpf

‘to convey’

získatpf, získávatimpf

‘to obtain’

Figure 6. Collocations of the predicative noun ‘souhlas’ ‘consent’ with light verbs, found
with the Sketch Engine; the collocations marked by the continuous arrow have been

identified in the lists of nominal collocates of the given light verbs ‘dát, dávat’ ‘to give’,
‘projevit, projevovat’ ‘to show’ etc.; the collocation joined by the dashed arrow have
been extracted from the list of verbal collocates of the noun ‘souhlas’ ‘consent’).

A human annotator has been asked to indicate only those nouns in each list that
represent predicative nouns forming collocations with the given light verb. As the
main criterion for distinguishing collocates with light verbs from those with full verbs,
the coreference of the nominal ACT with a valency complementation of the light verb
has been adopted (see Section 3.1.4). The collocations that satisfy this condition are
interpreted as LVCs.

In the second step, salient collocations of the predicative nouns have been added
as well, using the Sketch Engine: for each of the predicative noun obtained in the
first step, its missing relevant collocations with light verbs have been automatically
extracted from its verb collocation list (in this step, we restricted the verbs to the list
of 145 already identified light verb lemmas). See Figure 6, displaying collocations
of the noun souhlas ‘consent’ obtained in the first and second steps of the annotation
process.

The resulting number of collocations from the first and second step sums up to
2,991 collocations in total (counted as combinations of a lemma of a light verb and
a lemma of a predicative noun). These collocations represent the lexical stock inte-
grated into the VALLEX lexicon.

5.2. Annotation Process

In the next step, the selected 2,991 collocations of predicative nouns with light
verbs have been assigned with the relevant information, as introduced in Section 4.
Each verb lemma and noun lemma have been processed separately, and then inter-
linked into a relevant LVC.

48

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

5.2.1. Annotation of Predicative Nouns

As the VALLEX lexicon originally contained the information only on valency be-
havior of verbs, it was necessary to add the same information on the selected predica-
tive nouns. The data format of the lexicon, as described in Section 2, is suitable also
for the description of other parts-of-speech. We thus made use of the same structure
of lexical entries as designed for verbs (excluding verb-specific optional attributes).

The lexical entry of a predicative noun comprises its noun lexeme, i.e., a two-
fold unit associating all forms of the given noun with its lexical units (its individual
senses). Each lexeme is represented by the respective noun lemma of the predicative
noun, or (if relevant) by more than one lemma.

úkol

1 ≈ zadání; skutečnost určená k vykonání `assignment'
-frame: ACT2,pos,od+2 ADDR2,3,pos,pro+4 PATinf,dcc
-lu: úkol-1
-lvc: ukládat-uložit-8, zadat-zadávat-4, klást-4, přebírat-přebrat-převzít-2.1, uvalit-uvalovat-2
-example: Pracovní úkol zaměstnavatele.ACT vyplývá zejména z popisu práce …;
 V tomto směru jsou úkoly od vedení.ACT klubu celkem jasné.;
 Hráči přesně plní trenérovy.ACT úkoly.;
 Hosté prohrávali a jejich.ADDR úkolem od trenéra.ACT bylo neprohrát utkání o deset branek.;
 domácí úkoly pro předškoláky.ADDR;
 těžký úkol vybrat.PAT vítěze.;
 Výsledkem byl úkol Komisi.ADDR, aby začala.PAT připravovat pro tři země akční programy.;
 Nový čínský úkol zní: ať naši zpěváci dobudou.PAT svět.;
 Z rady vyvstal úkol, že bychom měli svolat.PAT obecnou diskuzi.
-control: ADDR

2 ≈ poslání; úloha; funkce `mission; role; function'
-frame: ACT2,pos PATinf,dcc
-lu: úkol-2
-lvc: vykonat-vykonávat-2, přebírat-přebrat-převzít-2.2
-example: Úkolem řešitele.ACT sudoku je v co nejkratším čase doplnit prázdná místa v tabulce.;
 Úkolem závodníka.ACT bude předvést odvážný improvizovaný skok do vody.;
 Jaký je náš.ACT úkol v dějinách člověčenstva?;
 Před zápasem byl můj.ACT úkol určit.PAT brankářku, která nastoupí do zápasu.;
 Je to jeho.ACT úkol, aby zakázka byla.PAT čistá a hotová včas.;
 To je taky jeho.ACT hlavní úkol, ať sešívky zapomenou.PAT na poháry a boje o místo nahoře.;
 Jeho.ACT předpokládaný úkol, že má sedět.PAT při každém přelíčení a podat.PAT čtenářům
 jeho průběh, byl nesmírně obtížný.
-control: ACT

Figure 7. Lexical entry of the predicative noun ‘úkol’ ‘task’ (two lexical units).

49

PBML 111 OCTOBER 2018

The key information on the valency behavior of individual lexical units of the
predicative noun is provided by valency frames, exemplified by illustrative exam-
ples. Morphemic forms in valency frames of the noun describe the usage of its lexical
units in nominal structures, see Section 3.1.1.

For the purpose of the description of LVCs, each lexical unit of a predicative noun
is assigned with the special attribute lvc providing a list of references to individual
light verbs with which the given noun forms LVCs. See the illustrative example of the
lexical entry of the predicative noun úkol ‘task’ in Figure 7.

We have restricted the number of syntactically annotated predicative nouns to
those that form LVCs in the data with at least two light verbs (277 noun lexemes rep-
resented by 284 noun lemmas). Those nouns that represent a part of LVCs with one
light verb are provided only in the form of a list of noun lemmas in the attribute lvc
in the lexical entries of the respective light verbs (if these noun lemmas are counted,
the number of predicative nouns increases to 577 lemmas). The basic statistics on
annotated predicative nouns is provided in Table 2.

Lemmas Lexemes Lexical Units
Predicative nouns 284 (577) 277 350
Light verbs 145 78 117

Table 2. The basic statistics on the annotated predicative nouns and the light verbs in
VALLEX. The number of noun lemmas in parenthesis includes also predicative nouns

which form LVCs with only one light verb.

5.2.2. Annotation of Light Verbs

In the lexical entry of each verb lemma indicated in the previous step as a lemma
representing a light verb, a relevant lexical unit (or more lexical units) of the given
light verb has been identified. If no relevant lexical unit has been comprised in the
lexical entry, it has been manually added. Then each identified lexical unit has been
subject to necessary adjustment.

First, in each valency frame of relevant lexical units, a valency complementation
standing for predicative nouns has been labeled with the CPHR functor. Second, each
lexical unit of the light verb has been ascribed with one or more sets of the following
attributes (as introduced in Section 4): (i) the attribute lvc, providing references to lex-
ical units of the predicative nouns with which the given light verb form LVCs, and (ii)
the attribute map, introducing the information on coreference characterizing the given
LVCs. (iii) In case of causative light verbs, each set is further supplemented with the
attribute instig, storing the information on the valency position of ‘Causator’. If more

50

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

ukládatimpf , uložitpf
….

8 ≈ light verb `to give; to assign' (as light verb)
-frame: ACT1 ADDR3 CPHR4
-lu: ukládat-uložit-8
-lvc1: úkol-1, zákaz-1
-map1: ACTv-ACTn, ADDRv-ADDRn
-example1:
 impf: Prostřednictvím ředitele úřadu ministr a náměstci … ukládají úkoly úředníkům.;
 Pokyn ministerstva obrany ukládal složkám resortu přísný zákaz ničit po výcviku munici.
 pf: Vladimir Putin uložil vládě úkol něco se situací dělat už před osmi lety.;
 … řidičce městský úřad uložil zákaz činnosti spočívající v zákazu řízení motorových vozidel.
….
-lvc3: omezení-1, omezení-2, opatření-1, pokání-1, povinnost-1
-map3: ADDRv-ACTn
-instig3: ACT
-example3:
 impf: Nová technická pravidla ukládají odstranění či omezení některých počítačových systémů.;
 Současná společnost ukládá člověku početná omezení.;
 ČNB se musí striktně držet zákonných postupů a může ukládat opatření k nápravě.;
 … také počítač provádí hříšníka úvodními modlitbami, ptá se na jeho hříchy a ukládá pokání.;
 Soud zpravidla ukládá radnicím povinnost zajistit nájemníkům náhradní bydlení.
 pf: Také ruská státní agentura Rosselkhoznadzor … si vymínila právo uložit omezení dovozu, …;
 Soud může pachateli uložit omezení, aby se zdržel řízení.;
 Proto jsme také městským službám neuložili žádné zvláštní opatření.;
 Zřejmě to ale nebyl jen tak ledaskdo, protože sám papež uložil Bernardu Ignácovi pokání.;
 Soud uložil žalované společnosti povinnost zaplatit kanceláři zmíněnou částku s příslušenstvím.

Figure 8. Simplified lexical unit of the light verb ‘uložit’ ‘to give’.

than one set of these attributes is relevant with a single lexical unit of a light verb, the
sets are distinguished by Arabic numerals. (iv) In addition, each LVC is exemplified
by corpus example provided in the attribute example, attached to individual sets of
the above given attributes. See the example of the lexical unit of the light verb uložit
‘to give’ in Figure 8.

As a result, 117 lexical units characterizing light verbs have been annotated; these
lexical units are contained in 78 verb lexemes, represented by 145 verb lemmas, see
Table 2. Most light verbs are non-causative: from 117 lexical units in total, 89 under-
lie non-causative light verbs in the annotated data and 28 lexical units correspond to
causative light verbs. The semantic participant ‘Causator’ has been mapped predom-
inantly onto ACT of light verbs, in less cases it has corresponded to ORIG. For the basic
statistics on the mapping of ‘Causator’ see Table 3.

51

PBML 111 OCTOBER 2018

‘Causator’ Lexical Units LVCs
ACT 25 325 (365)
ORIG 3 13 (13)

Table 3. The basic statistics on the mapping of ‘Causator’ with causative light verbs in
VALLEX; the first column provides the number of lexical units representing causative light

verbs, the second one gives the number of LVCs in which light verbs are of causative
character (counted as combinations of individual lexical units of light verbs and lexical
units of predicative nouns). The number in parenthesis includes also LVCs with nouns

that combine only with one light verb.

5.3. Types of Coreference

As a result of the annotation, almost 1,500 different LVCs, counted as combinations
of individual lexical units of light verbs and lexical units of predicative nouns, have
been identified. Each LVC is characterized by a certain type of coreference between
verbal and nominal valency complementations (or by more than one type), see Section
3.1.4. The information on coreference has been assigned to the valency frame of a
light verb (attribute map). For causative light verbs, also the information on ‘Causator’
mapping is provided (attribute instig).

In the annotated data, most LVCs are characterized by a single type of coreference
and (if relevant) by the mapping of ‘Causator’; however, almost 200 annotated LVCs
allow for different types of coreference, often distinguished by the presence/absence
of ‘Causator’.

In the annotation, 21 different types of coreference (distinguished with respect to
the presence of ‘Causator’) have been identified for all LVCs (including 7 ambiguous
types). The most frequent type of coreference is represented by the coreference of the
ACT of a non-causative light verb with the ACT of a predicative noun; this type can be
exemplified by, e.g., the LVC mít obavu ‘to be afraid; lit. to have fear’ (11). Within the
group of causative light verbs, the coreference of the verbal ADDR and the nominal
ACT with the mapping of ‘Causator’ onto the verbal ACT is the most frequent one; it
characterizes, e.g., the LVC přinést poznatek ‘to bring knowledge’ (35). Table 4 provides
all types of coreference identified in the annotated data, illustrated by examples.

6. Conclusion

In this paper, we have summarized results of a theoretical analysis of syntactic
behavior of Czech light verb constructions. We have focused both on their deep and
surface syntactic structure, demonstrating the syntactic compositionality of these con-
structions. We have deepened an insight into a key role of coreference between va-
lency complementations of the light verb and the predicative noun forming an LVC

52

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

Type 1 Type 2 Number Example
‘Causator’ Coreference ‘Causator’ Coreference

ACTV–ACTN 716 (902) udělat chybu
‘to make a mistake’

ACTV–ACTN, 182 (200) činit výtku
ADDRV–ADDRN ‘make a reproach’
ACTV–PATN, ACTV LOCV–ACTN 141 (151) vyvolat strach
LOCV–ACTN ‘to raise fear’
ACTV–ACTN, 99 (142) klást odpor
ADDRV–PATN ‘put up resistance’

ACTV ADDRV–ACTN 68 (82) poskytnout útěchu
‘to give comfort’

ACTV–ADDRN, 60 (67) přijmout poděkování
ORIGV–ACTN ‘to accept thanks’

ACTV LOCV–ACTN 60 (65) vzbouzet myšlenky
‘to provoke thoughts’

ACTV–PATN, 35 (44) dostat péči
ORIGV–ACTN ‘to get care’
ACTV–PATN, ACTV ADDRV–ACTN 35 (44) činit potěšení
ADDRV–ACTN ‘to make pleasure’
ACTV–PATN, 30 (37) nacházet oporu
LOCV–ACTN ‘to find support’
ACTV–ACTN, 13 (17) nalézt zalíbení
LOCV–PATN ‘to develop a taste’

ORIGV ACTV–ACTN 13 (13) získat výhodu
‘to gain an advantage’

ACTV BENV–ACTN 8 (10) otevřít přístup
‘to open an access’

ACTV–ACTN ACTV–PATN, 8 (8) ztratit důvěru
LOCV–ACTN ‘to lose confidence’

ACTV–ORIGN, 7 (7) budit dojem
LOCV–ACTN ‘to give an impression’

ACTV–ADDRN, 7 (7) udělat zkoušku
LOCV–ACTN ‘to pass an exam’
ACTV–ORIGN, ACTV LOCV–ACTN 6 (6) probouzet pocit
LOCV–ACTN ‘to inspire a feeling’

ACTV–ADDRN, ACTV LOCV–ACTN 4 (4) vzbudit podezření
LOCV–ACTN ‘to raise suspicion’

ACTV ADDRV–PATN, 2 (2) přinést přízeň
LOCV–ACTN ‘to bring favor’

ACTV–ADDRN, ACTV–PATN, 1 (1) budit soustrast
LOCV–ACTN LOCV–ACTN ‘to arouse sympathy’
ACTV–ACTN ACTV BENV–ACTN 1 (1) vytvářet zisk

‘to make a profit’

Table 4. The basic statistics on the coreference identified with the annotated LVCs (individual
combinations of lexical units of light verbs and lexical units of predicative nouns), taking into

account the type of coreference and the ‘Causator’ mapping (if relevant). If more than one type is
characteristic of a single LVC, these types are distinguished as type 1 and type 2. The number in
column 5 gives the number of LVCs in VALLEX; in parenthesis, the number including also those

LVCs with nouns combining with a single light verb follows.

53

PBML 111 OCTOBER 2018

in the process of the syntactic formation of the given LVC, emphasizing a role of map-
ping of semantic participants characterizing the given LVC onto valency complemen-
tations.

The proposed theoretical analysis has been verified (and refined) within a linguis-
tic annotation of a large amount of light verb constructions. The resulting description
has been used in the VALLEX lexicon for their theoretically adequate and economic
representation. The data have been published – after both manual and automatic data
consistency checking –- in the new version of the VALLEX lexicon, release 3.5.14

The VALLEX 3.5 lexicon comprises annotation of almost 3,000 collocations of pred-
icative nouns with light verbs (counted as combinations of a lemma of a light verb and
a lemma of a predicative noun), which correspond to almost 1,500 LVCs (counted as
individual combinations of a lexical unit of a light verb and a lexical unit of a pred-
icative noun). The LVC annotation has affected almost 350 newly created lexical units
of predicative nouns and 120 lexical units of light verbs. The syntactic formation of
LVCs has been described in the grammar component of VALLEX in a form of syntactic
rules operating on the information from the data component (namely valency frames
of respective light verbs and predicative nouns and three special attributes describing
the LVC formation lvc, map, and instig).

Acknowledgements

The work on this project has been supported by the grant of the Czech Science Foun-
dation (project GA15-09979S); the data annotation has been partially supported by the
LINDAT/CLARIN project of the Ministry of Education, Youth and Sports of the Czech
Republic (project number LM2015071).

This work has been using language resources distributed by the LINDAT/CLARIN
project of the Ministry of Education, Youth and Sports of the Czech Republic (project num-
ber LM2015071).

Bibliography

Alonso Ramos, Margarita. Towards the Synthesis of Support Verb Constructions: Distribution
of Syntactic Actants between the Verb and the Noun. In Wanner, L. and I. A. Mel’čuk,
editors, Selected Lexical and Grammatical Issues in the Meaning-Text Theory, pages 97–137. John
Benjamins Publishing Company, Amsterdam, Philadelphia, 2007.

Bejček, Eduard, Eva Hajičová, Jan Hajič, Pavlína Jínová, Václava Kettnerová, Veronika Kolářová,
Marie Mikulová, Jiří Mírovský, Anna Nedoluzhko, Jarmila Panevová, Lucie Poláková,
Magda Ševčíková, Jan Štěpánek, and Šárka Zikánová. Prague Dependency Treebank 3.0. Uni-
verzita Karlova v Praze, MFF, ÚFAL, Prague, Czech Republic, 2013. http://ufal.mff.cuni.
cz/pdt3.0.

14http://ufal.mff.cuni.cz/vallex/3.5/

54

http://ufal.mff.cuni.cz/pdt3.0
http://ufal.mff.cuni.cz/pdt3.0
http://ufal.mff.cuni.cz/vallex/3.5/

V. Kettnerová et al. Enriching VALLEX with Light Verbs (29–56)

Butt, Miriam. The Light Verb Jungle: Still Hacking Away. In Amberber, Mengistu, Brett Baker,
and Mark Harvey, editors, Complex Predicates in Cross-Linguistic Perspective, pages 48–78.
Cambridge University Press, Cambridge, 2010.

Butt, Miriam and Wilhelm Geuder. On the (semi)lexical status of light verbs, volume 59 of Studies
in Generative Grammar, pages 323–370. Mouton de Gruyter, Berlin – New York, 2001.

Grimshaw, Jane and Armin Mester. Light verbs and θ-marking. Linguistic inquiry, 19(2):205–
232, 1988.

Hinrichs, Erhard, Andreas Kathol, and Tsuneko Nakazawa. Complex Predicates in Nonderiva-
tional Syntax. Syntax and Semantics 30. Academic Press, San Diego, 1998.

Jespersen, Otto. A Modern English Grammar on Historical Principles, Part VI, Morphology. Allen
and Unwin, 1965.

Kettnerová, Václava. Syntaktická struktura komplexních predikátů. Slovo a slovesnost, 18(1):
3–24, 2017.

Kettnerová, Václava and Eduard Bejček. Distribution of Valency Complements in Czech Com-
plex Predicates: Between Verb and Noun. In Calzolari, Nicoletta, Khalid Choukri, Thierry
Declerck, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Asunción Moreno, Jan Odijk,
and Stelios Piperidis, editors, Proceedings of the 10th International Conference on Language Re-
sources and Evaluation (LREC 2016), pages 515–521, Paris, France, 2016. European Language
Resources Association. ISBN 978-2-9517408-9-1.

Kettnerová, Václava and Markéta Lopatková. The Representation of Czech Light Verb Con-
structions in a Valency Lexicon. In Hajičová, Eva, Kim Gerdes, and Leo Wanner, edi-
tors, Proceedings of the Second International Conference on Dependency Linguistics, Depling 2013,
pages 147–156, Praha, Czechia, 2013. Univerzita Karlova v Praze, Matfyzpress. ISBN 978-
80-7378-240-5.

Kettnerová, Václava and Markéta Lopatková. At the Lexicon-Grammar Interface: The Case of
Complex Predicates in the Functional Generative Description. In Hajičová, Eva and Joakim
Nivre, editors, Proceedings of Depling 2015, pages 191–200, Uppsala, Sweden, 2015. Uppsala
University.

Kettnerová, Václava and Markéta Lopatková. Complex Predicates with Light Verbs in VALLEX:
From Formal Model to Lexicographic Description. In Hlaváčová, Jaroslava, editor, Proceed-
ings of the 17th Conference on Information Technologies - Applications and Theory (ITAT 2017),
volume 1885 of CEUR Workshop Proceedings, pages 15–22, Praha, Czechia, 2017a. ÚFAL MFF
UK, CreateSpace Independent Publishing Platform.

Kettnerová, Václava and Markéta Lopatková. Ke koreferenci u komplexních predikátů s kate-
goriálním slovesem. Korpus – gramatika – axiologie, 16:3–26, 2017b.

Kettnerová, Václava, Petra Barančíková, and Markéta Lopatková. Lexicographic Description of
Complex Predicates in Czech: Between Lexicon and Grammar. In Margalitadze, Tinatin
and George Meladze, editors, Proceedings of the XVII EURALEX International Congress: Lexi-
cography and Linguistic Diversity, Tbilisi, Georgia, 2016. Ivane Javakhishvili Tbilisi State Uni-
versity, Tbilisi University Press.

55

PBML 111 OCTOBER 2018

Kettnerová, Václava, Veronika Kolářová, and Anna Vernerová. Deverbal Nouns in Czech Light
Verb Constructions. In Mitkov, Ruslan, editor, Lecture Notes in Artificial Intelligence, Compu-
tational and Corpus-Based Phraseology. Second International Conference, Europhras 2017. London,
UK, November 13???14, 2017., volume 10596 of Lecture Notes in Computer Science, pages 205–
219, Cham, Switzerland, 2017. European Association for Phraseology EUROPHRAS, Uni-
versity of Wolverhampton, Association for Computational Linguistics, Bulgaria, Springer.

Kilgarriff, Adam, Vít Baisa, Jan Bušta, Miloš Jakubíček, Vojtěch Kovář, Jan Michelfeit, Pavel
Rychlý, and Vít Suchomel. The Sketch Engine: ten years on. Lexicography ASIALEX, 1(1):
7–36, 2014.

Lopatková, Markéta and Jarmila Panevová. Recent Developments in the Theory of Valency
in the Light of the Prague Dependency Treebank. In Šimková, Mária, editor, Insight into
Slovak and Czech Corpus Linguistics, pages 83–92. Veda, Bratislava, 2006.

Lopatková, Markéta, Václava Kettnerová, Eduard Bejček, Anna Vernerová, and Zdeněk
Žabokrtský. Valenční slovník českých sloves VALLEX. Karolinum, Praha, 2016.

Panevová, Jarmila. On Verbal Frames in Functional Generative Description I–II. The Prague
Bulletin of Mathematical Linguistics, 22–23:3–40, s. 17–52, 1974–75.

Panevová, Jarmila. Formy a funkce ve stavbě české věty. Academia, Praha, 1980.
Panevová, Jarmila. Valency Frames and the Meaning of the Sentence. In Luelsdorff, Philip A.,

editor, The Prague School of Structural and Functional Linguistics, pages 223–243. John Ben-
jamins Publishing Company, Amsterdam/Philadelphia, 1994.

Radimský, Jan. Verbo-nominální predikát s kategoriálním slovesem. Editio Universitatis Bohemiae
Meridionalis, České Budějovice, 2010.

Sgall, Petr, Eva Hajičová, and Jarmila Panevová. The Meaning of the Sentence in Its Semantic and
Pragmatic Aspects. Reidel, Dordrecht, 1986.

Urešová, Zdeňka. Valence sloves v Pražském závislostním korpusu. Ústav formální a aplikované
lingvistiky, Praha, 2011.

Address for correspondence:
Václava Kettnerová
kettnerova@ufal.mff.cuni.cz
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics,
Charles University
Malostranské náměstí 25
118 00 Praha 1, Czech Republic

56

The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018 57–86

PanParser: a Modular Implementation for Efficient
Transition-Based Dependency Parsing

Lauriane Aufrant,ab Guillaume Wisniewskib

a DGA, 60 boulevard du Général Martial Valin, 75 509 Paris, France
b LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91 405 Orsay, France

Abstract
We present PanParser, a Python framework dedicated to transition-based structured pre-

diction, and notably suitable for dependency parsing. On top of providing an easy way to
train state-of-the-art parsers, as empirically validated on UD 2.0, PanParser is especially use-
ful for research purposes: its modular architecture enables to implement most state-of-the-art
transition-based methods under the same unified framework (out of which several are already
built-in), which facilitates fair benchmarking and allows for an exhaustive exploration of slight
variants of those methods. PanParser additionally includes a number of fine-grained evalua-
tion utilities, which have already been successfully leveraged in several past studies, to perform
extensive error analysis of monolingual as well as cross-lingual parsing.

1. Introduction

PanParser is not yet another implementation of a transition-based dependency
parser. Transition-based dependency parsing has been an active field in the last few
years and several open source parsers have been released, each one implementing
a new alternate paradigm, like MaltParser (Nivre et al., 2006a), which is the refer-
ence implementation for transition-based parsers, and UDPipe (Straka and Straková,
2017), a popular pipeline system for neural parsing. In all transition-based parsers,
the same elements are systematically found (a transition system, a classifier, an update
procedure, etc.), corresponding to distinct lines of research. However, their imple-
mentations often adopt an ad-hoc architecture or a specific variation of each of these

© 2018 PBML. Distributed under CC BY-NC-ND. Corresponding author: lauriane.aufrant@limsi.fr
Cite as: Lauriane Aufrant, Guillaume Wisniewski. PanParser: a Modular Implementation for Efficient Transition-
Based Dependency Parsing. The Prague Bulletin of Mathematical Linguistics No. 111, 2018, pp. 57–86.
doi: 10.2478/pralin-2018-0007.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 111 OCTOBER 2018

components, which impedes fair benchmarking and makes it difficult to evaluate the
impact of a given component.

The PanParser framework aims at alleviating this effect by providing a modular
architecture, in which most state-of-the-art transition-based parsing systems can be
implemented, or extended, in a light and straightforward way. In addition to provid-
ing an easy way to train accurate models for parsing any language, it is then partic-
ularly valuable for research purpose and exhaustive experiments on parser design.
It is possible, for instance, to train a greedy neural ArcEager parser with a static or-
acle, or a delexicalized beam ArcHybrid parser with a dynamic oracle and an aver-
aged perceptron.1 PanParser also implements extensive utilities for error analysis.
PanParser has been used, for instance, in cross-lingual transfer experiments (Aufrant
et al., 2016b; Lacroix et al., 2016) or to design new learning strategies for dependency
parsers (Aufrant et al., 2017).

PanParser differs from the other parsing frameworks by the ability to combine
more freely alternate versions of each part of the parser, but also by the diversity
of the built-in algorithms: for instance, UDPipe does not include the ArcEager and
ArcHybrid transition systems and it lacks the support of global training strategies,
spaCy2 only offers ArcEager parsers trained with the max-violation strategy, while
SyntaxNet (Andor et al., 2016) and the StanfordParser (Chen and Manning, 2014) fo-
cus on the ArcStandard system; as for MaltParser, it supports a large number of
transition systems but neither global training nor dynamic oracles. PanParser also
includes functionalities that are not found elsewhere, like newly-derived dynamic or-
acles or the ability to train projective parsers directly on non-projective data. On the
other hand, our framework is not designed for pipelining as others are; the current
built-ins also lack several non-projective transition systems included in UDPipe and
MaltParser, although the architecture is already designed to support them – and re-
cent works like Fernández-González and Gómez-Rodríguez (2018a)’s will help their
implementation in future work. As for graph-based parsing strategies, like the sem-
inal MSTParser (McDonald et al., 2005) or state-of-the-art neural ones (Kiperwasser
and Goldberg, 2016; Dozat and Manning, 2017), they remain out of the scope of this
framework.

The whole software is written in Python in a modular way, which makes it easy for
the user to extend the built-in components with custom variants. For instance, adding
the ArcHybrid transition system (with full compatibility with all other components)
was done in 150 lines of code. The core framework of PanParser can also be reused to
implement other structured prediction tasks, as done for the built-in PoS tagger.

The rest of the paper is organized as follows. Section 2 presents the state of the art
in transition-based dependency parsing, along the six lines of research which have

1See Section 2 and Supplementary A for a brief description of those algorithms.
2https://spacy.io

58

https://spacy.io

L. Aufrant, G. Wisniewski PanParser (57–86)

guided the design of PanParser. The main features of PanParser are described in Sec-
tion 3 and Section 4 presents the scores achieved on the 73 treebanks of UD 2.0, for
various configurations of PanParser. Further algorithmic and technical details are
provided in the appendices and supplementary material: the procedure used to im-
plement dynamic oracles for various transition systems in PanParser (Appendix A),
the global dynamic oracle framework on which PanParser is based (Appendix B), as
well as the built-in transition systems with their oracles (Supplementary A), practi-
cal examples of PanParser usage (Supplementary B) and a brief overview of the code
architecture chosen to ensure modularity (Supplementary C).

PanParser is published under a BSD license and can be freely downloaded at https:
//perso.limsi.fr/aufrant.

2. Transition-based dependency parsing

Dependency parsing (Kübler et al., 2009) consists in analyzing the syntactic struc-
ture of a sentence by mapping it to a tree. Formally, a unique head token is assigned
to each token of the sentence (apart from the root), avoiding cycles, to denote syntactic
dependencies between two words; in labeled parsing, a relation label is additionally
assigned to each token. In this section, we introduce one class of algorithms build-
ing dependency trees, the transition-based approach (Nivre, 2008), which is the one
adopted by PanParser.

In a transition-based parser, a parse is computed by performing a sequence of tran-
sitions, building the parse tree in an incremental fashion. The parser configuration thus
represents a partially built dependency tree, and applying transition t to configura-
tion c results in the parser moving to a successor configuration of c (denoted c ◦ t),
together with side effects on its internal state (typically based on stacks and lists):
moving a token, creating an edge, etc.

According to Nivre (2008), ‘a deterministic classifier-based parser consists of three es-
sential components: a parsing algorithm, which defines the derivation of a syntactic analysis
as a sequence of elementary parsing actions; a feature model, which defines a feature vector
representation of the parser state at any given time; and a classifier, which maps parser states,
as represented by the feature model, to parsing actions‘. Over the years, much work has
been dedicated to improving parsers along those three lines: designing new pars-
ing algorithms (i.e. transition systems, in the case of transition-based parsing) with
various properties (Nivre, 2004, 2009; Gómez-Rodríguez and Nivre, 2010; Kuhlmann
et al., 2011; Qi and Manning, 2017), more informative feature representations (Zhang
and Clark, 2008; Zhang and Nivre, 2011; Bohnet et al., 2013; Alberti et al., 2015), and
adapting the implementations to use more accurate classifiers (Chen and Manning,
2014; Dyer et al., 2015; Zhou et al., 2015; Andor et al., 2016).

However, in recent years, a series of contributions has been made in the way those
three components interact, in particular at training time (Collins and Roark, 2004;
Zhang and Clark, 2008; Goldberg and Nivre, 2012; Huang et al., 2012, Zhang and Nivre,

59

https://perso.limsi.fr/aufrant
https://perso.limsi.fr/aufrant

PBML 111 OCTOBER 2018

2012, Aufrant et al., 2017). The resulting lines of research have produced a number
of algorithmic variants, with such diversity that we now find it beneficial to model
these aspects as separate components. Therefore, the new reading grid we propose,
and which has been adopted as the architecture of PanParser, is the following: a
transition-based parser consists of 6 components (a transition system, a classifier, a
feature model, a search component, an oracle and a training strategy), whose interac-
tions can be controlled by a generic structured prediction framework, with no specific
tie to the chosen algorithm or task.

In the following, we describe the state-of-the-art methods corresponding to each
component, out of which most are or can be implemented under the PanParser frame-
work. The actual built-ins will be listed in the next section, while the other algorithms
can still be implemented within that framework, thanks to its modular architecture.

2.1. Transition system

The transition system defines the semantics of the actions predicted by the classi-
fier, in order to relate them to actual dependency trees. Formally, it consists in four
elements: the structure of the parser state (e.g. a stack and a buffer), a set of actions
(e.g. Shift, Left, Right and Reduce), the semantics of each one (e.g. the Left action at-
taches the current token to another token on the right, and then discards it from the
stack) and their preconditions (e.g. the Left action is invalid if the current token has
already been attached).

Several such systems have been proposed in the literature, the most widely used
ones being stack-based. Notably, ArcStandard (Nivre, 2003), ArcEager (Nivre, 2004)
and ArcHybrid (Kuhlmann et al., 2011) rely on a stack (the currently processed tokens)
and a buffer (the not yet processed tokens). They all consider candidate edges among
the top few tokens on the stack and the first few tokens in the buffer, but they differ in
the order in which edges are created, and regarding spurious ambiguity (i.e. whether
the same tree can be produced by different derivations). All three systems guarantee
parsing in linear time, but they are also subject to restrictions in expressivity (as they
cannot produce non-projective trees, i.e. trees with crossing edges).

In order to improve expressivity or to facilitate the prediction of some edges, a
number of other systems have been designed, using various kinds of internal state: a
stack and a list (Nivre, 2009; Fernández-González and Gómez-Rodríguez, 2012), two
lists and a buffer (Covington, 2001; Choi and Palmer, 2011), a single list (Goldberg
and Elhadad, 2010), two (or more) stacks and a buffer (Gómez-Rodríguez and Nivre,
2010; Gómez-Rodríguez and Nivre, 2013), extra registers on top of the stack and the
buffer (Pitler and McDonald, 2015), etc.

Many of those systems have seen additional variants, adding for instance non-
monotonicity (Honnibal et al., 2013; Honnibal and Johnson, 2015; Fernández-González
and Gómez-Rodríguez, 2017) to improve the robustness to erroneous predictions, or
non-local transitions (Qi and Manning, 2017, Fernández-González and Gómez-

60

L. Aufrant, G. Wisniewski PanParser (57–86)

Rodríguez, 2018b), effectively shortening the derivations by collapsing series of Shift
or Reduce actions into edge-creating transitions. The ability to parse given specific
constraints on the output has also been investigated as a property of the transition
system (Nivre and Fernández-González, 2014; Nivre et al., 2014).

Finally, several variants of each of those systems exist natively, depending on how
the root tokens are handled. Indeed, the roots are supposed to remain unattached at
the end of the derivation, but in order to alleviate boundary effects they are in general
attached to a dummy Root token placed at the beginning or the end of the sentence.
Yet, the position of this node can actually impact the semantics of the transition sys-
tem, and it has been shown to impact the parsing accuracy (Ballesteros and Nivre,
2013).

2.2. Classifier

At each step of the parsing process, every possible transition is scored by a classi-
fier, based on a feature representation of the current configuration, and the transitions
to apply are chosen accordingly. This scoring step can be handled by any multi-class
classifier, and several options have been envisioned in the literature.

Linear models have notably proved successful: Collins and Roark (2004) use an
averaged perceptron – meaning that the final parameters retained after training are
obtained by averaging over all values taken by the model throughout training – which
has long remained a de facto standard (Huang et al., 2012). Another widespread strat-
egy is to use support vector machines (Nivre et al., 2006b). A number of other tech-
niques have been considered, like memory-based learning (Nivre et al., 2004), ro-
bust risk minimization (Choi and Nicolov, 2009) and confidence-weighted classifiers
(Haulrich, 2010), but the largest body of recent work on the topic concerns the inte-
gration of neural networks, with various architectures: feedforward neural networks
(Chen and Manning, 2014; Zhou et al., 2015), later augmented by a structured per-
ceptron (Weiss et al., 2015) or a CRF loss (Andor et al., 2016), as well as recurrent
networks (Stenetorp, 2013; Chen et al., 2015; Dyer et al., 2015). However, recurrent
neural networks (and notably, LSTMs) cannot be implemented in the current version
of the PanParser framework, which supports only stateless classifiers.

2.3. Feature model

The feature model specifies how the parser configuration is represented when it is
fed to the classifier. Such features are typically extracted from the top of the stack and
buffer: wordform of the first token in buffer, PoS tag of the (already attached) children
of the stack head, etc. In addition to wordforms, morphological features and coarse
or fine-grained PoS tags, richer features like sequential (token distance), syntactic (va-
lency, labels, representation of subtrees) or semantic information (semantic classes,
pre-trained word embeddings) can also be collected for any such token (Zhang and
Nivre, 2011; Agirre et al., 2011; Chen and Manning, 2014; Dyer et al., 2015).

61

PBML 111 OCTOBER 2018

Standard templates
1 word w, p and wp for S0, N0, N1, N2

2 words wp·wp, wp·w, w·wp, wp·p, p·wp, w·w and p·p for S0·N0; N0p·N1p

3 words p·p·p for N0·N1·N2, S0·N0·N1, S0h·S0·N0, S0·S0l·N0, S0·S0r·N0, S0·N0·N0l

New templates with rich non-local features
Distance S0w·d, S0p·d, N0w·d, N0p·d; S0w·N0w·d, S0p·N0p·d
Valency S0wvl, S0pvl, S0wvr, S0pvr, N0wvl, N0pvl

Unigrams w and p for S0h, S0l, S0r, N0l; l for S0, S0l, S0r, N0l

Third-order w and p for S0h2, S0l2, S0r2, N0l2; l for S0h, S0l2, S0r2, N0l2;
p·p·p for S0·S0h·S0h2, S0·S0l·S0l2, S0·S0r·S0r2, N0·N0l·N0l2

Label set S0wsl, S0psl, S0wsr, S0psr, N0wsl, N0psl

Table 1: Feature templates proposed by Zhang and Nivre (2011). S0 is the top stack
element, N0-N2 the 3 first buffer elements. w, p and l stand for word, PoS tag and la-
bel. d is the token distance from S0 to N0. vl (vr) is the number of left (right) children,
whose labels are sl (sr). h and h2 denote the head and its own head, l, l2 (r, r2) the
first and second leftmost (rightmost) children.

The resulting feature vector representation can be directly fed to non-linear classi-
fiers like kernel SVMs and neural networks, while for linear models feature templates
are typically used to combine the extracted atomic features into tuple features. Table 1
describes the templates handcrafted by Zhang and Nivre (2011), which are known
for achieving state-of-the-art performance on several languages, while others advo-
cate for automatic selection (Nilsson and Nugues, 2010; Ballesteros and Nivre, 2012;
Ballesteros and Bohnet, 2014).

It can however be noted that depending on the exact parser settings, not all this
information can be successfully extracted. For instance the delexicalized parsers used
in cross-lingual transfer (Zeman and Resnik, 2008) make no use of wordforms, un-
labeled parsers exclude label information, and depending on the transition system,
some syntactic features remain unknown at prediction time (in bottom-up systems
like ArcStandard and ArcHybrid the head of stack elements is never known, while in
ArcEager it can be).

2.4. Search

Both during training and prediction, parsing is done by exploring the search space
composed by all transitions scored by the classifier, in search for the best possible
tree. Transition sequences are scored by summing the scores of all their transitions;
parsing thus amounts to finding the derivation having the highest score. However,
this inference step is hindered by the exponential size of the search space.

62

L. Aufrant, G. Wisniewski PanParser (57–86)

While exact inference can be done through dynamic programming (Huang and
Sagae, 2010; Kuhlmann et al., 2011; Zhao et al., 2013), such methods imply severe
restrictions on the set of authorized features, which jeopardize the accuracy of the
parser. Instead, inexact search is generally employed, either as greedy or beam search.
Greedy decoding (i.e. always following the single-best transition) is faster, but beam
search (Zhang and Clark, 2008) yields more accurate parsers as it explores a larger
part of the space: it maintains a set of k parse candidates (the beam) and at each step
all possible actions are considered for each hypothesis in the beam, after which only
the k-best resulting configurations are kept. This method faces some computational
issues due to memory management, but they can be easily avoided by using tree-
structured stacks and distributed representations of trees (Goldberg et al., 2013).

While their implementations often differ, it can be noted that greedy search is
mathematically equivalent to beam search with k = 1. As for exhaustive search, it
can be modeled with a beam of infinite size.

2.5. Oracle

Training of transition-based parsers is a two-step procedure: first some decoding
is performed (using the chosen search strategy), then whenever an error a detected,
the model is updated based on one (or more) predicted configuration(s) and one (or
more) gold configuration(s).

The oracle is the component that governs the distinction between gold and erro-
neous configurations. More precisely, its role at training time is twofold: flagging
errors during decoding and identifying gold configurations that can serve as positive
(reference) configurations for updates, while the actual choice of update configura-
tions depends on the training strategy.

The traditional and most straightforward kind of oracle is the static one. In a static
oracle, references are precomputed heuristically, based on the semantics of the tran-
sition system: for each reference tree used as example, a unique derivation leading to
that tree is chosen and its transitions become references, while all others are consid-
ered erroneous. While simple to implement, static oracles have two drawbacks: they
ignore spurious ambiguity (when several derivations lead to the same reference tree,
all but one are considered erroneous) and they are only defined along the reference
derivation (given an arbitrary configuration in the search space, the optimal action to
take next is not specified).

Instead, Goldberg and Nivre (2012) introduce dynamic oracles, defined as oracles
that are both non-deterministic and complete: with dynamic oracles, the reference
actions are tailored to the current configuration. In that framework, erroneous ac-
tions are defined as actions that introduce errors, i.e. that reduce the maximum score
achievable on the current sentence (for instance by misattaching a token, or by remov-
ing from the stack a word which has not received all its children yet). The computation
of the oracle is based on the action cost, which is a property of the transition system

63

PBML 111 OCTOBER 2018

and numbers the errors introduced by each action, given an arbitrary configuration.
The gold actions are defined as zero-cost actions; this way the oracle is guaranteed to
find the best action(s) to perform, and it natively accounts for spurious ambiguity (an
action leading to the reference tree is by design zero-cost) and is always defined (by
definition of the maximum there is always at least one zero-cost action).

The main difficulty when applying dynamic oracles is to derive the action cost for
the transition system, which requires a thorough investigation of its properties. So
far, such oracles have been derived for ArcEager (Goldberg and Nivre, 2012), ArcHy-
brid and EasyFirst (Goldberg and Nivre, 2013), ArcStandard (Goldberg et al., 2014),
as well as several non-monotonic (Honnibal et al., 2013; Honnibal and Johnson, 2015)
and non-projective systems (Gómez-Rodríguez et al., 2014; Gómez-Rodríguez and
Fernández-González, 2015; Fernández-González and Gómez-Rodríguez, 2017). A few
other works have proposed oracles drawing from this line of research but which
are only partly dynamic, incomplete or approximated (Björkelund and Nivre, 2015;
de Lhoneux et al., 2017; Fernández-González and Gómez-Rodríguez, 2018a). Aufrant
et al. (2018) additionally propose a systematic way to approximate the oracle when it
has not yet been derived to handle all particular cases – for instance for reference trees
that are out of the expressive scope of the transition system, typically non-projective
training examples for projective parsers – by using an unsound cost and considering
the minimum-cost actions as gold. This is the approach adopted within our frame-
work; it is further described in Appendix A, which explains in which measure Pan-
Parser departs from the standard dynamic oracle framework.

While dynamic oracles are primarily defined to identify reference actions, Aufrant
et al. (2017) extend them to reference transition sequences, to accommodate their use
with beam parsers. The advantage of these global dynamic oracles is that they do not re-
quire any explicit computation of the reference set (which can be exponentially huge),
as they can be implemented by simply tracking the action costs inside the beam.

2.6. Training strategy

The literature traditionally distinguishes local and global training strategies. In
local training, each decision is optimized independently: all along the derivation, the
action predicted by the classifier is checked against the gold action(s) (the reference(s)
provided by the oracle), and an update occurs whenever they differ.

When beam search is employed, local training is suboptimal (Zhang and Nivre,
2012) and a global criterion is preferred, meaning that the parameters are updated
once for each training sentence, depending on the optimality of transition sequences.
Algorithm 1 (left part) summarizes the training for each sentence x (with gold parse
y): Initial(x) denotes the initial configuration for x and the Oracle procedure per-
forms decoding to find configurations that play the role of the ‘positive’ and ‘negative’
examples (resp. c+ and c−) required by the Update operation (typically a perceptron
update rule (Collins and Roark, 2004) or a gradient computation with the globally

64

L. Aufrant, G. Wisniewski PanParser (57–86)

normalized loss of Andor et al. (2016)). Several strategies, corresponding to various
implementations of the Oracle function, have been used to find these examples.

Algorithm 1: Global training on one sentence, with and without restart.
θ: model parameters, initialized to θ0 before training
Final(·): true iff the whole sentence is processed

Function TrainOneSentence(x,y)
c← Initial(x)

c+, c− ← Oracle(c, y, θ)
θ← Update(θ, c+, c−)

Function TrainOneSentenceRestart(x,y)
c← Initial(x)
while ¬Final(c) do

c+, c− ← Oracle(c, y, θ)
θ← Update(θ, c+, c−)
c← c+

In the EarlyUpdate strategy (Collins and Roark, 2004; Zhang and Clark, 2008), the
sentence is parsed using conventional beam decoding, checking at each step whether
the reference tree is still reachable, and an update happens as soon as the reference
derivation (or all references, depending on what the oracle generates) falls off the
beam: the top scoring configuration at this step is penalized and the reference that has
just fallen off the beam is reinforced. Another strategy, MaxViolation (Huang et al.,
2012), is to continue decoding even though the reference has fallen off the beam, in or-
der to find the configuration having the largest gap between the scores of the (partial)
hypothesis and the (partial) gold derivation. Compared to EarlyUpdate, MaxViola-
tion speeds up convergence by covering longer transition sequences and can yield
slightly better parsers.

In the standard version of these strategies, after a global update the rest of the se-
quence is ignored, moving on to the next example. However, Aufrant et al. (2017)
extend those strategies with a restart option (right part of Algorithm 1) which reini-
tializes the beam after each update and enables further updates on the same example,
so that the whole sentence is exploited during training, with benefits in terms of con-
vergence, accuracy and sampling distributions.

Notably, under the restart framework – and similarly to the equivalence of search
strategies – local training can be interpreted as a special case of global training, when
applying early update and restart on a beam of size 1.

One key aspect when choosing a training strategy is how the training configura-
tions are generated: each update (either local or global) raises questions on which
configuration to restart from, the positive or the negative one. Goldberg and Nivre
(2012) show that error exploration, i.e. pursuing on the erroneous path, improves the
accuracy by making the classifier able to produce the next best tree, even when the op-

65

PBML 111 OCTOBER 2018

timal one has become unreachable. Classifiers that stick to the gold space at training
time suffer indeed from error propagation, as the suboptimal configurations they are
confronted to at prediction time are an unknown territory in which they were never
trained to take good decisions. As a trade-off between strict supervision and robust-
ness, various exploration policies can be envisioned; for instance Goldberg and Nivre
(2013) keep the first iteration in the gold space, and then apply error exploration with
a probability of 90%, while Ballesteros et al. (2016) sample the next configuration from
the probability distribution output by the classifier. However, error exploration re-
quires oracle completeness, and can thus only be entertained when using a dynamic
oracle.

3. The PanParser implementation

As described in the previous section, a transition-based parser can be viewed as
the association of several components: a transition system (associating parse trees with
transition sequences), a classifier (scoring transitions based on a feature representa-
tion), a feature model (extracting feature vectors from parse configurations), a search
strategy (producing transition sequences, given a classifier model), an oracle (mapping
gold annotations to gold transitions) and a training strategy (effectively choosing the
training configurations to update the model).

In PanParser, to ensure modularity and compatibility, all of these components are
implemented separately – and interfaced by a generic structured prediction frame-
work, which handles the main training and prediction logic. The first three corre-
spond to distinct modules, for which we provide several implementations, and which
can be easily extended by alternate models or implementations. The definition of
the transition system includes all properties that are system-specific, so that the other
modules can be fully semantics-agnostic: its API can be queried to return (given a
configuration) the list of valid actions, the action costs, a successor configuration after
a given action, the partial tree already built (as an on-demand computation based on
transition history), and whether the state is final. The classifier is also seen as a black
box by the rest of the software, with a score/predict/update API (plus some initial-
ization functions) that makes it possible to integrate any stateless classifier; support
for stateful classifiers (like LSTMs) is not yet included but is planned for future work
as an API extension. As for the feature model, it relies on high-level properties of the
parse configurations (ith word in buffer, head of the top of the stack, etc.) to generate
feature representations, either as atomic or templated features (to accommodate both
linear and non-linear classifiers).

The three other components (search, oracle and training strategy) are based on an
extensive set of built-in parameters which can be set and combined at will. Following
Aufrant et al. (2016a), the whole search/learn procedure is based on beam search and
global dynamic oracles, from which all other strategies (greedy search, static oracle,
local training) are derived as special cases.

66

L. Aufrant, G. Wisniewski PanParser (57–86)

On top of algorithmic analyses, keeping those components independent has also
required specific implementation choices and abstraction layers; more details on that
matter are provided in Supplementary C.

After a brief description of how dependency trees are represented internally (§3.1),
the built-in components of PanParser are described in §3.2. Further technical details
are then provided on other functionalities of PanParser: enriched inputs (§3.3), parser
ensembling (§3.4), a built-in PoS tagger (§3.5) and the error analysis tools (§3.6). See
Supplementary B for an illustration of how these functionalities can be used and com-
bined.

3.1. Representation of a dependency tree

Since there is a one-to-one correspondence between child tokens and dependency
edges, a dependency tree can be easily modeled as a list of head tokens with padding
elements (a dummy Root token or symbols denoting the start and end of sentences).
In PanParser, it is represented as a list of integers, the integer at position i correspond-
ing to the index of the head governing the ith word in the sentence. Relation labels can
similarly be represented as a list of strings, for labeled parsing. Figure 1 illustrates the
resulting representation of a tree, with three variants depending on the position of the
Root token (None, First and Last, as empirically compared by Ballesteros and Nivre
(2013)); in PanParser the last position is used by default, but the first position can be
set to be used internally – parsing without Root token is currently not supported.

....You ..’re ..not ..thinking ..fourth-dimensionally ..!
..PRON ..AUX ..PART ..VERB ..ADV ..PUNCT

......

You0 ’re1 not2 thinking3 fourth-dimensionally4 !5

3 3 3 None 3 3

ROOT0 You1 ’re2 not3 thinking4 fourth-dimensionally5 !6

None 4 4 4 0 4 4

<start>0 You1 ’re2 not3 thinking4 fourth-dimensionally5 !6 ROOT7

None 4 4 4 7 4 4 0

None nsubj aux advmod root advmod punct None

Figure 1: Dependency tree representations with various Root positions.

67

PBML 111 OCTOBER 2018

3.2. Built-in components

Transition system PanParser implements four transition systems (ArcEager, ArcHy-
brid, ArcStandard and NonMonotonicArcEager) as well as variants for partial out-
put and short-spanned dependencies. For all, both versions with the Root token in
leading and trailing positions are implemented. Some experimental options are also
included, like adding head direction constraints to ArcEager.

High-level functions (extracting all possible atomic features, enumerating stack
tokens, etc.) are available to facilitate the implementation of other transition systems
based on a stack and a buffer; for other state structures they remain to be implemented.

A formal description of all built-in systems and their action costs is provided in
Supplementary A. For each one, the soundness of action costs has been experimen-
tally validated by exhaustive search from all configurations on all possible trees for
sentences under 10 tokens.

Classifier The default classifier used by PanParser is the multi-class averaged (struc-
tured) perceptron, following Collins and Roark (2004). Support for neural networks is
also included, and a vanilla feedforward neural network (based on Keras and Theano)
is implemented as a proof of concept.

Additionally, generic classifiers are provided for joint prediction and voting, which
are in fact wrappers around other classifiers. Joint classifiers are natively used for in-
stance to enable labeled parsing: based on the same feature representations, actions
and relation labels are predicted in parallel by two classifiers (which may or may not
share parameters, depending on the implemented classifiers). As for the voting wrap-
per, it enables parser ensembling with (weighted) votes at the action level.

Feature model PanParser is shipped with the feature templates of Zhang and Nivre
(2011), together with options that extend them with morphological features and pre-
trained embeddings; it is also possible to use the atomic version of the features (for
non-linear classifiers) or to write custom templates, based on the provided atomic
features (including both coarse and fine-grained PoS tags). In any case, two global
parameters control whether lexicalized features and label information are included
(to build delexicalized and unlabeled parsers).

Search As explained above, PanParser allows both greedy and beam search, the for-
mer being a special case of the latter; it consequently implements the data structure
introduced for beam search by Goldberg et al. (2013), based on immutable objects and
distributed representations. This implementation is, however, suboptimal for vanilla
greedy parsers, which can be optimized using mutable objects, so that we also pro-
vide an alternate implementation dedicated to greedy parser states.

The mutable version represents the state of the parser as a buffer pointer, a stack
and a parse tree, that get updated whenever a transition is applied. This structure

68

L. Aufrant, G. Wisniewski PanParser (57–86)

makes much information available in constant time (which notably speeds up fea-
ture extraction), but it cannot be used for beam search without costly object copies
(Goldberg et al., 2013) and has consequently limited functionalities. The mathemati-
cal equivalence of both implementations for greedy parsing has been experimentally
validated.

In Goldberg et al. (2013)’s version, which is the default, a parser state is just an
immutable set of a few indexes and pointers to other parser states (previous state and
tail of the stack).3 Thus, derivations are represented as linked lists, and the complete
information about a parser state (content of the stack, transition history, current parse
tree) is distributed across all previous states, without duplicates. While accessing a
deep stack element is necessarily slower than in the local implementation, factoring
information in this way makes beam search and global training cheaper, both in time
and memory usage.

Oracle Both static and dynamic oracles (including global dynamic ones) are sup-
ported by PanParser; static oracles are actually computed using dynamic ones – the
reference derivation is built by pre-parsing the sentence while restricting the search
space to zero-cost actions and ignoring their score.

Training strategy PanParser supports both local and global training, with several
strategies: early update, max-violation, full update (even though Huang et al. (2012)
discourage its use), several variants of those (e.g. to optimize the similarity of the
positive and negative configurations), together with the restart option and arbitrary
exploration policies.

As explained in §2.6, local and global training are unified under the same frame-
work (Algorithm 1), in which the basic training unit is the model update, and all
training strategies follow the same workflow: initialize a beam in a given configu-
ration, extend the beam repeatedly until an error is flagged, select a pair of update
configurations among the candidates, perform the update, and iterate until the ex-
ample is considered processed.

The various update strategies for global training can themselves be unified under
the same framework, as shown by Algorithm 2 (Correct being the error criterion used
by global dynamic oracles): with this viewpoint, EarlyUpdate and MaxViolation
only differ in the choice of iupdate, which is actually how they are implemented in

3Compared to their work, we enriched the representation of the stack and buffer pointers, with the
current number of children, the two leftmost and the two rightmost children. This enables rich feature
templates like Zhang and Nivre (2011)’s.

69

PBML 111 OCTOBER 2018

PanParser (with lazy expansion of the beam and anticipation of errors). Appendix B
further describes how those strategies fit within the dynamic oracle framework.

Algorithm 2: Basic scheme for training strategies (Aufrant et al., 2016a).
At time t0: B0 = {c1, c2, ..., ck ′ } , k ′ ≤ k

k: maximum beam size (1 for local training)
λi: optional focus on early/late transitions (1 in all state-of-the-art strategies)
Function TrainingUnit(B0, y, θ)

B1, B2, ..., BN ← Decode(B0, θ
t0 , k) such that Final(BN)

if ¬Correcty(top(BN)|B0) then
i0 ← index of the first error detection (in Bi0)
The algorithm chooses in turn:
• using {Bi}i , i0, θ

t0 ,Correcty: a positive configuration c+ for each
derivation length
• using {Bi}i , i0, θ

t0 , {c+}: a negative configuration c− for each
derivation length
• using {Bi}i , i0, θ

t0 , {c+} , {c−}: a derivation length iupdate

c+iupdate
= cempty ◦ t+0 ◦ · · · ◦ t+iupdate

c−iupdate
= cempty ◦ t−0 ◦ · · · ◦ t−iupdate

The global update is effected, e.g. with the perceptron rule:
• θt0+1 ← θt0 +

∑iupdate

i=0 λi
[
ϕ(t+i)) − ϕ(t−i)

]
On top of the errors flagged by the oracle, PanParser also accepts other non-standard

stopping criteria, like forcing the beam to reinitialize every few actions (thus prevent-
ing updates on very distant configurations).

3.3. Enriched input: partial trees and constraints

Compared to traditional implementations, PanParser makes an extensive use of
the dynamic oracle framework to leverage partial trees in several ways: it supports
training on partially annotated sentences (which enables robustness to incomplete
datasets, but also fine-grained subsampling), predicting under partial constraints
(when the head, or at least the dependency direction, is already provided for a few
tokens) and training under constraints (for better train-test consistency, and using
features extracted from the constraints). It is also possible, using the corresponding
transition systems, to learn to predict partial trees directly – in the PanParser frame-
work, training and prediction unfold as usual even for such partial parsers.

The reason why dynamic oracles enable training on examples with partial anno-
tations is that they make the updates error-driven: when no information is provided,
the cost is simply under-estimated and no update occurs. This behavior holds even
for more complex dynamic oracles, either global or non-arc-decomposable (see Ap-

70

L. Aufrant, G. Wisniewski PanParser (57–86)

pendix A). So, provided that the action costs are implemented appropriately (i.e. not
assuming the existence of annotations), which is the case in PanParser, training on
such data is possible by design. Fine-grained subsampling can then be entertained by
on-the-fly deletion of some reference dependencies, before training on a given exam-
ple; error-driven training takes care of exploiting the remaining dependencies.

As for constrained training and prediction, they rely on a straightforward action
filtering, based on dynamic oracles: restricting the search space to parses compatible
with these constraints simply consists in restricting the legal actions to those that have
zero cost with respect to the constraints. This way, the constraint dependencies are
naturally respected and included by the parser, which in fact produces a standard
derivation, without any pre- or post-processing.

3.4. Parser ensembling

Two strategies for parser ensembling are implemented under the PanParser frame-
work: parser cascading (Aufrant and Wisniewski, 2017), which consists in pipelining
a series of partial parsers, and MST-based reparsing (Sagae and Lavie, 2006). Repars-
ing enables a token-level vote on the output of several parsers; when weighting the
contribution of each parser, which PanParser allows, this strategy can for instance
be used in cross-lingual parsing, to combine various sources (Rosa and Žabokrtský,
2015).

3.5. Support for other structured prediction tasks: PoS tagging

PanParser also has a built-in PoS tagger, based on the same structured prediction
framework. It shows how this framework can be used for other structured prediction
tasks than dependency parsing. This unification also paves the way to joint tagging
and parsing with PanParser.

The structure and usage of the tagger are similar to PanParser, albeit simpler be-
cause it does not involve transition systems. The main difference is that at training
time, the tagger also builds a tag dictionary of unambiguous words, with almost al-
ways the same tag (and enough occurrences) in the dataset, and at prediction time it
tries looking up the tag in the dictionary, before defaulting to actual predictions.

3.6. Error analysis

In order to facilitate extensive error analysis, PanParser is shipped with a series
of evaluation tools, both for computing overall accuracies and fine-grained statistics.
Several built-in criteria (PoS tags, dependency length, direction, position in sentence,
word frequency, etc.) can be used (and combined) to guide the analysis or narrow the
results. Examples of the studies enabled by PanParser are presented in Supplemen-
tary B.

71

PBML 111 OCTOBER 2018

4. Experiments

The accuracy of PanParser is evaluated on the 73 treebanks of the Universal Depen-
dencies 2.0 (Nivre et al., 2017a,b). Table 2 reports the average scores achieved with the
main few settings, together with similar measures for three other open source parsers:
MaltParser 1.9 (Nivre et al., 2006a), MSTParser 0.5.1 (McDonald et al., 2005) and UD-
Pipe 1.1 (Straka and Straková, 2017).4

Our system appears competitive with the other parsers, all of them being outper-
formed by an 8-sized beam PanParser. Further comparison with UDPipe reveals that
both systems are actually on par on large treebanks (more than 500 sentences), while
PanParser outperforms all parsers by a large margin on small treebanks (less than 500
sentences).

As a side note, the gains achieved by PanParser when changing the training strat-
egy and Root position also appear consistent with the literature (Goldberg and Nivre,
2012; Zhang and Nivre, 2012; Huang et al., 2012; Ballesteros and Nivre, 2013), which
validates previous results in this new framework.

5. Conclusion and future work

We have presented PanParser, a transition-based dependency parser implemented
with the concern of algorithmic variation completeness, intended both for practical
uses and as a parsing research tool. It currently supports numerous options and cus-
tomizations for several aspects of the parsing algorithms.

PanParser is, however, still a work in progress, and we already plan several extra
developments. We intend to take a further step to customization completeness, by
allowing to parse without dummy Root token, and to extract arbitrary user-defined
atomic features. We will also add built-in transition systems that are not stack- and
buffer-based: the Covington system, based on two lists and a buffer, and for which
Gómez-Rodríguez and Fernández-González (2015) already derived a dynamic oracle;
the SwapStandard system (using a stack and a list), which requires deriving new ef-
ficient dynamic oracles; and the EasyFirst system, based on a single list. Another
planned extension is to add relaxed types of arc constraints, e.g. ambiguous con-
straints, and span constraints.

Finally, we will add support for stateful classifiers to add a stack-LSTM parser im-
plementation, and allow arbitrary joint prediction, which should achieve full Pan-
Parser support for state-of-the-art systems like that of Swayamdipta et al. (2016).

4We use the default settings for MaltParser (ArcEager parser with a linear classifier and no pseudo-
projectivization) and MSTParser (first-order projective parser), and Straka (2017)’s hyperparameters for
UDPipe.

72

L. Aufrant, G. Wisniewski PanParser (57–86)

System Root position Greedy Greedy dynamic Early update Max-violation

ArcEager

First 77.89 78.97 80.29 80.36
Small∥Large 66.27∥81.15 68.17∥82.00 68.48∥83.60 68.42∥83.71

Last 78.63 79.43 80.35 80.40
Small∥Large 67.60∥81.72 68.70∥82.44 68.58∥83.66 68.87∥83.63

ArcHybrid

First 75.72 76.54 79.39 79.78
Small∥Large 66.56∥78.29 66.49∥79.36 66.72∥82.95 68.43∥82.96

Last 76.02 77.05 79.70 79.86
Small∥Large 66.74∥78.62 67.42∥79.76 68.39∥82.87 68.61∥83.02

MaltParser 72.88
58.87∥76.82

MSTParser 79.52
65.59∥83.43

UDPipe 79.47
64.48∥83.67

Table 2: Average UAS achieved by PanParser on UD 2.0 with various strategies,
compared to several open source parsers. ‘Greedy’ results are computed with a
static oracle, but for fair comparison of both oracles the non-projective examples are
also exploited (using a precomputed reference approximated by a dynamic oracle).
‘Greedy dynamic’ chooses exploration after each update. The ‘Early update’ and
‘Max-violation’ strategies use global dynamic oracles without restart. ‘Small’ and
‘Large’ results distinguish the treebanks under and over 500 sentences. For fair com-
parison, UDPipe is trained without pre-trained embeddings, which would have sig-
nificantly increased the available information.

Acknowledgments

This work has been partly funded by the French Direction générale de l’armement
and by the Agence Nationale de la Recherche (ParSiTi project, ANR-16-CE33-0021).

Bibliography
Agirre, Eneko, Kepa Bengoetxea, Koldo Gojenola, and Joakim Nivre. Improving Dependency

Parsing with Semantic Classes. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pages 699–703, Portland, Ore-
gon, USA, 6 2011. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/P11-2123.

Alberti, Chris, David Weiss, Greg Coppola, and Slav Petrov. Improved Transition-Based Pars-
ing and Tagging with Neural Networks. In Proceedings of the 2015 Conference on Empirical

73

http://www.aclweb.org/anthology/P11-2123
http://www.aclweb.org/anthology/P11-2123

PBML 111 OCTOBER 2018

Methods in Natural Language Processing, pages 1354–1359, Lisbon, Portugal, 9 2015. Associa-
tion for Computational Linguistics. URL http://aclweb.org/anthology/D15-1159.

Andor, Daniel, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman
Ganchev, Slav Petrov, and Michael Collins. Globally Normalized Transition-Based Neu-
ral Networks. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2442–2452, Berlin, Germany, 8 2016. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P16-1231.

Aufrant, Lauriane and Guillaume Wisniewski. LIMSI@CoNLL’17: UD Shared Task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependen-
cies, pages 163–173, Vancouver, Canada, 8 2017. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/K17-3017.

Aufrant, Lauriane, Guillaume Wisniewski, and François Yvon. Ne nous arrêtons pas en si bon
chemin: améliorations de l’apprentissage global d’analyseurs en dépendances par transi-
tion. In Actes de la 23e conférence sur le Traitement Automatique des Langues Naturelles, pages
248–261, 2016a.

Aufrant, Lauriane, Guillaume Wisniewski, and François Yvon. Zero-resource Dependency
Parsing: Boosting Delexicalized Cross-lingual Transfer with Linguistic Knowledge. In Pro-
ceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Tech-
nical Papers, pages 119–130, Osaka, Japan, 12 2016b. The COLING 2016 Organizing Com-
mittee. URL http://aclweb.org/anthology/C16-1012.

Aufrant, Lauriane, Guillaume Wisniewski, and François Yvon. Don’t Stop Me Now! Us-
ing Global Dynamic Oracles to Correct Training Biases of Transition-Based Dependency
Parsers. In Proceedings of the 15th Conference of the European Chapter of the Association for Com-
putational Linguistics: Volume 2, Short Papers, pages 318–323, Valencia, Spain, 4 2017. Associ-
ation for Computational Linguistics. URL http://www.aclweb.org/anthology/E17-2051.

Aufrant, Lauriane, Guillaume Wisniewski, and François Yvon. Exploiting Dynamic Oracles
to Train Projective Dependency Parsers on Non-Projective Trees. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), pages 413–419, New Orleans, Louisiana, 6
2018. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
N18-2066.

Ballesteros, Miguel and Bernd Bohnet. Automatic Feature Selection for Agenda-Based Depen-
dency Parsing. In Proceedings of COLING 2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 794–805, Dublin, Ireland, 8 2014. Dublin City
University and Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/C14-1076.

Ballesteros, Miguel and Joakim Nivre. MaltOptimizer: An Optimization Tool for MaltParser.
In Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 58–62, Avignon, France, 4 2012. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/E12-2012.

Ballesteros, Miguel and Joakim Nivre. Going to the Roots of Dependency Parsing. Com-
putational Linguistics, 39(1):5–13, 2013. URL http://www.aclweb.org/anthology/J/J13/
J13-1002.pdf.

74

http://aclweb.org/anthology/D15-1159
http://www.aclweb.org/anthology/P16-1231
http://www.aclweb.org/anthology/K17-3017
http://aclweb.org/anthology/C16-1012
http://www.aclweb.org/anthology/E17-2051
http://www.aclweb.org/anthology/N18-2066
http://www.aclweb.org/anthology/N18-2066
http://www.aclweb.org/anthology/C14-1076
http://www.aclweb.org/anthology/C14-1076
http://www.aclweb.org/anthology/E12-2012
http://www.aclweb.org/anthology/J/J13/J13-1002.pdf
http://www.aclweb.org/anthology/J/J13/J13-1002.pdf

L. Aufrant, G. Wisniewski PanParser (57–86)

Ballesteros, Miguel, Yoav Goldberg, Chris Dyer, and Noah A. Smith. Training with Exploration
Improves a Greedy Stack LSTM Parser. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2005–2010, Austin, Texas, 11 2016. Association
for Computational Linguistics. URL https://aclweb.org/anthology/D16-1211.

Björkelund, Anders and Joakim Nivre. Non-Deterministic Oracles for Unrestricted Non-
Projective Transition-Based Dependency Parsing. In Proceedings of the 14th International Con-
ference on Parsing Technologies, pages 76–86, Bilbao, Spain, 7 2015. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/W15-2210.

Bohnet, Bernd, Joakim Nivre, Igor Boguslavsky, Richárd Farkas, Filip Ginter, and Jan Hajič.
Joint morphological and syntactic analysis for richly inflected languages. Transactions of the
Association for Computational Linguistics, 1:415–428, 2013.

Chen, Danqi and Christopher Manning. A Fast and Accurate Dependency Parser using Neural
Networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 740–750, Doha, Qatar, 10 2014. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/D14-1082.

Chen, Xinchi, Yaqian Zhou, Chenxi Zhu, Xipeng Qiu, and Xuanjing Huang. Transition-based
Dependency Parsing Using Two Heterogeneous Gated Recursive Neural Networks. In Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
1879–1889, Lisbon, Portugal, 9 2015. Association for Computational Linguistics. URL
http://aclweb.org/anthology/D15-1215.

Choi, Jinho D and Nicolas Nicolov. K-best, locally pruned, transition-based dependency pars-
ing using robust risk minimization. Recent Advances in Natural Language Processing V, 309:
205–216, 2009.

Choi, Jinho D. and Martha Palmer. Getting the Most out of Transition-based Dependency Pars-
ing. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 687–692, Portland, Oregon, USA, 6 2011. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-2121.

Collins, Michael and Brian Roark. Incremental Parsing with the Perceptron Algorithm. In
Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL’04), Main
Volume, pages 111–118, Barcelona, Spain, 7 2004. doi: 10.3115/1218955.1218970. URL http:
//www.aclweb.org/anthology/P04-1015.

Covington, Michael A. A Fundamental Algorithm for Dependency Parsing. In Proceedings of
the 39th annual ACM southeast conference, pages 95–102, 2001.

de Lhoneux, Miryam, Sara Stymne, and Joakim Nivre. Arc-Hybrid Non-Projective Depen-
dency Parsing with a Static-Dynamic Oracle. In Proceedings of the 15th International Confer-
ence on Parsing Technologies, pages 99–104, Pisa, Italy, 9 2017. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/W17-6314.

Dozat, Timothy and Christopher D. Manning. Deep Biaffine Attention for Neural Dependency
Parsing. ICLR 2017, 2017. URL http://arxiv.org/abs/1611.01734.

Dyer, Chris, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. Transition-
Based Dependency Parsing with Stack Long Short-Term Memory. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th International Joint

75

https://aclweb.org/anthology/D16-1211
http://www.aclweb.org/anthology/W15-2210
http://www.aclweb.org/anthology/D14-1082
http://aclweb.org/anthology/D15-1215
http://www.aclweb.org/anthology/P11-2121
http://www.aclweb.org/anthology/P04-1015
http://www.aclweb.org/anthology/P04-1015
http://www.aclweb.org/anthology/W17-6314
http://arxiv.org/abs/1611.01734

PBML 111 OCTOBER 2018

Conference on Natural Language Processing (Volume 1: Long Papers), pages 334–343, Beijing,
China, 7 2015. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/P15-1033.

Fernández-González, Daniel and Carlos Gómez-Rodríguez. Improving Transition-Based De-
pendency Parsing with Buffer Transitions. In Proceedings of the 2012 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Language Learning,
pages 308–319, Jeju Island, Korea, 7 2012. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/D12-1029.

Fernández-González, Daniel and Carlos Gómez-Rodríguez. A Full Non-Monotonic Transi-
tion System for Unrestricted Non-Projective Parsing. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 288–
298, Vancouver, Canada, 7 2017. Association for Computational Linguistics. URL http:
//aclweb.org/anthology/P17-1027.

Fernández-González, Daniel and Carlos Gómez-Rodríguez. A Dynamic Oracle for Linear-Time
2-Planar Dependency Parsing. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
2 (Short Papers), pages 386–392, New Orleans, Louisiana, 6 2018a. Association for Compu-
tational Linguistics. URL http://www.aclweb.org/anthology/N18-2062.

Fernández-González, Daniel and Carlos Gómez-Rodríguez. Non-Projective Dependency Pars-
ing with Non-Local Transitions. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
2 (Short Papers), pages 693–700, New Orleans, Louisiana, 6 2018b. Association for Compu-
tational Linguistics. URL http://www.aclweb.org/anthology/N18-2109.

Goldberg, Yoav and Michael Elhadad. An Efficient Algorithm for Easy-First Non-Directional
Dependency Parsing. In Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pages 742–750, Los
Angeles, California, 6 2010. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/N10-1115.

Goldberg, Yoav and Joakim Nivre. A Dynamic Oracle for Arc-Eager Dependency Parsing. In
Proceedings of COLING 2012, pages 959–976, Mumbai, India, 12 2012. The COLING 2012
Organizing Committee. URL http://www.aclweb.org/anthology/C12-1059.

Goldberg, Yoav and Joakim Nivre. Training Deterministic Parsers with Non-Deterministic Or-
acles. Transactions of the Association for Computational Linguistics, 1:403–414, 2013. ISSN 2307-
387X. URL https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/145.

Goldberg, Yoav, Kai Zhao, and Liang Huang. Efficient Implementation of Beam-Search Incre-
mental Parsers. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 628–633, Sofia, Bulgaria, 8 2013. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P13-2111.

Goldberg, Yoav, Francesco Sartorio, and Giorgio Satta. A Tabular Method for Dynamic Oracles
in Transition-Based Parsing. Transactions of the Association for Computational Linguistics, 2:
119–130, 2014. ISSN 2307-387X. URL https://tacl2013.cs.columbia.edu/ojs/index.php/
tacl/article/view/302.

76

http://www.aclweb.org/anthology/P15-1033
http://www.aclweb.org/anthology/P15-1033
http://www.aclweb.org/anthology/D12-1029
http://aclweb.org/anthology/P17-1027
http://aclweb.org/anthology/P17-1027
http://www.aclweb.org/anthology/N18-2062
http://www.aclweb.org/anthology/N18-2109
http://www.aclweb.org/anthology/N10-1115
http://www.aclweb.org/anthology/N10-1115
http://www.aclweb.org/anthology/C12-1059
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/145
http://www.aclweb.org/anthology/P13-2111
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/302
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/302

L. Aufrant, G. Wisniewski PanParser (57–86)

Gómez-Rodríguez, Carlos and Daniel Fernández-González. An Efficient Dynamic Oracle for
Unrestricted Non-Projective Parsing. In Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 256–261, Beijing, China, 7 2015. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P15-2042.

Gómez-Rodríguez, Carlos and Joakim Nivre. A Transition-Based Parser for 2-Planar Depen-
dency Structures. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 1492–1501, Uppsala, Sweden, 7 2010. Association for Computational Lin-
guistics. URL http://www.aclweb.org/anthology/P10-1151.

Gómez-Rodríguez, Carlos and Joakim Nivre. Divisible transition systems and multiplanar de-
pendency parsing. Computational Linguistics, 39(4):799–845, 2013.

Gómez-Rodríguez, Carlos, Francesco Sartorio, and Giorgio Satta. A Polynomial-Time Dynamic
Oracle for Non-Projective Dependency Parsing. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pages 917–927, Doha, Qatar, 10
2014. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
D14-1099.

Haulrich, Martin. Transition-Based Parsing with Confidence-Weighted Classification. In
Proceedings of the ACL 2010 Student Research Workshop, pages 55–60, Uppsala, Sweden, 7
2010. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
P10-3010.

Honnibal, Matthew and Mark Johnson. An Improved Non-monotonic Transition System for
Dependency Parsing. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1373–1378, Lisbon, Portugal, 9 2015. Association for Computa-
tional Linguistics. URL http://aclweb.org/anthology/D15-1162.

Honnibal, Matthew, Yoav Goldberg, and Mark Johnson. A Non-Monotonic Arc-Eager Tran-
sition System for Dependency Parsing. In Proceedings of the Seventeenth Conference on Com-
putational Natural Language Learning, pages 163–172, Sofia, Bulgaria, 8 2013. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/W13-3518.

Huang, Liang and Kenji Sagae. Dynamic Programming for Linear-Time Incremental Parsing.
In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages
1077–1086, Uppsala, Sweden, 7 2010. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P10-1110.

Huang, Liang, Suphan Fayong, and Yang Guo. Structured Perceptron with Inexact Search. In
Proceedings of the 2012 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 142–151, Montréal, Canada, 6
2012. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
N12-1015.

Kiperwasser, Eliyahu and Yoav Goldberg. Simple and Accurate Dependency Parsing Using
Bidirectional LSTM Feature Representations. Transactions of the Association for Computational
Linguistics, 4:313–327, 2016. ISSN 2307-387X. URL https://transacl.org/ojs/index.php/
tacl/article/view/885.

Kübler, Sandra, Ryan McDonald, and Joakim Nivre. Dependency parsing. Synthesis Lectures
on Human Language Technologies, 1(1):1–127, 2009.

77

http://www.aclweb.org/anthology/P15-2042
http://www.aclweb.org/anthology/P10-1151
http://www.aclweb.org/anthology/D14-1099
http://www.aclweb.org/anthology/D14-1099
http://www.aclweb.org/anthology/P10-3010
http://www.aclweb.org/anthology/P10-3010
http://aclweb.org/anthology/D15-1162
http://www.aclweb.org/anthology/W13-3518
http://www.aclweb.org/anthology/P10-1110
http://www.aclweb.org/anthology/P10-1110
http://www.aclweb.org/anthology/N12-1015
http://www.aclweb.org/anthology/N12-1015
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885

PBML 111 OCTOBER 2018

Kuhlmann, Marco, Carlos Gómez-Rodríguez, and Giorgio Satta. Dynamic Programming Al-
gorithms for Transition-Based Dependency Parsers. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Technologies, pages 673–
682, Portland, Oregon, USA, 6 2011. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P11-1068.

Lacroix, Ophélie, Lauriane Aufrant, Guillaume Wisniewski, and François Yvon. Frustratingly
Easy Cross-Lingual Transfer for Transition-Based Dependency Parsing. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1058–1063, San Diego, California, 6 2016. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/N16-1121.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajic. Non-Projective Dependency
Parsing using Spanning Tree Algorithms. In Proceedings of Human Language Technology Con-
ference and Conference on Empirical Methods in Natural Language Processing, pages 523–530,
Vancouver, British Columbia, Canada, 10 2005. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/H/H05/H05-1066.

Nilsson, Peter and Pierre Nugues. Automatic Discovery of Feature Sets for Dependency Pars-
ing. In Proceedings of the 23rd International Conference on Computational Linguistics (Coling
2010), pages 824–832, Beijing, China, 8 2010. Coling 2010 Organizing Committee. URL
http://www.aclweb.org/anthology/C10-1093.

Nivre, Joakim. An Efficient Algorithm for Projective Dependency Parsing. In Proceedings of the
8th International Workshop on Parsing Technologies, IWPT 2003, Nancy, France, 2003.

Nivre, Joakim. Incrementality in Deterministic Dependency Parsing. In Keller, Frank, Stephen
Clark, Matthew Crocker, and Mark Steedman, editors, Proceedings of the ACL Workshop Incre-
mental Parsing: Bringing Engineering and Cognition Together, pages 50–57, Barcelona, Spain, 7
2004. Association for Computational Linguistics.

Nivre, Joakim. Algorithms for Deterministic Incremental Dependency Parsing. Comput. Lin-
guist., 34(4):513–553, 2008. ISSN 0891-2017. doi: 10.1162/coli.07-056-R1-07-027. URL
http://dx.doi.org/10.1162/coli.07-056-R1-07-027.

Nivre, Joakim. Non-Projective Dependency Parsing in Expected Linear Time. In Proceedings of
the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Con-
ference on Natural Language Processing of the AFNLP, pages 351–359, Suntec, Singapore, 8
2009. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
P/P09/P09-1040.

Nivre, Joakim and Daniel Fernández-González. Arc-eager parsing with the tree constraint.
Computational linguistics, 40(2):259–267, 2014.

Nivre, Joakim, Johan Hall, and Jens Nilsson. Memory-Based Dependency Parsing. In Ng,
Hwee Tou and Ellen Riloff, editors, HLT-NAACL 2004 Workshop: Eighth Conference on Compu-
tational Natural Language Learning (CoNLL-2004), pages 49–56, Boston, Massachusetts, USA,
May 6 - May 7 2004. Association for Computational Linguistics.

Nivre, Joakim, Johan Hall, and Jens Nilsson. MaltParser: A Data-Driven Parser-Generator for
Dependency Parsing. In Proceedings of the Fifth International Conference on Language Resources
and Evaluation (LREC’06), volume 6, pages 2216–2219, 2006a.

78

http://www.aclweb.org/anthology/P11-1068
http://www.aclweb.org/anthology/N16-1121
http://www.aclweb.org/anthology/H/H05/H05-1066
http://www.aclweb.org/anthology/C10-1093
http://dx.doi.org/10.1162/coli.07-056-R1-07-027
http://www.aclweb.org/anthology/P/P09/P09-1040
http://www.aclweb.org/anthology/P/P09/P09-1040

L. Aufrant, G. Wisniewski PanParser (57–86)

Nivre, Joakim, Johan Hall, Jens Nilsson, Gülşen Eryiǧit, and Svetoslav Marinov. Labeled
Pseudo-Projective Dependency Parsing with Support Vector Machines. In Proceedings of the
Tenth Conference on Computational Natural Language Learning (CoNLL-X), pages 221–225, New
York City, 6 2006b. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/W/W06/W06-2933.

Nivre, Joakim, Yoav Goldberg, and Ryan McDonald. Constrained arc-eager dependency pars-
ing. Computational Linguistics, 40(2):249–527, 2014.

Nivre, Joakim, Željko Agić, Lars Ahrenberg, et al. Universal Dependencies 2.0, 2017a. URL
http://hdl.handle.net/11234/1-1983. LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University, Prague.

Nivre, Joakim, Željko Agić, Lars Ahrenberg, et al. Universal Dependencies 2.0 – CoNLL
2017 Shared Task Development and Test Data, 2017b. URL http://hdl.handle.net/11234/
1-2184. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguis-
tics, Charles University.

Pitler, Emily and Ryan McDonald. A Linear-Time Transition System for Crossing Interval
Trees. In Proceedings of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 662–671, Denver, Colorado,
May–June 2015. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/N15-1068.

Qi, Peng and Christopher D. Manning. Arc-swift: A Novel Transition System for Dependency
Parsing. In Proceedings of the 55th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 110–117, Vancouver, Canada, 7 2017. Association for
Computational Linguistics. URL http://aclweb.org/anthology/P17-2018.

Rosa, Rudolf and Zdeněk Žabokrtský. KLcpos3 - a Language Similarity Measure for Delexi-
calized Parser Transfer. In Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 243–249, Beijing, China, 7 2015. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/P15-2040.

Sagae, Kenji and Alon Lavie. Parser Combination by Reparsing. In Proceedings of the Human
Language Technology Conference of the NAACL, Companion Volume: Short Papers, pages 129–
132, New York City, USA, 6 2006. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/N/N06/N06-2033.

Stenetorp, Pontus. Transition-based dependency parsing using recursive neural networks. In
NIPS Workshop on Deep Learning, 2013.

Straka, Milan. CoNLL 2017 Shared Task - UDPipe Baseline Models and Supplementary Mate-
rials, 2017. URL http://hdl.handle.net/11234/1-1990. LINDAT/CLARIN digital library
at the Institute of Formal and Applied Linguistics, Charles University.

Straka, Milan and Jana Straková. Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0
with UDPipe. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 88–99, Vancouver, Canada, 8 2017. Association for Compu-
tational Linguistics. URL http://www.aclweb.org/anthology/K17-3009.

79

http://www.aclweb.org/anthology/W/W06/W06-2933
http://www.aclweb.org/anthology/W/W06/W06-2933
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://www.aclweb.org/anthology/N15-1068
http://www.aclweb.org/anthology/N15-1068
http://aclweb.org/anthology/P17-2018
http://www.aclweb.org/anthology/P15-2040
http://www.aclweb.org/anthology/N/N06/N06-2033
http://www.aclweb.org/anthology/N/N06/N06-2033
http://hdl.handle.net/11234/1-1990
http://www.aclweb.org/anthology/K17-3009

PBML 111 OCTOBER 2018

Swayamdipta, Swabha, Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Greedy, Joint
Syntactic-Semantic Parsing with Stack LSTMs. In Proceedings of The 20th SIGNLL Conference
on Computational Natural Language Learning, pages 187–197, Berlin, Germany, 8 2016. Asso-
ciation for Computational Linguistics. URL http://www.aclweb.org/anthology/K16-1019.

Weiss, David, Chris Alberti, Michael Collins, and Slav Petrov. Structured Training for Neural
Network Transition-Based Parsing. In Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 323–333, Beijing, China, 7 2015. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P15-1032.

Zeman, Daniel and Philip Resnik. Cross-Language Parser Adaptation between Related Lan-
guages. In Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages
35–42, 2008.

Zhang, Yue and Stephen Clark. A Tale of Two Parsers: Investigating and Combining Graph-
based and Transition-based Dependency Parsing. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Processing, pages 562–571, Honolulu, Hawaii, 10
2008. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
D08-1059.

Zhang, Yue and Joakim Nivre. Transition-based Dependency Parsing with Rich Non-local Fea-
tures. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 188–193, Portland, Oregon, USA, 6 2011. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-2033.

Zhang, Yue and Joakim Nivre. Analyzing the Effect of Global Learning and Beam-Search on
Transition-Based Dependency Parsing. In Proceedings of COLING 2012: Posters, pages 1391–
1400, Mumbai, India, 12 2012. The COLING 2012 Organizing Committee. URL http://www.
aclweb.org/anthology/C12-2136.

Zhao, Kai, James Cross, and Liang Huang. Optimal Incremental Parsing via Best-First Dynamic
Programming. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 758–768, Seattle, Washington, USA, 10 2013. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/D13-1071.

Zhou, Hao, Yue Zhang, Shujian Huang, and Jiajun Chen. A Neural Probabilistic Structured-
Prediction Model for Transition-Based Dependency Parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers), pages 1213–1222, Beijing,
China, 7 2015. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/P15-1117.

80

http://www.aclweb.org/anthology/K16-1019
http://www.aclweb.org/anthology/P15-1032
http://www.aclweb.org/anthology/D08-1059
http://www.aclweb.org/anthology/D08-1059
http://www.aclweb.org/anthology/P11-2033
http://www.aclweb.org/anthology/C12-2136
http://www.aclweb.org/anthology/C12-2136
http://www.aclweb.org/anthology/D13-1071
http://www.aclweb.org/anthology/P15-1117
http://www.aclweb.org/anthology/P15-1117

L. Aufrant, G. Wisniewski PanParser (57–86)

Appendix A. Deriving a dynamic oracle

In this appendix, we describe more precisely the dynamic oracle framework and
how to derive such oracles, as well as some alterations made to the original framework
to extend its applicability. Indeed, PanParser does not implement the action cost, but
rather a generalized version which simplifies the oracle derivation for some systems,
and also enables straightforward approximations in cases when dynamic oracles have
only been inexactly derived (as done by Aufrant et al. (2018)) or not derived at all. We
discuss here the formal grounding of this extension, as well as its limits.

To specify dynamic oracles, Goldberg and Nivre (2012) formally define the cost
of an action as ‘the loss difference between the minimum loss tree reachable before and after’
performing the action in question. Considering the minimum loss is equivalent to
computing the maximum UAS achieved on the given example, or (without normal-
ization) the maximal number of correct attachments (henceforth denoted CA) on that
sentence. So, the cost is evaluated by computing the maximum CA over all deriva-
tions resulting from the given configuration (c), and the maximum over only those
following the given action (t).

Cost(c,t) =
[

max
t1,···,tend

CA(c ◦ t1 ◦ · · · ◦ tend)

]
−

[
max

t2,···,tend

CA(c ◦ t ◦ t2 ◦ · · · ◦ tend)

]
By definition of the maximum, Cost is always non-negative, and in every config-

uration at least one action has zero cost.

Arc-decomposable systems Exhaustively exploring all the successor derivations is
computationally too expensive, and thus Goldberg and Nivre (2013) define the no-
tion of arc-decomposition to simplify cost computation. A transition system is arc-
decomposable if for any configuration c, all arcs reachable from c (i.e. predicted by at
least one transition sequence after c) can be reached conjointly by a single transition
sequence. This means that at the level of the transition system, there is no interaction
between predicted arcs, and no incompatibility effect.

If we define ForbiddenArcs(c,t) as the number of arcs that are reachable from c

but not from c◦t, Goldberg and Nivre (2013) state that for arc-decomposable systems,
these arcs are the only source of cost, and thus:

Cost(c,t) = ForbiddenArcs(c,t)

Non-arc-decomposable systems When this property does not hold, on the other
hand, there are extra sources of cost to account for, because of incompatible arcs. In
case of such incompatibilities, at some point, adding a gold arc will indeed imply
renouncing to another gold arc, thereby inserting an error. But this cost cannot be at-
tributed to the given action, it is in fact due to a much earlier action, which introduced

81

PBML 111 OCTOBER 2018

the incompatibility. Besides, sometimes in such cases, ForbiddenArcs is non-zero for
all legal actions, in which case it is obviously not identical to the Cost function.

There are two main strategies to compute the action cost in non-arc-decomposable
systems. The first is to explicitly compute the loss before and after the action, typically
using dynamic programming (Goldberg et al., 2014), and then retain the difference.
The second is to directly model the cost, by formalizing the configurations holding
arc incompatibilities, and detecting when such incompatibilities are inserted (Gómez-
Rodríguez and Fernández-González, 2015). When possible, this is computationally
cheaper than a full loss computation.

Relaxed action cost To formalize the cost in a non-arc-decomposable system, we
define ExpectedCost(c) as the number of arcs that are still reachable from c but do
not belong to the final output (considering some final configuration, reachable from
c and with maximal UAS). This counts the number of current incompatibilities. The
action cost then decomposes as:

Cost(c,t) = ForbiddenArcs(c,t) + (ExpectedCost(c◦t) − ExpectedCost(c))

We now introduce the RelaxedCost function, defined as:

RelaxedCost(c,t) = ForbiddenArcs(c,t) + ExpectedCost(c◦t)

from which ensues:

Cost(c,t) = RelaxedCost(c,t) − ExpectedCost(c)
ExpectedCost(c) = RelaxedCost(c,t) − Cost(c,t) ≤ RelaxedCost(c,t)

and because at least one action has zero cost:

ExpectedCost(c) = min
t

RelaxedCost(c,t)

RelaxedCost(c,t) = ForbiddenArcs(c,t) + min
t ′

RelaxedCost(c◦t,t ′)

Cost(c,t) = RelaxedCost(c,t) − min
t ′

RelaxedCost(c,t ′)

In other words, the RelaxedCost function computes an overestimate of Cost, that
repeatedly counts the cost of incompatibilities, as long as they are not resolved, and
not only when they are introduced. Thus, it may happen that no action has a zero
RelaxedCost, but the actual cost can be retrieved by shifting all costs by the mini-
mum RelaxedCost, which corresponds to the current ExpectedCost. Hence, in this
framework, the optimal actions are not those with zero cost but with minimal cost.

These definitions have notably two useful properties, which make the use of the
alternate definition transparent. First, for arc-decomposable systems, ExpectedCost

82

L. Aufrant, G. Wisniewski PanParser (57–86)

is null, so RelaxedCost = Cost. Second, since mint Cost(c,t) = 0, in both cases
(RelaxedCost and Cost), shifting by the minimum cost always yields Cost values.

Consequently, in PanParser, we define optimal actions as minimum-cost actions, and
transition system implementations are supposed to compute either one of Cost (when
computed as a loss difference) and RelaxedCost (when modeled explicitly).

In practice, defining the action cost explicitly then consists in listing as usual the
arcs that the action makes unreachable, as well as the causes of arc incompatibilities
in the future configuration.

Consequences of under-estimated costs Exhibiting all causes of incompatibilities
is often a tedious task, it is even more so to prove that the list is exhaustive, as done
by Gómez-Rodríguez and Fernández-González (2015) for the Covington system. We
have not yet done this study for all non-arc-decomposable systems in PanParser, and
have settled for now for firm beliefs: the non-arc-decomposable costs have indeed
been tested against exhaustive search on all possible configurations, but for short sen-
tences only.

So, what happens if we have missed a given type of incompatibility? Or worse,
if we miss all of them and simply use ForbiddenArcs for a non-arc-decomposable
system? Using minimum-cost instead of zero-cost actions in fact strongly alleviates
such issues.

Indeed, with an under-estimated cost, some actions introducing incompatibilities
may be deemed correct, later resulting in configurations where all actions forbid some
reference arc, even though no error has been detected in the past. With standard cost
definition and a zero-cost criterion, this case is not covered, and training would pre-
sumably stop. But with the minimum-cost criterion there are always gold actions,
whether the cost is correctly defined or not, and training can consequently go on trans-
parently.

The only consequence on training is that the cost under-estimation introduces for
the oracle a preference towards late resolution of inconsistencies: in case of two in-
compatible arcs, the parser will prefer actions that keep both options as long as pos-
sible over actions that forbid one of them right away. Figure 2 shows how bad this
tendency can be. However, whether such cases have a strong impact on accuracy
remains to be ascertained, on a per-case basis.

Consequently, the minimum-cost criterion makes it possible to use under-estimated
costs, typically by ignoring non-arc-decomposability, but such unsound training has
unknown consequences on accuracy. We thus advocate to empirically assess its ef-
fects for each considered system.

Non-projective examples Aufrant et al. (2018) have shown how dynamic oracles
(with a minimum-cost criterion) make it possible to train a projective parser on non-
projective sentences; this directly results from their ability to accept past errors and do

83

PBML 111 OCTOBER 2018

....Root ..w1 ..w2 ..w3 ..w4 ..w5

.....

(a) Reference parse tree.

....Root ..w1 ..w2 ..w3 ..| ..w4 ..w5

.
stack

.
buffer

(b) Stack and buffer of the (already suboptimal) configura-
tion to evaluate; all stack elements are unattached.

....Root ..w1 ..w2 ..w3 ..w4 ..w5

.....

(c) Best tree, reached by Left-Left-
Shift-Left-Shift-Left-Right.

....Root ..w1 ..w2 ..w3 ..w4 ..w5 ..| ..⊥.
stack

.
buffer

(d) With under-estimated cost: pref-
erence for Shift-Shift, which do not
forbid any arc.

....Root ..w1 ..w2 ..w3 ..w4 ..w5

.....

(e) With under-estimated cost:
best tree from there, reached by
Left-Left-Left-Left-Right.

Figure 2: Consequences of training with an under-estimated cost ignoring arc incom-
patibilities, using ArcStandard with Root in first position.

their best to select good decisions anyway. The issue of non-projectivity is indeed ex-
actly the same as that of arc incompatibilities: when two crossing edges are reachable,
only one can actually belong to the final output.

Hence, from the oracle point of view, the initial empty configuration already comes
with embedded ‘past errors’ (the incompatibilities due to edge crossings). As is the
case for non-arc-decomposable systems, the cost incurred by these incompatibilities is
not due to actions to come, but should be attributed to previous actions, taken in a fic-
tive history before the initial configuration. As such, the natural behavior of dynamic
oracles is to ignore this cost.

The costs of built-in transition systems have not been adapted yet to acknowledge
arc incompatibilities due to non-projectivity. For now, we consequently use under-
estimated costs for those sentences, which empirically remains better than discarding
or projectivizing all non-projective sentences (Aufrant et al., 2018).

Systems without known dynamic oracle Defining the action cost is sufficient for
using the transition system with any training option. However, for some transition
systems, the cost of an action may be difficult to express, or computationally too ex-
pensive. In this case, it is still possible to define the cost as a degenerated version of a
static oracle: the transition designated by the heuristics used for pre-computing ref-
erences is given cost 0, all other transitions are given cost 1. This method ensures that
any transition system can be incorporated in the PanParser, even though in this case
it will not be fully compatible with other components (no dynamic oracle, so no error
exploration and no constrained parsing).

84

L. Aufrant, G. Wisniewski PanParser (57–86)

Appendix B. Global dynamic oracles

In PanParser, the training procedure is mostly based on the concept of global dy-
namic oracles (Aufrant et al., 2017), which is a direct extension of usual dynamic ora-
cles to global training.

Similarly to local dynamic oracles which deem incorrect the actions which intro-
duce a new error into the final parse, global dynamic oracles deem incorrect the tran-
sition sequences which introduce a new error into the final parse. Hence, given an
initial configuration (not necessarily empty or gold), the correct configurations are
those from which the maximum UAS is the same as the initial maximum.

The Boolean function that tests this condition, denoted Correcty(c ′|c), can thus
be efficiently computed using the Cost function: a configuration c ′ is considered as
Correct in the context of a configuration c, if there exists a sequence of transitions
t1, . . . , tn such that c ′ = c ◦ t1 ◦ · · · ◦ tn and Cost(c, t1) = Cost(c ◦ t1, t2) = . . . =
Cost(c ◦ · · · ◦ tn−1, tn) = 0.

In other words, PanParser does not need to compute reference derivations explic-
itly, it just has to check the cost of each action it performs, and track the hypotheses
that are still correct and those which are not.

Algorithm 3 (on the following page) shows how Correct is used to apply the early-
update and max-violation strategies with dynamic oracles.

85

PBML 111 OCTOBER 2018

Algorithm 3: Global dynamic oracle: error criterion and choice of an update con-
figuration pair.
c0: configuration to start decoding from
topθ(·): best scoring element according to θ

Next(c): the set of all successors of c (or only c if it is final)
Function FindViolation(c0, y, θ)

Beam← {c0}

while ∃c ∈ Beam,¬Final(c) do
Succ← ∪c∈BeamNext(c)
Beam← k-best(Succ, θ)
if ∀c ∈ Beam,¬Correcty(c|c0) then

gold← {c ∈ Succ|Correcty(c|c0)}
return gold, Beam

gold← {c ∈ Beam|Correcty(c|c0)}
return gold, Beam

Function EarlyUpdateOracle(c0, y, θ)
gold,Beam← FindViolation(c0, y, θ)
return topθ(gold), topθ(Beam)

Function MaxViolationOracle(c0, y, θ)
gold,Beam← FindViolation(c0, y, θ)
candidates← {(topθ(gold), topθ(Beam))}
while ∃c ∈ Beam,¬Final(c) do

Succ← ∪c∈BeamNext(c)
Beam← k-best(Succ, θ)
Succ+ ← ∪c∈gold {c

′ ∈ Next(c)|Correcty(c ′|c0)}

gold← k-best(Succ+, θ)
candidates← candidates + (topθ(gold), topθ(Beam))

return arg max
c+,c−∈candidates(scoreθ (c

−) − scoreθ (c
+))

Address for correspondence:
Lauriane Aufrant
lauriane.aufrant@limsi.fr
LIMSI – 508 rue John von Neumann, 91405 Orsay, France

86

The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018 87–96

An Easily Extensible HMM Word Aligner

Jetic Gū,ab Anahita Mansouri Bigvand,a Anoop Sarkara

a Simon Fraser University, Burnaby, Canada
b Zhejiang University, Hangzhou, China

Abstract
In this paper, we present a new word aligner with built-in support for alignment types, as

well as comparisons between various models and existing aligner systems. It is an open source
software that can be easily extended to use models of users’ own design. We expect it to suffice
the academics as well as scientists working in the industry to do word alignment, as well as
experimenting on their own new models. Here in the present paper, the basic designs and
structures will be introduced. Examples and demos of the system are also provided.

1. Introduction

Word alignment is a very important component in a machine translation system.
Classical approaches include the IBM Models 1–5 (Brown et al., 1993) and the Hidden
Markov Model (Vogel et al., 1996; Och and Ney, 2000a), which usually work quite well
but insufficient for specific language pairs (Chinese-English for example, as shown in
Section 4.1). As more human annotated data became available, a lot of supervised
and semi-supervised algorithms were also proposed and had shown improvements,
as demonstrated in Mansouri Bigvand et al. (2017).

In this paper we present a new open source HMM Aligner. The HMM Aligner
(from this point forward will simply be referred to as The Aligner) not only contains
built-in classic models, but also some of the supervised learning models as well (Sec-
tion 3.3), while providing an extensible API. Users can easily combine existing models
to form new learning sequences. For those that are familiar with the BaumWelch al-
gorithm of HMM, it would only take a matter of minutes to implement their own
extensions to the HMM model using The Aligner. The Aligner is written in Python
using libraries such as Numpy so that it is efficient and also highly readable.

© 2018 PBML. Distributed under CC BY-NC-ND. Corresponding author: jeticg@sfu.ca
Cite as: Jetic Gū, Anahita Mansouri Bigvand, Anoop Sarkar. An Easily Extensible HMM Word Aligner. The Prague
Bulletin of Mathematical Linguistics No. 111, 2018, pp. 87–96. doi: 10.2478/pralin-2018-0008.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 111 OCTOBER 2018

The comparisons of The Aligner and current systems will be provided in Section 2,
while the design and models of The Aligner are in Section 3. In Section 4 experiment
results are presented to demonstrate the capability of The Aligner.

Current version of The Aligner is available at https://github.com/sfu-natlang/
HMM-Aligner under the MIT license.

2. Existing Systems

GIZA++ (Och and Ney, 2003) has long been the de facto software to use and com-
pare to when doing word alignment. Although generally considered as reliable, it is
highly sophisticated, making it very difficult to extend.

BerkeleyAligner (Liang et al., 2006) is a word aligner developed by The Berkeley
NLP Group. Comparing to GIZA++ it is simpler to setup and use. It claims higher
accuracy than GIZA++.

FastAlign (Dyer et al., 2013) is a very simple and fast word aligner. It claims better
performance both in terms of speed and accuracy than GIZA++.

The aligners above are all made production ready, and there are not plenty of re-
sources on how to build extensions. It would be relatively difficult if one wishes to
develop their own HMM models using these software.

The presence of The Aligner aims at solving that exact problem. It provides an eas-
ily extendable interface, plenty of example models and it is written in a very friendly
and flexible language: Python. Also it has built-in support for alignment type, which
is a truly valuable resource in NLP with huge potential.

3. Design and Structure of The Aligner API

This section provides a brief introduction to how The Aligner works and an over-
view of its API design.

3.1. Workflow

The workflows of the training process and decoding process are presented in Fig-
ure 1.

In the beginning of a training sequence, the dataset will first be lexicalised, during
which the original text in the dataset are converted into numbers using dictionary
created with the training corpus. Each unique word from the source language and the
target language will receive a unique index on which making it easier to do operations.

Then, during the training process the specified model will be loaded. Each model
has its own training sequence, which performs the EM algorithm on different parts
of the dataset in the order of ones choosing. The example in Figure 1 is the train-
ing sequence of HMM model, in which the translation probability is initialised using
IBM model 1, and then the HMM model is trained. The details of this model will be
introduced later in Section 3.3.

88

https://github.com/sfu-natlang/HMM-Aligner
https://github.com/sfu-natlang/HMM-Aligner

J. Gu, A. Mansouri Bigvand, A. Sarkar An Easily Extensible Word Aligner (87–96)

Original Text

dataset

Loaded into
dataset

Lexicalised
dataset

Lexicalisation Input

Loaded Model

Decoder

Export/
Evaluation

etc.

Output

Decoding Workflow

Original Text

dataset

Loaded into
dataset

Lexicalised
dataset

Create
dictionary

Input

Training Sequence of Model

Initialise with IBM1

Training with HMM

Final
Smoothing,
Export, etc.

Model

Training Workflow

Figure 1. Workflow

During the evaluation process, lexicalised dataset is fed into the decoder to get the
alignment.

3.2. Base Models

The Aligner provides two base models on which all other built-in models are built:
the IBM model 1 (Brown et al., 1993) (Eq 1) and the HMM model (Och and Ney, 2000a)
(Eq 2). Here f is the source sentence, and e the target sentence. a is the alignment
from source to target: the jth source word is aligned to the ajth target word. I is the
length of the source sentence.

PrIBM1(a|f,e) =

I∏
j=1

P(fj|eaj
) (1)

PrHMM(a|f,e) =

I∏
j=1

[P(aj|aj−1, I)P(fj|eaj
)] (2)

Both base models come with highly customisable API for training. Users using
The Aligner can focus on modifying the models, applying smoothing, and designing
their own training sequences on a higher level without having to worry about data
structure and other lower level detail. All of the computational parts are optimised
using Numpy and Cython to ensure good performance.

89

PBML 111 OCTOBER 2018

Figure 2. Screenshot of the figure of a pair of sentences. The gold alignment is
represented with square boxes.

3.3. Alignment Type

Alignment of words between different languages can reflect more than just se-
mantic meaning, it could also have been others including but not limited to func-
tion link, clausal link, modifier link, and also language specific links (Li et al., 2010).
This information has proven to be quite useful for doing both supervised and semi-
supervised aligner training as demonstrated in Mansouri Bigvand et al. (2017).

The Aligner provides built-in model that utilises alignment types (Eq 3) presen-
ted in Mansouri Bigvand et al. (2017). It uses both alignment type and POS tag in-
formation to enhance the baseline model to achieve better results. h represents the
alignment type of the alignment: hj is the alignment type of jth source word and ajth
target word.

PrHMMType(a,h|f,e) =

I∏
j=1

[P(aj|aj−1, I)P(fj|eaj
)P(hj|fj, eaj

)] (3)

90

J. Gu, A. Mansouri Bigvand, A. Sarkar An Easily Extensible Word Aligner (87–96)

Figure 3. HMM Baseline Figure 4. HMM With Alignment Type

3.4. Extended HMM models

Example implementation of extensions to the HMM model, as presented in K.
Toutanova’s 2002 paper is also provided. In the experiment section, we will be com-
paring the following extension (Eq 4. P∗(aj|aj−1, eaj−1

, I) is defined in Eq 5):

PrHMMType(a,h|f,e) =

I∏
j=1

[P∗(aj|aj−1, eaj−1
, I)P(fj|eaj

)P(fTagj|eTagaj
)], (4)

P∗(aj|aj−1, eaj−1
, I) = δ(aj, aj−1)P(stay|eaj−1

) +

(1− δ(aj, aj−1))

(1− P(stay|eaj−1
))

(P(aj, aj−1, I))

 (5)

δ(aj, aj−1) in Eq 5 is the Kronecker delta function. P(stay|eaj−1
) is the probability

of the alignment of the next source word being the same target word, given the aligned
target word of the previous source word.

91

PBML 111 OCTOBER 2018

3.5. Displaying Alignment Scores

The Aligner also includes built-in feature of displaying the alignment score of each
pair of words of sentences during decoding (Figure 2). The score of each pair is presen-
ted with grey-scaled colours. In any column, if the colours of two circles appear close
then the score of these two are very close, v.v.. If one moves the cursor on any circle,
the score of that corresponding pair of words will appear next to the cursor, making
it easier to do debugging and present results. The gold alignment is also displayed to
make doing comparisons easier.

This feature is very useful for debugging and also comparing results of different
models.

3.6. Loading And Saving Models

The Aligner allows users to save the trained models for reuse. Not only are built-in
models savable but also user customised models as well. It does not require any extra
code to make it work, the API will automatically clean up the data structures, make
saving and loading the least of ones concern when it comes to model design.

3.7. Intersection

Intersecting the alignment results from source-target training and target-source
training usually gives better results, as demonstrated by Liang et al. (2006). The
Aligner has built-in support for such intersection for all models without the need of
extra code. Also, since intersection is done in parallel, it will not require extra time to
train and decode.

4. Experiments

The experiments will focus on the quality of alignments produced by The Aligner’s
built-in models, including the models with alignment types and POS tags, by com-
paring Alignment Error Rates (Och and Ney, 2000b) and F1 Scores.

The datasets used in the experiments are: first for the datasets with human an-
notated alignment types and POS tags, we used the GALE Chinese-English Parallel
Aligned Treebank1 which includes parallel text from news broadcasts, news articles,
and online discussion panels; then, experiments were also carried out on the French-
English Hansard Canadian Parliament dataset2 and the German-English Dataset from
the European Parliament Proceedings Parallel Corpus (Koehn, 2005). The latter two
datasets are all parliament proceedings. Sentences in parliament proceedings appear

1Catalog numbers: LDC2014T25; LDC2015T04; LDC2015T06; LDC2015T18; LDC2016T19; LDC2017T05
2Catalog numbers: LDC95T20

92

J. Gu, A. Mansouri Bigvand, A. Sarkar An Easily Extensible Word Aligner (87–96)

more formal than daily conversations, are highly structured and sophisticated, and
contain significant amount of legal-domain words. They also do not come with align-
ment types, so we only compared the quality of models that does not require align-
ment types, including the extended HMM model.

The German-English dataset and French-English dataset we used are all parlia-
ment proceedings, which are also highly popular dataset for NLP experiments. Al-
though all in spoken language, the sentences often are highly structured and sophist-
icated, with significant amount of legal-domain words.

POS tags of datasets that originally do not contain POS tags are obtained using
The Stanford POS Tagger (Toutanova et al., 2003).

Table 1 gives information on the sizes of the datasets. Table 2 contains information
regarding percentages of words according to their occurrences in each dataset.

Unique Words POS Tags Sentences
language pair source target source target train test
Chinese-English 107 503 49 557 40 57 125 989 1956
French-English 92 280 82 074 18 45 951 462 447
German-English 395 952 133 835 27 55 1 890 489 150

Table 1. Information on Datasets

Chinese-English French-English German-English
occurrences source target source target source target

=1 48.00% 32.08% 35.77% 35.49% 50.32% 41.32%
≤3 70.18% 54.86% 55.98% 57.93% 70.16% 60.44%
≤5 78.15% 63.94% 64.01% 63.93% 76.95% 67.50%
≤10 86.20% 74.13% 72.90% 72.86% 83.98% 75.25%

Table 2. Percentage of words according to their occurrence

4.1. Experiments on Datasets with Alignment Types and POS Tags

Table 3 shows the performance of built-in models mentioned in Section 3.2 and also
the result of Fast Aligner, GIZA++, and Berkeley Aligner on Chinese-English dataset.
For all models, experiments were run on the same settings. It is apparent that models
supporting alignment types and POS tags produce alignments with better quality.

93

PBML 111 OCTOBER 2018

Model Precision Recall AER F1-score
IBM1 0.5279 0.4204 0.5320 0.4680
IBM1 (Intersect) 0.8457 0.3686 0.4866 0.5134
HMM 0.7233 0.5063 0.4044 0.5956
HMM (Intersect) 0.9135 0.4431 0.4032 0.5968
HMM+Extensions 0.6865 0.5465 0.3915 0.6085
HMM+Extensions (Intersect) 0.8907 0.4758 0.3798 0.6202
HMM+Type 0.7257 0.6189 0.3319 0.6681
HMM+Type (Intersect) 0.9154 0.5690 0.2982 0.7018

GIZA++(Model 4) 0.6513 0.5825 0.3850 0.6150
GIZA++ (Manual Intersect) 0.9481 0.4049 0.4325 0.5675
Fast-Align 0.6263 0.6142 0.3798 0.6202
Fast-Align (Manual Intersect) 0.8674 0.5064 0.3605 0.6395
Berkeley-Aligner 0.7638 0.6116 0.3207 0.6793

Table 3. Chinese-English Dataset test results

4.2. Experiments on Datasets without Alignment Types

Experiments in this section are carried out on the French-English dataset (Table 4)
and German-English dataset (Table 5).

Model Precision Recall AER F1-score
IBM1 0.5570 0.7038 0.3928 0.6218
HMM 0.7930 0.8462 0.1877 0.8187
HMM+Extension 0.7663 0.8834 0.1936 0.8207
HMM+Extension (Intersect) 0.9389 0.7979 0.1264 0.8627
GIZA++ (Model 4) 0.7848 0.7940 0.2115 0.7894
GIZA++ (Manual Intersect) 0.9773 0.7214 0.1548 0.8301
Fast-Align 0.7679 0.8294 0.2091 0.7975
Fast-Align (Manual Intersect) 0.7584 0.8826 0.1997 0.8158
Berkeley-Aligner 0.8677 0.9113 0.1151 0.8899

Table 4. French-English Dataset test results

94

J. Gu, A. Mansouri Bigvand, A. Sarkar An Easily Extensible Word Aligner (87–96)

Model Precision Recall AER F1-score
IBM1 0.5982 0.6388 0.3830 0.6178
HMM 0.7253 0.7513 0.2626 0.7381
HMM+Extension 0.7333 0.7693 0.2500 0.7509
HMM+Extension (Intersect) 0.9295 0.7066 0.1941 0.8029
GIZA++ (Model 4) 0.8611 0.7429 0.2006 0.7976
GIZA++ (Manual Intersect) 0.9593 0.6349 0.2334 0.7641
Fast-Align 0.7275 0.7587 0.2581 0.7428
Fast-Align (Manual Intersect) 0.8718 0.6240 0.2694 0.7274
Berkeley-Aligner 0.8898 0.8227 0.1435 0.8549

Table 5. German-English Dataset test results

As shown by the data, The Aligner performs fairly well despite its simplicity. It
is able to produce competitive if not better results than the other Aligners. Of course
these experiments do not represent the full potential of the built-in models. By apply-
ing various smoothing techniques for each individual language pair one can surely
achieve better results. It is not this paper’s intention to declare that The Aligner is a far
better alternative to the other software available, but only that it is highly competitive
while having the unique advantage of being easy to extend.

5. Conclusions
This project is maintained by the Simon Fraser University Natural Language Lab.

We have plans to gradually include more sample models in the future.
The Aligner aims at providing an easy-to-extend interface to users wishing to do

word alignment. The Aligner can also be used for educational purposes such as teach-
ing students to do word alignment and learning HMM models and alignments. With
its simplicity and flexibility, we believe it will be proven to be very useful for research-
ers as well as industrial productions.

Bibliography
Brown, Peter F., Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. The

Mathematics of Statistical Machine Translation: Parameter Estimation. Comput. Linguist.,
19(2):263–311, June 1993. ISSN 0891-2017. URL http://dl.acm.org/citation.cfm?id=
972470.972474.

Dyer, Chris, Victor Chahuneau, and Noah. A Smith. A Simple, Fast, and Effective Repara-
meterization of IBM Model 2. In Proceedings of the Conference of NAACL: Human Language
Technologies, ACL 2013, pages 644–649. ACL, 2013. URL http://repository.cmu.edu/cgi/
viewcontent.cgi?article=1038&context=lti.

95

http://dl.acm.org/citation.cfm?id=972470.972474
http://dl.acm.org/citation.cfm?id=972470.972474
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1038&context=lti
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1038&context=lti

PBML 111 OCTOBER 2018

Koehn, Philipp. Europarl: A Parallel Corpus for Statistical Machine Translation. In Confer-
ence Proceedings: the tenth Machine Translation Summit, pages 79–86, Phuket, Thailand, 2005.
AAMT. URL http://mt-archive.info/MTS-2005-Koehn.pdf.

Li, Xuansong, Niyu Ge, Stephen Grimes, Stephanie M. Strassel, and Kazuaki Maeda. Enriching
word alignment with linguistic tags. In In Proceedings of the Seventh International Conference
on Language Resources and Evaluation, 2010.

Liang, Percy, Ben Taskar, and Dan Klein. Alignment by Agreement. In Proceedings of the
Main Conference on Human Language Technology Conference of the North American Chapter of
the Association of Computational Linguistics, HLT-NAACL ’06, pages 104–111, Stroudsburg,
PA, USA, 2006. ACL. doi: 10.3115/1220835.1220849. URL http://dx.doi.org/10.3115/
1220835.1220849.

Mansouri Bigvand, Anahita, Te Bu, and Anoop Sarkar. Joint prediction of word alignment with
alignment types. In Transactions of ACL, TACL 2017. ACL, 2017.

Och, Franz Josef and Hermann Ney. A Comparison of Alignment Models for Statistical Ma-
chine Translation. In Proceedings of the 18th Conference on Computational Linguistics - Volume
2, COLING ’00, pages 1086–1090, Stroudsburg, PA, USA, 2000a. ACL. doi: 10.3115/992730.
992810. URL http://dx.doi.org/10.3115/992730.992810.

Och, Franz Josef and Hermann Ney. Improved Statistical Alignment Models. In Proceedings of
the 38th Annual Meeting of ACL, pages 440–447, 2000b.

Och, Franz Josef and Hermann Ney. A Systematic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29(1):19–51, 2003.

Toutanova, Kristina, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-rich Part-
of-speech Tagging with a Cyclic Dependency Network. In Proceedings of the 2003 Conference
of NAACL on Human Language Technology - Volume 1, NAACL ’03, pages 173–180, Strouds-
burg, PA, USA, 2003. ACL. doi: 10.3115/1073445.1073478. URL http://dx.doi.org/10.
3115/1073445.1073478.

Vogel, Stephan, Hermann Ney, and Christoph Tillmann. HMM-based Word Alignment in Stat-
istical Translation. In Proceedings of the 16th Conference on Computational Linguistics - Volume
2, COLING ’96, pages 836–841, Stroudsburg, PA, USA, 1996. ACL. doi: 10.3115/993268.
993313. URL http://dx.doi.org/10.3115/993268.993313.

Address for correspondence:
Jetic Gū
jeticg@sfu.ca
NATLANG Lab, Simon Fraser University
8888 University Dr, Burnaby
BC V5A1S6, Canada

96

http://mt-archive.info/MTS-2005-Koehn.pdf
http://dx.doi.org/10.3115/1220835.1220849
http://dx.doi.org/10.3115/1220835.1220849
http://dx.doi.org/10.3115/992730.992810
http://dx.doi.org/10.3115/1073445.1073478
http://dx.doi.org/10.3115/1073445.1073478
http://dx.doi.org/10.3115/993268.993313

The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018 97–112

A Probabilistic Approach to Error Detection&Correction
for Tree-Mapping Grammars

Tim vor der Brück
School of Information Technology, Lucerne University of Applied Sciences and Arts, Switzerland

Abstract
Rule-based natural language generation denotes the process of converting a semantic input

structure into a surface representation by means of a grammar. In the following, we assume
that this grammar is handcrafted and not automatically created for instance by a deep neural
network. Such a grammar might comprise of a large set of rules. A single error in these rules
can already have a large impact on the quality of the generated sentences, potentially causing
even a complete failure of the entire generation process. Searching for errors in these rules can
be quite tedious and time-consuming due to potentially complex and recursive dependencies.
This work proposes a statistical approach to recognizing errors and providing suggestions for
correcting certain kinds of errors by cross-checking the grammar with the semantic input struc-
ture. The basic assumption is the correctness of the latter, which is usually a valid hypothesis
due to the fact that these input structures are often automatically created.

Our evaluation reveals that in many cases an automatic error detection and correction is
indeed possible.

1. Introduction

In NLG, one common task is to transform a set of nested feature-value pairs into
a constituency tree structure by means of a set of grammar rules. These grammatical
rules are often context free production rules enriched by context-sensitive constraints.
Figure 1 illustrates the assumed generation model.

While implementing the grammar, a grammar developer will probably commit
errors. On the one hand, such an error can be conceptual, i.e., the developer did
not take something into account that is crucial for the functioning of the generation
process. Such errors can easily require a major redesign of the grammar. On the

© 2018 PBML. Distributed under CC BY-NC-ND. Corresponding author: tim.vorderbrueck@hslu.ch
Cite as: Tim vor der Brück. A Probabilistic Approach to Error Detection&Correction for Tree-Mapping Grammars.
The Prague Bulletin of Mathematical Linguistics No. 111, 2018, pp. 97–112. doi: 10.2478/pralin-2018-0009.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 111 OCTOBER 2018

Generator erroneouserroneouscorrect
Grammar

Input structure

Constitu-
ency tree

Surface text

a

b

c: d
e: f

g: h
j: k

Figure 1: Generation Model.

other hand, an error can be a simple oversight, for instance, the grammar developer
misspelled a path expression or a category name. The latter type of errors are the
ones we will focus here.

The effect of a grammar error can be manifold. In case the grammar developer
accidentally omitted an RHS (right hand side) of a rule, the generated text will prob-
ably be incomplete. If he instead switched two RHS, then the output will most likely
be scrambled. In both of these cases, the developer will usually get a good hunch re-
garding the nature and location of the error already by looking at the generated text.
However, if the grammar developer accidentally selected the incorrect category or
path expression, then in many cases the generation process will fail completely. Such
errors are particularly hard to trace. A further source of difficulty for error analysis is
the use of recursion, which can result in a deeply nested constituency tree.

In this work, we propose a statistical approach to automatically detecting incorrect
path expression and category selections and to providing suggestions for correcting
these kinds of errors. It is based on the static grammar verification method introduced
by vor der Brück and Busemann (2006) and contains comprehensive and considerable
extensions, such as a more detailed evaluation, an in-depth description of a statistical
disambiguation method, and discussions of false alarms. The term “path expression” is
coined to access parts of the input structure. This is quite similar to the term “relative
XPath expression” in XML. The hypothesis stated in this work is that the semantics
contained in the available input structures contains sufficient information to detect
those errors.

Our method is intended to be used together with template based text generation
systems, in which the grammar rules access an externally defined input structure.
Examples of such systems are TG/2 (Busemann, 1996), XtraGen (Stenzhorn, 2003)

98

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

and D2S (Theune et al., 2001). It is implemented as plugin for the eGram grammar
workbench (Busemann, 2004). eGram supports the comfortable development of text
generation grammars for the formalisms TG/2 and XtraGen. Furthermore, eGram is
seamlessly integrated with the TG/2/XtraGen generation component, which makes
it possible to view the result of the generation process directly inside the environment.
The most part of a grammatical rule definition using eGram is acomplished by select-
ing the appropriate path variables (path variables, see page 104), access functions and
categories from several comboboxes.

While errors concerning the rule syntax are practically impossible, there are ad-
ditional types of errors that cannot occur when writing the grammar with a simple
text editor. For instance, it is easily possible that the grammar developer clicks on the
category or path expression that is displayed below or above the category / path ex-
pression that was actually intended. A typical error that can occur when either using
eGram or a text editor is that the grammar developer copies a rule, modifies it after-
ward to build a new one and the modification is incomplete. This type of error is also
possible with eGram since this editor provides a similar functionality.

2. Related Work

Gardent and Narayan (2012) as well as vor der Brück and Stenzhorn (2008) de-
scribe a dynamic method that identifies errors in generation grammars by running a
generator on semantic input structures. A static approach, however, as proposed here
is usually much faster. For instance, our system can do several grammar verification
iterations in a few seconds. Furthermore, a static approach does not suffer from po-
tential endless recursion preventing a termination of a dynamic error analysis. For a
distinction between static and dynamic approaches see Daich et al. (1994).

There is also some prior work conducted on automated error detection for parsing
(the opposite operation to generation). Kok et al. (2009) and van Noord (2004) present
an approach, where a large corpus is parsed by an analyzer and n-grams leading to a
parsing failure are marked as suspicious. These suspicious n-grams can then be used
to track down errors in the tokenizer, lexicon and grammatical rules.

Checking linguistic grammars is closely related to program code analysis since
a generator is nothing else than a certain type of software. Zeller (2005) proposed a
dynamic testing algorithm to determine the causes of program crashes (segmentation
faults). This algorithm isolates the error by subsequently executing different parts of
the computer program with varying program states, which is called delta debugging.

3. Input Structure and Grammar Formalism

An input structure is a semantic representation of a certain domain. We assume
that it can be structured as nested name-value pairs. The primitive value can either be
a string or a number. The concatenation of two input structures forms a new input; the

99

PBML 111 OCTOBER 2018

value part of an input structure can again be an input structure. Formally, we define
an input structure as follows.
Definition 1. An input structure InStruc defines the semantics of a domain, assigns names
to components within the domain, and records values of these components, where components
at the same granularity shall be named differently.

InStruc ::= string|number (1)
InStruc ::= (name, InStruc) (2)
InStruc ::= InStruc; InStruc (3)

An input structure is a labeled tree structure. Its edges are labeled with names; its
nodes are input structures; its leaves can either be strings or numbers. Children of the
same node are labeled with different names.

For example, the following input structure describes the semantics of a temporal
duration. The corresponding labeled tree structure is illustrated in Formula 4. Each
leaf node in the tree is uniquely identified by the sequence of labels starting from the
root node. For example, the sequence “from, hour” uniquely identifies the leaf node
10. Generally, given a start node, a label sequence defines a travel from this start node.
A travel is a selection of nodes among the descendant nodes.

from

 hour : 10

min : 20

sec : 30

to

 hour : 12

min : 30

sec : 10

 (4)

Definition 2. Given an input structure InStruc, a sequence of strings a1, . . . , an is a
path expression of InStruc, if and only if, for any i there is an input structure InStruci,
such that (ai, InStruci) is within InStruc. A path expression a1, . . . , an is written as
[a1/ . . . /an]. The selection process is defined as follows.

[a1/ . . . /an] ◦ InStruc = [a2/ . . . /an] ◦ InStruca1
, (a1, InStruc,

InStruca1
)

∅ otherwise

(5)

where (a1, InStruc, InStruca1
) means that there is an edge labeled with a1 between

InStruc and InStruca1
.

The uniqueness of the selection process is guaranteed by the structure of the in-
put. For the convenience of computation, we define the empty path expression [ϵ] as
follow.

[ϵ] ◦ InStruc = InStruc (6)

100

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

[from]

START

TIME
TIME

[to]

tofrom

Figure 2: Tree representation of a grammar rule that generates a time interval.

Our task is to transform a given input structure into a linguistic surface structure.
In the former example, we need to transform the semantic representation of the tem-
poral duration into the phrase “from 10:20:30 to 12:30:10”. To this end, we employ
grammatical rules.

The grammar considered here follows the TG/2 formalism (Busemann, 1996, 2005),
which is also used by the XtraGen generator (Stenzhorn, 2003). TG/2 is basically
a context-free grammar formalism consisting of production rules. Each production
rule consists of one LHS (left hand side) category and several RHS (right hand side)
categories or functions or simple surface text strings. The RHS categories and func-
tions are associated to path expressions that specify the part of the input structure
accessible for such categories / functions.

R1 : START → from TIME[from] to TIME[to]
R2 : TIME → toString([hour]) : toString([min]) : toString([sec])

(7)

START is the top-level category the generation process kicks off with. “toString” is a
function that generates the part of the input structure that is referenced by the associ-
ated path expression. These rules are used to display a time expression in a formatted
way. A tree representation of rule R1 is given in Figure 2.

After applying rule R1 on the category START with the input structure depicted
in formula 4, an incomplete constituency tree is created with two preliminary leaf
nodes labeled with TIME. Rule R2 is then applied afterward on the TIME nodes and
can only access the part of the input structure selected by the path expression [from]
(or [to] respectively). If converted into an absolute path expression, the path expres-
sion “hour”, located on the right side of rule R2, would evaluate to [/from/hour] (or
[/to/hour] respectively). The generated surface string for the given input structure is:
“from 10:20:30 to 12:30:10”.

4. Error Identification with Left and Right Attributes

We define parent-child relationship for labels.
Definition 3. A label a is defined to be a parent label of label b, if a is the label of an input
structure InStruc, such that b is a label within InStruc.

101

PBML 111 OCTOBER 2018

Next, we define left and right grammar attributes of categories. If an RHS of a
rule with LHS category C is labeled with the path expression [a1, . . . , an], the path
component a1 is added to the set of right attributes of category C. If a path is empty,
then the right grammar attributes of the associated RHS category are inherited by the
LHS category C. Similarly, left grammar attributes of a category are defined as the
last path components belonging to a rule transition edge leading to this category. If
the path is empty, then the left grammar attributes of the LHS category are inherited.
The right attributes give a characterization of a category. Consider, for example, the
categories START and TIME and the two rules from the last section:

R1 : START → from TIME[from] to TIME[to].
R2 : TIME → toString([hour]) : toString([min]) : toString([sec])

The right grammar attributes of START are “from” and “to”, the right grammar at-
tributes of TIME are “hour”, “min”, “sec”.

In addition, we define the right and left validation attributes of categories. Vali-
dation attributes build a superset of all allowed grammar attributes and are extracted
from both the input structure and the grammar. Consider the case that there exists
an RHS labeled with a path “pe” leading to category C. Let “e” be the last component
of path “pe”. Then all possible child elements in the input structures of “e” belong to
the right validation attributes of C. This is the case for all RHS of rules leading to cate-
gory C. If “pe” is the empty path expression, then the right validation attributes of the
LHS category are added to C. If C is the START (top-level) category, then all top-level
input structure attributes are the right validation attributes of C. Formally, the right
validation attributes can be specified as follows (vor der Brück and Busemann, 2006):

rC :=

{d|∃R ∈ Rules,
pe ∈ PE, D ∈ Cat :
R : D → C[pe]∧
((parent(pe[|pe|], d)∨
(pe = ε∧ d ∈ rD)}, C ̸= START

top, otherwise

(8)

where
• Rules: set of all rules
• Cat: set of all categories
• PE: set of all path expressions
• parent(a, b): a relation that is fulfilled if and only if a occurs as parent of b in any

of the input structures
• top: all elements occurring at the top-level of any input structure
The left validation attributes of C are defined similarly. Let C be the LHS category

of a rule with one RHS labeled with path “pe”. Let us consider the first element of

102

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

TIME: sec, min, hour

min

sec

hour

hour

min

sec

from

to

1
R : TIME [from] TIME [to] from to

Figure 3: Construction of right validation attributes.

this path called “f”. Then all possible parents of “f” in the input structures belong
to the left validation attributes of C. If “pe” is the empty path, then all left validation
attributes of the RHS category are added to the LHS category. This is the case for any
such RHS. The process of extracting right and left validation attributes is illustrated
in Figures 3, 4, and in Table 2. Formally, the left validation attributes of C are given
as:

lC :={d|∃pe ∈ PE, R ∈ Rules :
R : C → D[pe]∧
(parent(c, pe[1])∨
pe = ε∧ d ∈ lD)

(9)

where D is either a category, a string-valued function or a string.
In order for a rule to be applicable with the current input structures, the right

grammar attributes of its LHS (RHS) category must be contained in the right valida-
tion attributes of its LHS (RHS) category. Similarly, the left grammar attributes must
be contained in the left validation attributes. To handle multiple errors, right grammar
attribute mismatches are identified top-down (beginning with the START category).
In this way, the right validation attributes that were introduced due to incorrect RHS
paths can be removed. Analogously, left grammar mismatches are identified bottom
up.

Now let us consider an example error of the grammar developer. We assume that
he wanted to enter rules R1 and R2 but made a mistake at rule R2.

R2,error :TIME → toString([to]) : toString([min]) : toString([sec])

The right validation attributes of TIME do not change, but the right grammar at-
tributes of TIME now contain the attribute “to”, which is not contained in the right
validation attributes of TIME and, therefore indicate an error in this RHS. The cor-
rect path must begin with one of the right validation attributes of TIME, i.e., “hour”,

103

PBML 111 OCTOBER 2018

hour

min

sec

hour

min

sec

from

to

TIME: from, to

: :R : TIME toString [hour] toString[min] toString[sec]
2

Figure 4: Construction of left validation attributes.

Cat Left Right
TIME from,to to,min,sec
START - from,to

Table 1: Grammar attributes derived
by the rules R1 and R2,error.

Cat Left Right
TIME from,to hour,min,sec
START - from,to

Table 2: Validation attributes derived
by the rules R1 and R2,error.

“min” or “sec”. Table 1 shows the grammar and Table 2 the validation attributes of the
categories. Since the selection of min or sec would lead to the same word generated
multiple times (called double generation in short), which is quite unlikely in practice,
hour can be correctly selected. Now consider a different error. Let us assume that the
grammar developer wrote

R1,error : START → from TIME[min] to TIME[to] (10)

instead of the correct rule R1. The right validation attributes of the START category
are not affected by this error and are the top-level input structure attributes “to” and
“from”. Thus, the attribute “min” is not contained in the right validation attributes of
category START and is therefore detected as erroneous. The correct path expression
must be either [to] or [from]. Again, the path [to] would lead to a double generation.
Therefore, the correct path expression must be [from]. Note that in general an ar-
bitrary number of path expressions can be created by combining attributes by path
separators. In practice, these expressions are reduced to a finite set by the fact that the
grammar editor requires all used path expressions to be associated to path variables.
So only all existing path variable values have to be checked. In the example above, we
employed a disambiguation heuristic to find a unique solution. In practice, there are
many cases where the correct solution cannot so easily be found. Thus, in addition to

104

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

the heuristic “double generation”, a statistical heuristic, which is explained in Section 6
in more detail, was used.

5. False Alarms

The errors detected by the method described here are only guaranteed to be ac-
tual errors (under the precondition that the input structures are always correct) if the
empty path expression is never used in a grammar rule. It is actually possible that a
false alarm is produced if a category can be reached from two different parent cate-
gories and one of the transitions is connected to the empty path expression. Consider
for example the following grammar and input structure, which might not follow good
design principles, but still leads to a successful generation of “Text2 Text1”.

Q1 : START → B[ϵ]

Q2 : START → C[ϵ]

Q3 : B → D[ϵ]

Q4 : C → D[a]

Q4 : D → toString([c])
Q5 : D → toString([d])

Input :

[
a [d ‘‘Text1‘‘]
c ‘‘Text2‘‘

]
START

B

[ϵ]

C

[ϵ]

D

[ϵ] [a]

Figure 5: Graph that visualizes
the rules where a false alarm is
produced by the error-recognition
algorithm.

B inherits among others the right
grammar attribute d from category D,
which is not contained in B’s right vali-
dation attributes (a and c). One solution
for this problem is to add all right valida-
tion attributes ofC to categoryB or more
generally: If a category C1 is connected
by the empty path expression with its
child category C2, all right validation at-
tributes of all other categories leading to
C2 are added to C1

1. A similar approach
can be employed for left attributes. The
possible rule applications are visualized
in Figure 5.

1Note that this feature is not yet implemented in our current system.

105

PBML 111 OCTOBER 2018

6. Statistical approach to automatic error correction

Suppose that the error could be successfully spotted, but several path expressions
are possible for correcting the erroneous RHS and the disambiguation methods men-
tioned above still leave several potential candidates. Now the statistical disambigua-
tion method comes into play.

This method estimates, how probably a certain rule candidate is given all existing
rules (the input structures are disregarded) and suggests the most probable one(s).
Actually, the path expression ‘pe’ is chosen that maximizes the posterior probability
that the path expression ‘pe’ occurs, given a transition from category LHS C1 to RHS
C2, which can be formalized as follows:

• pa : E → P: a function that assigns an edge e ∈ E to a path expression pe ∈ P

(for the definition of a rule edge see Figure 2)
• s : E → Cat: source category of an edge
• d : E → Cat: destination category of an edge
• Cat: set of categories, E: set of edges

pe ′ = argmax
pe

P ′ with

P ′ = P(pa(e) = pe|s(e) = C1 ∧ d(e) = C2)

(Theorem of Bayes)
= P(pa(e) = pe) ·

P(s(e) = C1 ∧ d(e) = C2|pa(e) = pe)
P(s(e) = C1 ∧ d(e) = C2)

(P(s(e) = C1 ∧ d(e) = C2) is independent of pe)
pe ′ = argmax

pe
P ′′

P ′′ = P(pa(e) = pe) ·
P(s(e) = C1 ∧ d(e) = C2|pa(e) = pe)
(Now we make the assumption that
s(e) = C1 and d(e) = C2

are approximately conditionally independent
given pa(e) = pe.
This assumption is made
to handle the sparse data problem
that usually shows up in
hand-written grammars.)

106

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

≈ P(pa(e) = pe)P(s(e) = C1|pa(e) = pe) ·
P(d(e) = C2|pa(e) = pe)
(applying Theorem of Bayes again)

= P(pa(e) = pe) ·
P(pa(e) = pe|s(e) = C1) ·
P(pa(e) = pe|d(e) = C2) ·
P(s(e) = C1)P(d(e) = C2)

P2(pa(e) = pe)
= P(pa(e) = pe|s(e) = C1) ·

P(pa(e) = pe|d(e) = C2) ·
P(s(e) = C1)P(d(e) = C2)

P(pa(e) = pe)
(P(s(e) = C1) and P(d(e) = C2

are independent of pe)
pe ′ ≈ argmax

pe
P ′′′

P ′′′ = P(pa(e) = pe|s(e) = C1) ·
P(pa(e) = pe|d(e) = C2)

P(pa(e) = pe)

If there exists no RHS category due to the fact that the RHS is a function, then we
instead determine the path expression pe with

argmax
pe

P(pa(e) = pe|s(e) = C1). (11)

The most probably path expression(s) as obtained above are then suggested as
correction. As usual, the probabilities are estimated by relative frequencies.

Let us now consider an example for this procedure. We extend the original gram-
mar (rules R1 and R2, see page 102) by the following rules:

R3 : TIME → toString([hour]) : toString([min])
R4 : TIME → toString([hour])
R5 : START → from toString([from/loc]) to

toString([from/loc])

(12)

and add a second input structure:[
from : [loc : Bonn]
to : [loc : Cologne]

]
(13)

107

PBML 111 OCTOBER 2018

Let us now consider the case that rule R2 was entered erroneously in the following
way. Instead of the correct rule

R2 : TIME →toString[hour] :
toString[min] : toString[sec]

(14)

the grammar developer accidentally entered the incorrect rule:

R2,err : TIME →toString[from] :

toString[min] : toString[sec]
(15)

The analysis with validation and grammar attributes results in the fact that the incor-
rect path expression [from] has to be replaced by either [loc], [hour], [min], or [sec].
[min] and [sec] can be ruled out by the double generation rule so the alternatives [from]
and [loc] remain possible. Now the probabilistic rule comes into play. The probability
for [loc] is given by:

P(pa(e) = [loc]| source(e) = TIME) = 0.0 (16)

and the probability for [hour] is given by:

P(pa(e) = [hour]| source(e) = TIME) = 1/3 (17)

since there are 6 rule RHS with LHS TIME and 2 of them are associated to the path ex-
pression [hour]. Thus, the path expression [hour] is selected. Another heuristic is name
comparison. Often, the paths and associated RHS categories have similar names.
Therefore, we prefer paths that contain common substrings with the LHS/RHS cat-
egories. Finally, we use a heuristic that the empty path should not be suggested for
LHS category, for which the set of right validation attributes is not empty, since pre-
sumably such a category matches a non-leaf node in the input structure.

Note that in some cases the generation fails because the path might be correct but
the LHS (or RHS) category of some rule might be incorrectly chosen. In this case,
instead of looking for the correct path we have to look for the category that best fulfills
the validation attribute constraints of the erroneous rule.

7. Evaluation

For the evaluation, we used a grammar generating natural language descriptions
of houses comprising of 267 rules, 96 categories and 104 different path variables. This
grammar is assumed to be correct (errors displayed already for the unmodified gram-
mar are ignored in the evaluation).

In general, there are two possibilities how to conduct the evaluation. The intrinsic
approach is to look directly at the grammar and determine how many of the incor-
rect categories or path expression can be corrected. In contrast, we could evaluate

108

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

.....
10
.

20
.

40
.

60
.

80
.

100
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.
Detection of incorrect
path expressions.

Number of errors

.....
10
.

20
.

40
.

60
.

80
.

100
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.
Correction of incorrect
path expressions.

Number of errors

.....
10
.

20
.

40
.

60
.

80
.

100
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

Detection of incorrect
LHS categories

.....
10
.

20
.

40
.

60
.

80
.

100
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

Correction of incorrect
LHS categories

..

. ..Recall . ..Precision

Figure 6: Recall and precision of detection (left) and correction (right) of incorrect
path expressions (top) and LHS categories (bottom).

Detection Correction
Errors Prec. Recall Prec. Recall

10 0.545 0.858 0.423 0.708
20 0.533 0.845 0.401 0.658
30 0.553 0.823 0.377 0.599
40 0.561 0.806 0.359 0.554
50 0.574 0.786 0.334 0.511
60 0.583 0.768 0.319 0.469
70 0.597 0.747 0.304 0.436
80 0.608 0.733 0.291 0.404
90 0.623 0.713 0.276 0.375

100 0.637 0.699 0.266 0.348

Table 3: Precision and recall for the
correction of invalid path expressions.

Detection Correction
Errors Prec. Recall Prec. Recall

10 0.450 0.623 0.183 0.528
20 0.480 0.583 0.181 0.473
30 0.500 0.550 0.181 0.421
40 0.532 0.524 0.188 0.389
50 0.553 0.501 0.184 0.355
60 0.569 0.482 0.176 0.327
70 0.581 0.468 0.174 0.302
80 0.588 0.449 0.170 0.276
90 0.612 0.435 0.173 0.261

100 0.618 0.419 0.162 0.237

Table 4: Precision and recall for the
correction of invalid LHS categories.

109

PBML 111 OCTOBER 2018

our approach also extrinsically by comparing the actually generated text with the
expected output and calculate some typical performance score like BLUE/METEOR
or ROGUE. However, the extrinsic evaluation is not really adequate in this scenario,
since most of the errors covered here would result not in a scrambled output but in
no output at all. Thus, by employing an extrinsic evaluation, it would usually not be
possible to discern for example, whether one or two errors were resolved. Likewise,
it could normally not be decided, whether our method failed completely or was at
least able to spot the error but then suggested the wrong correction. Hence, we opted
to evaluate our approach intrinsically only. In particular, we insert errors randomly
assuming a uniform error distribution by either choosing an RHS and modifying the
path expression (path errors) or by selecting an LHS and changing its category (LHS
category errors). In practice, a uniform distribution of the errors is rather unlikely. For
instance, we would expect path expressions that are located nearby the correct one in
the GUI list box to be chosen more often than path expressions that are far away. Un-
fortunately, it is very hard to obtain real error data. The number of inserted errors
are varied from 10 to 100 in steps of 10. For each number of errors, this procedure is
repeated one thousand times. See Figure 6 and Tables 3 and 4, for recall and precision
of detection and correction of incorrect path expressions and LHS categories.

The precision of the error detection approach is defined by the quotient of the
number of correctly determined errors and the number of total errors displayed. The
percentual number of errors, which were detected correctly is called the recall of the
error detection. An error is considered as detected if the incorrect rule and RHS (LHS
in case of category errors) are recognized correctly.

The precision of the error correction is defined by the quotient of the number of the
correct error-correction suggestions divided by the number of all suggestions. The
percentual number of cases where the correct suggestions were found is called the
recall of the error correction. For the evaluation of the error correction, we only re-
gard the cases where the error was correctly detected. Note that there usually exist
a lot of possible modifications that would make the grammar correct. However, for
practical reasons, we only considered such a modification correct if it is exactly the
inverse operation of the conducted modification. The evaluation showed that the er-
roneous RHS could be identified with an average precision of 54.5% (for 10 randomly
inserted errors), which is far above the random baseline of <1/267 (analogously for
the correction of rules), which means that our hypothesis that the input structures
contain enough information to detect errors automatically cannot be rejected (signif-
icance level: 1%). The most difficult to detect are errors involving the empty path
expressions, which can introduce a lot of ambiguities. Moreover, the recall degrades
with an increasing number of errors, which is caused by the fact that left and right
validation attributes become less reliable for error detection if the grammar contains
a lot of errors. In contrast, the precision of our error detection approach is increasing
with the number of errors since the proportion of erroneous rules become larger and
therefore the a priori probability that a selected rule is erroneous increases.

110

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

For comparison, we converted the grammar into the XtraGen format and applied
the method of (vor der Brück and Stenzhorn, 2008). Unfortunately, we did not get any
result after several hours, which might be caused by an endless recursion in the gener-
ator, and aborted the run. A comparison with the approach of Gardent and Narayan
(Gardent and Narayan, 2012) is not directly possible, since the authors focus espe-
cially on inputs in form of dependency trees and employ a generator based on tree
adjoining grammars. However, in our method we assume a context free generation
process, while tree adjoining grammars are actually context sensitive. Additionally,
we do not make any assumption about the nature of our input despite being hier-
archically ordered. In particular, the input structure of the grammar used for this
evaluation constitutes no dependency tree.

8. Conclusion

A generation grammar might contain errors that result in an empty output for a
given input structure. An empty output gives, in contrast to an ill-formed output, al-
most no clues about the reason for the generation failure. We presented and evaluated
a method to detect and propose possible corrections for such errors automatically.
The evaluation showed that in many cases a detection and correction was indeed pos-
sible.

For future work, we plan to investigate how to decide if a path expression or a
category is actually incorrect. Also, we plan to recognize errors in RHS categories as
well.

Currently, our approach is only used for checking text generation grammars. How-
ever, it could also be used to verify arbitrary XSLT stylesheets containing XPath ex-
pressions. Instead for categories we would then extract right and left attributes for
stylesheet rules. The contents of the match attribute of an XML template would con-
tribute both to the left grammar attributes as well as to the right validation attributes.

A completely self-correcting XSLT stylesheet or text generation grammar is still
out of reach, but nevertheless, some ideas and concepts are shown how this goal can
become a reality.

Acknowledgments

Hereby I thank the DFKI for its support of this work, especially for granting me
free access to the eGram grammar workbench. Special thanks go to the associate head
of their natural language processing group, Prof. Dr. Stephan Busemann.

Bibliography

Busemann, S. Best-first surface realization. In Eight International Natural Language Generation
Workshop, pages 101–110, Brighton, England, 1996.

111

PBML 111 OCTOBER 2018

Busemann, S. eGram - A Grammar Development Environment and Its Usage for Lan-
guage Generation. In Proceedings of the Fourth International Conference on Language Re-
sources and Evaluation (LREC), Lisbon, Portugal, 2004. URL http://www.dfki.de/dfkibib/
publications/docs/busemann-LREC04.pdf.

Busemann, S. Ten Years After: An Update on TG/2 (and Friends). In Wilcock, Graham, Kristi-
ina Jokinen, Chris Mellish, and Ehud Reiter, editors, Proceedings of the Tenth European Natural
Language Generation Workshop (ENLG 2005), pages 32–39, Aberdeen, UK, 2005.

Daich, G., G. Price, B. Raglund, and M. Dawood. Software Test Technologies Report, 1994. URL
http://citeseer.ist.psu.edu/daich94software.html.

Gardent, Claire and Shashi Narayan. Error Mining in Dependency Trees. In Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics, Jeju Island, South Korea,
2012.

Kok, Daniël, Jianqiang Ma, and Gertjan van Noord. A generalized method for iterative error
mining in parsing results. In Proceedings of the 2009 Workshop on Grammar Engineering Across
Frameworks (GEAF), Suntec, Singapore, 2009.

Stenzhorn, H. XtraGen. A natural language generation system using Java and XML technolo-
gies. Master’s thesis, Saarland University, Department for Computational Linguistics, 2003.

Theune, M., Esther Klabbers, Jan Odijk, J.R. De Pijper, and Emiel Krahmer. From Data to
Speech: A General Approach. Natural Language Engineering, 7(1), 2001.

van Noord, Gertjan. Error Mining for Wide-Coverage Grammar Engineering. In Proceedings of
the 42nd Annual Meeting on Association for Computational Linguistics (ACL), Barcelona, Spain,
2004.

vor der Brück, Tim and Stephan Busemann. Automatic Error Correction for Tree-Mapping
Grammars. In Proceedings of KONVENS 2006, pages 1–8, Konstanz, Germany, 2006. ISBN
3-89318-050-8.

vor der Brück, Tim and Holger Stenzhorn. A Dynamic Approach for Automatic Error De-
tection in Generation Grammars. In Proceedings of the 18th European Conference on Artificial
Intelligence (ECAI), Patras, Greece, 2008.

Zeller, A. Locating Causes of Program Failures. In 27th International Conference on Software
Engineering (ICSE), Saint Louis, Missouri, USA, 2005.

Address for correspondence:
Tim vor der Brück
tim.vorderbrueck@hslu.ch
Suurstoffi 41b, CH 6343 Rotkreuz

112

http://www.dfki.de/dfkibib/publications/docs/busemann-LREC04.pdf
http://www.dfki.de/dfkibib/publications/docs/busemann-LREC04.pdf
http://citeseer.ist.psu.edu/daich94software.html

The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018 113–124

NMT-Keras: a Very Flexible Toolkit with a Focus
on Interactive NMT and Online Learning

Álvaro Peris, Francisco Casacuberta
Pattern Recognition and Human Language Technology Research Center, Universitat Politècnica de València, Spain

Abstract
We present NMT-Keras, a flexible toolkit for training deep learning models, which puts a

particular emphasis on the development of advanced applications of neural machine transla-
tion systems, such as interactive-predictive translation protocols and long-term adaptation of
the translation system via continuous learning. NMT-Keras is based on an extended version of
the popular Keras library, and it runs on Theano and TensorFlow. State-of-the-art neural ma-
chine translation models are deployed and used following the high-level framework provided
by Keras. Given its high modularity and flexibility, it also has been extended to tackle differ-
ent problems, such as image and video captioning, sentence classification and visual question
answering.

1. Introduction

To easily develop new deep learning models is a key feature in this fast-moving
field. We introduce NMT-Keras1, a flexible toolkit for neural machine translation
(NMT), based on the Keras library for deep learning (Chollet et al., 2015). Keras is an
API written in Python which provides high-level interfaces to numerical computation
libraries, such as Theano (Theano Development Team, 2016) or TensorFlow (Abadi
et al., 2016). Keras is well-structured and documented, with designing principles that
make it modular and extensible, being easy to construct complex models.

Following the spirit of the Keras library, we developed NMT-Keras, released un-
der MIT license, that aims to provide a highly-modular and extensible framework

1https://github.com/lvapeab/nmt-keras

© 2018 PBML. Distributed under CC BY-NC-ND. Corresponding author: lvapeab@prhlt.upv.es
Cite as: Álvaro Peris, Francisco Casacuberta. NMT-Keras: a Very Flexible Toolkit with a Focus on Interactive NMT
and Online Learning. The Prague Bulletin of Mathematical Linguistics No. 111, 2018, pp. 113–124.
doi: 10.2478/pralin-2018-0010.

https://github.com/lvapeab/nmt-keras
http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 111 OCTOBER 2018

to NMT. NMT-Keras supports advanced features, including support of interactive-
predictive NMT (INMT) (Barrachina et al., 2009; Peris et al., 2017c) protocols, contin-
uous adaptation (Peris et al., 2017a) and active learning (Peris and Casacuberta, 2018b)
strategies. An additional goal, is to ease the usage of the library, but allowing the user
to configure most of the options involving the NMT process.

Since its introduction (Sutskever et al., 2014; Cho et al., 2014), NMT has advanced
by leaps and bounds. Several toolkits currently offer fully-fledged NMT systems.
Among them, we can highlight OpenNMT (Klein et al., 2017), Tensor2Tensor (Vaswani
et al., 2018) or Nematus (Sennrich et al., 2017). NMT-Keras differentiates from them
by offering interactive-predictive and long-term learning functionalities, with the fi-
nal goal of fostering a more productive usage of the NMT system.

This document describes the main design and features of NMT-Keras. First, we re-
view the deep learning framework which is the basis of the toolkit. Next, we summa-
rize the principal features and functionality of the library. We conclude by showing
translation and INMT results.

2. Design

NMT-Keras relies on two main libraries: a modified version of Keras2, which pro-
vides the framework for training the neural models; and a wrapper around it, named
Multimodal Keras Wrapper3, designed to ease the usage of Keras and the manage-
ment of data.These tools represent a general deep learning framework, able to tackle
different problems, involving several data modalities. The problem of NMT is an in-
stantiation of the sequence-to-sequence task, applied to textual inputs and outputs.
NMT-Keras is designed to tackle this particular task. The reason for relying on a fork
of Keras is because this allows us to independently design functions for our problems
at hand, which may be confusing for the general audience of Keras. However, in a
near future we hope to integrate our contributions into the main Keras repository. In
this section, we describe these components and their relationships in our framework.

2.1. Keras

As mentioned in Section 1, Keras is a high-level deep learning API, which provides
a neat interface to numerical computation libraries. Keras allows to easily implement
complex deep learning models by defining the layers as building blocks. This sim-
plicity, together with the quality of its code, has made Keras to be one of the most
popular deep learning frameworks. It is also well-documented, and supported by a
large community, which fosters its usage.

2https://github.com/MarcBS/keras

3https://github.com/lvapeab/multimodal_keras_wrapper

114

https://github.com/MarcBS/keras
https://github.com/lvapeab/multimodal_keras_wrapper

Á. Peris and F. Casacuberta NMT-Keras (113–124)

In Keras, a model is defined as a directed graph of layers or operations, containing
one or more inputs and one or more outputs. Once a model has been defined, it is
compiled for training, aiming to minimize a loss function. The optimization process
is carried out, via stochastic gradient descent (SGD), by means of an optimizer.

Once the model is compiled, we feed it with data, training it as desired. Once a
model is trained, it is ready to be applied on new input data.

2.2. Multimodal Keras Wrapper

The Multimodal Keras Wrapper allows to handle the training and application of
complex Keras models, data management (including multimodal data) and applica-
tion of additional callbacks during training. The wrapper defines two main objects
and includes a number of extra features:
Dataset: A Dataset object is a database adapted for Keras, which acts as data provider.

It manages the data splits (training, validation, test). It accepts several data
types, including text, images, videos and categorical labels. In the case of text,
the Dataset object builds the vocabularies, loads and encodes text into a nu-
merical representation and also decodes the outputs of the network into natural
language. In the case of images or videos, it also normalizes and equalizes the
images; and can apply data augmentation.

Model wrapper: This is the core of the wrapper around Keras. It connects the Keras
library with the Dataset object and manages the functions for training and ap-
plying the Keras models. When dealing with sequence-to-sequence models, it
implements a beam search procedure. It also contains a training visualization
module and ready-to-use convolutional neural networks (CNN) architectures.

Extra: Additional functionalities include extra callbacks, I/O management and eval-
uation of the system outputs. For computing the translation quality metrics of
the models, we use the coco-caption evaluation tool (Chen et al., 2015), which
provides common evaluation metrics: BLEU, METEOR, CIDEr, and ROUGE-L.
Moreover, we modified it4 to also include TER.

2.3. NMT-Keras

The NMT-Keras library makes use of the aforementioned libraries, for building a
complete NMT toolkit. The library is compatible with Python 2 and 3. The training
of NMT models is done with the main.py file. The hyperparameters are set via a
configuration file (config.py), and can also be set from the command line interface.
To train a NMT system with NMT-Keras is straightforward:

1. Set the desired configuration in config.py.
2. Launch main.py.

4https://github.com/lvapeab/coco-caption

115

https://github.com/lvapeab/coco-caption

PBML 111 OCTOBER 2018

The training process will then prepare the data, constructing the Dataset object
and the Keras model. The default models implemented in NMT-Keras are an atten-
tional RNN encoder–decoder (Bahdanau et al., 2015; Sennrich et al., 2017), and the
Transformer model (Vaswani et al., 2017). Once the model is compiled, the training
process starts, following the specified configuration. For translating new text with a
trained model, we use beam search.

3. Features

As we keep our Keras fork constantly up-to-date with the original library, NMT-
Keras has access to the full Keras functionality, including (but not limited to):

Layers: Fully-connected layers, CNN, recurrent neural networks (RNN), including
long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), gated
recurrent units (GRU) (Cho et al., 2014) and their bidirectional (Schuster and
Paliwal, 1997) version, embeddings, noise, dropout (Srivastava et al., 2014) and
batch normalization (Ioffe and Szegedy, 2015) layers.

Initializers: The weights of a model can be initialized to a constant value, to values
drawn from statistical distributions or according to the strategies proposed by
Glorot and Bengio (2010), He et al. (2015) and Klambauer et al. (2017).

Optimizers: A number of SGD variants are implemented: vanilla SGD, RMSProp
(Tieleman and Hinton, 2012), Adagrad (Duchi et al., 2011), Adadelta (Zeiler,
2012), Adam and Adamax (Kingma and Ba, 2014). The learning rate can be
scheduled according to several strategies (linear, exponential, “noam” (Vaswani
et al., 2017)).

Regularizers and constraints: Keras allows to set penalties and constraints to the pa-
rameters and to the layer outputs of the model.

Our version of Keras implements additional layers, useful for sequence-to-sequence
problems:
Improved RNNs: All RNN architectures can be used in an autoregressive way, i.e.

taking into account the previously generated token. They also integrate atten-
tion mechanisms, supporting the add (Bahdanau et al., 2015) and dot (Luong
et al., 2015) models.

Conditional RNNs: Conditional (Sennrich et al., 2017) LSTM/GRU layers, consisting
in cascaded applications of LSTM/GRU cells, with attention models in between.

Multi-input RNNs: LSTM/GRU networks with two and three different inputs and
independent attention mechanisms (Bolaños et al., 2018).

Transformer layers: Multi-head attention layers, positional encodings and position-
wise feed-forward networks (Vaswani et al., 2017).

Convolutional layers: Class activation maps (Zhou et al., 2016).

116

Á. Peris and F. Casacuberta NMT-Keras (113–124)

Finally, NMT-Keras supports a number of additional options. Here we list the
most important ones, but we refer the reader to the library documentation5 for an
exhaustive listing of all available options:
Deep models: Deep residual RNN layers, deep output layers (Pascanu et al., 2014)

and deep fully-connected layers for initializing the state of the RNN decoder.
Embeddings: Incorporation of pre-trained embeddings in the NMT model and em-

bedding scaling options.
Regularization strategies: Label smoothing (Szegedy et al., 2015), early-stop, weight

decay, doubly stochastic attention regularizer (Xu et al., 2015) and a fine-grained
application of dropout.

Search options: Normalization of the beam search process by length and coverage
penalty. The search can be also constrained according to the length of the in-
put/output sequences.

Unknown word replacement: Replace unknown words according to the attention
model (Jean et al., 2015). The replacement may rely on a statistical dictionary.

Tokenizing options: Including full support to byte-pair-encoding (Sennrich et al.,
2016).

Integration with other tools: Support for Spearmint (Gelbart et al., 2914), for Bayes-
ian optimization of the hyperparameters and Tensorboard, the visualization tool
of TensorFlow.

Apart from these model options, NMT-Keras also contains scripts for ensemble
decoding and generation of N-best lists; sentence scoring, model averaging and con-
struction of statistical dictionaries (for unknown words replacement). It also contains
a client-server architecture, which allows to access to NMT-Keras via web. Finally, in
order to introduce newcomers to NMT-Keras, a set of tutorials are available, explain-
ing step-by-step how to construct a NMT system.

3.1. Interactive-predictive machine translation

The interactive-predictive machine translation (IMT) framework constitutes an ef-
ficient alternative to the regular post-editing of machine translation; with the aim
of obtaining high-quality translations minimizing the human effort required for this
(Barrachina et al., 2009). IMT is a collaborative symbiosis between human and system,
consisting in an iterative process in which, at each iteration, the user introduces a cor-
rection to the system hypothesis. The system takes into account the correction and
provides an alternative hypothesis, considering the feedback from the user. Figure 1
shows an example of the IMT protocol.

5https://nmt-keras.readthedocs.io

117

https://nmt-keras.readthedocs.io

PBML 111 OCTOBER 2018

Source: They are lost forever .
Target: Ils sont perdus à jamais .
0 MT Ils sont perdus pour toujours .

1
User Ils sont perdus à pour toujours .
MT Ils sont perdus à jamais .

2 User Ils sont perdus à jamais .

Figure 1. IMT session. The user introduces
in iteration 1 a character correction (boxed).

The MT system modifies its hypothesis,
taking into account this feedback.

This protocol has show to be es-
pecially effective when combined with
NMT (Knowles and Koehn, 2016; Peris
et al., 2017c). NMT-Keras implements
the interactive protocols described by
Peris et al. (2017c). Moreover, they can
be combined with online learning (OL)
or active learning methods, which al-
low to specialize the system into a given
domain or to the preferences of a user
(Peris and Casacuberta, 2018a). These
protocols are also implemented in NMT-
Keras. We built a demo website6 of these
interactive, adaptive systems using the
client-server features of the toolkit (Fig-
ure 2).

Figure 2. Frontend of the INMT with OL website built with NMT-Keras. In the left-side, the
source sentence to translate is displayed. The system computes a translation

hypothesis, located at the right frame. The user makes changes on this hypothesis. As a
key is pressed, the hypothesis is immediately updated, taking into account the user
correction. In this interaction protocol, the system validates the hypothesis prefix

(validated in green), although we expect to support more flexible protocols (Peris et al.,
2017c) in a future. This process is repeated until the desired translation is reached.
Then, the user presses the Accept translation button, validating the translation. The

system will use this sample to update the model if the “Learn from sample” checkbox is
activated. The demo is available at: http://casmacat.prhlt.upv.es/inmt.

6http://casmacat.prhlt.upv.es/inmt.

118

http://casmacat.prhlt.upv.es/inmt
http://casmacat.prhlt.upv.es/inmt

Á. Peris and F. Casacuberta NMT-Keras (113–124)

3.2. Tackling other tasks

The modular design of Keras and Multimodal Keras Wrapper allows to use them
to tackle other problems, following the spirit of NMT-Keras. These libraries have been
used to perform video captioning (Peris et al., 2016), egocentric video captioning con-
sidering temporal contexts (Bolaños et al., 2018), text classification (Peris et al., 2017b),
food recognition and localization (Bolaños and Radeva, 2016; Bolaños et al., 2017) and
visual question answering (Bolaños et al., 2017).

4. Results

We report now results of NMT-Keras, assessing translation quality and INMT ef-
fectiveness. Due to space restrictions, we report results on two tasks: EU (Barrachina
et al., 2009) and Europarl (Koehn, 2005). More extensive results obtained with NMT-
Keras can be found at Peris and Casacuberta (2018a). For the first task, we used the
standard partitions. For the Europarl corpus, we used the newstest2012 and new-
stest2013, as development and test, in order to establish a comparison with other IMT
works (e.g. Ortiz-Martínez, 2016). The NMT system was configured as in Peris and
Casacuberta (2018a). For the sake of comparison, we include results of phrase-based
statistical machine translation (PB-SMT), using the standard setup of Moses (Koehn
et al., 2007). We computed significance tests (95%) via approximate randomization
and confidence intervals with bootstrap resampling (Riezler and Maxwell, 2005).

Table 1 shows the translation quality. NMT-Keras outperformed Moses, obtaining
significant TER and BLEU improvements almost every language pair. Only in one
case Moses obtained better TER than NMT-Keras.

TER (↓) BLEU (↑)
PB-SMT NMT PB-SMT NMT

EU En→De 54.1± 1.9 52.3± 1.9 35.4± 2.1 36.4± 2.0

En→Fr 41.4± 1.6 38.4± 1.5 47.8± 1.7 50.4± 1.6

Europarl En→De 62.2± 0.3 63.1± 0.4 19.5± 0.3 20.0± 0.3

En→Fr 56.1± 0.3 55.0± 0.3 26.5± 0.3 27.8± 0.3

Table 1. Results of translation quality for all tasks in terms of TER [%] and BLEU [%].
Results that are statistically significantly better for each task and metric are boldfaced.

Extended results can be found in Peris and Casacuberta (2018a).

119

PBML 111 OCTOBER 2018

4.1. Interactive NMT

We evaluate now the performance of NMT-Keras on an IMT scenario. We are
interested in measuring the effort that the user must spend in order to achieve the
desired translation. Due to the prohibitive cost that an experimentation with real
users conveys, the users were simulated. The references of our datasets were consid-
ered to be the desired translations. The amount of effort was measured according to
keystroke mouse-action ratio (KSMR) (Barrachina et al., 2009), defined as the number
of keystrokes plus the number of mouse-actions required for obtaining the desired
sentence, divided by the number of characters of such sentence.

KSMR [%] (↓)
INMT SOTA

EU En→De 19.8± 0.5 30.5± 1.1‡

En→Fr 16.3± 0.4 25.5± 1.1‡

Europarl En→De 32.9± 0.2 49.2± 0.4†

En→Fr 29.8± 0.2 44.4± 0.5†

Table 2. Effort required by INMT systems compared to the state-of-the-art (SOTA), in
terms of KSMR [%]. Results that are statistically significantly better for each task and
metric are boldfaced. † refers to Ortiz-Martínez (2016), ‡ to Barrachina et al. (2009).

Extended results can be found in Peris and Casacuberta (2018a).

Table 2 shows the performance in KSMR (%) of the INMT systems. We also com-
pare these results with the best results obtained in the literature for each task. All
INMT systems outperformed by large the other ones. Again, we refer the reader to
Peris and Casacuberta (2018a) for a larger set of experiments, including OL.

5. Conclusions

We introduced NMT-Keras, a toolkit built on the top of Keras, that aims to ease the
deployment of complex NMT systems by having a modular and extensible design.
NMT-Keras has a strong focus on building adaptive and interactive NMT systems;
which leverage the effort reduction of a user willing to obtain high-quality transla-
tions. Finally, its flexibility allows the NMT-Keras framework to be applied directly
to other problems, such as multimedia captioning or sentence classification.

We intend to continue the active development of the tool, including new function-
alities and improving the quality of the source code. Moreover, we hope to integrate
our tool into the Keras ecosystem in a near future.

120

Á. Peris and F. Casacuberta NMT-Keras (113–124)

Acknowledgements

Much of our Keras fork and the Multimodal Keras Wrapper libraries were devel-
oped together with Marc Bolaños. We also acknowledge the rest of contributors to
these open-source projects. The research leading this work received funding from
grants PROMETEO/2018/004 and CoMUN-HaT - TIN2015-70924-C2-1-R. We finally
acknowledge NVIDIA Corporation for the donation of GPUs used in this work.

Bibliography

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. TensorFlow: A System for
Large-Scale Machine Learning. In Proceedings of USENIX-OSDI, volume 16, pages 265–283,
2016. URL https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by
Jointly Learning to Align and Translate. arXiv:1409.0473, 2015. URL http://arxiv.org/
abs/1409.0473.

Barrachina, Sergio, Oliver Bender, Francisco Casacuberta, Jorge Civera, Elsa Cubel, Shahram
Khadivi, Antonio Lagarda, Hermann Ney, Jesús Tomás, Enrique Vidal, and Juan-Miguel
Vilar. Statistical Approaches to Computer-Assisted Translation. Computational Linguistics,
35(1):3–28, 2009. doi: 10.1162/coli.2008.07-055-R2-06-29. URL https://doi.org/10.1162/
coli.2008.07-055-R2-06-29.

Bolaños, Marc and Petia Radeva. Simultaneous food localization and recognition. In ICPR,
pages 3140–3145, 2016. doi: 10.1109/ICPR.2016.7900117.

Bolaños, Marc, Aina Ferrà, and Petia Radeva. Food Ingredients Recognition Through Multi-
label Learning. In ICIAP, pages 394–402, 2017. doi: 10.1007/978-3-319-70742-6_37.

Bolaños, Marc, Álvaro Peris, Francisco Casacuberta, and Petia Radeva. VIBIKNet: Visual bidi-
rectional kernelized network for visual question answering. In Proceedings of IbPRIA, pages
372–380, 2017. doi: 10.1007/978-3-319-58838-4_41.

Bolaños, Marc, Álvaro Peris, Francisco Casacuberta, Sergi Soler, and Petia Radeva. Egocentric
video description based on temporally-linked sequences. Journal of Visual Communication
and Image Representation, 50:205–216, 2018. doi: 10.1016/j.jvcir.2017.11.022. URL https:
//doi.org/10.1016/j.jvcir.2017.11.022.

Chen, Xinlei, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár,
and C Lawrence Zitnick. Microsoft COCO captions: Data collection and evaluation server.
arXiv:1504.00325, 2015. URL http://arxiv.org/abs/1504.00325.

Cho, Kyunghyun, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the Prop-
erties of Neural Machine Translation: Encoder-Decoder Approaches. In Proceedings of the
Workshop on SSST, pages 103–111, 2014. URL http://www.aclweb.org/anthology/W14-4012.

Chollet, François et al. Keras. https://github.com/keras-team/keras, 2015. GitHub reposi-
tory.

121

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.1162/coli.2008.07-055-R2-06-29
https://doi.org/10.1162/coli.2008.07-055-R2-06-29
https://doi.org/10.1016/j.jvcir.2017.11.022
https://doi.org/10.1016/j.jvcir.2017.11.022
http://arxiv.org/abs/1504.00325
http://www.aclweb.org/anthology/W14-4012
https://github.com/keras-team/keras

PBML 111 OCTOBER 2018

Duchi, John, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011. URL
http://dl.acm.org/citation.cfm?id=2021068.

Gelbart, Michael A., Jasper Snoek, and Ryan P. Adams. Bayesian Optimization with Unknown
Constraints. In Proceedings of UAI, pages 250–259. AUAI Press, 2914. ISBN 978-0-9749039-
1-0. URL http://dl.acm.org/citation.cfm?id=3020751.3020778.

Glorot, Xavier and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of AISTATS, pages 249–256, 2010. URL http://
proceedings.mlr.press/v9/glorot10a/glorot10a.pdf.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In Proceedings of ICCV, pages
1026–1034, 2015.

Hochreiter, Sepp and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/
neco.1997.9.8.1735.

Ioffe, Sergey and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv:1502.03167, 2015. URL http://arxiv.org/abs/
1502.03167.

Jean, Sébastien, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On Using Very Large
Target Vocabulary for Neural Machine Translation. In Proceedings of ACL, pages 1–10, 2015.
doi: 10.3115/v1/P15-1001. URL http://www.aclweb.org/anthology/P15-1001.

Kingma, Diederik and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Klambauer, Günter, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In NIPS, pages 971–980, 2017. URL http://papers.nips.
cc/paper/6698-self-normalizing-neural-networks.pdf.

Klein, Guillaume, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. OpenNMT:
Open-Source Toolkit for Neural Machine Translation. Proceedings of ACL 2017, System
Demonstrations, pages 67–72, 2017. URL http://www.aclweb.org/anthology/P17-4012.

Knowles, Rebecca and Philipp Koehn. Neural Interactive Translation Prediction. In Proceed-
ings of the AMTA, pages 107–120, 2016. URL https://www.cs.jhu.edu/~phi/publications/
neural-interactive-translation.pdf.

Koehn, Philipp. Europarl: A parallel corpus for statistical machine translation. In Proceed-
ings of the MT Summit, pages 79–86, 2005. URL http://homepages.inf.ed.ac.uk/pkoehn/
publications/europarl-mtsummit05.pdf.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In Proceedings of ACL, pages 177–180, 2007. URL http://dl.acm.org/
citation.cfm?id=1557769.1557821.

122

http://dl.acm.org/citation.cfm?id=2021068
http://dl.acm.org/citation.cfm?id=3020751.3020778
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://www.aclweb.org/anthology/P15-1001
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf
http://www.aclweb.org/anthology/P17-4012
https://www.cs.jhu.edu/~phi/publications/neural-interactive-translation.pdf
https://www.cs.jhu.edu/~phi/publications/neural-interactive-translation.pdf
http://homepages.inf.ed.ac.uk/pkoehn/publications/europarl-mtsummit05.pdf
http://homepages.inf.ed.ac.uk/pkoehn/publications/europarl-mtsummit05.pdf
http://dl.acm.org/citation.cfm?id=1557769.1557821
http://dl.acm.org/citation.cfm?id=1557769.1557821

Á. Peris and F. Casacuberta NMT-Keras (113–124)

Luong, Thang, Hieu Pham, and Christopher D. Manning. Effective Approaches to Attention-
Based Neural Machine Translation. In Proceedings of EMNLP, pages 1412–1421, 2015. doi:
10.18653/v1/D15-1166. URL http://www.aclweb.org/anthology/D15-1166.

Ortiz-Martínez, Daniel. Online Learning for Statistical Machine Translation. Computational
Linguistics, 42(1):121–161, 2016. doi: 10.1162/COLI_a_00244.

Pascanu, Razvan, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. How to Construct
Deep Recurrent Neural Networks. arXiv:1312.6026, 2014. URL https://arxiv.org/abs/
1312.6026.

Peris, Álvaro and Francisco Casacuberta. Online Learning for Effort Reduction in Interactive
Neural Machine Translation. arXiv:1802.03594, 2018a. URL http://arxiv.org/abs/1802.
03594.

Peris, Álvaro and Francisco Casacuberta. Active Learning for Interactive Neural Machine
Translation of Data Streams. arXiv:1807.11243, 2018b. URL https://arxiv.org/abs/1807.
11243.

Peris, Álvaro, Marc Bolaños, Petia Radeva, and Francisco Casacuberta. Video Description using
Bidirectional Recurrent Neural Networks. In Proceedings of ICANN, pages 3–11, 2016. doi:
10.1007/978-3-319-44781-0. URL https://doi.org/10.1007/978-3-319-44781-0_1.

Peris, Álvaro, Luis Cebrián, and Francisco Casacuberta. Online Learning for Neural Machine
Translation Post-editing. arXiv:1706.03196, 2017a. URL http://arxiv.org/abs/1706.03196.

Peris, Álvaro, Mara Chinea-Ríos, and Francisco Casacuberta. Neural Networks Classifier for
Data Selection in Statistical Machine Translation. The Prague Bulletin of Mathematical Lin-
guistics, 1(108):283–294, 2017b. doi: 10.1515/pralin-2017-0027.

Peris, Álvaro, Miguel Domingo, and Francisco Casacuberta. Interactive neural machine trans-
lation. Computer Speech & Language, 45:201–220, 2017c. URL https://doi.org/10.1016/j.
csl.2016.12.003.

Riezler, Stefan and John T Maxwell. On some pitfalls in automatic evaluation and significance
testing for MT. In Proceedings of the workshop on MTSE, pages 57–64, 2005. URL http://www.
aclweb.org/anthology/W05-0908.

Schuster, Mike and Kuldip K. Paliwal. Bidirectional Recurrent Neural Networks. IEEE Trans-
actions on Signal Processing, 45(11):2673–2681, 1997. doi: 10.1109/78.650093.

Sennrich, Rico, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare
Words with Subword Units. In Proceedings of the ACL, pages 1715–1725, 2016. doi:
10.18653/v1/P16-1162. URL http://www.aclweb.org/anthology/P16-1162.

Sennrich, Rico, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow, Julian Hitschler,
Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Valerio Miceli Barone, Jozef Mokry, and
Maria Nadejde. Nematus: a Toolkit for Neural Machine Translation. In Proceedings of the
Software Demonstrations at EACL, pages 65–68, 2017. URL http://aclweb.org/anthology/
E17-3017.

Srivastava, Nitish, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(1):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

123

http://www.aclweb.org/anthology/D15-1166
https://arxiv.org/abs/1312.6026
https://arxiv.org/abs/1312.6026
http://arxiv.org/abs/1802.03594
http://arxiv.org/abs/1802.03594
https://arxiv.org/abs/1807.11243
https://arxiv.org/abs/1807.11243
https://doi.org/10.1007/978-3-319-44781-0_1
http://arxiv.org/abs/1706.03196
https://doi.org/10.1016/j.csl.2016.12.003
https://doi.org/10.1016/j.csl.2016.12.003
http://www.aclweb.org/anthology/W05-0908
http://www.aclweb.org/anthology/W05-0908
http://www.aclweb.org/anthology/P16-1162
http://aclweb.org/anthology/E17-3017
http://aclweb.org/anthology/E17-3017
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

PBML 111 OCTOBER 2018

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural
Networks. In Proceedings of NIPS, volume 27, pages 3104–3112, 2014. URL http://papers.
nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convo-
lutions. In Proceedings of CVPR, pages 1–9, 2015. doi: 10.1109/CVPR.2015.7298594.

Theano Development Team. Theano: A Python framework for fast computation of mathemat-
ical expressions. arXiv:1605.02688, 2016. URL https://arxiv.org/abs/1605.02688.

Tieleman, Tijmen and Geoffrey Hinton. Lecture 6.5-RMSProp: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural networks for machine learning, 4
(2):26–31, 2012.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. In Proceed-
ings of NIPS, volume 30, pages 5998–6008, 2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf.

Vaswani, Ashish, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan N Gomez, Stephan
Gouws, Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar, et al. Tensor2tensor
for neural machine translation. arXiv:1803.07416, 2018. URL https://arxiv.org/abs/1803.
07416.

Xu, Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdi-
nov, Richard Zemel, and Yoshua Bengio. Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention. In Proceedings of ICLR, pages 2048–2057, 2015. URL
http://proceedings.mlr.press/v37/xuc15.html.

Zeiler, Matthew D. ADADELTA: An Adaptive Learning Rate Method. arXiv:1212.5701, 2012.
URL https://arxiv.org/abs/1212.5701.

Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning
deep features for discriminative localization. In Proceedings of CVPR, pages 2921–2929, 2016.
doi: 10.1109/CVPR.2016.319.

Address for correspondence:
Álvaro Peris
lvapeab@prhlt.upv.es
Pattern Recognition and Human Language Technology Research Center,
Universitat Politècnica de València,
Camino de Vera s/n, 46022 Valencia, SPAIN.

124

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://arxiv.org/abs/1605.02688
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://arxiv.org/abs/1803.07416
https://arxiv.org/abs/1803.07416
http://proceedings.mlr.press/v37/xuc15.html
https://arxiv.org/abs/1212.5701

The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018 125–135

Open Source Toolkit for Speech to Text Translation

Thomas Zenkel, Matthias Sperber, Jan Niehues, Markus Müller,
Ngoc-Quan Pham, Sebastian Stüker, Alex Waibel

Karlsruhe Institute of Technology, Faculty of Informatics, Interactive Systems Labs, Karlsruhe, Germany

Abstract
In this paper we introduce an open source toolkit for speech translation. While there already

exists a wide variety of open source tools for the essential tasks of a speech translation system,
our goal is to provide an easy to use recipe for the complete pipeline of translating speech. We
provide a Docker container with a ready to use pipeline of the following components: a neural
speech recognition system, a sentence segmentation system and an attention-based translation
system. We provide recipes for training and evaluating models for the task of translating En-
glish lectures and TED talks to German. Additionally, we provide pre-trained models for this
task. With this toolkit we hope to facilitate the development of speech translation systems and
to encourage researchers to improve the overall performance of speech translation systems.

1. Introduction

In recent years a great part of the research interest for automatic speech recogni-
tion (ASR) and machine translation (MT) systems focuses on neural approaches. ASR
systems used to rely on separate components like a language model, a pronunciation
dictionary and an acoustic model and machine translation systems on phrase based
approaches. With the emergence of neural networks the implementation of ASR and
MT systems became relatively easy, which lead to a number of open-source toolkits
for both tasks. Examples for neural ASR toolkits include Eesen (Miao et al., 2015)
and Espnet,1 while XNMT (Neubig et al., 2018) and openNMT-py (Klein et al., 2017)
mainly deal with MT systems.

1https://github.com/espnet/espnet

© 2018 PBML. Distributed under CC BY-NC-ND. Corresponding author: jan.niehues@kit.edu
Cite as: Thomas Zenkel, Matthias Sperber, Jan Niehues, Markus Müller, Ngoc-Quan Pham, Sebastian Stüker,
Alex Waibel. Open Source Toolkit for Speech to Text Translation. The Prague Bulletin of Mathematical Linguistics
No. 111, 2018, pp. 125–135. doi: 10.2478/pralin-2018-0011.

https://github.com/espnet/espnet
http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 111 OCTOBER 2018

Most of these toolkits focus on the evaluation of classical ASR or MT tasks. How-
ever, when performing speech translation, the intersection between the different com-
ponents is an important problem, which rarely receives much attention. ASR systems
usually output noisy transcripts without casing and punctuation, which makes the
task of the MT system more difficult. End-to-end speech translation systems, that
directly translate speech, are mostly difficult to train due to the limited amount of
parallel speech translation data.

In this paper we present an open-source toolkit2 that combines the following com-
ponents:

• A CTC and an attention based ASR system
• A system to generate the punctuation and the casing of the ASR output
• A neural MT system

We provide recipes to both train and evaluate these models for the task of translat-
ing English talks to German. We exclusively use open source data for both training
and testing. Pre-trained models of each component are available to download, which
makes it possible to replace the individual components without much effort and eval-
uate the performance directly on speech translation tasks.

2. System Description

The speech translation system presented in this work uses a pipeline approach.
According to this pipeline, the audio signal is processed by a sequence of different
components to generate the translation. In this work, we use a pipeline of three com-
ponents. First, the audio is processed by an ASR system to generate a transcript in the
source language. In the framework, we integrated two different methods to generate
the transcripts. They can be generated by a CTC-based system or by an attentional
encoder-decoder based system.

In a second step, punctuation and case information are added to the transcript.
This is done by a monolingual translation system based on an attentional encoder-
decoder model commonly used in neural machine translation.

The third and last step translates the source text into the target language using a
neural machine translation system. We describe the details of all the components in
detail in this section.

2.1. Speech Recognition

We include two different speech recognition systems, a CTC based system (Graves
et al., 2006) and an attention based system (Bahdanau et al., 2015; Chan et al., 2016).
For both approaches we use XNMT (Neubig et al., 2018) to extract 40-dimensional
log-Mel-filterbank features with per-speaker mean- and variance-normalization. Both

2https://github.com/isl-mt/SLT.KIT

126

https://github.com/isl-mt/SLT.KIT

Zenkel, Sperber, Niehues, et al. Toolkit for Speech to Text Translation (125–135)

systems transcribe utterances. Our training data is already split into utterances. We
rely on the LIUM speaker diarization tool (Rouvier et al., 2013) during testing to create
the utterances.

2.1.1. Attentional ASR

Our attentional ASR model follows the listen-attend-spell (Chan et al., 2016) ar-
chitecture and is similar to the system described by Neubig et al. (2018). The model
is implemented with XNMT. Our toolkit exclusively uses XNMT for speech recogni-
tion tasks. Compared to a conventional neural machine translation architecture, we
replace the encoder with a 4-layer bidirectional pyramidal encoder with a total down-
sampling factor of 8. The layer size is set to 512, the target embedding size is 64, and
the attention uses an MLP of size 128. Input to the model are Mel-filterbank features
with 40 coefficients. For regularization, we apply variational dropout of rate 0.3 in all
LSTMs, and word dropout of rate 0.1 on the target side (Gal and Ghahramani, 2016).
We also fix the target embedding norm to 1 (Nguyen and Chiang, 2018). For train-
ing, we use Adam (Kingma and Ba, 2015) with initial learning rate of 0.0003, which is
decayed by factor 0.5 if no improved WER is observed. To further facilitate training,
label smoothing (Szegedy et al., 2016) is applied. For the search, we use beam size 20
and length normalization with the exponent set to 1.5.

2.1.2. CTC-based ASR

Our CTC-based ASR model is similar to the system described by Zenkel et al.
(2018). The input to the model are 40-dimensional Mel-filterbank features. We use
every third speech feature of our input sequence and choose the start offset during
training randomly, which has the advantage of a lower input sequence length. We
train the model to predict Byte Pair Units (Sennrich et al., 2016) [BPE].

The CTC based model consists of four bidirectional LSTM layers with 400 units
in each direction followed by a softmax layer. The size of the softmax layer depends
on the number of different BPE units we create. We use a dropout rate of 0.25 for all
LSTM layers. We train two models based on BPE units with 300 (small model) and
10000 (big model) merges, respectively.

We use SGD with a learning rate of 0.0005 and a momentum term of 0.9 for training.
The learning rate is halved whenever the validation token error rate does not decrease
by more than 0.1%. We first train the small model and initialize the parameters of
the LSTM layers of the big model with the smaller model. We decode the model by
greedily selecting the most likely output at each frame.

2.2. Punctuation

Automatic speech recognition (ASR) systems typically do not generate punctua-
tion marks or reliable casing. Using the raw output of these systems as input to MT

127

PBML 111 OCTOBER 2018

causes a performance drop due to mismatched train and test conditions. To create seg-
ments and better match typical MT training conditions, we use a monolingual NMT
system to add sentence boundaries, insert proper punctuation, and add case where
appropriate before translating (Cho et al., 2017).

For both, the punctuation system and the machine translation system, we use the
openNMT-py toolkit (Klein et al., 2017) to train the models and to generate the trans-
lation. The main difference between the punctuation system and the machine trans-
lation system is the input and output data used for training and testing.

The idea of the monolingual machine translation system is to translate from lower-
cased, unpunctuated text into text with case information and punctuation. Since we
do not have any information about the sentence boundaries when inserting the punc-
tuation and case information, we also remove them from the training data. Therefore,
in the first step of the pre-processing, we randomly segment the source corpus of the
training data into chunks of 20 to 30 words. Based on this randomly segmented cor-
pus, we build the input and output data for the monolingual translation system.

For the input data, we remove all punctuation marks and lowercase all words.
Since we will get lower-cased input, we cannot use the same byte-pair encoding (Sen-
nrich et al., 2016) as for the machine translation system. Therefore, we train a separate
byte-pair encoding on the lower-cased source data with a code size of 40k. To summa-
rize, the source sequence consists of lower-cased BPE units without any punctuation.

For the target side, we do not want to change the words in the output sentence,
but only add case and punctuation information. Therefore, we replace the sentence
by features indicating case with punctuation attached. Every word is replaced by a
letter U or L, whether it is upper-cased or lower-cased. Furthermore, punctuation
marks following the word are directly attached to the letter.

For example, if the training segment is I felt worse. Why? I wrote a whole book, the
source input sequence could be i felt wor@@ se why i wro@@ te a who@@ le book and the
target output sequence will be U L L. U? U L L L L.

Based on this method, a translation system is trained to transform the input text
into the output tokens. By default, we use the same setup as for the translation system
between source and target language.

At test time, we follow the sliding window technique described by Cho et al. (2012).
Therefore, we created a test set with segments of length 10 starting with every word
on the input data. This means, that except for the beginning and the end of the docu-
ment, every word occurs ten times, at all positions within the segment. This of course
dramatically increases the number of sentences in the test data. In a second step,
we generate the target features by applying the monolingual translation system. In
a post-processing step, we case the word as it most frequently occurs in the output.
We insert punctuation marks, if there is at least one punctuation mark after the word
in one of the 10 segments containing this word. If different punctuation marks are
predicted, we take the most frequent one. Finally, if the punctuation mark is an end
of sentence punctuation mark {”.”,”!”,”?”}, we also start a new segment. The seg-

128

Zenkel, Sperber, Niehues, et al. Toolkit for Speech to Text Translation (125–135)

mented test data with case and punctuation information is passed on to the machine
translation system.

2.3. MT

For machine translation, we use a neural machine translation system trained with
openNMT-py. By default, we use a rnn-based system.

Within the toolkit, we provide recipes to train a rather small sized translation sys-
tem. The translation system is trained only on the TED corpus. Due to the limited
training data size, we use a smaller model and set the hidden size of the word embed-
dings as well as for the LSTMs to 512. Furthermore, we use dropout in all the models
with a dropout rate of 0.2. In the first training step, we train the model for 10 epochs
using Adam optimization. We perform early stopping by evaluating the model after
each epoch on the validation data. In the second step, we continue to train the system
using a lower learning rate of 0.000125 for another 5 epochs.

The training scripts for the NMT models are provided in SLT.KIT/scripts/openNMT-
py.

3. Training Data

3.1. ASR

For training the speech recognition systems we use the version 2 of the Tedlium
Corpus (Rousseau et al., 2014). We store the log-Mel-filterbank features of each ut-
terances in a hdf5 file.3 The transcription is stored in a text file one utterance at a
time. The key to access the features in the hdf5 file matches the line number of the
transcription in the text file. We do not use any additional language modeling data.

3.2. Punctuation and Machine Translation

The machine translation system and the punctuation system are trained on paral-
lel data. We use the TED corpus (Cettolo et al., 2012)4 and the proceedings from the
European Parliament (Koehn, 2005).5 The source and target sentences are stored in in-
dividual text files. As validation data for all systems, we use the dev2010 set provided
by IWSLT evaluation campaign (Cettolo et al., 2014).

Prior to translation, we pre-process the data. The default preprocessing includes
tokenization, true-casing and byte-pair encoding. The tokenization and true-casing
uses the tools from the moses toolkit. The byte-pair encoding is trained on all parallel

3https://github.com/h5py/h5py

4https://wit3.fbk.eu/

5http://statmt.org/europarl/

129

https://github.com/h5py/h5py
https://wit3.fbk.eu/
http://statmt.org/europarl/

PBML 111 OCTOBER 2018

data and joint codes for both languages are learned. By default, we use a code size of
40k. The scripts to train the true-casing model, to learn the byte-pair encoding and to
apply the models to the test data can be found in SLT.KIT/scripts/defaultPreprocessor.

4. Evaluation

4.1. Dataset

We evaluate the performance of the ASR and MT systems on English TED talks
and its translation to German. We use the test sets used for the IWSLT conference
(Cettolo et al., 2014), which are publicly available.6 We test the input on the following
test sets: dev2010, tst2010, tst2013, tst2014.

4.2. Evaluation Metrics

We use Sclite7 for scoring the ASR output. We calculate the Word Error Rate (WER)
based on the provided references in the test sets. Because we do not get a segmentation
into utterances, we use talks as the segments for scoring.

In contrast to text translation, the segmentation into sentences is not given a priori
in speech translation tasks. Therefore, the standard MT evaluation metrics cannot
be applied directly. In this framework, we use the mwerSegmenter8 to segment the
output of the speech translation system according to the reference. In a second step,
we can then calculate all machine translation evaluation metrics on the re-segmented
output of the translation system.

To evaluate the output, we calculate four different metrics. We generate the BLEU
score (Papineni et al., 2002), the TER score (Snover et al., 2006), the BEER metric (Stano-
jevic and Sima’an, 2014) and CharacTER (Wang et al., 2016). While these metrics
are all calculated considering case-information, we also calculate case-insensitive (ci)
BLEU and TER scores.

In Table 1 you can find an example sentence processed by our toolkit. First of all
the speaker diarization tool generates utterances. These utterances are transcribed by
the ASR system. The utterances do not consist of single sentences. The segmentation
tool re-segments the output and adds punctuation. In the example this leads to a
slightly longer sentence than in the reference, because the expressions “I think” and
“we know” are segmented differently. This sentence is then translated to German by
the MT system.

6https://sites.google.com/site/iwsltevaluation2018/Lectures-task

7http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm

8https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz

130

https://sites.google.com/site/iwsltevaluation2018/Lectures-task
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz

Zenkel, Sperber, Niehues, et al. Toolkit for Speech to Text Translation (125–135)

Step Text
Reference EN We know that the first 10 years of a career has an ex-

ponential impact on how much money you’re going
to earn.

ASR EN … don’t panic I think this crowd is going to be
thought | i think we know that the first ten years of
a career has an | exponential impact on how much
money you’re going turn we know that more than
half of | Americans are married …

Punctuation I think we know that the first ten years of a career has
an exponential impact on how much money you’re
going turn we know.

MT DE ich denke, wir wissen, dass die ersten 10 Jahre
einer Karriere einen entscheidenden Einfluss darauf
haben, wie viel Geld wir wissen.

Reference DE Wir wissen, dass die ersten 10 Jahre eines Berufes
eine exponentielle Auswirkung darauf haben, wie
viel Geld man verdienen wird.

Table 1. References of an example source and target sentence and the output of the
different steps of our system. Utterance boundaries of the ASR system are visualized

with the token ”|”.

4.3. Results

We evaluate the performance of the ASR systems before performing any transla-
tion. In Table 2 we report results for the attention based system [Attention], the CTC
system with 300 BPE merges [CTC 300] and the CTC system with 10k merges [CTC
10k]. We additionally combine the outputs of the three system by using Rover (Fiscus)
[Rover].

Since we do not throw away any segments of the audio file, it still contains seg-
ments containing silence. The attention based system tries to produce output for these
segments, which leads to a high number of insertion errors. On the other hand, the
CTC model handles this situation well and outputs an empty transcript. The CTC 300
model has a higher error rate, which is mostly due to misspelling of words. This can
be fixed by training an additional language model as in Zenkel et al. (2018). Combin-
ing all three systems improves the results and yields balanced insertion and deletion
errors. Many errors of the ASR system are also due to normalization issues between
the reference and the hypothesis, especially numbers and dates cause many errors.

131

PBML 111 OCTOBER 2018

Category S D I WER
Attention 17.5% 2.9% 8.8% 29.2%
CTC 300 17.3% 5.8% 3.6% 26.7%
CTC 10k 13.5% 6.0% 3.3% 22.8%

Rover 13.1% 3.9% 4.2% 21.2%

Table 2. Substitution (S), Insertion (I), Deletion (D) and Word Error Rate (WER) on
test2014 for different ASR systems

Category BLEU TER BEER CharacTER BLEU(ci) TER(ci)
Attention 11.88 79.75 41.49 76.98 12.57 77.90
CTC 300 11.49 76.79 40.57 81.52 12.18 75.12
CTC 10k 12.58 74.16 42.05 81.90 13.34 72.36

Rover 13.28 74.34 42.43 78.38 14.01 72.62

Table 3. MT scores on tst2014 for various ASR outputs

We present the results of the MT system in Table 3. Better ASR results also lead
to better MT results for all presented metrics. The only exception is the attention
based system, which gets better scores than the CTC 300 output when evaluating the
performance of the resulting MT output.

Category dev2010 tst2010 tst2013 tst2014
Attention 13.42 13.57 12.04 11.88
CTC 300 12.33 11.88 12.47 11.49
CTC 10k 13.04 13.44 13.41 12.58

Rover 13.98 14.08 13.73 13.28

Table 4. BLEU scores for different ASR outputs on all test sets

In Table 4 we state the results on the remaining test sets. We do not see a consistent
trend if the attention based ASR system or the CTC based system performs better.
However, the bigger CTC model consistently yields better BLEU scores than the small
CTC model. This can be explained by the higher word error rate and a significantly
higher number of miss-spellings in the output of the small model. While the attention
based model also yields higher word error rates than the CTC 10k model, this is mostly

132

Zenkel, Sperber, Niehues, et al. Toolkit for Speech to Text Translation (125–135)

due to the higher number of insertion and does not hurt the translation performance
as much. We additionally notice that combining the outputs of all ASR systems with
Rover improves the results across all test sets.

5. Conclusion

This paper has introduced a toolkit for speech translation. It consistently uses
open-source software as well as freely available training and test data. We presented
results on test sets for pre-trained models for English to German speech translation.
By additionally open-sourcing the trained models we hope to facilitate the task of
improving individual components for speech translation systems.

Bibliography

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. ICLR, 2015. URL https://arxiv.org/pdf/1409.
0473v7.pdf.

Cettolo, Mauro, Christian Girardi, and Marcello Federico. WIT3: Web Inventory of Transcribed
and Translated Talks. In Proceedings of the 16th Conference of the European Association for
Machine Translation (EAMT), Trento, Italy, 2012. URL http://hltshare.fbk.eu/EAMT2012/
html/Papers/59.pdf.

Cettolo, Mauro, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report
on the 11th IWSLT evaluation campaign, IWSLT 2014. In Proceedings of the 11th International
Workshop on Spoken Language Translation, Lake Tahoe, California, 2014. URL http://www.
mt-archive.info/10/IWSLT-2014-Cettolo.pdf.

Chan, William, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend and spell: A neural
network for large vocabulary conversational speech recognition. In 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, mar 2016. doi: 10.1109/
icassp.2016.7472621. URL https://doi.org/10.1109%2Ficassp.2016.7472621.

Cho, E., J. Niehues, and A. Waibel. Segmentation and punctuation prediction in speech
language translation using a monolingual translation system. In Proceedings of the Ninth
International Workshop on Spoken Language Translation (IWSLT), 2012. URL https://isl.
anthropomatik.kit.edu/pdf/Cho2012.pdf.

Cho, Eunah, Jan Niehues, and Alex Waibel. NMT-Based Segmentation and Punctuation In-
sertion for Real-Time Spoken Language Translation. In Interspeech 2017. ISCA, aug 2017.
doi: 10.21437/interspeech.2017-1320. URL https://doi.org/10.21437%2Finterspeech.
2017-1320.

Fiscus, J.G. A post-processing system to yield reduced word error rates: Recognizer Output
Voting Error Reduction (ROVER). In 1997 IEEE Workshop on Automatic Speech Recognition
and Understanding Proceedings. IEEE. doi: 10.1109/asru.1997.659110. URL https://doi.
org/10.1109%2Fasru.1997.659110.

Gal, Yarin and Zoubin Ghahramani. A Theoretically Grounded Application of
Dropout in Recurrent Neural Networks. In Neural Information Processing Systems

133

https://arxiv.org/pdf/1409.0473v7.pdf
https://arxiv.org/pdf/1409.0473v7.pdf
http://hltshare.fbk.eu/EAMT2012/html/Papers/59.pdf
http://hltshare.fbk.eu/EAMT2012/html/Papers/59.pdf
http://www.mt-archive.info/10/IWSLT-2014-Cettolo.pdf
http://www.mt-archive.info/10/IWSLT-2014-Cettolo.pdf
https://doi.org/10.1109%2Ficassp.2016.7472621
https://isl.anthropomatik.kit.edu/pdf/Cho2012.pdf
https://isl.anthropomatik.kit.edu/pdf/Cho2012.pdf
https://doi.org/10.21437%2Finterspeech.2017-1320
https://doi.org/10.21437%2Finterspeech.2017-1320
https://doi.org/10.1109%2Fasru.1997.659110
https://doi.org/10.1109%2Fasru.1997.659110

PBML 111 OCTOBER 2018

Conference (NIPS), Barcelona, Spain, 2016. URL https://papers.nips.cc/paper/
6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.
pdf.

Graves, Alex, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist
temporal classification. In Proceedings of the 23rd international conference on Machine learning
- ICML ’06. ACM Press, 2006. doi: 10.1145/1143844.1143891. URL https://doi.org/10.
1145%2F1143844.1143891.

Kingma, Diederik P. and Jimmy Ba. Adam: A Method for Stochastic Optimization. In In-
ternational Conference on Learning Representations (ICLR), Banff, Canada, 2015. URL https:
//arxiv.org/pdf/1412.6980.pdf.

Klein, Guillaume, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. OpenNMT:
Open-Source Toolkit for Neural Machine Translation. In Proceedings of ACL 2017, Sys-
tem Demonstrations. Association for Computational Linguistics, 2017. doi: 10.18653/v1/
p17-4012. URL https://doi.org/10.18653%2Fv1%2Fp17-4012.

Koehn, Philipp. Europarl: A parallel corpus for statistical machine translation.
In MT summit, 2005. URL https://homepages.inf.ed.ac.uk/pkoehn/publications/
europarl-mtsummit05.pdf.

Miao, Yajie, Mohammad Gowayyed, and Florian Metze. EESEN: End-to-end speech recogni-
tion using deep RNN models and WFST-based decoding. In 2015 IEEE Workshop on Auto-
matic Speech Recognition and Understanding (ASRU). IEEE, dec 2015. doi: 10.1109/asru.2015.
7404790. URL https://doi.org/10.1109%2Fasru.2015.7404790.

Neubig, Graham, Matthias Sperber, Xinyi Wang, Matthieu Felix, Austin Matthews, Sarguna
Padmanabhan, Ye Qi, Devendra Singh Sachan, Philip Arthur, Pierre Godard, et al. XNMT:
The extensible neural machine translation toolkit. Conference of the Association for Ma-
chine Translation in the Americas (AMTA) Open Source Software Showcase., 2018. URL https:
//arxiv.org/pdf/1803.00188v1.pdf.

Nguyen, Toan and David Chiang. Improving Lexical Choice in Neural Machine Transla-
tion. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Asso-
ciation for Computational Linguistics, 2018. doi: 10.18653/v1/n18-1031. URL https:
//doi.org/10.18653%2Fv1%2Fn18-1031.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics. Association for Computational Linguistics, 2002. doi: 10.3115/
1073083.1073135. URL https://www.aclweb.org/anthology/P02-1040.pdf.

Rousseau, Anthony, Paul Deléglise, and Yannick Esteve. Enhancing the TED-LIUM Corpus
with Selected Data for Language Modeling and More TED Talks. In LREC, 2014. URL
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1104_Paper.pdf.

Rouvier, Mickael, Grégor Dupuy, Paul Gay, Elie Khoury, Teva Merlin, and Sylvain
Meignier. An open-source state-of-the-art toolbox for broadcast news diarization. In
Interspeech, 2013. URL http://publications.idiap.ch/downloads/reports/2013/Rouvier_
Idiap-RR-33-2013.pdf.

134

https://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
https://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
https://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
https://doi.org/10.1145%2F1143844.1143891
https://doi.org/10.1145%2F1143844.1143891
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://doi.org/10.18653%2Fv1%2Fp17-4012
https://homepages.inf.ed.ac.uk/pkoehn/publications/europarl-mtsummit05.pdf
https://homepages.inf.ed.ac.uk/pkoehn/publications/europarl-mtsummit05.pdf
https://doi.org/10.1109%2Fasru.2015.7404790
https://arxiv.org/pdf/1803.00188v1.pdf
https://arxiv.org/pdf/1803.00188v1.pdf
https://doi.org/10.18653%2Fv1%2Fn18-1031
https://doi.org/10.18653%2Fv1%2Fn18-1031
https://www.aclweb.org/anthology/P02-1040.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1104_Paper.pdf
http://publications.idiap.ch/downloads/reports/2013/Rouvier_Idiap-RR-33-2013.pdf
http://publications.idiap.ch/downloads/reports/2013/Rouvier_Idiap-RR-33-2013.pdf

Zenkel, Sperber, Niehues, et al. Toolkit for Speech to Text Translation (125–135)

Sennrich, Rico, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare
Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguis-
tics, 2016. doi: 10.18653/v1/p16-1162. URL https://doi.org/10.18653%2Fv1%2Fp16-1162.

Snover, Matthew, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A
study of translation edit rate with targeted human annotation. In Proceedings of association
for machine translation in the Americas, 2006. URL https://www.cs.umd.edu/~snover/pub/
amta06/ter_amta.pdf.

Stanojevic, Milos and Khalil Sima’an. BEER: BEtter Evaluation as Ranking. In Proceedings of the
Ninth Workshop on Statistical Machine Translation. Association for Computational Linguistics,
2014. doi: 10.3115/v1/w14-3354. URL https://doi.org/10.3115%2Fv1%2Fw14-3354.

Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the Inception Architecture for Computer Vision. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, jun 2016. doi: 10.1109/cvpr.2016.308.
URL https://doi.org/10.1109%2Fcvpr.2016.308.

Wang, Weiyue, Jan-Thorsten Peter, Hendrik Rosendahl, and Hermann Ney. CharacTer: Trans-
lation Edit Rate on Character Level. In Proceedings of the First Conference on Machine Trans-
lation: Volume 2, Shared Task Papers. Association for Computational Linguistics, 2016. doi:
10.18653/v1/w16-2342. URL https://doi.org/10.18653%2Fv1%2Fw16-2342.

Zenkel, Thomas, Ramon Sanabria, Florian Metze, and Alex Waibel. Subword and Crossword
Units for CTC Acoustic Models. Interspeech, 2018. URL https://arxiv.org/pdf/1712.
06855.pdf.

Address for correspondence:
Jan Niehues
jan.niehues@kit.edu
Karlsruhe Institute of Technology
Adenauerring 2,
76131 Karlsruhe, Germany

135

https://doi.org/10.18653%2Fv1%2Fp16-1162
https://www.cs.umd.edu/~snover/pub/amta06/ter_amta.pdf
https://www.cs.umd.edu/~snover/pub/amta06/ter_amta.pdf
https://doi.org/10.3115%2Fv1%2Fw14-3354
https://doi.org/10.1109%2Fcvpr.2016.308
https://doi.org/10.18653%2Fv1%2Fw16-2342
https://arxiv.org/pdf/1712.06855.pdf
https://arxiv.org/pdf/1712.06855.pdf

PBML 111 OCTOBER 2018

The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018

INSTRUCTIONS FOR AUTHORS

Manuscripts are welcome provided that they have not yet been published else-
where and that they bring some interesting and new insights contributing to the broad
field of computational linguistics in any of its aspects, or of linguistic theory. The sub-
mitted articles may be:

• long articles with completed, wide-impact research results both theoretical and
practical, and/or new formalisms for linguistic analysis and their implementa-
tion and application on linguistic data sets, or

• short or long articles that are abstracts or extracts of Master’s and PhD thesis,
with the most interesting and/or promising results described. Also

• short or long articles looking forward that base their views on proper and deep
analysis of the current situation in various subjects within the field are invited,
as well as

• short articles about current advanced research of both theoretical and applied
nature, with very specific (and perhaps narrow, but well-defined) target goal in
all areas of language and speech processing, to give the opportunity to junior
researchers to publish as soon as possible;

• short articles that contain contraversing, polemic or otherwise unusual views,
supported by some experimental evidence but not necessarily evaluated in the
usual sense are also welcome.

The recommended length of long article is 12–30 pages and of short paper is 6–15
pages.

The copyright of papers accepted for publication remains with the author. The
editors reserve the right to make editorial revisions but these revisions and changes
have to be approved by the author(s). Book reviews and short book notices are also
appreciated.

The manuscripts are reviewed by 2 independent reviewers, at least one of them
being a member of the international Editorial Board.

Authors receive a printed copy of the relevant issue of the PBML together with the
original pdf files.

The guidelines for the technical shape of the contributions are found on the web
site http://ufal.mff.cuni.cz/pbml. If there are any technical problems, please con-
tact the editorial staff at pbml@ufal.mff.cuni.cz.

http://ufal.mff.cuni.cz/pbml

	Introduction
	Data
	Annotation Style
	From Analytical to Tectogrammatical Layer
	Converting from ATSs to TGTSs in the Index Thomisticus Treebank Project
	Examples of ATSs and TGTSs from Bellum Catilinae

	Methodology
	Querying the Data
	Networking the Data

	Results and Discussion
	Actors and Actions
	Clustering the Actors

	Conclusion and Future Work
	Introduction
	VALLEX and the Valency Theory of FGD
	Theoretical Analysis of LVCs
	Deep Syntactic structure of LVCs
	Valency Frames of Predicative Nouns
	Valency Frames of Light Verbs
	Semantic vs. Syntactic Center of LVCs
	Coreference and its Key Role in LVCs

	Surface Syntactic Structure
	Double Expression of a Semantic Participant
	Semantic Participants Mapped onto an Optional Free Modification of the Light Verb
	Principles Governing the Expression of Semantic Participants

	Formal Model of Lexicographic Representation of LVCs
	Data Component
	Grammar Component

	Annotation of LVCs in VALLEX
	Lexical Stock
	Annotation Process
	Annotation of Predicative Nouns
	Annotation of Light Verbs

	Types of Coreference

	Conclusion
	Introduction
	Transition-based dependency parsing
	Transition system
	Classifier
	Feature model
	Search
	Oracle
	Training strategy

	The PanParser implementation
	Representation of a dependency tree
	Built-in components
	Enriched input: partial trees and constraints
	Parser ensembling
	Support for other structured prediction tasks: PoS tagging
	Error analysis

	Experiments
	Conclusion and future work
	Deriving a dynamic oracle
	Global dynamic oracles
	Introduction
	Existing Systems
	Design and Structure of The Aligner API
	Workflow
	Base Models
	Alignment Type
	Extended HMM models
	Displaying Alignment Scores
	Loading And Saving Models
	Intersection

	Experiments
	Experiments on Datasets with Alignment Types and POS Tags
	Experiments on Datasets without Alignment Types

	Conclusions
	Introduction
	Related Work
	Input Structure and Grammar Formalism
	Error Identification with Left and Right Attributes
	False Alarms
	Statistical approach to automatic error correction
	Evaluation
	Conclusion
	Introduction
	Design
	Keras
	Multimodal Keras Wrapper
	NMT-Keras

	Features
	Interactive-predictive machine translation
	Tackling other tasks

	Results
	Interactive NMT

	Conclusions
	Introduction
	System Description
	Speech Recognition
	Attentional ASR
	CTC-based ASR

	Punctuation
	MT

	Training Data
	ASR
	Punctuation and Machine Translation

	Evaluation
	Dataset
	Evaluation Metrics
	Results

	Conclusion

