
The Prague Bulletin of Mathematical Linguistics
NUMBER 109 OCTOBER 2017

EDITORIAL BOARD

Editor-in-Chief

Jan Hajič

Editorial staff

Martin Popel
Ondřej Bojar
Dušan Variš

Editorial Assistant

Kateřina Bryanová

Editorial board

Nicoletta Calzolari, Pisa
Walther von Hahn, Hamburg
Jan Hajič, Prague
Eva Hajičová, Prague
Erhard Hinrichs, Tübingen
Aravind Joshi, Philadelphia
Philipp Koehn, Edinburgh
Jaroslav Peregrin, Prague
Patrice Pognan, Paris
Alexandr Rosen, Prague
Petr Sgall, Prague
Hans Uszkoreit, Saarbrücken

Published twice a year by Charles University (Prague, Czech Republic)

Editorial office and subscription inquiries:
ÚFAL MFF UK, Malostranské náměstí 25, 118 00, Prague 1, Czech Republic
E-mail: pbml@ufal.mff.cuni.cz

ISSN 0032-6585

© 2017 PBML. Distributed under CC BY-NC-ND.

http://creativecommons.org/licenses/by-nc-nd/3.0/

The Prague Bulletin of Mathematical Linguistics
NUMBER 109 OCTOBER 2017

CONTENTS

Articles

Open-Source Neural Machine Translation API Server
Sander Tars, Kaspar Papli, Dmytro Chasovskyi, Mark Fishel

5

NMTPY: A Flexible Toolkit for Advanced Neural Machine Translation Systems
Ozan Caglayan, Mercedes García-Martínez, Adrien Bardet, Walid Aransa,
Fethi Bougares, Loïc Barrault

15

Parallelization of Neural Network Training for NLP with Hogwild!
Valentin Deyringer, Alexander Fraser, Helmut Schmid, Tsuyoshi Okita

29

Visualizing Neural Machine Translation Attention and Confidence
Matīss Rikters, Mark Fishel, Ondřej Bojar

39

QE::GUI – A Graphical User Interface for Quality Estimation
Eleftherios Avramidis

51

CzeDLex – A Lexicon of Czech Discourse Connectives
Jiří Mírovský, Pavlína Synková, Magdaléna Rysová, Lucie Poláková

61

Instructions for Authors 92

© 2017 PBML. Distributed under CC BY-NC-ND.

http://creativecommons.org/licenses/by-nc-nd/3.0/

The Prague Bulletin of Mathematical Linguistics
NUMBER 109 OCTOBER 2017 5–14

Open-Source Neural Machine Translation API Server

Sander Tars, Kaspar Papli, Dmytro Chasovskyi, Mark Fishel
Institute of Computer Science, University of Tartu, Estonia

Abstract
We introduce an open-source implementation of a machine translation API server. The

aim of this software package is to enable anyone to run their own multi-engine translation
server with neural machine translation engines, supporting an open API for client applications.
Besides the hub with the implementation of the client API and the translation service providers
running in the background we also describe an open-source demo web application that uses our
software package and implements an online translation tool that supports collecting translation
quality comparisons from users.

1. Introduction

The machine translation community boasts numerous open-source implementa-
tions of neural (e.g. Junczys-Dowmunt et al., 2016; Sennrich et al., 2017; Helcl and Li-
bovický, 2017; Vaswani et al., 2017), statistical (e.g. Koehn et al., 2007) and rule-based
(e.g. Forcada et al., 2011) translation systems. Some of these (e.g. Koehn et al., 2007;
Junczys-Dowmunt et al., 2016) even include functionality of server-mode translation,
keeping the trained model(s) in memory and responding to the client application’s
translation requests. However, in most cases the frameworks are tuned for machine
translation researchers, and basic production functionality like pre-processing and
post-processing pipelines before/after the translation are missing in the translation
server implementations.

We present an open-source implementation of a machine translation production
server implemented in a modular framework. It supports multiple translation clients
running the translation for different language pairs and text domains. The framework
consists of:

© 2017 PBML. Distributed under CC BY-NC-ND. Corresponding author: fishel@ut.ee
Cite as: Sander Tars, Kaspar Papli, Dmytro Chasovskyi, Mark Fishel. Open-Source Neural Machine Translation API
Server. The Prague Bulletin of Mathematical Linguistics No. 109, 2017, pp. 5–14.
doi: 10.1515/pralin-2017-0034.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 109 OCTOBER 2017

Nazgul #1:
de-en, gen. dom.

(fast)

Nazgul #3:
en-fr, gen. dom.

(slow)

Nazgul #2:
de-en, subtitles

(slow)

Client #1:
online NMT

demo

Client #2:
cross-lingual
web search

Sauron

Figure 1. The overall architecture is very simple. Sauron is the server hub, satisfying
requests from client applications by querying the translation providers, the Nazgul.

• Sauron: a translation server hub, receiving client requests to translate a text us-
ing one of pre-configured translation engines, the Nazgul,

• Nazgul: a translation provider and engine wrapper with custom pre-processing
and post-processing steps before/after the translation,

• and a demo web page that uses these two to serve translations to web users, and
includes unbiased feedback collection from the users.

The overall architecture is extremely simple and is shown on Figure 1. The hub
(Sauron) can serve several clients and is connected to several instances of Nazgul, the
translation providers. Each Nazgul is configured to deliver translations for a specific
language pair and possibly text domain.

The structure of this paper is the following. Sauron, the translation server hub, is
presented in Section 2. Nazgul, the translation engine wrapper is covered in Section 3.
The demo web application is described in Section 4. Finally we refer to related work
in Section 5 and conclude the paper in Section 6.

2. Sauron, the Translation Server Hub

The central hub tying together all of the components of our framework is Sauron.
It works as a reverse proxy, receiving translation requests from client applications and

6

S. Tars, K. Papli, D. Chasovskyi, M. Fishel Open-source NMT API Server (5–14)

retrieving the translations from one of the Nazgul (which are described in Section 3).
The code is freely available on GitHub.1

The main features of this central component include
• support for multiple language pairs and text domains
• asynchronous processing of simultaneous translation requests, to enable effi-

cient processing in stressful environments with several requests per second or
more

• support for authentication to limit the service only to registered clients if desired
• letting the client application choose between single sentence or whole text trans-

lation speed priority

2.1. Client Interface

Access to a running Sauron server is implemented as a simple REST API. Once
deployed it runs at a specified URL/IP address and port and supports both GET and
POST HTTP communication methods. The API is described and can be tested online
on SwaggerHub.2 The input parameters are:

auth the authentication token, set in configuration
langpair a identifier of the source-target language pair, set in configuration
src the source text
domain text domain identifier; it can be omitted, leading to the usage of a

general-domain translation engine, set in configuration
fast True indicates the fast, sentence speed-oriented translation method;

default is false, document speed-oriented translation
tok true by default, indicates whether to tokenize the input text
tc true by default, indicates whether to apply true-casing to the input

text
alignweights false by default, indicates whether to also compute and return the

attention weights of the NMT decoder

Although the fast parameter is open to interpretation, the idea is to run “fast”
translation servers on GPUs, enabling one to focus on the speed of translating a single
sentence, while the “slot” servers can be run on CPUs, enabling one to translate a
whole document as a batch in multiple threads.

Each combination of language pair, domain and fast/slow has to be covered by
a corresponding Nazgul instance, there is no automatic backoff from slow to fast or
from in-domain to general domain translation.

1https://github.com/TartuNLP/sauron

2https://app.swaggerhub.com/apis/kspar/sauron/v1.0

7

https://github.com/TartuNLP/sauron
https://app.swaggerhub.com/apis/kspar/sauron/v1.0

PBML 109 OCTOBER 2017

2.2. Configuration

The only configuration required for Sauron is a list of Nazgul translation provider
servers. These are described in an XML file located at $ROOT/src/main/resources
/providers.xml. Each provider is described with the following parameters:

name The name, used for system identification in logs
languagePair A string identifier representing the source-target translation

language pair; there is no enforced format but the same string
must be used as the value for the API request parameter lang-
pair

translationDomain A string identifier representing the translation domain; this is
similarly mapped to the API request parameter domain

fast The GPU/CPU preference, a boolean indicating whether the
server is using a GPU for translation (whether it is fast); this is
mapped to the API request parameter fast

ipAddress The IP address of the translation server
port The listening port of the translation server

2.3. Deployment

Sauron runs on Java Spring Boot.3 The preferred method of deployment is to use
Gradle4 to build a war file:

./gradlew war

and deploy it into a Java web container such as Tomcat. You can also run the server
without a web container:

./gradlew bootRun

3. Nazgul, the Translation Servant

Nazgul implements a translation server provider for Sauron. Its design is a mod-
ular architecture: every step of the translation service process like pre-processing,
translating, post-processing, can be easily modified and substituted. The modular-
ity and open-source format is important for usable machine translation to reduce the

3https://projects.spring.io/spring-boot/

4https://gradle.org/

8

https://projects.spring.io/spring-boot/
https://gradle.org/

S. Tars, K. Papli, D. Chasovskyi, M. Fishel Open-source NMT API Server (5–14)

time required to create various application specific services. The code for Nazgul is
freely available on GitHub.5

Nazgul uses AmuNMT/Marian (Junczys-Dowmunt et al., 2016) as the translation
engine (though the modularity of the architecture allows one to replace it easily). The
main motivation behind it is because it offers fast neural translation. Moreover, we
use a particular modification of this software (available on GitHub6), which supports
extracting the attention weights after decoding.

3.1. Dependencies

Nazgul is written in Python 2.7 for the reasons of broader compatibility. The im-
plementation requires the following dependencies to be satisfied:

• Downloaded and compiled clone of Marian(AmuNMT) with attention weight
output

• The NLTK Python library (Bird et al., 2009). More precisely, the modules punkt,
perluniprops and nonbreaking_prefixes are needed. NLTK is used for sentence
splitting, tokenization and detokenization7

The instructions on how to satisfy these dependencies can be found on the Nazgul
GitHub page.8

3.2. Deployment

With the dependency requirements satisfied, the server can be run from the com-
mand-line simply as a Python file. Example command:

python nazgul.py -c config.yml -e truecase.mdl -s 12345

The command-line options for running are:

-c configuration file to be used for AmuNMT run
-e name of the truecasing model file
-s the port on which the server will listen (default: 12345)

5https://github.com/TartuNLP/nazgul

6https://github.com/barvins/amunmt

7To be precise, NLTK uses Moses (Koehn et al., 2007) to tokenize and detokenize by having a Python
module nltk.tokenize.moses wrap the Moses tokenizing scripts.

8https://github.com/TartuNLP/nazgul

9

https://github.com/TartuNLP/nazgul
https://github.com/barvins/amunmt
https://github.com/TartuNLP/nazgul

PBML 109 OCTOBER 2017

The true-caser expects the true-casing models to be trained using the Moses true-
caser script.9 The true-casing model file is expected to be in the same directory with
the Nazgul.

The configuration file that is required for AmuNMT translation, is also expected to
be in the same directory with the Nazgul. The configuration file specifies the transla-
tion model file, vocabularies, whether to use byte pair encoding (BPE, Sennrich et al.,
2015), whether to display attention info and many more options. One possible con-
figuration file that we use, is presented on the Nazgul GitHub page with explana-
tions. Additional information can be found on both the original AmuNMT and cloned
GitHub pages.

Currently the BPE is only available in Nazgul through AmuNMT configuration
file. The reason is that in our experiments having BPE through AmuNMT resulted in
faster translation. We are also adding support for separate BPE. To train and apply
BPE we used the open-source implementation by Sennrich et al. (2015).10

3.3. Workflow

This section describes what happens when Nazgul is started and used to translate.
The process is implemented in the file nazgul.py.

First, it initialises the key components: AmuNMT, tokenizer, detokenizer, true-
caser and finally binds a socket to the specified port to listen for translation requests.
Nazgul is capable of serving multiple clients simultaneously.

Secondly, when a client connects to Nazgul, the connection is verified and then
translation requests are accepted. The necessary protocols are implemented in Sauron,
so it is the most convenient option for connecting with Nazgul. For each client con-
nection Nazgul creates a separate thread. The translation request format is a dict
in JSON, which includes the fields src, tok and tc that are passed unchanged from
Sauron as well as a boolean parameter alignweights, which specifies whether this
Nazgul should include attention info in the response.

Once the translation request JSON is received, the source string is subjected to
pre-processing. Pre-processing starts with sentence splitting, which is always done
for the sake of multi-sentence inputs. After that each received sentence is tokenized
and truecased, if specified in the JSON input.

After pre-processing, the sentences are sent to the instance of AmuNMT to be
translated. From its translation output Nazgul separates the raw translation, atten-
tion info, and raw input. It is recommended to disable AmuNMT de-BPE function
in the configuration file, otherwise the raw translation will actually be the de-BPEd
translation while raw input will be BPEd, thus perturbing the attention info interpre-
tation.

9http://www.statmt.org/moses/?n=Moses.SupportTools#ntoc11

10https://github.com/rsennrich/subword-nmt

10

http://www.statmt.org/moses/?n=Moses.SupportTools#ntoc11
 https://github.com/rsennrich/subword-nmt

S. Tars, K. Papli, D. Chasovskyi, M. Fishel Open-source NMT API Server (5–14)

Figure 2. A screenshot from the web application’s Play functionality, which aims to let the
users compare the outputs of three translation engines and also to collect the unbiased
feedback from the users’ selection of the best translation. The Estonian input reads:

Let’s take the boat there.

When the translation output is received, the translated sentences are subjected to
post-processing, which includes detokenization (if tokenization is enabled), and de-
truecasing.

Finally, the result of the translation process is sent to the client as a utf-8 encoded
JSON dict, which includes fields raw_trans, raw_input, weights, and final_trans,
which is an array of post-processed and de-BPEd translation outputs. The order of
the outputs is the same as in the input text after sentence-splitting.

After sending the response JSON, Nazgul waits for either the next request or ter-
mination. Anything that is not JSON is interpreted as a termination signal. In Sauron
the process is resolved in such a way that after each fulfilled request the connection is
closed. The waiting for next requests is a feature for use cases where the bi-directional
communication is expected to have a continuous load for several messages, which
would make closing and re-opening the connection an unnecessary overhead.

11

PBML 109 OCTOBER 2017

For further reference on communication, refer to both Nazgul and Sauron docu-
mentation pages and simple test scripts presented in the GitHub repository.

4. Neurotõlge, the Example Web Application

Finally we describe an NMT web demo implementation that uses Sauron and
Nazgul to fulfill translation requests: Neurotõlge.11 The demo is live at http://www.
neurotolge.ee (with an international mirror domain http://neuralmt.ee), and the
code of the implementation is freely available on GitHub.12

The basic functionality of the web application is to translate the input text that
the client enters. The text can consist of several sentences, and the client can switch
between the available source and target languages (English and Estonian in the live
version). Once the client presses the “translate” button the text is translated.

4.1. Collecting User Feedback

Beside the “translate” button there is also a “play” button: once pressed, the ap-
plication uses three different translation engines to translate the source text. In the
live version these are the University of Tartu’s translator running on Sauron, Google
Translate13 and Tilde Neural Machine Translation.14

Once ready all three translations are displayed in random order without telling the
user, which output belongs to which translation engine; the user is invited to select
the best translation in order to find out which is which. See an example screenshot of
this functionality on Figure 2.

The aim of this feedback collection is to get an unbiased estimation of which trans-
lation engine gets selected as best most often. Naturally some users will click on the
first or on a random translation, but since the order of the translations is random and
the identity of the translation engines is hidden, this will only add uniform noise to
the distribution of the best translation engines. This approach was inspired by Blind-
Search.15

4.2. Dependencies

The front-end of the web application is implemented in JavaScript, using AJAX for
asynchronous communications with the back-end and the Bootstrap framework16 for

11Neural machine translation in Estonian
12https://github.com/TartuNLP/neurotolge

13http://translate.google.com/

14https://translate.tilde.com/neural/

15http://blindsearch.fejus.com/

16http://getbootstrap.com/

12

http://www.neurotolge.ee
http://www.neurotolge.ee
http://neuralmt.ee
https://github.com/TartuNLP/neurotolge
http://translate.google.com/
https://translate.tilde.com/neural/
http://blindsearch.fejus.com/
http://getbootstrap.com/

S. Tars, K. Papli, D. Chasovskyi, M. Fishel Open-source NMT API Server (5–14)

an appealing graphic design The back-end is built using Flask.17 It can be connected
to any web server, like Apache, or to be run as a standalone server.

5. Related Work

Some MT service frameworks have been introduced for SMT (Sánchez-Cartagena
and Pérez-Ortiz, 2010; Federmann and Eisele, 2010; Tamchyna et al., 2013) and de-
signed to work with Moses (Koehn et al., 2007). The Apertium system also includes
a web demo and server framework (Forcada et al., 2011).

NeuralMonkey (Helcl and Libovický, 2017) includes server-running mode, and
supports several language pairs and text domains (via different system IDs). How-
ever, AmuNMT that our framework uses has been shown to run faster and bringing
slightly higher translation quality.

6. Conclusions

We introduce an open-source implementation of a neural machine translation API
server. The server consists of a reverse proxy or translation hub that accepts transla-
tion requests from client applications and an implementation of a back-end translation
server with the pre-processing and post-processing pipelines. The current version
uses Marian (AmuNMT) as the translation engine, and the modular architecture of
the implementation allows it to be replaced with other NMT engines.

We also described a demo web application that uses the API implementation. In
addition to letting its users translate texts it also includes a feedback collection compo-
nent, which can be used to get an idea of the user feedback on the translation quality.

Future work includes adding a database support to the hub implementation to al-
low the developer to track the usage of the API, as well as a possibility to visualize the
alignment matrix of the NMT decoder on the demo web application to help the users
analyze translations and understand, why some translations are counter-intuitive.

Acknowledgements

The projects described here were partially supported by the National Programme
for Estonian Language Technology, project EKT88: KaMa: Kasutatav Eesti Masintõlge /
Usable Estonian Machine Translation.18

Bibliography

Bird, Steven, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O’Reilly
Media, 2009.

17http://flask.pocoo.org/

18https://www.keeletehnoloogia.ee/et/ekt-projektid/kama-kasutatav-eesti-masintolge

13

http://flask.pocoo.org/
https://www.keeletehnoloogia.ee/et/ekt-projektid/kama-kasutatav-eesti-masintolge

PBML 109 OCTOBER 2017

Federmann, Christian and Andreas Eisele. MT Server Land: An Open-Source MT Architecure.
The Prague Bulletin of Mathematical Linguistics, 94:57–66, 2010.

Forcada, Mikel L, Mireia Ginestí-Rosell, Jacob Nordfalk, Jim O’Regan, Sergio Ortiz-Rojas,
Juan Antonio Pérez-Ortiz, Felipe Sánchez-Martínez, Gema Ramírez-Sánchez, and Francis M
Tyers. Apertium: a free/open-source platform for rule-based machine translation. Machine
translation, 25(2):127–144, 2011.

Helcl, Jindřich and Jindřich Libovický. Neural Monkey: An Open-source Tool for Sequence
Learning. The Prague Bulletin of Mathematical Linguistics, (107):5–17, 2017.

Junczys-Dowmunt, Marcin, Tomasz Dwojak, and Hieu Hoang. Is Neural Machine Translation
Ready for Deployment? A Case Study on 30 Translation Directions. CoRR, abs/1610.01108,
2016. URL http://arxiv.org/abs/1610.01108.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In Proceedings of the 45th Annual Meeting of the Association for Computa-
tional Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages 177–180,
Prague, Czech Republic, 2007.

Sánchez-Cartagena, Víctor and Juan Pérez-Ortiz. ScaleMT: a free/open-source framework for
building scalable machine translation web services. The Prague Bulletin of Mathematical Lin-
guistics, 93:97–106, 2010.

Sennrich, Rico, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare
Words with Subword Units. CoRR, abs/1508.07909, 2015. URL http://arxiv.org/abs/
1508.07909.

Sennrich, Rico, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow, Julian Hitschler,
Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Valerio Miceli Barone, Jozef Mokry, and
Maria Nadejde. Nematus: a Toolkit for Neural Machine Translation. CoRR, abs/1703.04357,
2017. URL http://arxiv.org/abs/1703.04357.

Tamchyna, Aleš, Ondřej Dušek, Rudolf Rosa, and Pavel Pecina. MTMonkey: A Scalable Infras-
tructure for a Machine Translation Web Service. The Prague Bulletin of Mathematical Linguis-
tics, 100:31–40, 2013.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. CoRR, abs/1706.03762,
2017. URL http://arxiv.org/abs/1706.03762.

Address for correspondence:
Mark Fishel
fishel@ut.ee
Institute of Computer Science, University of Tartu
Liivi 2, Tartu 50409
Estonia

14

http://arxiv.org/abs/1610.01108
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1703.04357
http://arxiv.org/abs/1706.03762

The Prague Bulletin of Mathematical Linguistics
NUMBER 109 OCTOBER 2017 15–28

NMTPY: A Flexible Toolkit for Advanced Neural Machine
Translation Systems

Ozan Caglayan, Mercedes García-Martínez, Adrien Bardet, Walid Aransa,
Fethi Bougares, Loïc Barrault

Laboratoire d’Informatique de l’Université du Maine (LIUM)

Abstract
In this paper, we present nmtpy, a flexible Python toolkit based on Theano for training Neu-

ral Machine Translation and other neural sequence-to-sequence architectures. nmtpy decouples
the specification of a network from the training and inference utilities to simplify the addition
of a new architecture and reduce the amount of boilerplate code to be written. nmtpy has been
used for LIUM’s top-ranked submissions to WMT Multimodal Machine Translation and News
Translation tasks in 2016 and 2017.

1. Introduction

nmtpy is a refactored, extended and Python 3 only version of dl4mt-tutorial1, a
Theano (Theano Development Team, 2016) implementation of attentive Neural Ma-
chine Translation (NMT) (Bahdanau et al., 2014). The development of nmtpy project
which has been open-sourced2 under MIT license in March 2017, started in March
2016 as an effort to adapt dl4mt-tutorial to multimodal translation models. nmtpy has
now become a powerful toolkit where adding a new model is as simple as deriving
from an abstract base class, implementing a set of its methods and writing a custom
data iterator if necessary. The training and inference utilities are as model-agnostic

1https://github.com/nyu-dl/dl4mt-tutorial

2https://github.com/lium-lst/nmtpy

© 2017 PBML. Distributed under CC BY-NC-ND. Corresponding author: ozancag@gmail.com
Cite as: Ozan Caglayan, Mercedes García-Martínez, Adrien Bardet, Walid Aransa, Fethi Bougares, Loïc Barrault.
NMTPY: A Flexible Toolkit for Advanced Neural Machine Translation Systems. The Prague Bulletin of Mathematical
Linguistics No. 109, 2017, pp. 15–28. doi: 10.1515/pralin-2017-0035.

https://github.com/nyu-dl/dl4mt-tutorial
https://github.com/lium-lst/nmtpy
http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 109 OCTOBER 2017

as possible allowing one to use them for different sequence generation networks such
as multimodal NMT and image captioning to name a few.

Other prominent toolkits in the field are OpenNMT (Klein et al., 2017), Neural
Monkey (Helcl and Libovický, 2017) and Nematus (Sennrich et al., 2017). While nmtpy
and Nematus share the same dl4mt-tutorial codebase, the flexibility and the rich set of
architectures (Section 3) are what differentiate our toolkit from Nematus. Both Open-
NMT and Nematus are solely focused on translation by providing feature-rich but
monolithic NMT implementations. Neural Monkey which is based on TensorFlow
(Abadi et al., 2016), provides a more generic sequence-to-sequence learning frame-
work similar to nmtpy.

2. Design

In this section we first give an overview of a typical NMT training session in nmtpy
and the design of the translation utility nmt-translate. We then describe the configu-
ration file format, explain how to define new architectures and finally introduce the
basic deep learning elements and techniques provided by nmtpy. A more detailed
tutorial about training an NMT model is available on Github 3.

2.1. Training

A training experiment (Figure 1) is launched by providing an INI-style experiment
configuration file to nmt-train (Listing 1). nmt-train then automatically selects a free
GPU, sets the seed for NumPy and Theano random number generators, constructs
an informative filename for log files and model checkpoints and finally instantiates
a Python object of type "model_type" given through the configuration file. The tasks
of data loading, weight initialization and graph construction are all delegated to this
model instance.
$ nmt-train -c en-de.conf # Launch an experiment
$ nmt-train -c en-de.conf 'model_type:new_nmt' # Override model_type
$ nmt-train -c en-de.conf 'rnn_dim:500' 'embedding_dim:300' # Change dimensions
$ nmt-train -c en-de.conf 'device_id:gpu5' # Force specific GPU device

Listing 1. Example usages of nmt-train.

During training, nmt-train consumes mini-batches of data from the model’s iterator
and performs forward/backward passes along with the weight updates. Translation
performance on a held-out corpus is periodically evaluated in order to early-stop the
training process to avoid overfitting. These periodic evaluations are realized by calling
nmt-translate which performs beam-search, computes metrics and returns them back
to nmt-train.

3https://github.com/lium-lst/wmt17-mmt

16

https://github.com/lium-lst/wmt17-mmt

O. Caglayan et al. NMTPY (15–28)

nmt-train nmt-translate
(beam search)

model: NMT
lrate: 0.1
 eval: BLEU
 data: ...

 ...

Experiment
Configuration

Evaluation
Metrics

METEOR

BLEU

External

...

Model
Definitions

PKL

Text

BiText
...

Data
Iterators

Periodic

Evaluation

NMT
MNMT

FNMT

...

Figure 1. The workflow of a training experiment.

2.2. Translation

nmt-translate performs translation decoding using a beam-search implementation
that supports single and ensemble decoding for both monomodal and multimodal
translation models (Listing 2).

Since the number of CPUs in a single machine is 2x-4x higher than the number of
GPUs and we mainly reserve the GPUs for training, nmt-translate makes use of CPU
workers for maximum efficiency. More specifically, each worker receives a model in-
stance (or instances when ensembling) and performs the beam-search on samples that
it continuously fetches from a shared queue filled by the master process. One thing
to note for parallel CPU decoding is that if the installed NumPy is linked against a
BLAS implementation with threading support enabled (as in the case with Anaconda
& Intel MKL), each spawned process attempts to use all available threads in the ma-
chine leading to a resource conflict. In order for nmt-translate to benefit correctly from
parallelism, the number of threads per process should thus be limited to one 4. The
impact of this setting and the overall decoding speed in terms of words/sec (wps) are
reported in Table 1 for a medium-sized En→Tr NMT with ∼10M parameters.
Decode on 30 CPUs with beam size 10, compute BLEU/METEOR
$ nmt-translate -j 30 -b 10 -M bleu meteor -m model.npz -S val.bpe.en -R val.de -o out.de
Generate 50-best list with an ensemble of checkpoints
$ nmt-translate -b 50 -N 50 -m model*npz -S val.tok.de -o out.tok.50best.de

Listing 2. Example usages of nmt-translate.

4This is achieved by setting X_NUM_THREADS=1 environment variable where X is one of OPENBLAS,OMP,MKL
depending on the NumPy installation.

17

PBML 109 OCTOBER 2017

BLAS Threads Tesla K40 4 CPU 8 CPU 16 CPU

Default 185 wps 25 wps 25 wps 25 wps
Set to 1 185 wps 109 wps 198 wps 332 wps

Table 1. Median beam-search speed over 3 runs with beam size 12: decoding on a single
Tesla K40 GPU is roughly equivalent to using 8 CPUs (Intel Xeon E5-2687v3).

2.3. Configuration

Each nmtpy experiment is defined with an INI-style configuration file that has four
mandatory sections, namely [training], [model], [model.dicts] and [model.data].
Each section may contain a number of options in key:value format where the value
can be built-in Python data types like integer, float, boolean, string, list, etc. Paths
starting with a tilde are automatically expanded to $HOME folder.

The options defined in the [training] section are consumed by nmt-train while
the ones in the [model.*] sections are automatically passed to the model instance
(specifically, to its __init__() method) created by nmt-train. This allows one to add
a new key:value option to the configuration file and access it automatically from the
model instance.

Any option defined in the configuration file can be overridden through the com-
mand line by passing new key:value pair as the last argument to nmt-train (Listing 1).
The common defaults defined in nmtpy/defaults.py are shortly described in Table 2.
A complete configuration example is provided in Appendix A.

2.4. Defining New Architectures

A new architecture can be defined by creating a new file (i.e. my_amazing_nmt.py)
under nmtpy/models, defining a new Model class derived from BaseModel and imple-
menting 5 the set of methods detailed below:

• __init__(): Instantiates a model. Keyword arguments can be used to gather
model specific options from the configuration file.

• init_params(): Initializes the layers and their weights.
• build(): Defines the computation graph for training.
• build_sampler(): Defines the computation graph for beam-search. This is sim-

ilar to build() except two additional Theano functions.
• load_valid_data(): Loads the validation data for perplexity computation.
• load_data(): Loads the training data.

5The NMT architecture defined in attention.py can generally be used as a skeleton code when devel-
oping new architectures.

18

O. Caglayan et al. NMTPY (15–28)

2.5. Building Blocks

Initialization Weight initialization is governed by the weight_init option and sup-
ports Xavier (Glorot and Bengio, 2010), He (He et al., 2015), orthogonal (Saxe et al.,
2013) and random normal initializations.

Regularization An inverse-mode (the magnitudes are scaled during training in-
stead of testing) dropout (Srivastava et al., 2014) can be applied over any tensor. L2

weight regularization with a scalar factor given by decay_c option is also provided.

Option Value Description

[training] options
init None/<.npz file> Pretrained checkpoint to initialize the weights.

device_id auto/cpu/gpu<int> Select training device automatically or manually.
seed 1234 The seed for Theano and NumPy RNGs.

clip_c 5.0 Gradient norm clipping threshold.
decay_c 0.0 L2 regularization factor.
patience 10 Early-stopping patience.

patience_delta 0.0 Absolute difference of early-stopping metric
that will be taken into account as an improvement.

max_epochs 100 Maximum number of epochs for training.
max_iteration 1e6 Maximum number of updates for training.
valid_metric bleu/meteor/px Validation metric(s) (separated by comma) to be

printed, first being the early-stopping metric.
valid_start 1 Start validation after this number of epochs finished.
valid_freq 0 0 means validations occur at end of epochs while

an explicit <int> defines the period in terms of updates.
valid_njobs 16 Number of CPUs to use during validation beam-search.
valid_beam 12 The size of the beam during validation beam-search.

valid_save_hyp False/True Dumps validation hypotheses to separate text files.
disp_freq 10 The frequency of logging in terms of updates.

save_best_n 4 Save 4 best models on-disk based on validation metric
for further ensembling.

[model] options
weight_init xavier/he/<float> Weight initialization method or a <float> to define

the scale of random normal distribution.
batch_size 32 Mini-batch size for training.
optimizer adam/adadelta/ Stochastic optimizer to use for training.

sgd/rmsprop
lrate None/<float> If given, overrides the optimizer default defined

in nmtpy/optimizers.py.

Table 2. Description of options and their default values: when the number of possible
values is finite, the default is written in bold.

19

PBML 109 OCTOBER 2017

Layers Feed-forward layer, highway layer (Srivastava et al., 2015), Gated Recurrent
Unit (GRU) (Chung et al., 2014) Conditional GRU (CGRU) (Firat and Cho, 2016) and
Multimodal CGRU (Caglayan et al., 2016a,b) are currently available for architecture
design. Layer normalization (Ba et al., 2016), a method that adaptively learns to scale
and shift the incoming activations of a neuron is available for GRU and CGRU blocks.

Iteration Parallel and monolingual text iterators with compressed (.gz, .bz2, .xz) file
support are available under the names TextIterator and BiTextIterator. Addition-
ally, the multimodal WMTIterator allows using image features and source/target sen-
tences at the same time for multimodal NMT (Section 3.3). An efficient target length
based batch sorting is available with the option shuffle_mode:trglen.

Training nmtpy provides Theano implementations of stochastic gradient descent
(SGD) and its adaptive variants RMSProp (Tieleman and Hinton, 2012), Adadelta
(Zeiler, 2012) and Adam (Kingma and Ba, 2014) to optimize the weights of the trained
network. A preliminary support for gradient noise (Neelakantan et al., 2015) is avail-
able for Adam. Gradient norm clipping (Pascanu et al., 2013) is enabled by default
with a threshold of 5 to avoid exploding gradients. Although the provided architec-
tures all use the cross-entropy objective by their nature, any arbitrary differentiable
objective function can be used since the training loop is agnostic to the architecture
being trained.

Post-processing All decoded translations will be post-processed if filter option is
given in the configuration file. This is useful in the case where one would like to
compute automatic metrics on surface forms instead of segmented. Currently avail-
able filters are bpe and compound for cleaning subword BPE (Sennrich et al., 2016) and
German compound-splitting (Sennrich and Haddow, 2015) respectively.

Metrics nmt-train performs a patience based early-stopping using either validation
perplexity or one of the automatic metric wrappers i.e. BLEU (Papineni et al., 2002) or
METEOR (Lavie and Agarwal, 2007). These metrics are also available for nmt-translate
to immediately score the produced hypotheses. Other metrics can be easily added and
made available as early-stopping metrics.

3. Architectures

3.1. Neural Machine Translation (NMT)

The NMT architecture (attention) is based on dl4mt-tutorial which differs from
Bahdanau et al. (2014) in the following major aspects:

20

O. Caglayan et al. NMTPY (15–28)

• The decoder is CGRU (Firat and Cho, 2016) which consists of two GRU inter-
leaved with attention mechanism,

• The hidden state of the decoder is initialized with a non-linear transformation
applied to mean bi-directional encoder state instead of last one,

• Maxout (Goodfellow et al., 2013) layer before the softmax operation is removed.

Option Value(s) (default) Description

init_cgru zero (text) Initializes CGRU with zero instead of mean encoder state
(García-Martínez et al., 2017).

tied_emb 2way/3way (False) Allows 2way and 3way sharing of embeddings in the network
(Inan et al., 2016; Press and Wolf, 2016).

shuffle_mode simple (trglen) Switch between simple and target-length ordered shuffling.
layer_norm bool (False) Enable/disable layer normalization for GRU encoder.

simple_output bool (False) Condition target probability only on decoder’s hidden state
(García-Martínez et al., 2017).

n_enc_layers int (1) Number of unidirectional encoders to stack on top
of the bi-directional encoder.

emb_dropout float (0) Rate of dropout applied on source embeddings.
ctx_dropout float (0) Rate of dropout applied on source encoder states.
out_dropout float (0) Rate of dropout applied on pre-softmax activations.

Table 3. Description of configuration options for the NMT architecture.

The final NMT architecture offers many new options which are shortly explained
in Table 3. We also provide a set of auxiliary tools which are useful for pre-processing
and post-training tasks (Table 4).

Tool Description

nmt-bpe-* Clone of subword utilities for BPE processing (Sennrich et al., 2016).
nmt-build-dict Generates .pkl vocabulary files from corpora prior to training.

nmt-rescore Rescores n-best hypotheses with single/ensemble of models on GPU.
nmt-coco-metrics Computes several metrics using MSCOCO evaluation tools (Chen et al., 2015).

nmt-extract Extracts and saves weights from a trained model instance.

Table 4. Brief descriptions of helper NMT tools.

3.2. Factored NMT (FNMT)

Factored NMT (FNMT) is an extension of NMT which generates two output sym-
bols (García-Martínez et al., 2016). In contrast to multi-task architectures, FNMT out-
puts share the same recurrence and output symbols are generated in a synchronous

21

PBML 109 OCTOBER 2017

fashion. Two variants which differ in how they handle the output layer are currently
available: (attention_factors) where the lemma and factor embeddings are con-
catenated to form a single feedback embedding and (attention_factors_seplogits)
where the output path for lemmas and factors are kept separate with different pre-
softmax transformations applied for specialization.

3.3. Multimodal NMT (MNMT)

We provide several multimodal architectures where the probability of a target
word is estimated given source sentence representations and visual features: (1) Fu-
sion architectures (Caglayan et al., 2016a,b) extend monomodal CGRU into a multi-
modal one where a multimodal attention is applied over textual and visual features,
(2) MNMT architectures based on global features make use of fixed-width visual fea-
tures to ground NMT with visual informations (Caglayan et al., 2017).

3.4. Other

• A GRU-based reimplementation (img2txt) of Show, Attend and Tell image cap-
tioning architecture (Xu et al., 2015),

• A GRU-based language model architecture (rnnlm) to train recurrent language
models. nmt-test-lm is the inference utility for perplexity computation of a cor-
pus using a trained checkpoint.

4. Results

System MMT Test2017 Meteor (Rank)

NMT En→De 53.8 (#3)
MNMT En→De 54.0 (#1)

NMT En→Fr 70.1 (#4)
MNMT En→Fr 72.1 (#1)

System News Test2017 BLEU

NMT-UEDIN (Winner) En→Tr 16.5
NMT-Ours (Post-deadline) En→Tr 18.1

FNMT En→Lv 16.2
FNMT En→Cs 19.9

Table 5. Ensembling scores for LIUM’s WMT17 MMT and News Translation submissions.

22

O. Caglayan et al. NMTPY (15–28)

System Test2017 BLEU Test2017 METEOR

Nmtpy 30.8 ± 1.0 51.6 ± 0.5
Nematus 31.6 50.6

Table 6. Mean/std. deviation of 5 Nmtpy runs vs 1 Nematus run for WMT17 MMT En→De.

We present our submitted nmtpy systems for Multimodal Translation (MMT) and
News Translation tasks of WMT17 (Table 5). For MMT, state-of-the-art results are
obtained by our systems (Caglayan et al., 2017)6 in both En→De and En→Fr tracks
(Elliott et al., 2017). In the context of news translation task, our post-deadline En→Tr
NMT system (García-Martínez et al., 2017) surpassed the official winner by 1.6 BLEU.

We also trained a monomodal NMT for WMT17 MMT En→De track with Nematus
using hyper-parameters very similar to our submitted NMT architecture and found
that the results are comparable for BLEU and slightly better for nmtpy in terms of
METEOR (Table 6).

5. Conclusion

We have presented nmtpy, an open-source sequence-to-sequence framework based
on dl4mt-tutorial and refined in many ways to ease the task of integrating new ar-
chitectures. The toolkit has been internally used in our team for tasks ranging from
monomodal, multimodal and factored NMT to image captioning and language mod-
eling to achieve top-ranked campaign results and state-of-the-art performance.

Acknowledgements

This work was supported by the French National Research Agency (ANR) through
the CHIST-ERA M2CR project, under the contract number ANR-15-CHR2-0006-017.

Bibliography

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. URL http://arxiv.org/abs/1607.06450.

6http://github.com/lium-lst/wmt17-mmt

7http://m2cr.univ-lemans.fr

23

http://arxiv.org/abs/1607.06450
http://github.com/lium-lst/wmt17-mmt
http://m2cr.univ-lemans.fr

PBML 109 OCTOBER 2017

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.
org/abs/1409.0473.

Caglayan, Ozan, Walid Aransa, Yaxing Wang, Marc Masana, Mercedes García-Martínez, Fethi
Bougares, Loïc Barrault, and Joost van de Weijer. Does Multimodality Help Human and
Machine for Translation and Image Captioning? In Proceedings of the First Conference on
Machine Translation, pages 627–633, Berlin, Germany, August 2016a. Association for Com-
putational Linguistics. URL http://www.aclweb.org/anthology/W/W16/W16-2358.pdf.

Caglayan, Ozan, Loïc Barrault, and Fethi Bougares. Multimodal Attention for Neural Ma-
chine Translation. arXiv preprint arXiv:1609.03976, 2016b. URL http://arxiv.org/abs/
1609.03976.

Caglayan, Ozan, Walid Aransa, Adrien Bardet, Mercedes García-Martínez, Fethi Bougares, Loïc
Barrault, Marc Masana, Luis Herranz, and Joost van de Weijer. LIUM-CVC Submissions for
WMT17 Multimodal Translation Task. In Proceedings of the Second Conference on Machine
Translation, Copenhagen, Denmark, September 2017.

Chen, Xinlei, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár,
and C Lawrence Zitnick. Microsoft COCO captions: Data collection and evaluation server.
arXiv preprint arXiv:1504.00325, 2015.

Chung, Junyoung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical Evalu-
ation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR, abs/1412.3555,
2014. URL http://arxiv.org/abs/1412.3555.

Elliott, Desmond, Stella Frank, Loïc Barrault, Fethi Bougares, and Lucia Specia. Findings of the
Second Shared Task on Multimodal Machine Translation and Multilingual Image Descrip-
tion. In Proceedings of the Second Conference on Machine Translation, Copenhagen, Denmark,
September 2017.

Firat, Orhan and Kyunghyun Cho. Conditional Gated Recurrent Unit with Attention Mecha-
nism. github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf, 2016.

García-Martínez, Mercedes, Loïc Barrault, and Fethi Bougares. Factored Neural Machine Trans-
lation Architectures. In Proceedings of the International Workshop on Spoken Language Trans-
lation, IWSLT’16, Seattle, USA, 2016. URL http://workshop2016.iwslt.org/downloads/
IWSLT_2016_paper_2.pdf.

García-Martínez, Mercedes, Ozan Caglayan, Walid Aransa, Adrien Bardet, Fethi Bougares, and
Loïc Barrault. LIUM Machine Translation Systems for WMT17 News Translation Task. In
Proceedings of the Second Conference on Machine Translation, Copenhagen, Denmark, Septem-
ber 2017.

Glorot, Xavier and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intel-
ligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–256.
PMLR, 13–15 May 2010. URL http://proceedings.mlr.press/v9/glorot10a.html.

Goodfellow, Ian, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio.
Maxout Networks. In Dasgupta, Sanjoy and David McAllester, editors, Proceedings of
the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine

24

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://www.aclweb.org/anthology/W/W16/W16-2358.pdf
http://arxiv.org/abs/1609.03976
http://arxiv.org/abs/1609.03976
http://arxiv.org/abs/1412.3555
github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
http://workshop2016.iwslt.org/downloads/IWSLT_2016_paper_2.pdf
http://workshop2016.iwslt.org/downloads/IWSLT_2016_paper_2.pdf
http://proceedings.mlr.press/v9/glorot10a.html

O. Caglayan et al. NMTPY (15–28)

Learning Research, pages 1319–1327, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL
http://proceedings.mlr.press/v28/goodfellow13.html.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers: Sur-
passing Human-Level Performance on ImageNet Classification. In Computer Vision (ICCV),
2015 IEEE International Conference on, pages 1026–1034. IEEE, 2015.

Helcl, Jindřich and Jindřich Libovický. Neural Monkey: An Open-source Tool for Se-
quence Learning. The Prague Bulletin of Mathematical Linguistics, (107):5–17, 2017. ISSN
0032-6585. doi: 10.1515/pralin-2017-0001. URL http://ufal.mff.cuni.cz/pbml/107/
art-helcl-libovicky.pdf.

Inan, Hakan, Khashayar Khosravi, and Richard Socher. Tying Word Vectors and Word Classi-
fiers: A Loss Framework for Language Modeling. arXiv preprint arXiv:1611.01462, 2016.

Kingma, Diederik and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Klein, G., Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. OpenNMT: Open-Source Toolkit for
Neural Machine Translation. ArXiv e-prints, 2017.

Lavie, Alon and Abhaya Agarwal. Meteor: An Automatic Metric for MT Evaluation with High
Levels of Correlation with Human Judgments. In Proceedings of the Second Workshop on Sta-
tistical Machine Translation, StatMT ’07, pages 228–231, Stroudsburg, PA, USA, 2007. Associ-
ation for Computational Linguistics. URL http://dl.acm.org/citation.cfm?id=1626355.
1626389.

Neelakantan, Arvind, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and
James Martens. Adding gradient noise improves learning for very deep networks. arXiv
preprint arXiv:1511.06807, 2015. URL http://arxiv.org/abs/1511.06807.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A Method for Au-
tomatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02, pages 311–318, Stroudsburg, PA, USA,
2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL
http://dx.doi.org/10.3115/1073083.1073135.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. On the Difficulty of Training Recurrent
Neural Networks. In Proceedings of the 30th International Conference on International Conference
on Machine Learning - Volume 28, ICML’13, pages III–1310–III–1318. JMLR.org, 2013. URL
http://dl.acm.org/citation.cfm?id=3042817.3043083.

Press, Ofir and Lior Wolf. Using the output embedding to improve language models. arXiv
preprint arXiv:1608.05859, 2016.

Saxe, Andrew M, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Sennrich, Rico and Barry Haddow. A Joint Dependency Model of Morphological and Syntactic
Structure for Statistical Machine Translation. In Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing, pages 114–121. Association for Computational
Linguistics, 2015.

25

http://proceedings.mlr.press/v28/goodfellow13.html
http://ufal.mff.cuni.cz/pbml/107/art-helcl-libovicky.pdf
http://ufal.mff.cuni.cz/pbml/107/art-helcl-libovicky.pdf
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=1626355.1626389
http://dl.acm.org/citation.cfm?id=1626355.1626389
http://arxiv.org/abs/1511.06807
http://dx.doi.org/10.3115/1073083.1073135
http://dl.acm.org/citation.cfm?id=3042817.3043083

PBML 109 OCTOBER 2017

Sennrich, Rico, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare
Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany, August
2016. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
P16-1162.

Sennrich, Rico, Orhan Firat, Kyunghyun Cho, Alexandra Birch-Mayne, Barry Haddow, Julian
Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Miceli Barone, Jozef Mokry,
and Maria Nadejde. Nematus: a Toolkit for Neural Machine Translation, pages 65–68. Associa-
tion for Computational Linguistics (ACL), 4 2017. ISBN 978-1-945626-34-0.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn.
Res., 15(1):1929–1958, Jan. 2014. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?
id=2627435.2670313.

Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv
preprint arXiv:1505.00387, 2015.

Theano Development Team. Theano: A Python framework for fast computation of mathemat-
ical expressions. arXiv e-prints, abs/1605.02688, 2016. URL http://arxiv.org/abs/1605.
02688.

Tieleman, Tijmen and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 2012.

Xu, Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention. In Proceedings of the 32nd International Conference on Machine Learn-
ing (ICML-15), pages 2048–2057. JMLR Workshop and Conference Proceedings, 2015. URL
http://jmlr.org/proceedings/papers/v37/xuc15.pdf.

Zeiler, Matthew D. ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

26

http://www.aclweb.org/anthology/P16-1162
http://www.aclweb.org/anthology/P16-1162
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://jmlr.org/proceedings/papers/v37/xuc15.pdf

O. Caglayan et al. NMTPY (15–28)

Appendix A: Example NMT Configuration

Options in this section are consumed by nmt-train
[training]
model_type: attention # Model type without .py
patience: 20 # early-stopping patience
valid_freq: 1000 # Compute metrics each 1000 updates
valid_metric: meteor # Use meteor during validations
valid_start: 2 # Start validations after 2nd epoch
valid_beam: 3 # Decode with beam size 3
valid_njobs: 16 # Use 16 processes for beam-search
valid_save_hyp: True # Save validation hypotheses
decay_c: 1e-5 # L2 regularization factor
clip_c: 5 # Gradient clip threshold
seed: 1235 # Seed for numpy and Theano RNG
save_best_n: 2 # Keep 2 best models on-disk
device_id: auto # Pick 1st available GPU
max_epochs: 100

Options in this section are passed to model instance
[model]
tied_emb: 2way # weight-tying mode (False,2way,3way)
layer_norm: True # layer norm in GRU encoder
shuffle_mode: trglen # Shuffled/length-ordered batches
filter: bpe # post-processing filter(s)
n_words_src: 0 # limit src vocab if > 0
n_words_trg: 0 # limit trg vocab if > 0
save_path: ~/models # Where to store checkpoints
rnn_dim: 100 # Encoder and decoder RNN dim
embedding_dim: 100 # All embedding dim
weight_init: xavier
batch_size: 32
optimizer: adam
lrate: 0.0004
emb_dropout: 0.2 # Set dropout rates
ctx_dropout: 0.4
out_dropout: 0.4

Vocabulary paths produced by nmt-build-dict
[model.dicts]
src: ~/data/train.norm.max50.tok.lc.bpe.en.pkl
trg: ~/data/train.norm.max50.tok.lc.bpe.de.pkl

Training and validation data
[model.data]
train_src : ~/data/train.norm.max50.tok.lc.bpe.en
train_trg : ~/data/train.norm.max50.tok.lc.bpe.de
valid_src : ~/data/val.norm.tok.lc.bpe.en
valid_trg : ~/data/val.norm.tok.lc.bpe.de # BPE refs for validation perplexity
valid_trg_orig: ~/data/val.norm.tok.lc.de # non-BPE refs for correct metric computation

27

PBML 109 OCTOBER 2017

Appendix B: Installation

nmtpy requires a Python 3 environment with NumPy and Theano v0.9 installed. A
Java runtime (java should be in the PATH) is also needed by the METEOR implemen-
tation. You can run the below commands in the order they are given to install nmtpy
into your Python environment:
1. Clone the repository
$ git clone https://github.com/lium-lst/nmtpy.git

2. Download METEOR paraphrase data files
$ cd nmtpy; scripts/get-meteor-data.sh

3. Install nmtpy
$ python setup.py install

Note that once you installed nmtpy with python setup.py install, any modifica-
tions to the source tree will not be visible until nmtpy is reinstalled. If you would like
to avoid this because you are constantly modifying the source code (for adding new
architectures, iterators, features), you can replace the last command above by python
setup.py develop. This tells the Python interpreter to directly use nmtpy from the
GIT folder. The final alternative is to copy scripts/snaprun into your $PATH, modify
it to point to your GIT folder and launch training using it as in below:
$ which snaprun
/usr/local/bin/snaprun

Creates a snapshot of nmtpy under /tmp and uses it
$ snaprun nmt-train -c wmt17-en-de.conf

Performance In order to get the best speed in terms of training and beam-search, we
recommend using a recent version of CUDA, CuDNN and a NumPy linked against
Intel MKL8 or OpenBLAS.

Address for correspondence:
Ozan Caglayan
ozancag@gmail.com
Laboratoire d’Informatique de l’Université du Maine (LIUM)
Avenue Laënnec 72085
Le Mans, France

8Anaconda Python distribution is a good option which already ships an MKL-enabled NumPy.

28

The Prague Bulletin of Mathematical Linguistics
NUMBER 109 OCTOBER 2017 29–38

Parallelization of Neural Network Training for NLP with Hogwild!

Valentin Deyringer,ab Alexander Fraser,a Helmut Schmid,a Tsuyoshi Okitaa

a Centrum für Informations- und Sprachverarbeitung, LMU München
b Gini GmbH, München

Abstract
Neural Networks are prevalent in todays NLP research. Despite their success for different

tasks, training time is relatively long. We use Hogwild! to counteract this phenomenon and
show that it is a suitable method to speed up training Neural Networks of different architectures
and complexity. For POS tagging and translation we report considerable speedups of training,
especially for the latter. We show that Hogwild! can be an important tool for training complex
NLP architectures.

1. Introduction

Many novel Machine Translation (MT) systems make use of Neural Networks
(NNs) of different structure. In contrast to other machine learning methods, NNs are
able to learn the relevant characteristics of the data independently (Bengio et al., 2013)
and thus do not rely on handcrafted features which in turn requires expert knowledge
and extensive study of the data basis. Backed by growing amounts of data available
and increasing computational power, NNs have achieved remarkable results in dif-
ferent disciplines (Goodfellow et al., 2016). NNs have also proven to perform very
well for MT (Cho et al., 2014; Sutskever et al., 2014).

These promising results of adopting NNs for MT and especially their capability of
capturing the semantics of phrases (Cho et al., 2014) led to the emergence of a new
branch of research referred to as Neural Machine Translation (NMT). This approach
addresses the problem of translation with techniques solely based on NNs. A com-
parably simple system has shown that an NMT system is able to reach near state-of-
the-art results and even surpass a matured SMT system (Bahdanau et al., 2014).

© 2017 PBML. Distributed under CC BY-NC-ND. Corresponding author: valentin@gini.net
Cite as: Valentin Deyringer, Alexander Fraser, Helmut Schmid, Tsuyoshi Okita. Parallelization of Neural Network
Training for NLP with Hogwild!. The Prague Bulletin of Mathematical Linguistics No. 109, 2017, pp. 29–38.
doi: 10.1515/pralin-2017-0036.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 109 OCTOBER 2017

A major drawback of NMT systems attenuating the positive findings is the long
time needed to train the translation models. The most widely used gradient based
optimization algorithms SGD, Adagrad (Duchi et al., 2011) Adadelta (Zeiler, 2012),
Adam (Kingma and Ba, 2014) and RMSprop (Tieleman and Hinton, 2012) show good
convergence properties for optimizing NNs and can be efficiently implemented by
moving the underlying matrix operations to GPUs for heavy parallelization (e.g., with
frameworks like theano (Bergstra et al., 2010) or Tensorflow (Abadi et al., 2016)). This
approach obtains considerable speedups (Brown, 2014). There are several libraries for
programming languages which offer a convenient interface for GPU programming
in the context of NNs. Nowadays, almost all real world applications of bigger NN
models involve computation on GPUs.

Dependent on quantity of training data and model size, which both generally have
a positive effect on the resulting models quality when increased, training NMT sys-
tems reportedly still requires several days. Training times of 3 to 10 days are com-
mon (Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2014). In consequence,
other ways to speed up the training are desirable. Besides from using GPUs, a way to
shorten training times is parallelization on a higher level. This is not a trivial task as
all of the optimization algorithms mentioned earlier are inherently sequential proce-
dures. Nevertheless, there are generally two distinct approaches to achieve such par-
allelism, namely model parallelism and data parallelism. These approaches do not restrict
the application of GPUs for the underlying matrix calculations and allow making use
of the combined strength of several GPUs in a cluster.

The method of model parallelism distributes different computations performed on
the same data onto multiple processors. The results are then merged in an appropriate
way by a master process which also handles communication between processors as
they are dependent on the results computed by the other processors. This technique
is well suited for NNs due to their structure and is successfully implemented for the
training of NMT models in (Sutskever et al., 2014). However, the work in hand is not
concerned with model parallel approaches.

Data parallelism pursues a different approach where the processors perform the
same operation on different data. In terms of optimization of NNs, this means that
the training data is divided among the processors while shared parameters of the
network are updated according to a suitable schedule. Data parallel training of NNs
is not a trivial task and the commonly used optimization algorithms for training NNs
are inherently iterative. Nevertheless, there are approaches in a data parallel fashion
that allow parallelization of NN optimization, one of which is Hogwild! (Niu et al.,
2011).

Hogwild! is an instance of a data parallel approach where updates to the global
parameters are applied without locks. In this work we will show that Hogwild! can

30

V. Deyringer et al. Parallelization of NN Training for NLP with Hogwild! (29–38)

be successfully applied to train NNs for NMT as well as for POS tagging. The main
contribution of this work is the implementation of this algorithm for theano.1

The final results suggest that fitting NMT models with this asynchronous opti-
mization technique has the potential to speed up the training process. It is found that
Hogwild! is well suited for parallelized training of NMT models. As a secondary
finding, an additional experiment shows that the same algorithms can be applied to
NNs of various structures.

2. Approach

In SGD and descendant algorithms, updates are calculated with parameters es-
timated in the previous time step. Therefore these algorithms are sequential in na-
ture. While basically applying the same update rule as standard SGD, in Hogwild!,
separate updates for different batches of data are calculated on each working node
based on parameters shared among all working nodes. These shared parameters are
read and written to without any locks which usually are used to avoid simultaneous
read/write operations on the same data in parallelized programs. As a result, the
parameters possibly lack some updates computed on other processors that are yet
to be applied and occasional overwrites may occur. However, assuming sparsity in
the parameters updated for each training example, Niu et al. (2011) show that these
downsides have negligible impact on the training procedure. With the results pre-
sented in Section 5, we demonstrate that this algorithm is also successfully applicable
to NN training.

We implemented Hogwild! for the Theano framework using Python’s multipro-
cessing module. After initializing the weights and defining the model’s computa-
tional graph, several worker processes are spawned and local copies of the graph are
compiled for each. This is necessary due to Theano functions not being thread safe.
The subprocesses read batches of training data from a queue and when a new batch
of data is processed, the globally shared variables are read and updates are calculated
accordingly. These updates are then sent back to be applied to the shared parameters.
In accordance with the update scheme of Hogwild! the shared parameters are read
and written to without any locking. For more detail we refer the interested reader to
our source code.

Especially in the case of using GPUs, data transfer to and from device memory
may slow down training. However, in our experiments we did not find this to have a
strong impact. Rather, due to Theano’s GPU capabilities it is easy to utilize GPUs as
working nodes and benefit from their strengths for matrix calculations.

1Our implementation of Hogwild! for Theano can be found at http://github.com/valentindey/async-
train.

31

http://github.com/valentindey/async-train
http://github.com/valentindey/async-train

PBML 109 OCTOBER 2017

3. Related Work

Introducing the algorithm, Niu et al. (2011) compare Hogwild! to a version thereof
with locking and the asynchronous optimization strategy presented by Langford et al.
(2009) and demonstrate that Hogwild! obtains improved speed for several problems.
The positive findings make it a natural choice for us to apply this algorithm to prob-
lems of NLP. However the examined tasks in the original paper only give little indi-
cation for applicability of Hogwild! for optimization of NNs as they are mostly used,
especially in NLP.

The single machine C implementation of word2vec released as part of the work
of Mikolov et al. (2013) also uses lock-free updates in the style of Hogwild!.2 This
method is clearly useful in this setting, as the problem typically is very sparse with
large vocabulary sizes and only a few words affected at each update. Training word
embeddings this way is based on a relatively simple NN architecture. We train more
complex models with Hogwild! without such a clear notion of sparsity, and our ap-
proach allows us to use Hogwild! with flexibly defined complex NN architectures.

Feng et al. (2016) present an evaluation of different optimization algorithms on
question answering tasks. Among other algorithms, implementations of EASGD/
EAMSGD (Zhang et al., 2015) and Downpour SGD (Dean et al., 2012) are evaluated.
While showing promising results for parallelized gradient based optimization, their
study lacks comparison with Hogwild! which we find is a suitable method for opti-
mizing NNs.

Building on Hogwild!, Noel and Osindero (2014) introduce an optimization tech-
nique working on computing clusters like multiple CPU cores, multiple GPUs, or
several machines. They implemented this for the Caffe framework (Jia et al., 2014)
and show brief benchmarks on the MNIST (Lecun et al., 2009) and ImageNet (Deng
et al., 2009) data sets, depicting promising results for applications using NNs. Inter
alia, we take these findings as basis for porting Hogwild! to NLP problems.

The NMT systems marian3 and OpenNMT4 comprise implementations of asyn-
chronous update strategies similar to Hogwild!. As marian is written in C++ and
OpenNMT is built with the lua framework torch it is of interest to have a point of
reference for a system implemented with Theano in python. Additionally, we are
able to attain better speedup properties when increasing the number of used GPUs
compared to the benchmarks listed on the website of marian.

2Their published results used the DistBelief framework (Dean et al., 2012) which follows a different
parallelization paradigm since one of the goals is to overcome the constraint of having only small RAM in
GPUs.

3https://marian-nmt.github.io
4http://opennmt.net

32

https://marian-nmt.github.io
http://opennmt.net

V. Deyringer et al. Parallelization of NN Training for NLP with Hogwild! (29–38)

4. Tasks

POS Tagging Part of speech tagging is one of the most fundamental problems in
NLP and can also be used to improve machine translation systems (Ueffing and Ney,
2003).

We study a German POS Tagging task using a self-defined NN model. Similar to
Ling et al. (2015), our model represents words by the concatenation of a word em-
bedding and a character-based word representation. The latter is computed with a
bidirectional LSTM (BiLSTM) from the word’s character sequence. Characters occur-
ring only once and words occurring less than 10 times are replaced by a special sym-
bol UNK. The forward/backward character LSTM processes the word suffix/prefix
of length 10. The suffix/prefix is padded with padding symbols if the word length is
below 10. The final states of the forward and backward LSTMs and the word embed-
ding are concatenated. The resulting sequence of word representations is processed
by a second BiLSTM whose forward and backward states are concatenated at each
position. Each positional representation obtained in this way is linearly projected to
an output layer with a softmax activation function over possible POS tags.

We use character embeddings of size 100, word embeddings of size 800, a character
BiLSTM of size 400 for both directions and a deep word BiLSTM of size 800 for both
directions with two layers of equal size. The training maximizes the log-likelihood of
the correct tags. We decrease the initial learning rate of 0.03 by 0.0135 after each epoch.
The character BiLSTMs are processed in parallel for all input words, but otherwise no
batch processing is applied.

We trained our model on the German TIGER corpus (Brants et al., 2002) which is
annotated with fine-grained POS tags that include additional annotations (e.g., num-
ber, gender, and case for nouns). We train on 40472 sentences and evaluate our models
on 5,000 sentences held out from training.

Neural Machine Translation NMT systems working on the sentence level make use
of the so-called encoder-decoder architecture which transforms input sentences into
vector representations via an encoder RNN and decodes the target sentences with a
decoder RNN (Sutskever et al., 2014; Cho et al., 2014).

The NMT model used for this work is based on the dl4mt material5. It uses gated
recurrent units (GRUs) as introduced by Cho et al. (2014) with 1,000 units for both,
the encoder and the decoder, and applies an attention mechanism (Bahdanau et al.,
2014). All data is tokenized in a preprocessing step with the tokenizing script from
Moses (Koehn et al., 2007). The 15,000 most common words of the source and target
languages are mapped to embeddings of size 100. All other words are treated as
unknown and mapped to a shared embedding. We ignore sentences longer than 50

5The original dl4mt code can be found at https://github.com/nyu-dl/dl4mt-tutorial and the code for
our adapted version lives at https://github.com/valentindey/pnmt

33

https://github.com/nyu-dl/dl4mt-tutorial
https://github.com/valentindey/pnmt

PBML 109 OCTOBER 2017

0 0.5 1 1.5 2

2,000

4,000

time (h)

lo
ss

1 GPU
2 GPU
3 GPU
4 GPU
Adam

(a) decrease of loss during training

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

time (h)

ac
cu
ra
cy

1 GPU
2 GPU
3 GPU
4 GPU
Adam

(b) accuracy on data held out from train-
ing

Figure 1: Training POS tagging models

words. We use about 1.6 million sentences from the French/English Europarl corpus
(Koehn, 2005) for training and an additional 10,000 sentences from the same corpus
held out from training to monitor the training procedure (e.g. for early stopping). We
maximize the log-likelihood of the training data with an initial learning rate of 0.1
that is not decreased throughout training. Gradients larger than 1.0 are clipped. For
our NMT experiments, we use a batch size of 64.

5. Experimental Results

POS Tagging We trained the POS tagging model described in the previous section
for 2 epochs on a machine running Ubuntu 16.04 equipped with Nvidia GeForce GTX
1080 units. As Figure 1 shows, this short training period is sufficient to show the
performance gains through applying Hogwild!.

For comparison we also train the model with Adam on one GPU with the com-
monly used default hyperparameter values recommended by Kingma and Ba (2014).

Figure 1 shows the trajectories of training error and accuracy on the held-out data
during training. There is a clear speedup when increasing the number of working
nodes, and training with Hogwild! quickly becomes superior to training with Adam.
The notches of training error in Figure 1a result from the decrease of learning rate
after the first epoch. It is interesting to see that Adam fails to decrease the loss during
training from a certain point on, probably oscillating around a local minimum while
the models trained with Hogwild! decrease the loss further. The common strategy
of initial training with an advanced optimization algorithm like Adam followed by
SGD for fine tuning (e.g. Sercu et al., 2016) is thus no longer necessary when using

34

V. Deyringer et al. Parallelization of NN Training for NLP with Hogwild! (29–38)

0 2 4 6 8 10 12
50

100

150

200

250

time (h)

lo
ss

1 GPU
2 GPU
3 GPu
4 GPU

(a) decrease of loss for a subset of the
Europarl training data

0 2 4 6 8 10 12

0

5

10

15

20

time (h)

b
le
u
sc
or
e

1 GPU
2 GPU
3 GPU
4 GPU

(b) BLEU score for the Europarl data held
out from training

Figure 2: Training NMT models

number time (h) train loss BLEU score
of GPUs held out data
1 26.89 68.4441 14.42
2 16.56 64.5328 14.46
3 9.24 64.1065 14.32
4 6.96 64.2586 14.40

Table 1: performance of NMT models after 90,000 updates

Hogwild! and near optimal parameters are still found faster than when only using
SGD.

Machine Translation The previous findings support the use of Hogwild! for the
somewhat smaller problem of POS tagging where training is relatively fast. In the
case of the more complex problem of NMT where training times of several days are
common (Bahdanau et al., 2014; Sutskever et al., 2014; Cho et al., 2014) we see an even
more marked improvement due to parallelization with Hogwild!.

The numbers in Table 1 exemplify the achieved speedup by listing the times needed
for 90,000 updates and the respective model performance for different levels of con-
currency. As expected, the time required to perform a fixed number of updates is
decreasing approximately linearly dependent on the number of working nodes, i.e.,
GPUs. This indicates little to no influence of the negative side effects of Hogwild!
discussed in Section 2. The models’ performance in terms of BLEU scores is almost

35

PBML 109 OCTOBER 2017

unchanged and we can train competitive models in substantially shorter time. Apply-
ing Hogwild! for this problem in our eyes shows the most gain as this kind of model
usually takes a very long time to train. However Figure 2 also suggests that there is
an upper bound to the gains through parallelization which is almost reached when
working on four GPUs, the same as with the POS tagging model.

Summary of NLP Results With Hogwild! we can speed up the training for both of
the problems we considered, including different kinds of models. We can also see that
using more GPUs has less impact on the training progress with each increment, which
indicates an upper bound for positive effects from increased concurrency. Using three
or four GPUs works very well for appropriately sized models and complex problems.

6. Conclusion

We have shown that Hogwild! is useful for training NNs of different architectures
faster. It is meaningful to train models on multiple GPUs and CPU cores. The ad-
verse effects of Hogwild! discussed in Section 2 are at a negligible level for the stated
problems and show that the algorithm is suitable for training NNs for NLP tasks. We
find that running Hogwild! on three to four GPU devices gives viable results for POS
tagging and NMT.

With the release of our source code, we provide the means to easily use Hogwild!
for other systems implemented in Theano. The seq2seq module in Tensorflow pro-
vides the GPU parallelization in a layerwise manner automatically when the LSTM
consists of multiple layers. Hogwild! can be deployed on top of this setting easily as
well.

Recently typical GPU environments have changed drastically. The Nvidia PASCAL
architecture provides bigger graphics memory at a cheaper price point. This means
that setups with four GPUs (or even eight or sixteen) are becoming widely accessible,
an interesting contrast with massive CPU parallelization (Dean et al., 2012). In the
computer vision community, parallel GPU architectures like the server we used are
heavily used, while in the NLP community they are rare. Our results show that the
NLP community should more strongly consider training with multiple parallel GPUs.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No. 644402 (HimL). This
project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No. 640550).

36

V. Deyringer et al. Parallelization of NN Training for NLP with Hogwild! (29–38)

Bibliography

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Bengio, Yoshua, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–
1828, 2013.

Bergstra, James, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guil-
laume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: A CPU
and GPU math compiler in Python. In Proc. 9th Python in Science Conf, pages 1–7, 2010.

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. The TIGER
treebank. In Proceedings of the workshop on treebanks and linguistic theories, volume 168, 2002.

Brown, Larry. Accelerate Machine Learning with the cuDNN Deep Neural
Network Library, 2014. URL https://devblogs.nvidia.com/parallelforall/
accelerate-machine-learning-cudnn-deep-neural-network-library. [Online; accessed
2016-07-14].

Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Dean, Jeffrey, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew
Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In
Advances in neural information processing systems, pages 1223–1231, 2012.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. IEEE, 2009.

Duchi, John, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Feng, Minwei, Bing Xiang, and Bowen Zhou. Distributed deep learning for question answer-
ing. In Proceedings of the 25th ACM International on Conference on Information and Knowledge
Management, pages 2413–2416. ACM, 2016.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. Book in preparation
for MIT Press, 2016. URL http://www.deeplearningbook.org.

Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages 675–
678. ACM, 2014.

Kingma, Diederik and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

37

https://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library
https://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library
http://www.deeplearningbook.org

PBML 109 OCTOBER 2017

Koehn, Philipp. Europarl: A parallel corpus for statistical machine translation. In MT summit,
volume 5, pages 79–86, 2005.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al. Moses: Open
source toolkit for statistical machine translation. In Proceedings of the 45th annual meeting of
the ACL on interactive poster and demonstration sessions, pages 177–180. Association for Com-
putational Linguistics, 2007.

Langford, John, Alex J Smola, and Martin Zinkevich. Slow learners are fast. Advances in Neural
Information Processing Systems, 22:2331–2339, 2009.

Lecun, Yann, Corinna Cortes, and Christopher JC Burges. The MNIST database of handwritten
digits, 2009. 2009. URL http://yann.lecun.com/exdb/mnist.

Ling, Wang, Tiago Luís, Luís Marujo, Ramón Fernandez Astudillo, Silvio Amir, Chris Dyer,
Alan W Black, and Isabel Trancoso. Finding function in form: Compositional character
models for open vocabulary word representation. arXiv preprint arXiv:1508.02096, 2015.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word rep-
resentations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Niu, Feng, Benjamin Recht, Christopher Re, and Stephen Wright. Hogwild: A lock-free ap-
proach to parallelizing stochastic gradient descent. In Advances in Neural Information Pro-
cessing Systems, pages 693–701, 2011.

Noel, Cyprien and Simon Osindero. Dogwild! - Distributed Hogwild for CPU & GPU. In NIPS
Workshop on Distributed Machine Learning and Matrix Computations, 2014.

Sercu, Tom, Christian Puhrsch, Brian Kingsbury, and Yann LeCun. Very deep multilingual con-
volutional neural networks for LVCSR. In Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on, pages 4955–4959. IEEE, 2016.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

Tieleman, Tijmen and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 2012.

Ueffing, Nicola and Hermann Ney. Using pos information for statistical machine translation
into morphologically rich languages. In Proceedings of the tenth conference on European chap-
ter of the Association for Computational Linguistics-Volume 1, pages 347–354. Association for
Computational Linguistics, 2003.

Zeiler, Matthew D. ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

Zhang, Sixin, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging
SGD. In Advances in Neural Information Processing Systems, pages 685–693, 2015.

Address for correspondence:
Valentin Deyringer
valentin@gini.net
Gini GmbH
Prannerstraße 10, D-80333 Munich, Germany

38

http://yann. lecun. com/exdb/mnist

The Prague Bulletin of Mathematical Linguistics
NUMBER 109 OCTOBER 2017 39–50

Visualizing Neural Machine Translation Attention and Confidence

Matīss Rikters,a Mark Fishel,b Ondřej Bojarc

a Faculty of Computing, University of Latvia
b Institute of Computer Science, University of Tartu

c Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Abstract
In this article, we describe a tool for visualizing the output and attention weights of neu-

ral machine translation systems and for estimating confidence about the output based on the
attention.

Our aim is to help researchers and developers better understand the behaviour of their
NMT systems without the need for any reference translations. Our tool includes command
line and web-based interfaces that allow to systematically evaluate translation outputs from
various engines and experiments. We also present a web demo of our tool with examples of
good and bad translations: http://ej.uz/nmt-attention.

1. Introduction

The world of machine translation (MT) is in transition between the well-recognized
statistical MT (SMT, Koehn, 2009) and the new and exciting neural MT (NMT, e.g.
Bahdanau et al., 2014). While the systems themselves are slowly being replaced, the
necessities behind analyzing them remain the same, as do the tools built mostly for
the older approaches.

In this paper, we introduce a translation inspection tool that specifically targets
NMT output. The tool uses the attention weights corresponding to specific token
pairs during the decoding process, by turning them into one of several visual repre-
sentations that can help humans better understand how the output translations were
produced. The tool also uses the attention information to estimate the confidence in

© 2017 PBML. Distributed under CC BY-NC-ND. Corresponding author: matiss@lielakeda.lv
Cite as: Matīss Rikters, Mark Fishel, Ondřej Bojar. Visualizing Neural Machine Translation Attention and Confi-
dence. The Prague Bulletin of Mathematical Linguistics No. 109, 2017, pp. 39–50.
doi: 10.1515/pralin-2017-0037.

http://ej.uz/nmt-attention
http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 109 OCTOBER 2017

Source: Aizvadītajā diennaktī Latvijā reģistrēts 71 ceļu satiksmes negadīju-
mos, kuros cietuši 16 cilvēki.

Hypothesis: The latest, in the last few days, the EU has been in the final day of
the EU’s ”European Year of Intercultural Dialogue”.

Reference: 71 traffic accidents in which 16 persons were injured have happened
in Latvia during the last 24 hours.

Figure 1. A Latvian to English neural translation output that has no relation to the input.
The weak connection is obvious from the visualized attention weights, even without

knowing the source and target languages or seeing the input or output texts.
Confidence: 18.11%; CDP: 44.49%; APout: 67.41%; APin: 79.58%.

translation which allows to distinguish acceptable outputs from completely unreliable
ones, no reference translations are required.

The paper is structured as follows: Section 2 summarizes related work on tools for
inspecting translation outputs and alignments. Section 3 describes the tool from the
users’ point of view, covering the web-based and command-line visualizations and
the confidence score for better navigation. Section 4 provides a look into the back-end
of the system. Finally, conclusions and future work directions are in Section 5.

2. Related Work

Zeman et al. (2011) describe Addicter—a set of command-line and simple web-
based tools that can be useful for inspecting automatic translations and finding sys-
tematic errors among them. One of the tools in Addicter, alitextview.pl, is designed
to convert SMT alignments from the typical alignment pair format (source_token_id
– target_token_id) to a table representation, making it more human-readable. Our
command-line interface took much inspiration from this work while adapting to the
specifics of the NMT counterpart of alignments.

40

M. Rikters, M. Fishel, O. Bojar Visualizing NMT Attention (39–50)

Madnani (2011) introduces iBLEU—a web-based tool for visualizing BLEU (Pap-
ineni et al., 2002) scores. Unlike alignments between the source and the hypothesis,
the calculation of BLEU requires a reference translation to which the hypothesis will
be compared. On top of that, iBLEU also allows to add another file with hypotheses
from another MT system for a direct comparison. Given these inputs, the tool high-
lights the differences between the translations and reference material. It also enables
easy navigation through the set of sentences by representing the BLEU score of each
sentence in a clickable bar chart. A quick jump to a specific sentence is possible by
entering its number. The clickable chart and jumps seemed most desirable features
for us, so we added similar capabilities to the web version of our tool.

Klejch et al. (2015) developed MT-ComparEval—a web-based translation visual-
ization tool that seems to build upon iBLEU by adding many more fine-grained fea-
tures. It also allows to compare differences between translations and references, other
translations and the source input. The main differences are that (1) MT-ComparEval
stores all imported data as experiments for viewing at any time, where iBLEU forgets
everything upon a page refresh; (2) for each of these experiments, one can add output
from multiple systems (iBLEU can cope with only 2); (3) MT-ComparEval displays
additional scores (precision, recall, F-measure); and (4) it shows various detailed sen-
tence and n-gram level statistics with configurable highlighting of the differences. A
noticeable shortcoming is that one cannot jump to a specific sentence in the set. While
ordering by sentence ID is possible, to view the 1000th of 2000 one would have to scroll
through the first 999.

Nematus (Sennrich et al., 2017) includes a set of utilities for visualizing NMT at-
tentions. The first one, plot_heatmap.py plots alignment matrices similar to the previ-
ously mentioned alitextview.pl, using Nematus output translations with alignments.
The second tool, visualize_probs.py generates HTML for a web view that displays the
output translation in a table with the background of each token shaded according to
the attention weight. The final tool, consisting of attention.js and attention_web.php,
connects source and target tokens with lines as thick as the corresponding attention
weights between them. However there is no tool included to generate the latter vi-
sualization for an arbitrary sentence - it is given only in the form of one set example.
This last tool was a strong inspiration for building our tool. We reused parts of its
code in the web version of our visualization.

Neural Monkey (Helcl and Libovický, 2017) provides several visualization tools for
checking the training process that include visualizing attention as soft alignments.
It can generate matrices similar to the previously mentioned alitextview.pl for each
sentence in the first validation batch during the training process. A few drawbacks
of this method are that the images are (1) of a static size (the predefined maximum
input length * maximum output length) - if sentences are longer, the attention image
gets cut off, if shorter, bottom rows of the matrix (representing the input) are left black
and columns (representing the output) on the far right side are filled with “phantom”
attention; (2) no input and output words, tokens or subword units are displayed, only

41

PBML 109 OCTOBER 2017

the matrix; (3) there is no option to generate visualizations for a test set outside the
system training process.

3. The Tool from Users’ Perspective

The main goals of our tool are to provide multiple ways of visualizing NMT at-
tention alignments, as well as to make it easy to navigate larger data sets and find
specific examples. To accomplish these goals, we implemented two main variations
of our tool, a textual command line visualization and a web-based visualization. This
chapter provides an insight into the features of both of them and suggestions as to
when they can be useful.

3.1. Web Browser Visualization

The web visualization is intended to provide an intuitive overview of one or mul-
tiple translated test sets. This is done by showing one sentence at a time, with navi-
gation to other sentences by ID, length or multiple confidence measures. Switching
between experiments (test sets) is also easy. For each individual sentence, four confi-
dence metrics are shown, and a confidence score for each source and translated token
(or subword unit). The tool also allows to export the alignment visualization of any
selected sentence to a high-resolution PNG file with one click.

The essential part of the visualization is presented in the following way: source
tokens (at the top) are connected to translated tokens (at the bottom) via orange lines,
ranging from completely faint to very thick, as shown in Figures 2 and 3. A thicker
line from a translated token to a source token means that the decoder paid more atten-
tion to that source token when generating the translation. Ideally, these lines should
mostly be thick with some thinner ones in between. When they look chaotic, connect-
ing everything to everything (Figure 2) or everything in the translation is connected to
mostly a single token in the source,1 that can be well an indication of an unsuccessful
translation that will possibly have little or no relation with the source sentence. On
the other hand, if all lines are thick, straight downwards, connected one-to-one (see
the right part of Figure 3), that may point to nothing being translated at all.

Additionally, the matrix style visualization is also available in the web version as
shown on the left part of Figure 3.

1Such tokens were called “garbage tokens” in IBM-style word-alignment methods (Och and Ney, 2000),
and they were often rare words where the model had the option to attribute everything to them.

42

M. Rikters, M. Fishel, O. Bojar Visualizing NMT Attention (39–50)

Source: Mahaj Brown , 6 , ”riddled with bullets ,” survives Philadelphia
shooting

Hypothesis: ”tas ir viens no galvenajiem , kas ir” , viņš teica.
Reference: 6 gadus vecais Mahajs Brauns ”ložu sacaurumots” izdzīvo apšaudē

Filadelfijā.

Figure 2. An example of a translated sentence that exhibits a low confidence score.
Confidence: 27.33%; CDP: 94.81%; APout: 75.9%; APin: 72.9%.

43

PBML 109 OCTOBER 2017

Source: Kepler measures spin rates of stars in Pleiades cluster
Hypothesis: Kepler measures spin rates of stars in Pleiades cluster
Reference: Keplers izmēra zvaigžņu griešanās ātrumu Plejādes zvaigznājā.

Figure 3. An example of a translated sentence that exhibits a suspiciously high
confidence score. The translation here is a verbatim rendition of the input. Matrix form
visualization on the left, line form visualization on the right. Confidence: 95.44%; CDP:

100.0%; APout: 98.84%; APin: 98.85%.

3.2. Confidence Scores

To aid in locating suspicious and potentially bad translations, we introduced a set
of confidence metrics (more details in Section 4.1). For each sentence, the tool displays
an overall confidence score, coverage deviation penalty, and input and output ab-
sentmindedness penalties. The overall confidence score is also shown for each source
token, indicating the amount of confidence that the token has been used to generate
a correct translation, as well as for each translated token, indicating the amount of
confidence that it is a correct translation. All of these scores are represented in per-
centages from 0 to 100 and can be used to navigate through the test set (Figure 4),
making it easy to quickly find very good or very bad translations among hundreds.
The selected sentence is highlighted simultaneously across all navigation charts and
each chart can be sorted in either direction or reset to the order by sentence ID.

3.3. Command Line Visualization

The command line visualization is available in three different formats: (1) using
twenty-five different shades of gray as shown in Figure 5; (2) using five gradually
shaded Unicode block elements as shown in Figure 6; and (3) using nine gradually
filled Unicode block elements. Each sentence is output via a graphical matrix, where
rows represent the source input tokens or subword units and columns representing
the target side. The corresponding tokens are printed out on the bottom (target) or
far right side (source) of the matrix. Unlike the authors of alitextview.pl, we chose

44

M. Rikters, M. Fishel, O. Bojar Visualizing NMT Attention (39–50)

Figure 4. Navigation charts allow to jump to a sentence based on its length in characters
(red), confidence (green), coverage deviation penalty (dark yellow), absentmindedness
penalty for input (dark blue) and output (light blue). The currently active sentence is
highlighted in bright yellow. All charts are sortable and scrollable for a better user

experience.

Figure 5. Visualization in the command
line, using twenty-five different tones of

gray.

Figure 6. Visualization in the command
line, using five differently shaded block

elements.

45

PBML 109 OCTOBER 2017

to represent the source tokens on the right, so that the graphical matrix starts at the
beginning of the line for each sentence. After each sentence, one empty line is printed.

One obvious use case for the command-line visualization is to directly compare
alignments of NMT attention with the ones produced by SMT. This type of visual-
ization is also the fastest, therefore it can be used to quickly check alignments for a
specific sentence. Fixed-width Unicode fonts can be used in almost all text editors, so
redirecting output in the block mode to a text file to share with others is also a useful
application. However, to view the color version from a text file, it needs to be inter-
preted as xterm color sequences, e.g. using “less -R” in a Linux terminal.

4. System Description
The visualization tool is developed in Python and PHP. It is published in a GitHub

repository2 and open-sourced with the MIT License.
Both visualizations can be run directly from the command line. The web version

is capable of launching on a local machine without the requirement for a dedicated
web server.

4.1. Scoring Attention

This section provides details about how the previously mentioned confidence scores
are calculated and outlines what is needed to make good use each option.

The basis of our scoring methods was influenced by Wu et al. (2016), who defined a
coverage penalty for punishing translations that do not pay enough attention to input
tokens:

CP = β
∑
j

log
(

min
(∑

i

αji, 1.0
))

, (1)

where CP is the coverage penalty, i is the output token index, j is the input token index
and β is used to control the influence of the metric. To complement that, we introduce
a set of our own metrics:

• Coverage Deviation Penalty (CDP) penalizes attention deficiency and excessive
attention per input token.

• Absentmindedness Penalties (APout, in) penalize output tokens that pay atten-
tion to too many input tokens, or input tokens that produce too many output
tokens.

• Confidence is the sum of the three metrics – CDP, APin and APout.

Coverage Deviation Penalty

Unlike CP, CDP penalizes not just attention deficiency but also excessive attention
per input token. The aim is to penalize the sum of attentions per input token for going

2NMT Attention Alignment Visualizations: https://github.com/M4t1ss/SoftAlignments

46

https://github.com/M4t1ss/SoftAlignments

M. Rikters, M. Fishel, O. Bojar Visualizing NMT Attention (39–50)

too far from 1.0, so that tokens with the total attention of 1.0 get a score of 0.0 on the
logarithmic scale, while tokens with less attention (like 0.13) or more attention (like
3.7) get lower values. We thus define the coverage deviation penalty:

CDP = −
1

J

∑
j

log
(
1+

(
1−

∑
i

αji

)2)
. (2)

The metric is on a logarithmic scale, and it is normalized by the length J of the
input sentence in order to avoid assigning higher scores to shorter sentences.

Absentmindedness Penalties

To target scattered attention per output token, we introduce an absentmindedness
penalty:

APout = −
1

I

∑
i

∑
j

αji · logαji. (3)

It evaluates the dispersion via the entropy of the predicted attention distribution, re-
sulting in values from 1.0 for the lowest entropy to 0.0 for the highest. The values are
again on the log-scale and normalized by the source sentence length I.

The absentmindedness penalty can also be applied to the input tokens after nor-
malizing the distribution of attention per input token:

APin = −
1

I

∑
j

∑
i

αij · logαij. (4)

The final confidence score sums up all three above mentioned metrics:

confidence = CDP +APout +APin. (5)

For visualization purposes each of the scores needed to be set on the same scale of
0-100%. To achieve that, we applied

percentage = e−C(X2), (6)

where X is the score to convert and C is a constant of either 1 for CDP or 0.05 for the
other scores (APout, APin, confidence). Other constants were also tested, but these
specific ones seemed to best fit data from our test sets, by displaying the percentage
values across the whole range.

4.2. System Architecture

The code can be divided into two logical parts - 1) processing input data and gener-
ating output data and 2) displaying and navigating the generated output data in a web

47

PBML 109 OCTOBER 2017

browser. The former part is written in Python and handles all input data, generates
output data, displays the command line visualization or launches a temporary web
server for the web browser visualization. Each time a web visualization is launched, a
new folder is created within /web/data where all necessary output data files are stored,
a temporary PHP web server is launched on 127.0.0.1:47155, and the address is opened
as a new tab in the default web browser. After stopping the script all data remains in
the /web/data and can be accessed later as well.

The latter part is responsible for everything that is shown in the browser. It mainly
consists of PHP, HTML and JavaScript code that facilitates quick navigation between
sentences even in larger data files, as well as navigation charts and sorting, visualiza-
tion export to image files and a responsive user interface. If necessary, this part can
be used as a stand-alone website for displaying and interacting with pre-generated
results.

4.3. Requirements and Usage

The requirements are as follows:
• Python (2 or 3) and NumPy,
• PHP 5.4 or newer (for web visualization),
• Nematus or Neural Monkey (for training NMT systems),
• Nematus, AmuNMT3 (Junczys-Dowmunt et al., 2016) or Neural Monkey (for

translating and extracting attention data)
– Or any NMT framework that can output an attention matrix for each trans-

lation (may require format conversion) .
To use the tool, first translate a set of sentences using a supported NMT frame-

work with the option of saving alignments4 switched on. The sources combined with
the resulting translations and attention matrices can then be used as input for the
process_alignments.py script. Depending on the selected output type, alignments will
either be displayed in the terminal or a new tab will be opened in the default web
browser. Example input files from each supported NMT framework are provided
along with commands to run them.

5. Conclusions

In this paper, we described our tool for visualizing attention alignments generated
by neural machine translation systems and for estimating confidence of the transla-
tion. The tool aims to help researchers better understand how their systems perform
by enabling to quickly locate better and worse translations in a bigger test set. Com-
pared to other similar tools, ours relies on the confidence scores and does not require

3Barvins/amunmt (forked from marian-nmt/marian): https://github.com/barvins/amunmt
4How to get alignment files from NMT systems: https://github.com/M4t1ss/SoftAlignments

48

https://github.com/barvins/amunmt
https://github.com/M4t1ss/SoftAlignments

M. Rikters, M. Fishel, O. Bojar Visualizing NMT Attention (39–50)

reference translations to facilitate this easier navigation. This allows to integrate it, for
example, in an NMT system with a web interface, providing users with an explana-
tion for the result of a specific translation.

In the future, we plan to integrate a part of this tool into one public NMT system,
Neurotolge.5 We will also extend the out-of-the-box support to other popular NMT
frameworks like OpenNMT6 or tensor2tensor.7

Acknowledgements

A part of this research was supported by the ICT COST Action IC1207 ParseME:
Parsing and multi-word expressions. Towards linguistic precision and computational effi-
ciency in natural language processing, the grant H2020-ICT-2014-1-645442 (QT21) and
Charles University Research Programme “Progres” Q18+Q48.

The authors would like to thank Mārcis Pinnis and Raivis Skadiņš for advice, com-
ments and suggestions. Also, Pēteris Ņikiforovs for the base code of the web-based
matrix visualization.

Bibliography

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.
org/abs/1409.0473.

Helcl, Jindřich and Jindřich Libovický. Neural Monkey: An Open-source Tool for Se-
quence Learning. The Prague Bulletin of Mathematical Linguistics, (107):5–17, 2017. ISSN
0032-6585. doi: 10.1515/pralin-2017-0001. URL http://ufal.mff.cuni.cz/pbml/107/
art-helcl-libovicky.pdf.

Junczys-Dowmunt, Marcin, Tomasz Dwojak, and Hieu Hoang. Is Neural Machine Translation
Ready for Deployment? A Case Study on 30 Translation Directions. In Proceedings of the
9th International Workshop on Spoken Language Translation (IWSLT), Seattle, WA, 2016. URL
http://workshop2016.iwslt.org/downloads/IWSLT_2016_paper_4.pdf.

Klejch, Ondřej, Eleftherios Avramidis, Aljoscha Burchardt, and Martin Popel. MT-ComparEval:
Graphical evaluation interface for Machine Translation development. The Prague Bulletin of
Mathematical Linguistics, 104(1):63–74, 2015.

Koehn, Philipp. Statistical Machine Translation. Cambridge University Press, 2009.
Madnani, Nitin. iBLEU: Interactively debugging and scoring statistical machine translation

systems. In Semantic Computing (ICSC), 2011 Fifth IEEE International Conference on, pages
213–214. IEEE, 2011.

5Tartu University Translator: http://neurotolge.ee
6OpenNMT: Open-Source Neural Machine Translation: https://github.com/OpenNMT/OpenNMT
7T2T: Tensor2Tensor Transformers: https://github.com/tensorflow/tensor2tensor

49

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://ufal.mff.cuni.cz/pbml/107/art-helcl-libovicky.pdf
http://ufal.mff.cuni.cz/pbml/107/art-helcl-libovicky.pdf
http://workshop2016.iwslt.org/downloads/IWSLT_2016_paper_4.pdf
http://neurotolge.ee
https://github.com/OpenNMT/OpenNMT
https://github.com/tensorflow/tensor2tensor

PBML 109 OCTOBER 2017

Och, Franz Josef and Hermann Ney. A Comparison of Alignment Models for Statistical Ma-
chine Translation. In Proceedings of the 17th conference on Computational linguistics, pages
1086–1090. Association for Computational Linguistics, 2000. ISBN 1-555-55555-1.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, pages 311–318. Association for Computational Linguistics, 2002.

Sennrich, Rico, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow, Julian
Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Valerio Miceli Barone, Jozef
Mokry, et al. Nematus: a Toolkit for Neural Machine Translation. EACL 2017, page 65, 2017.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Mac-
duff Hughes, and Jeffrey Dean. Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation. CoRR, abs/1609.08144, 2016. URL
http://arxiv.org/abs/1609.08144.

Zeman, Daniel, Mark Fishel, Jan Berka, and Ondřej Bojar. Addicter: What Is Wrong with My
Translations? The Prague Bulletin of Mathematical Linguistics, 96:79–88, 2011.

Address for correspondence:
Matīss Rikters
matiss@lielakeda.lv
Rainis blvd. 19, Riga, Latvia

50

http://arxiv.org/abs/1609.08144

The Prague Bulletin of Mathematical Linguistics
NUMBER 109 OCTOBER 2017 51–60

QE::GUI – A Graphical User Interface for Quality Estimation

Eleftherios Avramidis
German Research Center for Artificial Intelligence (DFKI), Language Technology Lab, Berlin, Germany

Abstract
Despite its wide applicability, Quality Estimation (QE) of Machine Translation (MT) poses a

difficult entry barrier since there are no open source tools with a graphical user interface (GUI).
Here we present a tool in this direction by connecting the back-end of the QE decision-making
mechanism with a web-based GUI. The interface allows the user to post requests to the QE
engine and get a visual response with the results. Additionally we provide pre-trained QE
models for easier launching of the app. The tool is written in Python so that it can leverage the
rich natural language processing capabilities of the popular dynamic programming language,
which is at the same time supported by top web-server environments.

1. Introduction

Understanding the performance of Machine Translation (MT) is a necessary task
for the development of MT systems and assessing the usability of their output. A
wide variety of methods has given the possibility to analyze the results of the MT
output and provide useful insights about the quality of the results. Already from the
first years of MT, automatic evaluation metrics have provided scores representing the
quality of the translation by scoring the MT output against the references (Papineni
et al., 2002; Lavie and Agarwal, 2007). Recently, the efforts on MT evaluation have
been expanded to the field of Quality Estimation (QE) which is capable of provid-
ing numerical qualitative judgments on the MT output without access to reference
translations (Blatz et al., 2004; Specia et al., 2009). Being independent of reference
translations, QE can be useful in real-life applications. Additionally, its inherent di-
verse linguistic features, combined with machine learning, can provide deeper and
more specific qualitative indicators.

© 2017 PBML. Distributed under CC BY-NC-ND. Corresponding author: eleftherios.avramidis@dfki.de
Cite as: Eleftherios Avramidis. QE::GUI – A Graphical User Interface for Quality Estimation. The Prague Bulletin
of Mathematical Linguistics No. 109, 2017, pp. 51–60. doi: 10.1515/pralin-2017-0038.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 109 OCTOBER 2017

Whereas most methods for the development and evaluation of MT, including QE,
have been available through open-source tools, there has been little effort towards
making them easily applicable and user-friendly. Being oriented to researchers, most
software can only be executed in the commandline of Linux environments and the
installation effort can be non-trivial. Therefore, the use of these tools is confined to
a relatively small group of experienced developers, while the entry barrier for new-
comers is considerable. Additionally, despite the many levels of qualitative analysis,
most results are presented only on a high level, with limited options for visualization.
With QE::GUI, the software described in this paper, we attempt to solve some of these
issues. We focus on QE and we aim at providing a graphical user interface (GUI) on
top of common QE software. The GUI is offered via a web-based framework that can
be hosted in any web-server and can be operated with a common browser. It provides
the possibility for users to upload their data, have them analyzed with QE models and
have visualized statistics over the results.

It must be noted that instead of providing a full-flegded solution, here we mostly
aim at setting the standards for further development by suggesting a particular well-
structured framework. Therefore, the current functionality is limited to only a few
cases of QE analyses, that should nevertheless be easily extended to cover more sce-
narios depending on the needs of the research and potential end-users. Despite its
limited initial functionality, the software complies with several engineering princi-
ples that allow extensibility and easy addition of features and functionality. Addi-
tionally, the entire framework is built within a unified architecture, and the backbone
is written in a single programming language (Python), including the web interface,
the database layer and the computational back-end.1

This paper is accompanying the open-source code2 in order to provide more details
on the functionality of the software. After comparing our efforts with previous works
(Chapter 2), we outline the basic usage and the capabilities of the software (Chapter 3).
The architecture and the design is given in Chapter 4. Finally, ideas for further work
and conclusions are outlined in Chapters 5 and 6 respectively.

2. Related Work

Several tools related to MT evaluation provide graphical interfaces in order to aid
the understanding of the scored MT Quality. First, we shortly review some systems
which provide graphical user interfaces related to reference-based automatic metrics.

The Experiment Management System (EMS; Koehn, 2010) is a tool for organiz-
ing the training and testing of MT models based on the popular statistical system

1The web interface contains non-Python elements such as HTML templates and CSS stylesheets,
whereas embedded external tools also use other languages.

2Code: https://github.com/lefterav/qegui
Demo of basic interface: http://blade-3.sb.dfki.de:8100/qe/ username: admin ; password: pbml2017

52

https://github.com/lefterav/qegui
http://blade-3.sb.dfki.de:8100/qe/

E. Avramidis QE::GUI – A Graphical User Interface for Quality Estimation (51–60)

Moses (Koehn et al., 2007). For the models tested on particular test-sets, it offers
a web-based interface that displays the BLEU score per test-set. The output for ev-
ery system can be further examined by displaying additional sentence-level statistics.
EMS is a pipeline that combines scripts in different programming languages and the
information is communicated with intermediate files. The web interface is written in
PHP (albeit with no database layer), whereas the back-end scripts are mostly written
in Perl and Bash. ComparEval (Klejch et al., 2015) is a tool that allows uploading files
with MT output and displays tables and graphs on the performance of the system.
Multiple MT systems can be compared in parallel with bar charts, while the progress
of consequent development versions of the same system can be visualized through
a linear chart. The tool also offers pairwise comparison between system pairs and
sentence-level analytics, including sentence-level scores, word-level error annotations
and n-gram scoring.

The only tool that offers some GUI for QE is a particular version of QuEst named
QuEst-Online, as presented by Shah et al. (2014). This version allows users to access
the tool remotely from a web browser. They can upload their source and translated
text, which are consequently analyzed to produce qualitative features. These features
are used with a pre-built QE model in order to predict an estimated quality score for
the translated sentence, including ranking of multiple translations. The entire system
combines three modules in several programming languages: PHP for the web inter-
face, Java for the feature generation and Python for the machine learning, as opposed
to our tool, which organizes all steps with the same programming language. Finally,
in contrast to QuEst-Online, our tool offers visualizations and graphs for the results,
an administration interface with configuration options for the models, whereas the
requests are stored in a database and organized in a hierarchical structure, allowing
future retrieval and examination of previous evaluations.

3. Usage

QE::GUI allows the users to submit documents translated by MT, including the
source text and the MT output. These documents are analyzed and as a response, the
user is given a set of statistics and graphs on the estimated quality of the translation.

3.1. Organization of evaluation tasks

The interface is capable of storing the evaluation results in the long term, so that
they can all be inspected in the future. Additionally, the user can apply hierarchical
categorization to their uploads in order to maintain a clean structure of the contents.

The document is the basic organizational unit of the translations. Every document
is a collection of source sentences with their respective MT outputs. The contents
of a document can be uploaded from text files or inserted manually. All translated
sentences in one document should be of the same language pair. The documents

53

PBML 109 OCTOBER 2017

(a) A gauge indicating the average score of all
sentences in the document (b) A linear area chart indicating mass distribu-

tion of the quality scores

Figure 1: Sample charts from the QE results

can be organized in evaluation tasks. Every task is effectively a folder which can
contain many documents of different language pairs and sizes. The organization of
documents into tasks is directly inflected on how the user can access the documents
through the interface. After the list of the documents, the user is given the option to
add an additional document.

3.2. Results and statistics

Once the document has been uploaded, a separate document page is created and
the system starts the necessary operations for analyzing the sentences and performing
the necessary calculations. When the calculations are finished, the document page
gets populated with statistics about the estimated translation quality.

We show here two basic statistics accompanied with charts. For every evaluated
document the page displays first the average predicted score, i.e. the mean score of
all MT outputs. This is presented with a gauge which indicates the estimated score,
as compared to the full range of the score. For instance, a predicted HTER score of
0.55 would be indicated by a gauge pointing a little more than half way in the range
between 0 and 1 (Figure 1a). The indicator of the gauge can change color, depending
on the level of quality.

Another possibly useful visual representation refers to the mass distribution of the
sentence quality scores (Figure 1b). A linear chart indicates the amount of sentences
that have been assigned to each possible quality score. This can be an indicator for
how the quality of the translations ranges within the document. The conclusions can
be complemented by observing a pie chart which indicated the distribution of the
sentences scores among the 4 quartiles.

54

E. Avramidis QE::GUI – A Graphical User Interface for Quality Estimation (51–60)

Figure 2: Generic internal architecture

3.3. Administration interface

The basic user interface has been deliberately designed so that it only contains the
basic functionality for analyzing documents and observing the results of QE. Nev-
ertheless, there is the possibility for advanced parametrization that falls out of the
scope of simple usage. This is done through an advanced administration interface
which contains functionality such as adding tasks, manually adding document sen-
tences and translations, deleting tasks and documents and defining supported QE
models and translation systems.

3.4. Deployment

The software can be deployed as a Python package and requires the creation of a
Python virtual environment and the installation of some additional Python libraries.
The QE framework may also require the installation of external natural language pro-
cessing (NLP) required for the analysis of the text, prior to the application of machine
learning. In its easiest form, the software can be run from a Django-compatible com-
mandline bound on a SQLite database. For advanced scaling and better performance,
it can be served as a proper website through common web servers (Apache, Nginx)
with a more advanced database engine (MariaDB, PostgreSQL).3

4. Implementation

In this chapter we explain the main modules of the implementation. The generic
architecture of the internal functionality is shown in Figure 2.

3Apache: https://httpd.apache.org, MariaDB: https://mariadb.org, Nginx: https://nginx.org,
PostgreSQL: https://www.postgresql.org, SQLite: https://www.sqlite.org

55

https://httpd.apache.org
https://mariadb.org
https://nginx.org
https://www.postgresql.org
https://www.sqlite.org

PBML 109 OCTOBER 2017

4.1. Database structure

The implementation of the web-based interface and the underlying database struc-
ture is based on the latest version of the Django framework (ver. 1.11).4 This has been
chosen in order to take advantage of its powerful database modeling and its robust-
ness, given the support of a wide developer community. Additionally, a wide range
of libraries are easily available to extend the functionality. Last but not least, Django
is fully Python-based, which makes it compatible and integrable with other Python
applications. This is of a particular interest when it comes to QE, since several known
open-source QE toolkits use Python (e.g. SciKit-Learn; Pedregosa et al., 2011) for
their machine learning back-end.

As part of the Django framework, the web-based interface is built around a set of
models, which are high-level representations of relational database tables. A simpli-
fied graphical representation of the models can be seen in Figure 3. To store the docu-
ment structure presented above, we use the models Task and Document. A Sentence is
the model which stores every source sentence and is associated with one or more MT
outputs and reference translations through the models MachineTranslation and Ref-
erenceTranslation (the latter is optional) respectively. Predicted quality scores for
every MT output are stored in a MachineTranslationEvaluation model. The database
also offers support for different evaluations of the same document (e.g. by different
QE models),5 which are organized by pointing from the separate MachineTransla-
tionEvaluation instances to a DocumentEvaluation model.

4.2. Serving the data to the user

In order to allow access to the models, the framework employs a set of views
(roughly a view for every page), which send queries to the models to retrieve the
data and structure it as required for display. This data is then given to a set of tem-
plates, which take care of the setting text, objects, widgets and other elements in the
final page shown to the user. To ease the representation of the page we use the re-
sponsive template framework Bootstrap, that reorders page elements depending on
the screen size of the user’s device. For creating the graphs, the data is passed to the
open-source Javascript library JChart6 which renders them in the HTML code of the
page.

4Django :http://djangoproject.com
5The functionality of multiple evaluations is not available in the current preliminary version but is built

into the database so that it can be extended in a next version.
6https://django-jchart.matthisk.nl

56

http://djangoproject.com
https://django-jchart.matthisk.nl

E. Avramidis QE::GUI – A Graphical User Interface for Quality Estimation (51–60)

 Task

 id AutoField

 description TextField

 name CharField

 Document

 id AutoField

 task ForeignKey (id)

 description TextField

 evaluated BooleanField

 imported BooleanField

 name CharField

 referencefile FileField

 source_language CharField

 sourcefile FileField

 target_language CharField

 targetfile FileField

task (document)

 Sentence
<AbstractSentence>

 id AutoField

 document ForeignKey (id)

 text TextField

document (sentence)

 MachineTranslation
<AbstractSentence>

 id AutoField

 source ForeignKey (id)

 system ForeignKey (id)

 text TextField

source (machinetranslation)

_

 ReferenceTranslation
<AbstractSentence>

 id AutoField

 source ForeignKey (id)

 text TextField

 translator CharField

source (referencetranslation)

 DocumentEvaluation

 id AutoField

 document ForeignKey (id)

 model ForeignKey (id)

document (documentevaluation)

 MachineTranslationEvaluation

 id AutoField

 evaluation ForeignKey (id)

 translation ForeignKey (id)

 score FloatField

translation (machinetranslationevaluation) evaluation (machinetranslationevaluation)

Figure 3: The structure of the Models that supports the web interface

4.3. Asynchronous data processing

A known issue for large NLP tasks is their scalability and low response times are
a requirement for real-use applications. In our case the user is expected to upload a
potentially large text file which contains source sentences and translations. The sys-
tem is expected to store the sentences into the respective models of the database and
then start processing them to estimate the quality scores. In order to avoid deadlocks
and timeouts, we draw a line between the front-end (i.e. the interaction with the user)
and the back-end (i.e. the processing of the data). The back-end tasks operate asyn-
chronously, so that the loading of the front-end is not disturbed by time-consuming
data-intensive processes. This way, the user can navigate away or close the document
page but the processing they have requested will keep running in the background.

57

PBML 109 OCTOBER 2017

The implementation of the asynchronous processing uses the Django library back-
ground tasks. The steps followed are:

1. Every time the user uploads a new document, the library background tasks is
instructed to create a new asynchronous data processing task.7 The task is
stored in a queue in the database, along with the parameters of the function
and how it should be executed.

2. Background tasks provides a background daemon, which is then launched as
a separated executable. The daemon regularly checks the queue and executes
the pending tasks.

3. Having access to the Django database schema, the asynchronous tasks can de-
liver their results by populating the same models.

4. When every background task is finished, it notifies the front-end by enabling a
boolean field in the relevant models.

5. The next time the front-end accesses the requested document evaluation, de-
pending on the flag, will either proceed with visualizing the results, or display
a message to the user to try again later.

It is also noteworthy that the daemon can run the queued tasks in parallel by launch-
ing several threads. The separate existence of the daemon also allows a distributed
server set-up, where one server is responsible for the front-end and another one takes
care of the back-end, but they both connect to the same database and use the same
codebase.

4.4. Quality Estimation

In the last phase, a QE pipeline is triggered in order to process the data and deliver
the estimation result. This pipeline consists of two major steps, that are accomplished
by the existing QE toolkit: the feature generation and the application of a machine-
learned model. During the feature generation, the quality estimation toolkit applies
many NLP processes (e.g. language model scoring, parsing) in order to deliver nu-
merical qualitative indicators (features). Then, these numbers are provided to a pre-
trained QE model that delivers a quality score, i.e. a numerical judgment about the
quality. The estimated quality score can then be stored in the model, associated with
the respective MT output(s).

For the QE part, QE::GUI integrates existing code from other state-of-the-art Python-
based tools. Qualitative (Avramidis, 2016) is used for the feature generation and pre-
diction of sentence-level ranking, whereas models produced by the popular state-of-
the-art QuEST (Shah et al., 2013) can be used for continuous score prediction. The
database structure allows for loading and storing other Python-based QE models,
provided that their usage is clearly documented.

7not to be confused with the task used for grouping documents in the part of the user interface

58

E. Avramidis QE::GUI – A Graphical User Interface for Quality Estimation (51–60)

5. Further work

The presented software can cover functionality related to some basic use of QE
and should still be considered as a preliminary version. Nevertheless, our aim is to
suggest a unified framework that makes good use of state-of-the-art tools and is easily
extensible to cover future needs. Further development can be directed towards cov-
ering more use-cases, including various types of QE (e.g. sentence binary filtering,
word/phrase-level scoring). The graphical representation can be extended to com-
pare the performance of different MT systems. Reference-based metrics can be inte-
grated so that their scores can be displayed alongside the ones by QE, when reference
translation are available. With the consideration of golden quality scores, this inter-
face could also be used for automatically evaluating different QE approaches with
correlation metrics. The principles of modularity and extensibility, along with the
Git repository allow for wider collaboration and expansion of the development in a
community scale.

6. Conclusion

We have introduced a new graphical user interface for Quality Estimation (QE)
that exceeds any previous tool in terms of functionality and extensibility. It relies on
a web-application built with Python Django. The user has the possibility to upload
new documents to be analyzed by QE. The documents can be browsed through a
user-friendly dashboard, categorized in tasks. For every document, the user can get
the estimations by the QE along with several informative graphs and charts

The web interface is supported by a database layer which can store the data and
its evaluation. Several state-of-the-art web libraries are seamlessly integrated to allow
responsive appearance and drawing of charts. All data-intensive tasks, including QE,
are executed asynchronously in a background queue by a separate daemon. Existing
QE tools are integrated in order to perform feature generation and prediction of qual-
ity scores.

Acknowledgment This work has received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreement No 645452 (QT21).

Bibliography

Avramidis, Eleftherios. Qualitative: Python Tool for MT Quality Estimation Supporting Server
Mode and Hybrid MT. The Prague Bulletin of Mathematical Linguistics (PBML), 106:147–158,
2016.

Blatz, John, Erin Fitzgerald, George Foster, Simona Gandrabur, Cyril Goutte, Alex Kulesza, Al-
berto Sanchis, and Nicola Ueffing. Confidence estimation for machine translation. In Pro-
ceedings of the 20th international conference on Computational Linguistics (COLING 04), Strouds-
burg, PA, USA, 2004. Association for Computational Linguistics.

59

PBML 109 OCTOBER 2017

Klejch, Ondřej, Eleftherios Avramidis, Aljoscha Burchardt, and Martin Popel. MT-ComparEval:
Graphical evaluation interface for Machine Translation development. The Prague Bul-
letin of Mathematical Linguistics (PBML), 104:63–74, 2015. ISSN 0032-6585. doi: 10.1515/
pralin-2015-0014. URL https://ufal.mff.cuni.cz/pbml/104/art-klejch-et-al.pdf.

Koehn, Philipp. An Experimental Management System. The Prague Bulletin of Mathematical
Linguistics, 94:87–96, 2010. ISSN 1804-0462.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Chris Zens Richard a nd Dyer,
Ondřej Bojar, Alexandra Constantin, and Evan Herbst. Moses: open source toolkit for sta-
tistical machine translation. In Proceedings of the 45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions, ACL ’07, pages 177–180, Stroudsburg, PA, USA, 2007. As-
sociation for Computational Linguistics.

Lavie, Alon and Abhaya Agarwal. METEOR: An Automatic Metric for MT Evaluation with
High Levels of Correlation with Human Judgments. In Proceedings of the Second Workshop on
Statistical Machine Translation, pages 228–231, Prague, Czech Republic, jun 2007. Association
for Computational Linguistics.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a Method for Auto-
matic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA,
jul 2002. Association for Computational Linguistics.

Pedregosa, Fabian, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Van-
derplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Edouard Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learn-
ing Research, 12:2825–2830, 2011.

Shah, Kashif, Eleftherios Avramidis, Ergun Biçici, and Lucia Specia. QuEst: Design, Imple-
mentation and Extensions of a Framework for Machine Translation Quality Estimation. The
Prague Bulletin of Mathematical Linguistics, 100:19–30, 2013.

Shah, Kashif, Marco Turchi, and Lucia Specia. An efficient and user-friendly tool for machine
translation quality estimation. LREC 2014. Proceedings of the Ninth International Conference
on Language Resources and Evaluation, pages 3560–3564, August 2014.

Specia, Lucia, M. Turchi, N. Cancedda, M. Dymetman, and N. Cristianini. Estimating the
Sentence-Level Quality of Machine Translation Systems. In 13th Annual Meeting of the Euro-
pean Association for Machine Translation, pages 28–35, Barcelona, Spain., 2009.

Address for correspondence:
Eleftherios Avramidis
eleftherios.avramidis@dfki.de
German Research Center for Artificial Intelligence (DFKI GmbH)
Language Technology Lab
Alt Moabit 91c
10559, Berlin, Germany

60

https://ufal.mff.cuni.cz/pbml/104/art-klejch-et-al.pdf

The Prague Bulletin of Mathematical Linguistics
NUMBER 109 OCTOBER 2017 61–91

CzeDLex – A Lexicon of Czech Discourse Connectives

Jiří Mírovský, Pavlína Synková, Magdaléna Rysová, Lucie Poláková
Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Abstract
CzeDLex is a new electronic lexicon of Czech discourse connectives, planned for publication

by the end of this year. Its data format and structure are based on a study of similar existing
resources, and adjusted to comply with the Czech syntactic tradition and specifics and with the
Prague approach to the annotation of semantic discourse relations in text.

In the article, we first put the lexicon in context of related resources and discuss theoretical
aspects of building the lexicon – we present arguments for our choice of the data structure and
for selecting features of the lexicon entries, while special attention is paid to a consistent and
(as far as possible) uniform encoding of both primary (such as in English because, therefore) and
secondary connectives (e.g. for this reason, this is the reason why). The main principle adopted
for nesting entries in the lexicon is – apart from the lexical form of the connective – a discourse-
semantic type (sense) expressed by the given connective, which enables us to deal with a broad
formal variability of connectives and is convenient for interlinking CzeDLex with lexicons in
other languages.

Second, we introduce the chosen technical solution based on the Prague Markup Language,
which allows for an efficient incorporation of the lexicon into the family of Prague treebanks –
it can be directly opened and edited in the tree editor TrEd, processed from the command line
in btred, interlinked with its source corpus and queried in the PML Tree Query engine.

Third, we describe the process of getting data for the lexicon by exploiting a large corpus
manually annotated with discourse relations – the Prague Discourse Treebank 2.0: we elaborate
on the automatic extraction part, post-extraction checks and manual addition of supplementary
linguistic information.

© 2017 PBML. Distributed under CC BY-NC-ND. Corresponding author: mirovsky@ufal.mff.cuni.cz
Cite as: Jiří Mírovský, Pavlína Synková, Magdaléna Rysová, Lucie Poláková. CzeDLex – A Lexicon of Czech Dis-
course Connectives. The Prague Bulletin of Mathematical Linguistics No. 109, 2017, pp. 61–91.
doi: 10.1515/pralin-2017-0039.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 109 OCTOBER 2017

1. Introduction

In connection with rapid development of corpora annotated with discourse relations
for different languages and in various frameworks (Carlson et al., 2003, Prasad et al.,
2008 (English), Oza et al., 2009 (Hindi), Zeyrek et al., 2010, Zeyrek and Kurfalı, 2017
(Turkish), Al-Saif and Markert, 2010 (Arabic), Danlos et al., 2012 (French), Zhou and
Xue, 2012, 2015 (Chinese), Stede and Neumann, 2014 (German), Iruskieta et al., 2013
(Basque), Da Cunha et al., 2011 (Spanish), to refer to just a few),1 electronic lexicons of
discourse connectives began to be built, although they are so far much less common.
Electronic lexicons of discourse markers2 are not only a useful tool in the theoretical
research of text coherence/cohesion. Systematic information on discourse markers
contributes to NLP tasks that involve processing of discourse relations (cf. e.g. Meyer
et al., 2011, Stede, 2014 or Lin et al., 2014) and may help in machine translation, infor-
mation extraction, text generation and other areas.

Our goal was to design and build an electronic lexicon of Czech discourse connec-
tives, having in mind especially the following objectives:

• to contribute to the theoretical understanding of Czech connectives, and more
generally, to understanding how text coherence/cohesion is established in Czech,

• to help in NLP tasks such as discourse processing, text generation and machine-
translation, and

• to make the lexicon readable to a non-Czech speaker and linkable to existing
lexicons of connectives in other languages.

There are several options how to actually build such a lexicon, i.e. how to fill it with
data, from consulting existing printed lexicons, to using translation from lexicons in
other languages, to exploiting existing discourse-annotated corpora in the given lan-
guage. We have chosen the last option, as a large discourse-annotated treebank – the
Prague Discourse Treebank 2.0 (Rysová et al., 2016) – is available for Czech.

The present article summarizes, updates and extends information on the design
and build-up of the lexicon of Czech discourse connectives – CzeDLex – that was
previously given in Mírovský et al. (2016b) and Synková et al. (2017, in print).

The subsequent text is organized as follows: Section 2 gives an overview of related
research and existing lexicons of discourse connectives and compares main properties
of CzeDLex and the other resources. In Section 3, the Prague Discourse Treebank 2.0
is introduced. Section 4 specifies basic terms such as “connective” and describes the
lexicon structure from the theoretical point of view, providing reasons for decisions

1 See also a list of discourse annotated corpora compiled within the COST TextLink project:
http://www.textlink.ii.metu.edu.tr/corpus-view.

2 We use “discourse markers” as a broader term for expressions structuring discourse, and “discourse
connectives” (DCs) as a narrower term for expressions signalling semantico-pragmatic relations between
two abstract objects (see 4.1).

62

http://www.textlink.ii.metu.edu.tr/corpus-view

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

behind the lexicon design. Section 5 describes the data format and application frame-
work selected for the implementation of the lexicon, and presents also the process of
extracting the lexicon from the data of the Prague Discourse Treebank 2.0, including
subsequent checks, manual corrections and additions.

2. Related Research, Other Lexicons of Connectives

In this section, we put CzeDLex in context of current lexicography and compare it to
other existing lexicons of connectives or expressions to a certain extent overlapping
with some types of connectives.

Generally, lexicons (or dictionaries) may be of various kinds, reflecting different
linguistic aspects. Traditionally, lexicons are characterized according to the number of
languages they involve (monolingual, bilingual, multilingual dictionaries), their cov-
erage (a general dictionary, a dialect dictionary, a sociolect dictionary reflecting e.g.
colloquial language, adolescent language etc.), aspects of linguistic structure (an or-
thographic dictionary, a pronunciation dictionary, a frequency dictionary, a phrase-
ological dictionary), the segment of the vocabulary (a dictionary of neologisms or a
loan-word dictionary) or the group of users (a language learner’s dictionary). For
more details, see Hausmann (1985).

In this respect, lexicons of discourse markers/connectives represent a part of a
specific lexicographic domain: in contrast to the majority of dictionaries/lexicons,
they describe the synsemantic part of vocabulary (i.e. grammatical words, function
words). As such, these lexicons are in fact lists of possible forms that can express
one certain function in a language. These functional lexicons are so far much rarer
and even more so in the Czech context. For other languages, there are similarly tar-
geted lexicons, let us mention e.g. German lexicographic projects: Lexikon deutscher
Konjuktionen (Buscha, 1989), Lexikon deutscher Partikeln (Helbig, 1988), Präpositio-
nen (Schröder, 1986), Modalwörter (Helbig and Helbig, 1990) etc. Regarding the con-
nective/discourse marker category, the printed resources include Dictionary of link
words in English discourse (Ball, 1993), or the German two-volume Handbuch der
deutschen Konnektoren (HdK, Pasch et al., 2003; Breindl et al., 2015).

Another specificity of the last years is the machine-readable form of such func-
tional resources and the intention (and often the primary goal) to use these resources
in various NLP tasks. Apart from the “standard” digitalized monolingual or transla-
tion dictionaries for a large scope of users, there are, mostly corpus-based, electronic
projects assembling vocabulary with a specific function (e.g. evaluative language in
the Czech SubLex, Veselovská and Bojar, 2013), or mining morphosyntactic annota-
tion, e.g. valency properties of verbs (CzEngVallex, Urešová et al., 2016, for Czech and
English) and similar.

CzeDLex may thus be described as an electronic corpus-based resource of Czech
discourse connectives, containing English connective equivalents, reflecting written
journalistic Czech language of the PDiT 2.0 texts (see Section 3) that provides func-

63

PBML 109 OCTOBER 2017

tional descriptions of the expressions and phrases it covers. This includes morphosyn-
tactic information, usage and meanings of the connectives in particular contexts and
their frequencies in the underlying dataset (for more details, see Section 4.3).

Such a placement in the general typology of lexicographic projects puts CzeDLex
right next to other newly emerging electronic lexicons of discourse markers or con-
nectives. As far as we know, there are nowadays only few such projects, but the field
is quickly growing and new projects arise every year now.3 Perhaps one of the oldest
electronic lexicons of discourse markers was the first version of DiMLex for German
(Stede and Umbach, 1998), further, there is LexConn for French (Roze et al., 2012),
DPDE for Spanish,4 LICO for Italian (Feltracco et al., 2016) and others.5 As some
aspects of these lexicons served as a source of inspiration for the development of
CzeDLex, we describe these lexicons and especially DiMLex in more detail later in
this section.

From the Czech lexicographic projects, CzeDLex can be partly compared to the
work of F. Čermák (2007, 2009). Secondary connectives in CzeDLex (i.e. expressions
such as z tohoto důvodu [for this reason], for details see Section 4.1.1 below) to some
extent overlap with phrases and idioms that are elaborated for Czech in his lexicon of
Czech phrases and idioms. It consists of four volumes, dealing with 1. Comparisons,
2. Non-verbal expressions, 3. Verbal expressions and 4. Sentential expressions (see
Čermák, 2009). Secondary connectives and Čermák’s phrases and idioms presented in
the lexicons overlap only slightly, but it is interesting to look at how these expressions
are treated in various approaches.

The lexicon of phrases and idioms in Czech contains full and reduced lexicon en-
tries. The full ones are for frequent expressions and the reduced ones for expressions
with a lower frequency. The full entries contain various types of linguistic information
such as stylistic characteristics, grammatical characteristics, intonation, context, va-
lency, explanation of meaning, exemplification, synonyms or foreign language equiv-
alents. The choice of entries (sorted in the alphabetical order) is based on corpus data
(which is the same for CzeDLex). In this way, the lexicon aims to describe the current
situation in the field of phraseology.

As an example of a sentential phrase in Čermák‘s lexicon, we find e.g. the phrase
Mám k tomu své/svý důvody. [lit.: I have my reasons for this.] (which in PDiT 2.0 func-
tions as a connective and was therefore included into CzeDLex under the connective
phrases containing the word důvod [reason]). For a given phrase, the lexicon of phrases
and idioms provides an explanation of its meaning, a context in which the phrase may

3 To support building of such inventories of connectives in different European languages and to devise
ways of interlinking their entries is one of the goals of the COST TextLink project, see
http://textlink.ii.metu.edu.tr.

4 http://www.dpde.es

5 Compare also a list of inventories of discourse-structuring devices at
http://www.textlink.ii.metu.edu.tr/dsd-view.

64

http://textlink.ii.metu.edu.tr
http://www.dpde.es
http://www.textlink.ii.metu.edu.tr/dsd-view

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

be used, and a synonymous construction. CzeDLex approaches similar phrases from
a different perspective, namely in terms of coherence (i.e. we focus on the function the
phrase has for the text coherence). Therefore, in CzeDLex, we deal with semantic dis-
course types expressed by the phrase, its Czech synonyms and English equivalent/s.

In the rest of this section, we compare the most important properties of some other
existing connective lexicons to the properties of CzeDLex. During the design process
of CzeDLex, the points of departure of similar projects were particularly important
because of future lexicon interlinking and their usability for translation. We there-
fore aimed to be theoretically and technically as close to existing electronic lexicons of
connectives as possible. As mentioned earlier, the main source of inspiration was the
German machine-readable Lexicon of Discourse Markers, DiMLex (Stede and Um-
bach, 1998), developed in Potsdam and continuously enhanced (DiMLex 2, Scheffler
and Stede, 2016). CzeDLex and DiMLex are indeed closely related in several basic
aspects:

• they are both encoded in an XML-based format,
• the core of the delimitation of the category of discourse connectives/discourse

markers is very similar,
• both cover part-of-speech, syntactic and semantic properties of the items they

describe,
• semantic properties of the connectives are described via highly compatible frame-

works – the sense taxonomy used in the Penn Discourse Treebank (Prasad et al.,
2008) vs. its close Prague variant,

• both reflect ambiguity issues and record also non-connective usages.
On the other hand, different development processes of these inventories and differ-
ent grammatical tradition (mostly in morphology) in discourse marker description re-
sulted in several discrepancies between the two projects: Regarding the development
process, DiMLex is being developed since 1998 and it is largely inspired by the exten-
sive research project Handbuch der Deutschen Konnektoren (HdK; Pasch et al., 2003).
CzeDLex is based upon the Prague Discourse Treebank 2.0, its annotation of discourse
relations, syntactic analysis and part-of-speech tagging principles. The definition of
a connective in DiMLex adopts five criteria from the HdK, M1-M5,6 but drops the M2
criterion, as several (cca 25) prepositions, or, more precisely, adpositions (also post-
positions, e.g. –halber and “Zirkumpositionen”, e.g. um ... Willen), were considered
discourse connectives and added to the lexicon. The CzeDLex connective definition
is based on the Penn Discourse Treebank (PDTB) definition as a predicate of a binary

6 (M1) X cannot be inflected. (M2) X does not assign case features to its syntactic environment. (M3) The
meaning of X is a two-place relation. (M4) The arguments of the relation (the meaning of X) are proposi-
tional structures. (M5) The expressions of the arguments of the relation can be sentential structures (Schef-
fler and Stede, 2016).

65

PBML 109 OCTOBER 2017

relation opening positions for two text spans as its arguments and signalling a seman-
tic or pragmatic relation between them (see 4.1 for details or compare Mírovský et al.,
2016b). Prepositions are so far not included, but CzeDLex covers also some frequent
secondary connectives (similar to the “AltLex” category in the PDTB approach). Some
earlier work on more complex connective expressions with referential components in
Czech can be found in Poláková et al. (2012) and mainly in Rysová and Rysová (2015),
and for German, a pilot study of the anaphoric connective demzufolge [best translated
as accordingly, as a result, consequently] is given in Stede and Grishina (2016). DiMLex
now contains 275 German connectives of current use and the authors claim that the
coverage is complete.

Nesting of lexicon entries in DiMLex follows the syntactic category of discourse
markers. In this aspect, lemmas of connectives in CzeDLex are structured differently,
according to discourse types (senses) they convey. The latter approach is also taken in
the French LexConn (Roze et al., 2012), cf. e.g. several entries for the expression alors.

Semantic properties of the connectives are described via very similar frameworks:
a variant of the PDTB sense taxonomy – PDTB 3.0 – for DiMLex versus Prague ad-
justments of the PDTB version 2.0 (see Table 1) for CzeDLex. In addition, DiMLex
2.0 was recently enriched by semantic relations according to more discourse frame-
works, it lists all possible semantic/pragmatic characteristics of a given connective to-
ken also according to the frameworks of the Rhetorical Structure Theory (RST; Mann
and Thompson, 1988b) and the Segmented Discourse Representation Theory (SDRT;
Asher, 1993), and the grammar book of Helbig and Buscha (1984).

3. Prague Discourse Treebank 2.0

The Prague Discourse Treebank 2.0 (Rysová et al., 2016) is built upon the data of the
Prague Dependency Treebank (Hajič et al., 2006; Bejček et al., 2013), which is a richly
annotated corpus with manual multilayer annotation of approx. 50 thousand sen-
tences of Czech journalistic texts from 1990‘s. The Prague Dependency Treebank con-
tains morphological information on each token and two layers of syntactic annotation
for each sentence (shallow and deep structure), both layers are represented by depen-
dency trees. Besides, there is an annotation of information structure, pronominal and
nominal coreference, bridging anaphora and multiword expressions. Annotation of
discourse relations was carried out on top of deep-syntactic trees (on the so called
tectogrammatical layer, see Example 1 and Figure 1) and covers relations expressed
by a surface-present connective (for a definition of connective, see 4.1).

The set of discourse types (see the complete list in Table 1) is inspired by the
Penn Discourse Treebank 2.0 sense hierarchy (Prasad et al., 2008) and the syntactico-
semantic labels used for representation of compound sentences on the tectogrammat-
ical layer.

66

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

root

jaký
which

RSTR

ten
the

RSTR

protest
protest

PAT

#PersPron
ACT

přehlédnout enunc
to_overlook

PRED

možná
maybe

MOD

ale
but

ADVS

přehlédnout enunc
to_overlook

PRED

spíše
probably

RHEM

ne
not

RHEM

root

ale
however

PREC

co
what

PAT

#PersPron
ACT

přehlédnout
to_overlook

PAT

#Neg
RHEM

být enunc
to_be

PRED

protest
protest

ACT

protest
protest

BEN agst

masivní
massive

RSTR
[] []

[]
.

[]

[]

[]

.
[]

opp
connective: ale
range: 0->0

[] [] [] []

[]

.
[]

opp
connective: ale
range: 0->0

[]

[]
.

[]

Figure 1. Example of an intra-sentential and an inter-sentential discourse relation in
PDiT 2.0. Both relations are represented by thick curved arrows connecting roots of the
arguments. Information about the semantic discourse types, connectives and range of

the arguments is given at the starting nodes of the relations.

The first version of the annotation of discourse relations in the data of the Prague
Dependency Treebank was published in 2012 as the Prague Discourse Treebank 1.0
(PDiT 1.0; Poláková et al., 2012b) and described in detail in Poláková et al. (2013).

(1) Možná jsem nějaký ten protest přehlédl, ale spíše ne. Co jsem ale přehlédnout nemohl,
byly masivní protesty proti protestům. (PDiT 2.0)

[Lit.: Maybe I overlooked some of the protests but probably not. What I however could
not overlook, were massive protests against protests.]

An updated version of the annotation of discourse relations of the same data was
published in the Prague Dependency Treebank 3.0 (PDT 3.0; Bejček et al., 2013), with
newly annotated second relations7 and more systematic annotation of focusing parti-
cles (such as also, too) as parts of connectives of conjunction relation. A new attribute
discourse_special was introduced to capture three special roles of phrases: headings

7 Note that – unlike in the Penn Discourse Treebank approach – second relations annotated in the Prague
Dependency Treebank 3.0 and in the Prague Discourse Treebank 2.0 only involve cases where different
relations (in the term of semantic discourse type) between the same arguments are explicitly expressed by
two different connectives (e.g. relations opposition and asynchronous expressed by connectives but and then,
respectively, in the sentence He wanted to go there but then he changed his mind.). Second relations as they are
understood in the Penn Discourse Treebank approach – i.e. two relations expressed by a single connective
– are not annotated in our data.

67

PBML 109 OCTOBER 2017

CONTRAST EXPANSION
confrontation conjunction
opposition conjunctive alternative
restrictive opposition disjunctive alternative
pragmatic contrast instantiation
concession specification
correction equivalence
gradation generalization

CONTINGENCY TEMPORAL
reason–result synchrony
pragmatic reason–result precedence–succession
explication
condition
pragmatic condition
purpose

Table 1. Semantic types of discourse relations in PDiT 2.0 and CzeDLex

(replaced the attribute is_heading from PDiT 1.0), metatext (text not belonging to the
original newspaper text, produced during the creation of the corpus), and captions of
pictures, graphs etc. (the updates were reported in Mírovský et al., 2014). Genres of
documents were also annotated in the PDT 3.0 (and reported in Poláková et al., 2014).
A detailed study dedicated to different aspects of discourse relations and coherence
in Czech, elaborating on various types of annotations of discourse-related phenom-
ena in the data of the Prague Dependency Treebank, can be found in Zikánová et al.
(2015).

Annotations published in PDiT 1.0 and in the PDT 3.0 involved explicit discourse
relations expressed by connectives belonging mostly to conjunctions, adverbs, parti-
cles and punctuation marks, some of them were formed also by multi-word phrases.8
In 2014, discourse connectives were divided into primary and secondary according to
their degree of grammaticalization (Rysová and Rysová, 2014, 2015), see 4.1.1 below.

8 A detailed list of expressions involved in the PDiT 1.0 and PDT 3.0 annotations: (i) coordinating con-
junctions: e.g. a [and], ale [but], však [but], (ii) subordinating conjunctions: e.g. ačkoliv [although], protože
[because], (iii) particle expressions (including rhematizers): e.g. ovšem [however], zkrátka [shortly], (iv) ad-
verbs: e.g. potom [then], stejně [equally], (v) some prepositions with demonstrative pronouns: e.g. kromě toho
[except for this], k tomu [in addition to this], tím [by this], (vi) some types of idiomatic multiple-word connec-
tive means formed by linking of different expressions: e.g. na jedné straně [on the one hand], stručně řečeno [in
short], jinými slovy [in other words], (vii) elements formed by letters or numbers expressing enumeration: e.g.
a), b), 1., 2.; (viii) two punctuation marks: colon and dash (see Poláková et al., 2012a). These connectives
are described in detail in Poláková (2015).

68

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

PDiT 1.0 PDT 3.0 PDiT 2.0
(2012) (2013) (2016)

Primary connectives9 yes updated updated
Headings yes yes yes
Second relations yes updated
Focusing particles yes yes
Captions, metatext yes yes
Genres of documents yes yes
Secondary connectives yes

Table 2. Principal changes in the annotation of discourse relations and related
phenomena in various published versions of the data. Each new version also brought

fixes of annotation errors.

This new division is reflected in the newest published version of the Prague discourse
annotation – the Prague Discourse Treebank 2.0 (PDiT 2.0; Rysová et al., 2016). Specif-
ically, PDiT 2.0 contains a minor revision of the previous annotation (some types of
connectives such as kromě toho [except for this] were re-annotated as secondary con-
nectives) and annotation of discourse relations expressed by a new set of secondary
connectives was added.

Table 2 summarizes the most significant changes of the annotation of discourse
relations in the various versions of the published data. The last version – the Prague
Discourse Treebank 2.0 – was used as the source data in the development of CzeDLex,
as reported in the present article.

4. Theoretical Aspects

4.1. A Connective

One of the basic decisions in building a lexicon of discourse connectives concerns
the delimitation of the connective category. In accordance with the Prague tradition
of discourse annotation and the approach used for the annotation of PDiT 2.0, we
understand a discourse connective as a predicate of a binary relation opening two
positions for two text spans as its arguments and signalling a semantic or pragmatic
relation between them.10

9 We use the term “primary connectives” here in a simplified way, as this term was first used and defined
in 2014. However, the annotations of explicit connectives in PDiT 1.0 (Poláková et al., 2012b) and the PDT 3.0
(Bejček et al., 2013) roughly correspond to this class of expressions; see footnote 8 for a detailed list.

10 A similar approach was used in the PDTB, cf. Prasad et al. (2008).

69

PBML 109 OCTOBER 2017

The two connected text segments are defined according to Asher (1993) as abstract ob-
jects expressing events, states, situations, etc. Syntactically, abstract objects (discourse
arguments) can be represented by various structures ranging from whole sentences
or their combination, to simple clauses, to participial and infinitive constructions and
nominal phrases. In PDiT 2.0, annotation of discourse relations was syntactically re-
stricted to verbal arguments (i.e. whose basis is a finite verb).11 CzeDLex therefore
includes connectives in relations with verbal arguments only.

4.1.1. Primary and secondary connectives

Discourse connectives in PDiT 2.0 are divided into primary and secondary ones, ac-
cording to Rysová and Rysová (2014), as already mentioned in Section 3. Primary
connectives were defined as grammaticalized expressions such as because or therefore
whereas secondary connectives were established as not (yet) fully grammaticalized
structures with connecting function such as except for this, the reason was or for this
reason.

CzeDLex contains both types of connectives. They, however, differ in many im-
portant aspects that need to be reflected in the lexicon design: lemmatization, syntac-
tic characteristics, part-of-speech appurtenance, position of the arguments and argu-
ment integration (i.e. the position of a connective in the argument). Many secondary
connectives may be inflected (for this reason – for these reasons; the condition is – the con-
ditions were etc.) and they exhibit – at least in Czech – a high degree of variation (důvod
je vs. důvodem je [the reason is: nominative vs. instrumental], both variants in Czech
are equivalent).

4.1.2. Complex forms and modified connectives

Discourse connectives often occur in complex and/or modified forms (see Rysová,
2015). Complex forms consist of two or more connective words (i.e. words that can
be connectives by themselves) that all participate on expressing the given discourse
meaning (semantic discourse type, sense). Complex forms occur either in a single
argument (a proto [and therefore]) or they may form correlative pairs (buď nebo [either
or]).

Modified connectives contain an expression of an evaluative, modal or intensifying
nature that further specifies/modifies the discourse relation, without changing its
semantic type (hlavně protože [mainly because] or možným důvodem je [a possible reason
is]).

11 The annotation of secondary connectives in PDiT 2.0 took into account also arguments formed by noun
phrases. These cases were annotated as notes at the core words of the secondary connectives, without the
full annotation of the discourse relations (the whole connective, the arguments and their extent are not
marked); these cases are not included in CzeDLex.

70

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

Both complex and modified connectives are included in CzeDLex, as parts of entries
for the respective single connectives (for details and exceptions, see 4.3 below).

4.1.3. Non-connective usages

Most connective expressions (or, in case of secondary connectives, certain parts of
them) exhibit a functional homonymy with expressions that have different functions
in the text. Non-connective usages of these homonymous expressions can be catego-
rized into several groups with specific properties:

• Expressions connecting mere entities (e.g. towns and villages) are not considered
discourse connectives since they do not connect abstract objects (Asher, 1993).

• Expressions in the function of expressive, modifying or answer particles do
not connect two abstract objects either, although their function belongs to the
wider class of discourse markers in some contexts (e.g. So, will you visit her? Of
course.).

• Homonyms of primary connectives sometimes function only as sentence con-
stituents (mostly in the rhematic part of a sentence) and not as connectives (e.g.
Musíš to udělat úplně jinak. [lit.: You have to do it completely otherwise.]).
In contrast to the primary ones, the secondary connectives (or their parts) are
always sentence constituents at the same time. However, their “core” words may
also have a non-connective usage – cf. The suggestion was rejected for procedural
reasons.

For each lexicon entry in CzeDLex, in addition to the list of connective usages, non-
connective usages of the expression/phrase are listed at level two of the lexicon struc-
ture (see 4.2), along with their syntactic characteristics.12

4.2. Nesting of Lexicon Entries

The most important property of a discourse connective is its lexical form, and natu-
rally the connectives in the lexicon are nested13 on the first level (level one) according
to their lemmas (which need to be representatively chosen for complex or modified
connectives, and especially for secondary connectives, see below in 4.3).

Since we are building a lexicon of discourse connectives, the second most impor-
tant property of a connective is the semantic discourse type the connective can convey
(more precisely, a list of the discourse types). Therefore, on the second level (level
two) of the lexicon structure, the entries are nested according to these semantic dis-

12 A detailed analysis of “the degree of connectivity” of frequent Czech connectives according to the
PDT 3.0 annotation can be found in Zikánová et al. (2015, pp. 161–162).

13 By “nested” we mean organized, divided into individual entries.

71

PBML 109 OCTOBER 2017

course types.14 This approach is justified also by a practical consideration: one of
the primary uses of a lexicon of discourse connectives is machine translation. Inter-
connected lexicons of discourse connectives in different languages may help choose a
correct translation of a connective in the given context (see e.g. Meyer and Poláková,
2013). The following observations suggest an answer to the question “which items
(parts of records in the lexicons) should get connected?”.

For translating a discourse connective to another language, it is not sufficient to
only know the connective itself; for example, if we look up a translation of the English
connective while into Czech in a publicly available online translation dictionary,15 we
get the following list:

• zatímco; když (synchronous events)
• když; během toho, co (synchronous events)
• zatímco; kdežto; ale (adversative relation [but])
• i když; ačkoli; přestože (concession [although])
• (nějaký) čas; chvíle; chvilka (noun)

...which is an ambiguous result and – as we can see – most of the options differ in the
semantics of the connectives, which is very close to the discourse semantic type.16

On the other hand, to correctly translate a connective in context, it is not sufficient
to know only the semantic discourse type the connective conveys either: if we try to
“translate” the connective while based only on the fact that it is – in the given case –
expressing e.g. the sense of Contrast in the PDTB taxonomy, and if we assume that in
the Prague taxonomy the respective discourse type is opposition, we will find out that
in PDiT 2.0, the relation of opposition is realized by 103 different connectives17 – the
most frequent of them are listed in Table 3.

We can conclude that to select a proper translation of a discourse connective, we
need both the lexical information (the connective itself) and the semantic discourse
type conveyed by the connective in the given context. This supports the chosen ap-
proach of nesting entries in the lexicon according to lexical forms of the connectives
(level one) and semantic discourse types they convey (level two). These level-two en-
tries are then to be mapped to their counterparts in other lexicons.18

14 Non-connective usages of the connective words are nested according to their part of speech.
15 https://slovnik.seznam.cz

16 The part of speech of the connectives would not be of much help here – only one option (“noun”)
would be ruled out. For most other connectives, the part of speech would not help at all.

17 including variants, complex forms and modifications
18 There are of course many remaining issues. The linking is still not 1:1, lexicons use different definitions

of “connectives”, different taxonomies of semantic discourse types, different lists of features for entries in
the lexicons, etc.

72

https://slovnik.seznam.cz

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

connective count connective count
však 1 104 nicméně 36
ale 955 sice ... však 35
ovšem 197 přitom 32
sice ... ale 122 aniž 21
jenže 44 a 16
avšak 41 ...

Table 3. Most frequent connectives in PDiT 2.0 expressing the relation of opposition.

4.3. Connective Properties in CzeDLex

Based on the above considerations, the entries in CzeDLex are nested according to
a two-level principle. We describe in detail properties of entries on these two levels
here in 4.3.1 and 4.3.2.

4.3.1. Level-one

The level-one entry in the lexicon structure is represented by the lemma of the con-
nective. Whereas selecting a representative lemma for primary connectives is usually
a straightforward decision (see 4.3.2 for details about complex connectives), a suitable
solution needs to be carefully thought of for secondary connectives.

There are, for example, many secondary connectives containing the word reason
(for this reason, that is the reason why, the reason is etc.). We can consider the word rea-
son their common “core” word, i.e. the word that most strongly signals the relation
that the whole secondary connective expresses. In the lexicon structure, we group
secondary connectives under lemmas of these “core” words, which are mainly nouns
(reason, condition, conclusion etc.), secondary prepositions (due to, because of, thanks to
etc.) and verbs (to precede, to conclude, to sum up etc.)

The first level entry as a whole is encoded in the element19 lemma and contains the
following information:

• element text: the lemma of the connective
• element english: an approximate English translation for a basic orientation; more

precise translations are given in connection with semantic discourse types at
level-two entries

• element type: the type of the connective: primary vs. secondary (see 4.1.1)

19 Some properties of the lexicon entries are encoded as XML elements, others as their attributes (see
Section 5).

73

PBML 109 OCTOBER 2017

• element struct: the structure of the connective: it signals whether the connec-
tive is single such as proto [therefore] or complex such as jednak jednak [on the one
hand on the other hand]. The complex connectives are further differentiated in
the attribute type20 according to their placement in the argument(s): complex
connectives with parts occurring in both arguments (e.g. jednak jednak [on the
one hand on the other hand] or buď nebo [either or]) are labeled correlative, while
complex connectives with all parts occurring in a single argument are labeled
continuous if no word can be inserted between the parts of the connective (e.g.
the connective i když [even if, although]), or discontinuous if other words can occur
between the connective parts (e.g. a potom [and then]).

• element variants: a list of variants of the connective: they are further specified
in the attribute type as stylistic (cf. neutral tedy [so.neutral] vs. informal teda
[so.informal]) or orthographic (e.g. mimoto vs. mimo to [both meaning: besides]), or
inflection (e.g. the form čímž [by which] is the instrumental form of the connective
with the nominative form což [which])

• element conn-usages: a list of connective usages – level-two entries
• element non-conn-usages: a list of non-connective usages – level-two entries
• attribute id: a lexicon-wide unique identifier of this level-one lexicon entry

4.3.2. Level two

For each level-one entry in the lexicon structure, its connective and non-connective
usages are represented as level-two entries. In connective-usages, the discourse type
is used as the base for nesting (reasons for this decision were given in 4.2), while in
non-connective-usages (see 4.1.3), the part-of-speech appurtenance of the expressions
is used.

If this rule were followed strictly, the depth of the lexicon structure for secondary
connectives would increase to three levels, as these connectives often form different
syntactic structures conveying the same discourse type that cannot be treated in a
single unit – for example, both secondary connectives for the following reason and that
is the reason why express the same semantic discourse type (reason–result) but differ in
the argument semantics, i.e. the former signals the reason, while the latter signals the
result (see the element arg_semantics below).

To keep the data structure identical both for primary and secondary connectives,21

we keep the two-level structure also for the secondary connectives; they are therefore
nested not only according to the discourse type they express, but also to their rep-
resentative dependency scheme. This scheme is a general pattern for the connective
structure – e.g. the secondary connectives z tohoto důvodu [for this reason], z uvedených

20 It is an attribute type of the element struct, different from the element type above.
21 which, for example, simplifies searching in the lexicon in the PML-Tree Query system (see Section 5)

74

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

důvodů [for the given reasons] or z těchto důvodů [for those reasons] are represented by
the dependency scheme “z ((anaph. Atr) důvod.2)”, i.e. a preposition z [for] plus an
anaphoric attribute and the word důvod [reason] in genitive.

The second level entry of the lexicon is encoded in the element usage and contains
the following information:

• element sense: the discourse type (see possible values in Table 1)
• element scheme: the dependency scheme (used for secondary connectives only)
• element gloss: a Czech expression disambiguating the meaning of the connec-

tive (a synonym or an explanatory phrase)
• element english: an English translation (the gloss in English)
• element pos: the part-of-speech appurtenance of the connective (the lemma) in

the given usage. Conjunctions are further distinguished in the attribute subpos
as coordinating or subordinating.

• element syntax: for secondary connectives, the part-of-speech characteristics of
the core word is accompanied by a syntactic characteristics for the whole sec-
ondary connective represented by this usage (nominal phrase, adjectival phrase,
pronominal phrase, clause, adverbial phrase, or prepositional phrase).

• element arg_semantics: this characteristics specifies the semantics of the argu-
ment the connective occurs in. From the semantic perspective, there is a basic
difference between symmetric and asymmetric discourse relations. While both
arguments of a symmetric relation (i.e. conjunction or synchrony) share the same
general semantic characteristics, asymmetric discourse relations (e.g. reason–
result or gradation) hold between arguments that have different semantic nature
(e.g. one argument expresses the reason, the other the result).22 A connective of
an asymmetric relation is characterized by its placement in one specific part of
the relation it signals. For example, the coordinating conjunction tedy [thus] sig-
nals the result, while totiž [because] signals the reason. Similarly, the subordinat-
ing conjunctions než [until] and když [when] can be used for signalling precedence–
succession – the former occurs in the argument expressing the event happening
later, while the latter occurs in the argument expressing the earlier event. Table 4
gives an overview of all possible values for the attribute arg_semantics. For sym-

22 In some approaches, the discourse types of the relations are different (e.g. Sanders et al. (1992) distin-
guish Cause-Consequence and Consequence-Cause, the PDTB 2.0 (Prasad et al., 2007) differentiates Cause:reason
and Cause:result according to the argument order), in other approaches the relation remains the same, but
some conventions marking ordering of the reason and the result are applied (e.g. in the Prague approach,
there is only one reason–result relation, but the reason part of the relation is indicated by the starting point
of the arrow (cf. Zikánová et al., 2015); the ISO standard (Prasad and Bunt, 2015) introduces only one Cause
relation as well, the asymmetry of the relation is represented by specifying argument semantics in the def-
inition of the relation). In the Rhetorical Structure Theory (Mann and Thompson, 1988a), the difference in
the (a)symmetry of relations is captured by the feature of nuclearity (symmetric relations are multinuclear,
while asymmetric ones have a nucleus and a satellite).

75

PBML 109 OCTOBER 2017

relation argument semantics

concession concession:expectation
concession:contra-expectation
condition:conditioncondition condition:result of condition
correction:claimcorrection correction:correction
explication:claimexplication explication:argument
generalization:more specificgeneralization generalization:less specific
gradation:lower degreegradation gradation:higher degree
instantiation:general statementinstantiation instantiation:example
pragmatic condition:pragmatic conditionpragmatic condition pragmatic condition:result of pragmatic condition
pragmatic reason-result:pragmatic reasonpragmatic reason-result pragmatic reason-result:pragmatic result
precedence-succession:precedenceprecedence-succession precedence-succession:succession
purpose:actionpurpose purpose:motivation
reason-result:reasonreason-result reason-result:result
restrictive opposition:general statementrestrictive opposition restrictive opposition:exception
specification:less specificspecification specification:more specific

all other relations symmetric

Table 4. Possible values of the argument semantics (attribute arg_semantics).

metric relations, the element arg_semantics has the value symmetric. For complex
correlative connectives forming level-one entries, the value is given for the sec-
ond part of the connective.

76

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

• element ordering: signals the linear order of the argument the connective occurs
in (relatively to the other – external – argument).23 In the majority of cases, or-
dering is connected with the part-of-speech characteristics – coordinating con-
junctions, adverbs and particles are placed in the second argument in the linear
order, while subordinating conjunctions can be placed in either of the argu-
ments. There are, however, exceptions – e.g. the particle nejenže [not only that]
which occurs always in the first argument – that justify incorporation of this
characteristics as a separate element into the lexicon. The element ordering has
one of these five values: 1 for connectives occurring only in the first argument,
2 for connectives in the second argument, 1 or 2 for connectives in the first or
second argument, 1 and 2 for complex correlative connectives and N/A for sec-
ondary connectives forming a separate syntactic unit (e.g. Důvod je jednoduchý.
[The reason is simple.]) and therefore occurring entirely between the arguments.

• element integration: captures the position of the connective within the argu-
ment. According to their origin and other possible functions in text, Czech con-
nectives have different positions in the argument. Only subordinating conjunc-
tions and prototypical coordinating conjunctions occupy the very beginning of
the clause or sentence; the position of other connectives varies. Some of them
are placed typically at the clitic, i.e. second position (e.g. však [however]), some
of them are typically either on the first or on the second position (e.g. potom
[then] or proto [therefore]) and for the class of focusing particles (i.e. expressions
like také [also] or jenom [only]), the position is given by the information structure.
For secondary connectives represented by the whole clause, integration is again
N/A. Other values of this element, as follows from examples just mentioned, are
first, second, first or second, and any. For complex correlative connectives forming
level-one entries, the value is given for the second part of the connective only.

• element realizations: a list of non-modified and non-complex secondary con-
nectives from PDiT 2.0 represented by the given dependency scheme (applies
only to secondary connectives)

• element modifications: a list of the connective modifications: e.g. for the lemma
potom [then] expressing precedence–succession, there is a modification teprve potom
[only then]. Secondary connectives can be modified as well – cf. hlavní důvod proč
[the main reason why]. Modifications are further distinguished in the attribute
type as eval (evaluative), modal, and intense (intensifying).

• element complex_forms: a list of complex connectives: e.g. for the lemma potom
[then] expressing precedence–succession, there are for example complex forms a
potom [and then] and nejdřív potom [first then]. Secondary connectives can have

23 This differs from the original design reported in Mírovský et al. (2016b) where this element signalled
the linear order of the external argument. The new semantics of this element is more consistent with the
semantics of elements arg_semantics and integration.

77

PBML 109 OCTOBER 2017

complex forms as well – cf. a z tohoto důvodu [and for this reason]. The criterion for
a complex form to be placed in the level-two entry under a certain lemma is the
ability of the basic connective (the given lemma) to express the same discourse
type. It means that e.g. the complex connective přesto však [yet however] express-
ing the discourse type of concession is placed in respective level-two entries un-
der both lemmas přesto [yet] and však [however], because both these single con-
nectives individually also express the discourse type of concession in PDiT 2.0.
Further, according to its placement either in both arguments or in one argu-
ment, each complex form is labeled in the attribute type as correlative, continuous
or discontinuous (see above among the level-one entry characteristics).

• element examples: a list of a few illustrative examples from PDiT 2.0 and their
English translations. Both intra-sentential and inter-sentential examples are – if
available in the corpus – given for the connective usages and marked as such in
the attribute type (intra vs. inter).

• element is_rare: signals a rare use of the connective with the given discourse
type

• element register: captures whether the connective is used in the neutral, formal
or informal register

• attribute id: a unique identifier of this level-two entry

For non-connective usages, the argument semantics, ordering, integration, modifica-
tions and complex forms are not applicable, whereas other characteristics are given
similarly as for connective usages.

4.3.3. Corpus frequencies

Numbers of occurrences in PDiT 2.0 were added to all individual variants, complex
forms, modifications and realizations, as well as to connective and non-connective
usages (level-two entries) and the whole lemmas (level-one entries), in two attributes:
pdt_count and pdt_intra, capturing numbers of all vs. intra-sentential occurrences of
the respective items.

Contrary to our former intention (stated in Mírovský et al., 2016b) to extract the
lexicon from 9/10 of the source corpus only (leaving the last 1/10 of the data for test
purposes), we decided in the end to use the whole PDiT 2.0 for the extraction, to
have the whole data of the corpus covered and interconnected with the lexicon.24 All
numbers in the attributes pdt_count and pdt_intra therefore reflect frequencies from
the whole PDiT 2.0.

24 Similarly to e.g. PDT-Vallex, a lexicon of valency frames of verbs and (newly) some nouns in the Prague
Dependency Treebank (see Urešová, 2011 and Kolářová, 2014), which also covers the whole treebank.

78

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

5. Practical Implementation

This section describes the implementation of the lexicon in the Prague Markup Lan-
guage framework (PML, see Section 5.1 just below) and advantages this choice brings.
We show details of the data format on several examples, to demonstrate a relative ease
of using the PML formalism and possibly encourage others to use it in their practi-
cal research. We also describe steps in the process of extracting the lexicon from the
Prague Discourse Treebank 2.0 and mention a few post-processing steps needed to
improve the quality of the final data, and connective properties that needed to be
inserted into the lexicon manually.

5.1. Prague Markup Language

The data format used in the Prague Discourse Treebank 2.0 is called the Prague Markup
Language (PML, Hana and Štěpánek, 2012).25 It is a data format used for many other
treebanks developed in Prague or abroad, such as the Prague Dependency Treebank
since version 2.0, the Prague Czech-English Dependency Treebank (Hajič et al., 2012),
the Slovene Dependency Treebank (Džeroski et al., 2006), the Croatian Dependency
Treebank (Berović et al., 2012), Ancient Greek and Latin Dependency Treebanks (Bam-
man and Crane, 2011), as well as all treebanks in the HamleDT project (Zeman et al.,
2015), and many others.

The PML is an abstract XML-based format designed for annotation of richly lin-
guistically annotated corpora, and especially treebanks. It is independent of a partic-
ular annotation schema and can capture simple linear annotations as well as anno-
tations with one or more richly structured interconnected annotation layers, depen-
dency or constituency trees, including external lexicons.

The PML framework offers the following advantages:26

• The data can be browsed and edited in TrEd, a fully customizable tree editor
(Pajas and Štěpánek, 2008). TrEd is written in Perl and can be easily customized
to a desired purpose by extensions that are included in the system as modules.27

• The data can be processed using scripts written in btred – a command line ver-
sion of TrEd.

• The data can be searched in the PML-TQ (Prague Markup Language–Tree Query,
Pajas and Štěpánek, 2009), a powerful, yet user friendly, graphically oriented
system for querying any data in the PML.

25 http://ufal.mff.cuni.cz/jazz/PML

26 The PML framework brings also low level tools for data validation (against a PML schema) and libraries
to load and save data. And, of course, as the PML format is technically an XML, any general XML tool can
be used for the data as well.

27 Such a module was used also for the annotation of discourse relations in PDiT, see Mírovský et al.
(2010).

79

http://ufal.mff.cuni.cz/jazz/PML

PBML 109 OCTOBER 2017

Using the PML framework presupposes representing the data in the PML format.
Encoding a particular treebank in the PML requires:

• defining a PML-schema for each annotation layer of the data – this includes def-
inition of tree node types, relations between the nodes, attributes for individual
node types, values of the attributes,

• defining a stylesheet for the data – the stylesheet gives a full control over the
way the data are displayed in the tree editor TrEd,

• and, optionally, defining macros – Perl scripts for manipulation with the data
from within TrEd or btred; macros are often created to simplify the most com-
mon tasks done by the annotators.

The following listing is a short example from the PML-schema for CzeDLex, i.e. from
the definition of the format of the lexicon data in the PML, namely the definition of
the format for level-one entries (the lemmas):

01 <type name="c-lemma.type">
02 <structure role="#NODE">
03 <member as_attribute="1" name="id" role="#ID" required="1">

<cdata format="ID"/></member>
04 <member as_attribute="1" name="pdt_count">

<cdata format="nonNegativeInteger"/></member>
05 <member name="text" required="1"><cdata format="any"/></member>
06 <member name="english"><cdata format="any"/></member>
07 <member name="type" type="c-type.type"/>
08 <member name="struct" type="c-struct.type"/>
09 <member name="variants" type="c-variants.type"/>
10 <member name="usages" type="c-usages-all.type" role="#CHILDNODES"/>
11 </structure>
12 </type>

Notice the declarations of roles (role="#NODE", role="#CHILDNODES", lines 2 and 10),
defining which data structures should be understood (i.e. represented) as tree nodes,
and also the declaration of the identifier role (role="#ID", line 3), defining which ele-
ment should be understood as the key for the records.

Similar type definitions need to be provided for all other parts of the lexicon data
structure, i.e. for the types referred to in the definition of the type c-lemma.type above
and for all other data types needed in the lexicon. For example, the definition of the
type c-type.type referred to from line 7 looks like this:

<type name="c-type.type">
<choice>

<value>primary</value>
<value>secondary</value>

</choice>
</type>

80

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

The following commented example shows the respective part of the resulting lexicon
entry for the connective potom [then, afterwards]:

<lemma id="l-potom" pdt_count="95"> (a level-one entry)
<text>potom</text> (the lemma itself)
<english>then; afterwards</english> (an approximate English translation;
more precise translations are given at level-two entries)

<type>primary</type> (vs. secondary)
<struct>single</struct> (vs. complex)
<variants>
(no variants in the data for this lemma)

</variants>
<usages>

<conn-usages pdt_count="80" pdt_intra="37">
(list of connective usages, see Figure 2)

</conn-usages>
<non-conn-usages pdt_count="15">

(list of non-connective usages)
</non-conn-usages>

</usages>
</lemma>

The commented example in Figure 2 shows a level-two entry in the PML for the lemma
potom [then, afterwards], defining the lemma‘s connective usage with the semantic dis-
course type precedence–succession. The same part of the lexicon data is displayed in
Figure 3 – it shows the lexicon loaded in the tree editor TrEd, allowing a user to in-
spect the record(s) or an annotator to make manual changes in the data. It displays
the entry for the whole lemma, with an opened dialog window for editing the con-
nective usage representing the discourse type precedence–succession, and a roll-down
list of available options for the value of the element arg_semantics. The lemma (level-
one entry), the list of connective usages, the list of non-connective usages, and the
individual usages (level-two entries) are represented by tree nodes.

Using the PML for the lexicon brings, apart from the three advantages named ear-
lier in this section, another possibility – the lexicon can be easily interlinked with the
source data, i.e. the Prague Discourse Treebank 2.0, by adding identifiers of the lexi-
con entries (values of the attribute id, e.g. c-potom-preced from the example in Figure 2,
line 1) to the respective places in the treebank, using so called PML references. The
query system PML-TQ then allows for incorporating information both from the tree-
bank and the lexicon into a single query, allowing – for example – to search for:28

28 See Mírovský et al. (2014) and Mírovský et al. (2016a) for examples of using the PML-TQ for searching
in discourse-annotated treebanks (the PDT 3.0 and the PDTB 2.0, respectively).

81

PBML 109 OCTOBER 2017

<usage id="c-potom-preced" pdt_count="63" pdt_intra="30">
<sense>precedence-succession</sense> (the represented semantic discourse type)
<gloss>posléze</gloss> (a synonym/explanation of the meaning in Czech)
<english>afterwards</english> (English translation)
<pos>adverb</pos> (part of speech)
<arg_semantics>precedence-succession:succession</arg_semantics>

(the argument associated with the connective represents
the ``subsequent'' part of the relation)

<ordering>2</ordering> (the argument associated with the connective is placed
second in the surface order of the arguments)

<integration>first or second</integration> (a typical position in the argument)
<register>neutral</register> (vs. formal, informal)
<modifications> (a list of modifications)

<modification type="intense" pdt_count="1" pdt_intra="1">
<text>a teprve potom</text> (an intensifying modification)
<english>and only then</english>

</modification>
</modifications>
<complex_forms> (a list of complex forms)

<complex_form type="discontinuous" pdt_count="14" pdt_intra="11">
<text>a potom</text>
<english>and then</english>

</complex_form>
(four more complex forms omitted to save space here)

</complex_forms>
<examples> (a list of examples from PDiT 2.0)

<example type="inter"> (an inter-sentential example)
<text>Řekl sestře, že už nemůže dál, že si jde něco udělat, plakal

a loučil se s ní. Potom odjel škodovkou.</text>
<english>He told his sister that he could not go any further, that

he was going to do something to himself, he cried and was saying
goodbye to her. Then he drove away in his Škoda.</english>

</example>
<example type="intra"> (an intra-sentential example)

<text>Psovod uvedl, že stopu pachatele ztratil a potom vyhledal jinou.</text>
<english>The dog handler said that he had lost the perpetrator's trail

and then found another.</english>
</example>

</examples>
<pdt> (information closely related to the source corpus)

<discourse_type>preced</discourse_type>
<pos_list>
<pos>adverb</pos>

</pos_list>
</pdt>

</usage>

Figure 2. An abbreviated level-two entry for the lemma potom [then, afterwards] and the
semantic discourse type precedence–succession.

82

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

Figure 3. CzeDLex opened in the tree editor TrEd, with the lemma potom [then,
afterwards] displayed. In the left panel, as well as in the pop-up window on the right side,

information for the selected connective usage with the semantic discourse type
precedence–succession is available. In the pop-up window, a pull-down menu for a

selection of the argument semantics is being used.

• all occurrences of discourse relations in the treebank expressed by connectives
that have the ability to express (in different contexts) more than X (e.g. 2) dif-
ferent discourse types (senses),

• all occurrences of discourse relations in the treebank expressed by connective
words that are ambiguous in their connective vs. non-connective usages,

• all occurrences of discourse relations in the treebank expressed by complex or
modified connectives.

83

PBML 109 OCTOBER 2017

5.2. Data Extraction

The process of extracting a raw base of the lexicon from the Prague Discourse Tree-
bank 2.0 started with an extraction of a list of all connectives annotated in the treebank
data, using a simple PML-TQ query. In this all-connective list, each different string
of words (e.g. ale [but] vs. ale zároveň [but at the same time] vs. ale také [but also]) formed
a separate item. Primary and secondary connectives were already distinguished in
the source corpus data and were treated separately. In over 20 thousand annotated
discourse relations in the treebank, there were approx. 700 different items for the pri-
mary connectives and 350 for the secondary ones. Human annotators then manually
divided the connectives into groups of connectives belonging to the same lemma, and
in each group further distinguished complex forms, variants, modifications and (for
the secondary connectives) realizations. For selected secondary connectives, also de-
pendency schemes representing syntactically different realizations were created and
the connectives were divided into subgroups according to the schemes.

This manually processed list served as an input for a btred29 script that went through
the whole data of the treebank, found all occurrences of the lemmas (and their vari-
ants, modifications etc.) and sorted them into the lexicon according to their type of
usage (connective vs. non-connective) and the semantic discourse type of the rela-
tions (or the part of speech for non-connective usages). For each usage, a number of
the shortest intra-sentential and inter-sentential examples30 were collected (the anno-
tators later chose the most suitable ones and added their English translations). Several
other attributes could be set automatically as well – the part of speech, in most cases
also the argument semantics and ordering (according to the orientation of the dis-
course arrow and position of the connective in an argument). Numbers of occurrences
in PDiT 2.0 were added to all individual variants, complex forms and modifications,
to connective and non-connective usages (level-two entries) and the whole lemmas
(level-one entries).

After the lexicon was extracted from the annotated treebank, a few automatic or
semi-automatic post-processing and data validity checking steps were performed. All
counts of appearances of various lexicon data structures in the source treebank data
were checked (e.g. if counts of individual connectives sum up to counts of the usages
and the lemmas). Another important verifying step checked for each complex form
(e.g. ale také [but also]) that its basic lemma (the respective level-one entry, say ale [but])
appeared in the treebank with the same discourse type. If not, the complex form was
removed from that lemma (being for the moment left as a complex form of the other
lemma forming the complex form, in our case také [also]). If the complex form was by

29 a command line version of the tree editor TrEd
30 For some connectives, only one type of examples could be found. The distinction also does not apply

to non-connective usages.

84

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

this process removed from all its basic lemmas, a new level-one entry for this complex
form was created, with the value complex in the element struct.

Several properties required manual work, as the treebank data either did not con-
tain this information at all (English translations, Czech glosses, register, rareness,
syntactic characteristics of secondary connectives) or the data were not big enough
to cover all existing possibilities (dependency scheme, integration, sometimes order-
ing).

6. Conclusion

We have presented theoretical and implementation aspects of the design and develop-
ment process of CzeDLex – a new electronic Lexicon of Czech Discourse Connectives.
It is the first lexicon of Czech connectives and its uniqueness in the worldwide sense
also lies in the fact that it includes not only primary but also secondary connectives.
Special effort was dedicated to having both types of connectives represented in a rel-
atively uniform way, as much as their different syntactic nature allows. We have also
presented the data format used – the Prague Markup Language – and advantages this
choice brings, and elaborated on the actual process of exploiting the source corpus,
namely the Prague Discourse Treebank 2.0, to build the raw basis of the lexicon, with
subsequent automatic and manual checks, corrections and additions.

Building the lexicon on the basis of an annotated corpus brings a certainty that the
selection of the connectives and their coverage in the lexicon are to a certain degree
representative but at the same time it sets limits on both these aspects, as the source
treebank consists of newspaper texts only and, although it is large for a manually
annotated treebank, its size is still limited.31

CzeDLex is built not only for theoretical purposes. Given its rich annotation of the
properties of the connectives (including syntactic characteristics of the connectives, a
general dependency scheme for the secondary connectives and distinction of variants,
complex connectives and modified connectives), it may be useful also for NLP tasks
that involve discourse parsing, for machine translation, information extraction and
for text generation.

Our aim was also to make the lexicon readable for non-Czech speakers and to
simplify its future interlinking with lexicons in other languages. We tried to achieve
these goals by structuring the lexicon entries by semantic discourse types, by pro-
viding comprehensive morphological, syntactic and other characteristics both for the
primary and secondary connectives, by using both human and computer readable
format and by having all names of elements, attributes and their values (with the ob-
vious exception of Czech word entries and Czech corpus examples) in English. In

31 And much smaller than e.g. the SYN series of the Czech National Corpus, which contains automati-
cally morphologically annotated texts in size of approx. 100 million words.

85

PBML 109 OCTOBER 2017

addition, each entry in Czech was supplemented by its English translation, including
all corpus examples.

The first version of CzeDLex will be published this year in the Lindat/Clarin repos-
itory32 under the Creative Commons license. It will cover an essential part of the con-
nectives used in the Prague Discourse Treebank 2.0.33 The second version of CzeDLex,
planned to be published next year, will cover all connectives annotated in the tree-
bank.

Acknowledgements

The authors gratefully acknowledge support from the Ministry of Education, Youth
and Sports of the Czech Republic (project COST-cz LD15052), and the Grant Agency of
the Czech Republic (project GA17-06123S). The work was supported from European
Regional Development Fund-Project ”LINDAT/CLARIN” (No. CZ.02.1.01/0.0/0.0/
16_013/0001781). The research reported in the present contribution has been us-
ing language resources developed, stored and distributed by the LINDAT/CLARIN
project of the Ministry of Education, Youth and Sports of the Czech Republic (project
LM2015071). The authors are also grateful for inspiration coming from meetings and
work realized within the European project TextLink (COST Action IS1312).

Bibliography

Al-Saif, Amal and Katja Markert. The Leeds Arabic Discourse Treebank: Annotating Discourse
Connectives for Arabic. In Proceedings of LREC 2010, pages 2046–2053, Valletta, Malta, 2010.

Asher, Nicholas. Reference to abstract objects in discourse. Kluwer, Norwell, MA, 1993.
Ball, Wilson James. Dictionary of link words in English discourse. Macmillan, 1993.
Bamman, David and Gregory Crane. The ancient Greek and Latin dependency treebanks. In

Language technology for cultural heritage, pages 79–98. Springer, 2011.
Bejček, Eduard, Eva Hajičová, Jan Hajič, Pavlína Jínová, Václava Kettnerová, Veronika Kolářová,

Marie Mikulová, Jiří Mírovský, Anna Nedoluzhko, Jarmila Panevová, Lucie Poláková,
Magda Ševčíková, Jan Štěpánek, and Šárka Zikánová. Prague Dependency Treebank 3.0.
Data/software, 2013.

Berović, Daša, Željko Agić, and Marko Tadić. Croatian dependency treebank: Recent develop-
ment and initial experiments. In Seventh International Conference on Language Resources and
Evaluation (LREC 2012), 2012.

Breindl, Eva, Anna Volodina, and Ulrich Hermann Waßner. Handbuch der deutschen Konnektoren
2: Semantik der deutschen Satzverknüpfer, volume 13. Walter de Gruyter GmbH & Co KG,
2015.

32 http://lindat.cz

33 All those that will have undergone all checks and manual additions by that time.

86

http://lindat.cz

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

Buscha, Joachim. Lexikon deutscher Konjunktionen. Langenscheidt, Verlag Enzyklopädie, 1989.
Carlson, Lynn, Daniel Marcu, and Mary Ellen Okurowski. Building a discourse-tagged corpus

in the framework of Rhetorical Structure Theory. In Current and new directions in discourse
and dialogue, pages 85–112. Springer, 2003.

Čermák, František. Frazeologie a idiomatika: česká a obecná. Karolinum, 2007.
Čermák, František. Slovník české frazeologie a idiomatiky. Leda, 2009.
Da Cunha, Iria, Juan-Manuel Torres-Moreno, and Gerardo Sierra. On the development of the

RST Spanish Treebank. In Proceedings of the 5th Linguistic Annotation Workshop, pages 1–10.
Association for Computational Linguistics, 2011.

Danlos, Laurence, Diégo Antolinos-Basso, Chloé Braud, and Charlotte Roze. Vers le FDTB:
French Discourse Tree Bank. In TALN 2012: 19ème conférence sur le Traitement Automatique
des Langues Naturelles, pages 471–478, 2012.

Džeroski, Sašo, Tomaž Erjavec, Nina Ledinek, Petr Pajas, Zdenek Žabokrtsky, and Andreja
Žele. Towards a Slovene dependency treebank. In Proc. of the Fifth Intern. Conf. on Language
Resources and Evaluation (LREC), 2006.

Feltracco, Anna, Elisabetta Jezek, Bernardo Magnini, and Manfred Stede. LICO: A Lexicon of
Italian Connectives. CLiC it, page 141, 2016.

Hajič, Jan, Jarmila Panevová, Eva Hajičová, Petr Sgall, Petr Pajas, Jan Štěpánek, Jiří Havelka,
Marie Mikulová, Zdeněk Žabokrtský, Magda Ševčíková-Razímová, and Zdeňka Urešová.
Prague Dependency Treebank 2.0. Data/software, 2006.

Hajič, Jan, Eva Hajičová, Jarmila Panevová, Petr Sgall, Ondřej Bojar, Silvie Cinková, Eva
Fučíková, Marie Mikulová, Petr Pajas, Jan Popelka, Jiří Semecký, Jana Šindlerová, Jan
Štěpánek, Josef Toman, Zdeňka Urešová, and Zdeněk Žabokrtský. Announcing Prague
Czech-English Dependency Treebank 2.0. In Proceedings of the Eighth International Confer-
ence on Language Resources and Evaluation (LREC’12), pages 3153–3160, Istanbul, 2012. ELRA,
European Language Resources Association.

Hana, Jirka and Jan Štěpánek. Prague Markup Language Framework. In Proceedings of the Sixth
Linguistic Annotation Workshop, pages 12–21, Stroudsburg, 2012. Association for Computa-
tional Linguistics, Association for Computational Linguistics.

Hausmann, Franz Josef. Lexikographie. Handbuch der Lexikologie. Königstein: Athenäum, pages
367–411, 1985.

Helbig, Gerhard. Lexikon deutscher Partikeln. Verlag Enzyklopädie, 1988.
Helbig, Gerhard and Joachim Buscha. Deutsche Grammatik. Verlag Enzyklopädie, 1984.
Helbig, Gerhard and Agnes Helbig. Lexikon deutscher Modalwörter. Verlag Enzyklopädie, 1990.
Iruskieta, M., M. Aranzabe, A. Diaz de Ilarraza, I. Gonzalez, I. Lersundi, and O. Lopez de La-

calle. The RST Basque TreeBank: an online search interface to check rhetorical relations. In
4th Workshop RST and Discourse Studies, pages 40–49, Sociedad Brasileira de Computacao,
Fortaleza, CE, Brasil, 2013.

Kolářová, Veronika. Valence vybraných typů deverbativních substantiv ve valenčním slovníku
PDT-Vallex. Technical Report TR-2014-56, ÚFAL MFF UK, 2014.

87

PBML 109 OCTOBER 2017

Lin, Ziheng, Hwee Tou Ng, and Min-Yen Kan. A PDTB-styled end-to-end discourse parser.
Natural Language Engineering, 20(2):151–184, 2014.

Mann, William C. and Sandra A. Thompson. Rhetorical Structure Theory: Toward a functional
theory of text organization. Text-Interdisciplinary Journal for the Study of Discourse, 8:243–281,
1988a.

Mann, William C. and Sandra A. Thompson. Rhetorical Structure Theory: Toward a Functional
Theory of Text Organization. Text, 8(3):243–281, 1988b.

Meyer, Thomas and Lucie Poláková. Machine translation with many manually labeled dis-
course connectives. In Proceedings of the 1st DiscoMT Workshop at ACL 2013 (51st Annual
Meeting of the Association for Computational Linguistics), pages 43–50, Sofia, Bulgaria, 2013.

Meyer, Thomas, Andrei Popescu-Belis, Sandrine Zufferey, and Bruno Cartoni. Multilingual
annotation and disambiguation of discourse connectives for machine translation. In Pro-
ceedings of the SIGDIAL 2011 Conference, pages 194–203. Association for Computational Lin-
guistics, 2011.

Mírovský, Jiří, Lucie Mladová, and Zdeněk Žabokrtský. Annotation Tool for Discourse in PDT.
In Huang, Chu-Ren and Dan Jurafsky, editors, Proceedings of the 23rd International Confer-
ence on Computational Linguistics (Coling 2010), volume 1, pages 9–12, Beijing, China, 2010.
Chinese Information Processing Society of China, Tsinghua University Press.

Mírovský, Jiří, Pavlína Jínová, and Lucie Poláková. Discourse Relations in the Prague Depen-
dency Treebank 3.0. In Tounsi, Lamia and Rafal Rak, editors, The 25th International Confer-
ence on Computational Linguistics (Coling 2014), Proceedings of the Conference System Demon-
strations, pages 34–38, Dublin, Ireland, 2014. Dublin City University (DCU), Dublin City
University (DCU).

Mírovský, Jiří, Lucie Poláková, and Jan Štěpánek. Searching in the Penn Discourse Treebank
Using the PML-Tree Query. In Calzolari, Nicoletta, Khalid Choukri, Thierry Declerck,
Marko Grobelnik, Bente Maegaard, Joseph Mariani, Asunción Moreno, Jan Odijk, and Ste-
lios Piperidis, editors, Proceedings of the 10th International Conference on Language Resources
and Evaluation (LREC 2016), pages 1762–1769, Paris, France, 2016a. European Language Re-
sources Association.

Mírovský, Jiří, Pavlína Synková, Magdaléna Rysová, and Lucie Poláková. Designing CzeDLex
– A Lexicon of Czech Discourse Connectives. In Proceedings of the 30th Pacific Asia Conference
on Language, Information and Computation, pages 449–457, Seoul, Korea, 2016b. Kyung Hee
University, Kyung Hee University.

Oza, Umangi, Rashmi Prasad, Sudheer Kolachina, Dipti Misra Sharma, and Aravind Joshi. The
Hindi Discourse Relation Bank. In Proceedings of the third Linguistic Annotation Workshop,
pages 158–161, 2009.

Pajas, Petr and Jan Štěpánek. Recent Advances in a Feature-Rich Framework for Treebank An-
notation. In Scott, Donia and Hans Uszkoreit, editors, Proceedings of the 22nd International
Conference on Computational Linguistics, pages 673–680, Manchester, 2008. The Coling 2008
Organizing Committee.

Pajas, Petr and Jan Štěpánek. System for Querying Syntactically Annotated Corpora. In Lee,
Gary and Sabine Schulte im Walde, editors, Proceedings of the ACL–IJCNLP 2009 Software
Demonstrations, pages 33–36, Suntec, 2009. Association for Computational Linguistics.

88

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

Pasch, Renate, Ursula Brauße, Eva Breindl, and Ulrich Hermann Waßner. Handbuch der
deutschen Konnektoren. Linguistische Grundlagen der Beschreibung und syntaktische Merkmale
der deutschen Satzverknüpfer (Konjunktionen, Satzadverbien und Partikeln). Walter de Gruyter,
2003.

Poláková, Lucie. Discourse Relations in Czech. PhD thesis, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic, 2015.

Poláková, Lucie, Pavlína Jínová, and Jirí Mírovskỳ. Interplay of Coreference and Discourse
Relations: Discourse Connectives with a Referential Component. In LREC, pages 146–153.
Citeseer, 2012.

Poláková, Lucie, Pavlína Jínová, Šárka Zikánová, Zuzanna Bedřichová, Jiří Mírovský, Mag-
daléna Rysová, Jana Zdeňková, Veronika Pavlíková, and Eva Hajičová. Manual for Annota-
tion of Discourse Relations in Prague Dependency Treebank. Technical Report 47, Institute
of Formal and Applied Linguistics, Charles University, Prague, Czech Republic, 2012a.

Poláková, Lucie, Pavlína Jínová, Šárka Zikánová, Eva Hajičová, Jiří Mírovský, Anna
Nedoluzhko, Magdaléna Rysová, Veronika Pavlíková, Jana Zdeňková, Jiří Pergler, and
Radek Ocelák. Prague Discourse Treebank 1.0. Data/software, 2012b.

Poláková, Lucie, Jiří Mírovský, Anna Nedoluzhko, Pavlína Jínová, Šárka Zikánová, and Eva
Hajičová. Introducing the Prague Discourse Treebank 1.0. In Proceedings of the Sixth Inter-
national Joint Conference on Natural Language Processing, pages 91–99, Nagoya, 2013. Asian
Federation of Natural Language Processing.

Poláková, Lucie, Pavlína Jínová, and Jiří Mírovský. Genres in the Prague Discourse Treebank.
In Calzolari, Nicoletta, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard,
and Joseph Mariani, editors, Proceedings of the 9th International Conference on Language Re-
sources and Evaluation (LREC 2014), pages 1320–1326, Reykjavík, Iceland, 2014. European
Language Resources Association.

Prasad, Rashmi and Harry Bunt. Semantic relations in discourse: The current state of ISO
24617-8. In Proceedings 11th Joint ACL-ISO Workshop on Interoperable Semantic Annotation
(ISA-11), pages 80–92, 2015.

Prasad, Rashmi, Eleni Miltsakaki, Nikhil Dinesh, Alan Lee, Aravind Joshi, Livio Robaldo, and
Bonnie Webber. The Penn Discourse Treebank 2.0 Annotation Manual. Technical Report
IRCS-08-01, Institute for Research in Cognitive Science, Philadelphia, 2007. URL http://
www.seas.upenn.edu/~pdtb/PDTBAPI/pdtb-annotation-manual.pdf.

Prasad, Rashmi, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo, Aravind Joshi,
and Bonnie Webber. The Penn Discourse Treebank 2.0. In Calzolari, Nicoletta, Khalid
Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, and Daniel Tapias,
editors, Proceedings of the Sixth International Conference on Language Resources and Evaluation
(LREC’08), pages 2961–2968, Marrakech, 2008. European Language Resources Association.

Roze, Charlotte, Laurence Danlos, and Philippe Muller. LEXCONN: a French lexicon of dis-
course connectives. Discours. Revue de linguistique, psycholinguistique et informatique, (10),
2012.

Rysová, Magdaléna. Diskurzní konektory v češtině (Od centra k periferii) [Discourse Connectives in
Czech (From the Centre to the Perifery)]. PhD thesis, Charles University, Prague, Czechia, 2015.

89

http://www.seas.upenn.edu/~pdtb/PDTBAPI/pdtb-annotation-manual.pdf
http://www.seas.upenn.edu/~pdtb/PDTBAPI/pdtb-annotation-manual.pdf

PBML 109 OCTOBER 2017

Rysová, Magdaléna and Kateřina Rysová. The Centre and Periphery of Discourse Connectives.
In Aroonmanakun, Wirote, Prachya Boonkwan, and Thepchai Supnithi, editors, Proceedings
of Pacific Asia Conference on Language, Information and Computing, pages 452–459, Bangkok,
2014. Department of Linguistics, Faculty of Arts, Chulalongkorn University, Department of
Linguistics, Faculty of Arts, Chulalongkorn University.

Rysová, Magdaléna and Kateřina Rysová. Secondary Connectives in the Prague Dependency
Treebank. In Hajičová, Eva and Joakim Nivre, editors, Proceedings of the Third International
Conference on Dependency Linguistics (Depling 2015), pages 291–299, Uppsala, Sweden, 2015.
Uppsala University, Uppsala University.

Rysová, Magdaléna, Pavlína Synková, Jiří Mírovský, Eva Hajičová, Anna Nedoluzhko, Radek
Ocelák, Jiří Pergler, Lucie Poláková, Veronika Pavlíková, Jana Zdeňková, and Šárka
Zikánová. Prague Discourse Treebank 2.0. Data/software, 2016.

Sanders, Ted JM, Wilbert PM Spooren, and Leo GM Noordman. Toward a taxonomy of coher-
ence relations. Discourse processes, 15(1):1–35, 1992.

Scheffler, Tatjana and Manfred Stede. Adding Semantic Relations to a Large-Coverage Con-
nective Lexicon of German. In Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC 2016). European Language Resources Association, Paris,
France, 2016.

Schröder, Jochen. Lexikon deutscher Präpositionen. Verlag Enzyklopädie, 1986.
Stede, Manfred. Resolving connective ambiguity: A prerequisite for discourse parsing. The

Pragmatics of Discourse Coherence. John Benjamins, Amsterdam, 2014.
Stede, Manfred and Yulia Grishina. Anaphoricity in Connectives: A Case Study on German.

Coreference Resolution beyond OntoNotes, page 41, 2016.
Stede, Manfred and Arne Neumann. Potsdam Commentary Corpus 2.0: Annotation for Dis-

course Research. In Proceedings of LREC 2014, pages 925–929, Reykjavik, Iceland, 2014.
Stede, Manfred and Carla Umbach. DiMLex: A Lexicon of Discourse Markers for Text Gener-

ation and Understanding. In Proceedings of the 17th International Conference on Computational
Linguistics (Coling 1998), pages 1238–1242. Association for Computational Linguistics, 1998.

Synková, Pavlína, Magdaléna Rysová, Lucie Poláková, and Jiří Mírovský. Extracting a Lexicon
of Discourse Connectives in Czech from an Annotated Corpus. In Proceedings of the 31st Pa-
cific Asia Conference on Language, Information and Computation, pages 1–8, Cebu, Philippines,
2017, in print. University of the Philippines Cebu.

Urešová, Zdeňka. Valenční slovník Pražského závislostního korpusu (PDT-Vallex). Studies in
Computational and Theoretical Linguistics. Ústav formální a aplikované lingvistiky, Praha,
Czechia, 2011.

Urešová, Zdeňka, Eva Fučíková, and Jana Šindlerová. CzEngVallex: a bilingual Czech-English
valency lexicon. The Prague Bulletin of Mathematical Linguistics, 105:17–50, 2016.

Veselovská, Kateřina and Ondřej Bojar. Czech SubLex 1.0, 2013.
Zeman, Daniel, David Mareček, Jan Mašek, Martin Popel, Loganathan Ramasamy, Rudolf Rosa,

Jan Štěpánek, and Zdeněk Žabokrtský. HamleDT 3.0, 2015.

90

J. Mírovský, P. Synková, M. Rysová, L. Poláková CzeDLex (61–91)

Zeyrek, Deniz and Murathan Kurfalı. TDB 1.1: Extensions on Turkish Discourse Bank. LAW
XI 2017, page 76, 2017.

Zeyrek, Deniz, Işin Demirşahin, Ayişiği Sevdik-Çalli, Hale Ögel Balaban, İhsan Yalçinkaya, and
Ümit Deniz Turan. The annotation scheme of the Turkish Discourse Bank and an evaluation
of inconsistent annotations. In Proceedings of the fourth Linguistic Annotation Workshop, pages
282–289, 2010.

Zhou, Yuping and Nianwen Xue. PDTB-style discourse annotation of Chinese text. In Proceed-
ings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-
Volume 1, pages 69–77, 2012.

Zhou, Yuping and Nianwen Xue. The Chinese discourse treebank: a Chinese corpus annotated
with discourse relations. Language Resources and Evaluation, 49(2):397, 2015.

Zikánová, Šárka, Eva Hajičová, Barbora Hladká, Pavlína Jínová, Jiří Mírovský, Anna
Nedoluzhko, Lucie Poláková, Kateřina Rysová, Magdaléna Rysová, and Jan Václ. Discourse
and Coherence. From the Sentence Structure to Relations in Text. Studies in Computational and
Theoretical Linguistics. ÚFAL, Praha, Czechia, 2015.

Address for correspondence:
Jiří Mírovský
mirovsky@ufal.mff.cuni.cz
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics, Charles University
Malostranské náměstí 25
118 00 Praha 1
Czech Republic

91

PBML 109 OCTOBER 2017

The Prague Bulletin of Mathematical Linguistics
NUMBER 109 OCTOBER 2017

INSTRUCTIONS FOR AUTHORS

Manuscripts are welcome provided that they have not yet been published else-
where and that they bring some interesting and new insights contributing to the broad
field of computational linguistics in any of its aspects, or of linguistic theory. The sub-
mitted articles may be:

• long articles with completed, wide-impact research results both theoretical and
practical, and/or new formalisms for linguistic analysis and their implementa-
tion and application on linguistic data sets, or

• short or long articles that are abstracts or extracts of Master’s and PhD thesis,
with the most interesting and/or promising results described. Also

• short or long articles looking forward that base their views on proper and deep
analysis of the current situation in various subjects within the field are invited,
as well as

• short articles about current advanced research of both theoretical and applied
nature, with very specific (and perhaps narrow, but well-defined) target goal in
all areas of language and speech processing, to give the opportunity to junior
researchers to publish as soon as possible;

• short articles that contain contraversing, polemic or otherwise unusual views,
supported by some experimental evidence but not necessarily evaluated in the
usual sense are also welcome.

The recommended length of long article is 12–30 pages and of short paper is 6–15
pages.

The copyright of papers accepted for publication remains with the author. The
editors reserve the right to make editorial revisions but these revisions and changes
have to be approved by the author(s). Book reviews and short book notices are also
appreciated.

The manuscripts are reviewed by 2 independent reviewers, at least one of them
being a member of the international Editorial Board.

Authors receive a printed copy of the relevant issue of the PBML together with the
original pdf files.

The guidelines for the technical shape of the contributions are found on the web
site http://ufal.mff.cuni.cz/pbml. If there are any technical problems, please con-
tact the editorial staff at pbml@ufal.mff.cuni.cz.

http://ufal.mff.cuni.cz/pbml

