
The Prague Bulletin of Mathematical Linguistics
NUMBER 108 JUNE 2017 233–244

Continuous Learning from Human Post-Edits
for Neural Machine Translation

Marco Turchi,a Matteo Negri,a M. Amin Farajian,ab Marcello Federicoa

a Fondazione Bruno Kessler, Trento, Italy
b University of Trento, Italy

Abstract
Improving machine translation (MT) by learning from human post-edits is a powerful so-

lution that is still unexplored in the neural machine translation (NMT) framework. Also in this
scenario, effective techniques for the continuous tuning of an existing model to a stream of man-
ual corrections would have several advantages over current batch methods. First, they would
make it possible to adapt systems at run time to new users/domains; second, this would hap-
pen at a lower computational cost compared to NMT retraining from scratch or in batch mode.
To attack the problem, we explore several online learning strategies to stepwise fine-tune an
existing model to the incoming post-edits. Our evaluation on data from two language pairs
and different target domains shows significant improvements over the use of static models.

1. Introduction

In the last couple of years, after more than a decade of supremacy in shared evalua-
tion campaigns like WMT (Bojar, 2016) and IWSLT (Cettolo et al., 2015), phrase-based
SMT approaches have been significantly outperformed by neural solutions. However,
despite the impressive progress of the so-called encoder-decoder NMT architectures
(Bahdanau et al., 2014), MT is still far from being a solved problem. Together with the
high computational training costs, one of the downsides of NMT is that performance
can be significantly affected by situations in which training and testing are performed
on heterogeneous data (e.g. coming from different domains or featuring different vo-
cabulary and sentence structure). In this challenging condition, the availability of

© 2017 PBML. Distributed under CC BY-NC-ND. Corresponding author: turchi@fbk.eu
Cite as: Marco Turchi, Matteo Negri, M. Amin Farajian, Marcello Federico. Continuous Learning from Human Post-
Edits for Neural Machine Translation. The Prague Bulletin of Mathematical Linguistics No. 108, 2017, pp. 233–244.
doi: 10.1515/pralin-2017-0023.

http://creativecommons.org/licenses/by-nc-nd/3.0/


PBML 108 JUNE 2017

task-specific (e.g. in-domain) data makes it possible to reduce the performance drops
by means of fine-tuning procedures that are much faster than full model retraining.

Fine-tuning is usually applied in “batch” conditions, in which a general out-of-
domain NMT model is further trained on in-domain data before testing. This paper
investigates its adoption at the core of an “online” learning approach in which, at test
stage, the NMT model is continuously adapted to a stream of incoming parallel sen-
tence pairs. This scenario is relevant for the so-called computer-assisted translation
(CAT) framework, which now represents the standard operating environment in the
translation industry. Given a source sentence to translate (src), translators working
with a CAT tool operate on machine-derived suggestions (tgt) correcting them, when
necessary, into post-edited (pe) translations of the desired level of quality. Even if not
perfect, MT suggestions normally require less post-editing effort compared to man-
ual translation from scratch. In this “translation as post-editing” process, new data in
the form of (src, tgt, pe) triples are continuously generated, thus providing a wealth of
material to tune and adapt existing NMT models to specific users and domains.

The exploitation of human post-edits in a continuous learning NMT framework
represents an ideal scenario for deploying online learning techniques. In machine
learning, online learning is defined as the task of using data that becomes available
in a sequential order to stepwise update a predictor for future data. The new points
used for the update often consist in labeled instances provided as external feedback
(i.e. a “true” label representing the expected response for each given input). At each
step, the difference between a prediction p(xi) and the corresponding true label p̂(xi)
is used by the learner to refine the next prediction p(xi+1). In this way, a general
model can evolve over time by integrating external feedback in order to reduce the
distance between its predictions and the expected output. Such evolution can result
in a general performance improvement but also, depending on the working scenario,
in an adaptation to the specificities of the target application domain.

Cast as an online learning problem, our task consists in leveraging a stream of hu-
man post-edited data for continuous NMT adaptation. Along this direction, our con-
tributions can be summarized as follows: (1) we define and explore for the first time an
application-oriented framework for continuous NMT adaptation from human feed-
back, which is suitable for deployment in the CAT framework; (2) we propose different
strategies to approach the problem; (3) we evaluate them in two different scenarios
(different target languages, domains and levels of training/test data mismatch).

2. Related work

Previous work on online MT adaptation is motivated by the problem of perfor-
mance degradation when training and testing on heterogeneous data. In phrase-
based MT, this problem has been widely explored. The proposed solutions include
the use of incremental expectation-maximization (EM) and suffix arrays to update
the statistics of a generic model (Ortiz-Martínez et al., 2010, Ortiz-Martínez, 2016,

234



Turchi, Negri, Farajian, Federico Continuous Learning for NMT (233–244)

Germann, 2014), cache-based models (Bertoldi et al., 2013), discriminative approaches
based on structured perceptrons (Wäschle et al., 2013), incremental Bayesian language
models (Denkowski et al., 2014), and hierarchical methods (Wuebker et al., 2015).

In NMT, online methods have not been explored yet. In fact, adaptation approaches
mostly rely on batch fine-tuning procedures that are carried out on a small corpus of
“in-domain data”.1 To cope with training/test heterogeneity, fine-tuning consists in
exploiting the availability of in-domain data representative of the test set to perform
a focused additional training step (Luong and Manning, 2015). Despite some risk of
overfitting to the small size of the in-domain data, this practice often results in signifi-
cant performance gains. An interesting variant, closer to our approach, is proposed in
(Li et al., 2016). It presents an on-the-fly local adaptation method which, for each in-
coming test sentence, performs fine-tuning on source-reference pairs extracted from
the parallel corpus used to train the general model. This solution, however, does not
take into account human feedback (post-edits), as the retrieval step is carried out on
a static pool of parallel training data. In contrast, in our online scenario we explore
different strategies for continuous NMT model update by fine-tuning on a dynamic
pool that incorporates a stream of human post-edited data from a given (possibly
new) domain. Different from (Li et al., 2016), moreover, our retrieval step is based on
faster and more powerful information retrieval techniques (ngram-based search with
Lucene), which reward longer matches of relevant terms (as opposed to Levenshtein
distance, and the other similarity methods proposed in (Li et al., 2016), which treat
all the matching terms equally).

Finally, among the strategies explored in this paper, we also consider the case in
which the general model evolves over time (i.e. the updated model for sentence n
becomes the starting model for sentence n+1). In (Li et al., 2016), instead, the original
model is always restored before processing each incoming sentence.

3. Integrating User Feedback

In order to exploit human feedback for continuous NMT model update, we ex-
plore three possible strategies, in which post-edited data are respectively used: i) for
global model improvements after translating an input sentence (§ 3.1), ii) as additional
knowledge for local improvements before translating the input sentence (§ 3.2), or iii)
for both global and local improvements (§ 3.3).

3.1. Adaptation “a posteriori”

This strategy makes a direct use of user feedback for updating a general model as
in any standard online MT framework, that is by using human feedback in the form

1With the expression “in-domain” we broadly refer to data that differ from those used for training the
model. This mismatch can be due to an actual difference in terms of semantic domain, but also to other
discrepancies in terms of style, vocabulary, sentence structure, etc.

235



PBML 108 JUNE 2017

of (src,pe) pairs to stepwise update the MT model after translating each segment. After
receiving the human post-edit (pe) of the translation (tgt) of a given segment (src), the
goal is to learn from the (src,pe) pair and induce the model to better translate the next
input segment. This is done by performing a further fine-tuning step of the original
model, which consists of one (or more) training iterations over the (src,pe) pair.

Overall, adaptation a posteriori is rather conservative since, at each step, the chan-
ges of the general model are induced only from a parallel sentence pair consisting of
a source segment coming from the target domain and its human post-edit.

3.2. Adaptation “a priori”

This strategy, inspired by the approach of Li et al. (2016), makes an indirect use of
user feedback. It relies on an update step to locally adapt the model to each incoming
segment before translating it. Given an input sentence (src), parallel sentence pairs in
which the source side is similar to src are retrieved from the data used to train the
general model. The retrieved material is used to fine-tune the general model, which
results in a local model that will be used to translate the input sentence. Although
in the approach of Li et al. (2016) the starting general model is the same for each in-
put sentence, nothing prevents to take advantage from new (src,pe) pairs as long as
they become available. To this aim, instead of keeping fixed the pool of parallel data
accessed for the local update, we experiment with a pool that is continuously popu-
lated with the previously collected (src,pe) instances. Differently from (Li et al., 2016),
in which the data for local adaptation are retrieved by computing similarities based
on Levenshtein distance, word embeddings and the NMT encoder’s hidden states,
we adopt standard information retrieval techniques. In particular, we use the Shin-
gle2 filter of Lucene (McCandless et al., 2010), which performs ngram-based searches
that reward at the same time relevant and longer matches. In our experiments, for
each query (i.e. input sentence), the top matching source sentence retrieved from the
pool and the corresponding translation are used to perform the local fine-tuning step.

Though more focused compared to the previous approach, adaptation a priori is
potentially more risky. Indeed, at each step, the local adaptation of the general model
is based on similar (but not necessarily relevant/useful) sentence pairs.

3.3. Double adaptation

The two previous approaches can be combined in the general scheme depicted in
Figure 1. In this case, given an input sentence (src), the general NMT model (GM1) is
first adapted locally by performing a fine-tuning step on similar data retrieved from
the parallel data pool (training pairs + previously collected (src,pe) pairs). Then, the
resulting adapted model (LM1) is used to translate the sentence. After receiving the

2goo.gl/HzeSAI

236



Turchi, Negri, Farajian, Federico Continuous Learning for NMT (233–244)

Figure 1. Double adaptation process.

human post-edit (pe) of the output translation (tgt), two options are possible. One
is to exploit the (src,pe) pair to update the general model, which will be used as the
starting model (GM2) for the next input segment. The second option is to exploit
the (src,pe) pair to update the local model (LM1), which will be used as the starting
model (LM2) for the next input segment. By adopting the first option, the translation
process will rely on a chain of continuously evolving generic models (GM1, GM2, ...,
GMn). By adopting the second option, the translation process will rely on a chain
of models (GM1, LM1, LM2, ..., LMn) that, starting from the initial general model,
evolves through local adaptations.

4. Experimental Setup
4.1. Approaches

Figure 2 illustrates the approaches compared in our experiments. The first one
(a) is our baseline. It consists of a static NMT model (GM1), which is used to pro-
cess the entire stream of data without changing over time (i.e. without learning from
the (src,pe) sentence pairs obtained as human feedback). The second approach (b) is
the adaptation “a posteriori” described in § 3.1, in which a general model is continu-
ously fine-tuned to each incoming (src,pe) segment (GM1 for the first segment, GM2
for the second, and so on). The third and fourth approaches (c and d) represent the
adaptation “a priori” described in § 3.2. In one case (c), for the first input segment
to translate, a general model (GM1) is locally fine-tuned to similar sentence pairs re-
trieved from the pool of parallel data (recall that similarity is computed between the
input segment and the source side of the instances in the pool). After translation,
the same initial model (GM1) is used for the second input segment, and so on. In
the other case (d), the locally-adapted model (LM1) is kept after translating the first
input segment and used as starting model for the second one. The fifth and sixth so-

237



PBML 108 JUNE 2017

Figure 2. Static (a) vs online (b, c, d, e, f) NMT approaches.

lutions (e and f) represent the double adaptation method described in § 3.3. In (e), the
general model (GM1) is locally fine-tuned (LM1) to translate the first input segment.
Then, after translation and post-editing, human feedback is used to fine-tune again
the general model, which will become the starting model (GM2) for the second input
segment, and so on. In (f), the second fine-tuning step is applied to the local model.

4.2. Data

Our evaluation is carried out on two different language pairs and domains. The
first scenario consists in translating information technology (IT) English sentences into
German using a large set of heterogeneous parallel data to train the NMT system. In
the second scenario, the NMT is trained on a small quantity of domain-specific data
and it is used to translate medical English segments into Latvian. The two conditions
pose different challenges. In the En_De setting, the initial NMT model is trained on
a large general dataset that scarcely represents the target domain. Hence, continuous
learning mainly acts as a domain-adaptation process. For En_Lv, the model is trained on
domain-specific data, but in limited quantity. Hence, the goal is to improve the overall
translation quality by leveraging the new incoming data. Regarding the target languages,
Latvian is a Baltic language that is much more inflected that German. This results in
a more sparse vocabulary that can affect translation performance.

For training the En_De NMT system, we merged the Europarl v7 (Koehn, 2005)
and Common Crawl datasets released for the translation task at the 2016 Workshop
on Statistical Machine Translation (WMT’16 (Bojar, 2016)) and random sampled 3.5
million sentence pairs. As domain-specific test set, we randomly selected 3k instances

238



Turchi, Negri, Farajian, Federico Continuous Learning for NMT (233–244)

from the training data released for the automatic post-editing task at WMT’16 (ibid.).
This dataset consists of 12k (src,tgt,pe) triples, in which the source sentences come
from an IT manual and the post-edits are generated by professional translators. In our
experiments, the source sentences are translated by our NMT system and we assume
that the existing post-edits are corrections of the NMT output.

For training the En_Lv NMT system, we used a subset of the EMEA parallel corpus
proposed in (Pinnis et al., 2016). The test set is obtained by extracting 3k consecutive
segments from randomly selected EMEA documents. Post-edits were generated by
professional translators who corrected the output of our NMT system. Some data
statistics are reported in Table 1.

En_De En_Lv
train dev test train dev test

Number of sentence pairs 3.5M 2K 3K 385K 2K 3K
Source language tokens 63M 18K 50K 60.5M 20K 54K
Target language tokens 7.5M 37K 55K 6.8M 34K 50K

Table 1. Statistics about the En_De and En_Lv training, dev and test corpora.

4.3. NMT System

All the experiments are conducted with an in-house developed and maintained
branch of the Nematus toolkit,3 which is an implementation of the attentional encoder-
decoder architecture (Bahdanau et al., 2014). Models were trained by splitting words
into sub-word units using byte pair encoding (BPE), which Sennrich et al. (2016) in-
dicates as an effective way to handle large vocabularies (e.g. to deal with rare words
and highly inflected languages). Word segmentation was carried out by combining
the source and target side of the training set and setting the number of merge rules to
40,000 for both language pairs. We used mini-batches of size 100, word embeddings of
size 1024, and hidden layers of size 1024. The maximum sentence length was set to 50.
The models were trained using Adam (Kingma and Ba, 2015) with an initial learning
rate of 0.001, reshuffling the training corpora at each epoch. In both language pairs,
the training of the generic systems was stopped after 20 epochs. Dropout is disabled.

5. Impact of gradient descent optimization algorithms

Following Li et al. (2016), in all the scenarios proposed in § 3 our NMT models are
always updated using one single sentence pair. This is quite unusual for the NMT
training common practice, in which batches containing dozens of sentence pairs are

3https://github.com/rsennrich/nematus

239

https://github.com/rsennrich/nematus


PBML 108 JUNE 2017

normally used. Leaving for future work the investigation on how to exploit larger sets
of retrieved sentences, we run several experiments to measure the impact on perfor-
mance of different optimization algorithms when using only one sentence pair.

The most used family of optimization algorithms is based on gradient descent,
which is a way to minimize an objective function J(Θ), where Θ ∈ Rd, by updating
the Θ parameters in the opposite direction of the gradient of the objective function
▽ΘJ(Θ). The learning rate η determines the size of the steps we take to reach a (local)
minimum. Among the several optimizers proposed in literature, in our experiments
we test: i) stochastic gradient descent (Sgd) (Bottou, 2010); ii) Adagrad (Duchi et al.,
2011), iii) Adadelta (Zeiler, 2012) and Adam (Kingma and Ba, 2015). The main dif-
ferences between these methods lie on the use of gradient information from the past
time steps and on the way learning rates are updated. Sgd performs a parameter up-
date for each training example ignoring the past gradient information and using a fix
η chosen a priori. Differently from Sgd, Adagrad adapts the learning rate to the pa-
rameters using the past information and by performing larger updates for infrequent
parameters and smaller updates for the frequent ones. Adadelta extends Adagrad
by restricting the window of accumulated past gradients to some fixed size in order
to mitigate the problem of a too fast monotonic decrease of the learning rate, which
rapidly gets close to zero when all past gradients are retained. Adam introduces a
bias correction mechanism and a better handling of moment information to induce
faster parameter variations in the right direction.

adam adagrad adadelta sgd 1 sgd 0.1 sgd 0.01 sgd 0.001
En_De 39.1 30.1 44.4 37.2 50.2 47.5 44.0
En_Lv 28.3 16.2 38.7 34.5 47.9 47.3 46.8

Table 2. Results (BLEU) of different optimization algorithms.

In this set of experiments, we only consider the “a posteriori” adaptation strategy,
which uses reliable in-domain (src,pe) pairs (see Figure 2(b)). In contrast with “a pri-
ori” adaptation, which operates on similar but potentially noisy retrieved instances,
we believe that reliable insights will more likely come from this setting. Several learn-
ing rates are tested for Sgd (i.e. 1, 0.1, 0.01 and 0.001), while the other optimizers are
initialized with a learning rate of 0.01. The BLEU results for both language pairs are
reported in Table 2. Sgd generally performs better than the other optimizers that re-
sult in significantly lower scores. Looking at the different values of the Sgd learning
rate, the performance improves when a larger η is used. For both languages, this is
valid up to η equal to 0.1 while, for larger values, also Sgd results in poor translations.

The superiority of Sgd in our scenario contrasts with the results achievable in NMT
when learning from a batch of sentence pairs, which usually favor dynamic optimiz-
ers. Our explanation is that gradients computed on a batch are more stable and less

240



Turchi, Negri, Farajian, Federico Continuous Learning for NMT (233–244)

affected by differences between sentence pairs. For this reason, optimizers that can
leverage past gradient information are usually more reliable. When working with
only one sentence pair, segments from the same document may have different struc-
ture, words and length, which makes gradient information from the past potentially
misleading and causing instability in the optimizer. Since this problem would likely
be exacerbated when adapting to diverse and potentially noisy data in the “a priori”
setting, Sgd seems to be a safer solution for our case. In the remainder of the paper,
all the experiments are run using Sgd with learning rate of 0.1.

6. Analysis of continuous learning strategies

Table 3 reports the results of a comparison between the adaptation strategies dis-
cussed in §4.1 and two baselines that do not exploit human feedback. The first one
(Static) is an NMT model that is kept unchanged during the processing of the entire
test set. The second one (“a priori w/o PE”) is our re-implementation of (Li et al.,
2016), which locally adapts the original NMT model to each test sentence by find-
ing the most similar instance in the training data. After each translation, the locally-
updated model is replaced by the initial general model, which is used as a starting
point for the next sentence. This approach resembles our “a priori – keep general
model” adaptation strategy (method (c) in Figure2) with the exception that human
post-edits are not added to the pool of data accessed by Lucene. The reported results
are obtained by iterating for 1 and 5 epochs over each sentence pair during updating.

By comparing the BLEU scores of the static and our re-implementation of (Li et al.,
2016), it becomes evident that simple local adaptation has a marginal impact on the
results (even negative for En_De with 5 epochs, with a drop of ∼2 BLEU points). Al-
though this contrasts with the results of Li et al. (2016), what is interesting to note
here (more than comparing similar approaches on different language directions and
data) is the scarce contribution, in our testing conditions, of retrieving instances from
the static pool of training data. More visible improvements are in fact yielded by the
application of the “a priori with PE” strategy, which takes advantage of a data pool
that constantly grows by integrating human post-edits. With 1 fine-tuning epoch, the
new domain-specific information results in slight improvements, on both language
pairs, both over the baseline and over the “a priori w/o PE” adaptation. The gain is
small (and not significant) on En_Lv, probably due to the fact that the original NMT
model is domain-specific, hence already adapted to the target domain. In this case,
performance is almost identical either if we Keep the General model after processing
each sentence (K.G., which corresponds to method (c) in Figure 2) or if we Keep the
Local model (K.L., method (d)). For En_De, improvements are significant in both con-
ditions, especially when keeping the local model (+1.7 for K.L. vs. +0.5 for K.G.). This
suggests that, despite the risks inherent to the “a priori” strategy, which adapts the
NMT model to the retrieved sentence pairs independently from their degree of simi-
larity with the sentence to translate, the locally-adapted model can be useful also for

241



PBML 108 JUNE 2017

Static a priori w/o PE a priori with PE a post. Double
K. G. K. L. U. G. U. L.

En_De 1 epoch 42.7 42.8 43.3∗ 44.5∗ 50.2∗ 50.0∗ 48.4∗

5 epochs 40.9† 41.7† 41.8† 49.2∗ 47.9∗ 46.3∗

En_Lv 1 epoch 46.8 46.8 46.9 47.0 47.9∗ 47.8∗ 47.4∗

5 epochs 46.9 47.2 47.3∗ 48.3∗ 48.0∗ 47.5∗

Table 3. Results of different adaptation strategies. ∗ and † respectively indicate
statistically significant improvements/degradations with respect to the static system.
Significance tests are performed with paired bootstrap resampling (Koehn, 2004).

the next incoming sentences. With 5 fine-tuning epochs, instead, we observe mixed
results. On En_De, in which training and test are heterogeneous, local adaptation
overfits to sentences that can feature low similarity with the input and is definitely
harmful (both K.G. and K.L. results are significantly below the baseline). On En_Lv,
for which training and test data are homogeneous, we observe slight improvements,
which are significant when keeping the local model (+0.5 BLEU with K.L.).

The use of post-edits a posteriori (“a post.” column) results in a significant im-
provement over the baseline on both language pairs (+7.5 for En_De and +1.1 for
En_Lv). We interpret these coherent gains as an indication that continuous NMT
adaptation to reliable domain-specific sentence pairs reinforces the model capabil-
ity to translate the incoming sentences. Again, overfitting by running more epochs
yields mixed results. On En_De (heterogeneous data) performance drops but is still
significantly better compared to all previous methods, while on En_Lv (homogeneous
data), more epochs yield the best result. The difference between “a priori” and “a pos-
teriori” adaptation also emerges when combining them together (“Double” column).
In general, updating the General model (U.G, method (e) in Figure 2) achieves better
results than Updating the Local model (U.L. method (f)), though slightly worse than
“a posteriori” adaptation.

7. Conclusion and Future Work

We addressed the problem of improving an existing NMT model by continuously
learning from human feedback. As opposed to batch learning techniques, continu-
ous learning from a stream of incoming post-edits represents a promising solution for
cutting the costs of resource/time-demanding routines to periodically retrain NMT
models from scratch. Moreover, it would make it possible to adapt systems’ behavior
to users and domains while the system is in use, thus making the improvements vis-
ible in a short time and reducing the human post-editing workload. To achieve these
objectives we explored different strategies, in which an NMT model is fine tuned: i)
a posteriori (i.e. after receiving the human post-edit of a translated sentence), ii) a
priori (i.e. locally, before translation, by learning also from previous feedback), or iii)

242



Turchi, Negri, Farajian, Federico Continuous Learning for NMT (233–244)

both (i.e. before and after translation). We experimented in different settings, with
two language combinations and two target domains, either homogeneous or diverse
with respect to the data used to train the initial NMT model. Our best results re-
veal significant gains both over a static NMT model used as a baseline and over an
adaptive solution (the most similar to our a priori adaptation strategy), which does
not exploit human feedback. Several interesting aspects have not been discussed and
deserve attention in future work. From the technical side, our initial exploration of
the impact of using different parameter optimizers and running different numbers of
fine-tuning epochs can be extended and complemented with the analysis of: i) alter-
native instance selection techniques (e.g. similarity thresholds applied to the retrieved
data), ii) dynamic, instance-specific ways to set the learning rate and the number of
epochs depending on the similarity of the retrieved material with respect to an input
sentence, and iii) the impact of fine-tuning on more than one sentence at a time. From
the application side, the evaluation with multiple target domains, possibly involving
professional translators operating in a computer-assisted translation environment is
the first step in our agenda.

Acknowledgements

This work has been partially supported by the EC-funded H2020 projects QT21
(grant no. 645452) and ModernMT (grant no. 645487).

Bibliography

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. ”Neural Machine Translation by
Jointly Learning to align and translate”. arXiv preprint arXiv:1409.0473, 2014.

Bertoldi, Nicola, Mauro Cettolo, and Marcello Federico. Cache-based Online Adaptation for
Machine Translation Enhanced Computer Assisted Translation. In Proc. of the XIV Machine
Translation Summit, pages 35–42, Nice, France, September 2013.

Bojar, Ondřej et al. Findings of the 2016 Conference on Machine Translation. In Proc. of the First
Conference on Machine Translation, pages 131–198, Berlin, Germany, August 2016.

Bottou, Léon. ”Large-Scale Machine Learning with Stochastic Gradient Descent”. In Proc. of
COMPSTAT’2010, pages 177–187, Paris, France, August 2010. Springer.

Cettolo, Mauro, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, Roldano Cattoni, and Marcello
Federico. The IWSLT 2015 Evaluation Campaign. In Proc. of the 12th International Workshop
on Spoken Language Translation (IWSLT 2015), Da Nang, Vietnam, 2015.

Denkowski, Michael, Chris Dyer, and Alon Lavie. Learning from Post-Editing: Online Model
Adaptation for Statistical Machine Translation. In Proc. of the 14th Conference of the European
Chapter of the Association for Computational Linguistics, Gothenburg, Sweden, April 2014.

Duchi, John, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learn-
ing and Stochastic Optimization. Journal of Machine Learning Research, 2011.

243



PBML 108 JUNE 2017

Germann, Ulrich. Dynamic Phrase Tables for Machine Translation in an Interactive Post-editing
Scenario. In Proc. of the Workshop on interactive and adaptive machine translation, pages 20–31,
Vancouver, BC, Canada, 2014.

Kingma, Diederik P. and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Proc. of
the 3rd Int. Conference on Learning Representations, pages 1–13, San Diego, USA, May 2015.

Koehn, Philipp. Statistical Significance Tests for Machine Translation Evaluation. In Proceedings
of the Empirical Methods on Natural Language Processing, pages 388–395, 2004.

Koehn, Philipp. Europarl: A Parallel Corpus for Statistical Machine Translation. In Proc. of the
tenth Machine Translation Summit, pages 79–86, Phuket, Thailand, 2005.

Li, Xiaoqing, Jiajun Zhang, and Chengqing Zong. ”One Sentence One Model for Neural Ma-
chine Translation”. arXiv preprint arXiv:1609.06490, 2016.

Luong, Minh-Thang and Christopher D. Manning. Mixture-Model Adaptation for SMT. In
Proc. of the 12th International Workshop on Spoken Language Translation, pages 76–79, Da Nang,
Vietnam, December 2015.

McCandless, Michael, Erik Hatcher, and Otis Gospodnetic. Lucene in Action. Manning Publi-
cations Co., Greenwich, CT, USA, 2010.

Ortiz-Martínez, Daniel. Online Learning for Statistical Machine Translation. Computational
Linguistics, 42(1):121–161, 2016.

Ortiz-Martínez, Daniel, Ismael García-Varea, and Francisco Casacuberta. Online Learning for
Interactive Statistical Machine Translation. In Proc. of NAACL-HLT 2010, pages 546–554, Los
Angeles, California, June 2010.

Pinnis, Marcis, Rihards Kalnins, Raivis Skadins, and Inguna Skadina. What Can We Really
Learn from Post-editing? In Proc. of AMTA 2016 vol. 2: MT Users’ Track, pages 86–91, Austin,
Texas, November 2016.

Sennrich, Rico, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare
Words with Subword Units. In Proc. of the 54th Annual Meeting on Association for Compu-
tational Linguistics, pages 1715––1725, Berlin, Germany, August 2016. Association for Com-
putational Linguistics.

Wäschle, Katharina, Patrick Simianer, Nicola Bertoldi, Stefan Riezler, and Marcello Federico.
Generative and Discriminative Methods for Online Adaptation in SMT. In Proc. of Machine
Translation Summit XIV, pages 11–18, Nice, France, September 2013.

Wuebker, Joern, Spence Green, and John DeNero. Hierarchical Incremental Adaptation for
Statistical Machine Translation. In Proc. of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1059–1065, Lisbon, Portugal, September 2015.

Zeiler, Matthew D. ”ADADELTA: An Adaptive Learning Rate Method”. arXiv preprint
arXiv:1212.5701, 2012.

Address for correspondence:
Marco Turchi
turchi@fbk.eu
Via Sommarive 18, Povo, 38123 Trento, Italy

244


	Introduction
	Related work
	Integrating User Feedback
	Adaptation ``a posteriori''
	Adaptation ``a priori''
	Double adaptation

	Experimental Setup
	Approaches
	Data
	NMT System

	Impact of gradient descent optimization algorithms
	Analysis of continuous learning strategies
	Conclusion and Future Work

