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Abstract
We present BEER, an open source implementation of a machine translation evaluation met-

ric. BEER is a metric trained for high correlation with human ranking by using learning-to-rank
training methods. For evaluation of lexical accuracy it uses sub-word units (character n-grams)
while for measuring word order it uses hierarchical representations based on PETs (permuta-
tion trees). During the last WMT metrics tasks, BEER has shown high correlation with human
judgments both on the sentence and the corpus levels. In this paper we will show how BEER
can be used for (i) full evaluation of MT output, (ii) isolated evaluation of word order and (iii)
tuning MT systems.

1. Introduction

Machine Translation (MT) evaluation deals with the estimation of a measure (pos-
sibly distance) of the quality of some hypothesis MT output to given human transla-
tions, usually treated as gold standard translations. Often times, simplistic heuristics,
such as counts of n-gram matches, are used. When the two corpora being compared
are of relatively large size (>2000 sentences) the estimate can be reliable, even with
simple measures such as BLEU (Papineni et al., 2002), because the collected sufficient
statistic is reliable enough.

However, when we turn to evaluation at the sentence level, we cannot get away
with such simple heuristic measures based on simple counting of too sparse statis-
tics. We believe that evaluation should be treated as a modeling task (just like parsing
or POS tagging or other NLP tasks) where we should train our models to learn the
specific aspects of language processing, using a wide range of quality indicators (fea-
tures). This is the motivation for making BEER a trained metric.
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It is no surprise that trained metrics perform much better than heuristic metrics.
BEER has been the best sentence level metric on WMT14 metrics task (Macháček and
Bojar, 2014), and one of the best on both corpus and sentence level on WMT15 metrics
task (Stanojević et al., 2015a). On the WMT15 tuning task for Czech-English BEER
was the best submitted system falling behind only over the strong baseline (Stanojević
et al., 2015b).

Unfortunately, trained metrics are often not that easy to use. Furthermore, these
metrics are mostly made for the metrics tasks and often not published online, and
when they are published online, this is done without the trained models or without
suitable documentation. With this paper we aim to document BEER as a trained met-
ric that performs well but also is easy to use, offering a range of attractive properties
that researchers are used to see in the simple measures (for example statistical testing,
tuning and many more).

In this paper we will concentrate only on the usage of BEER, but BEER has many
interesting aspects that are presented elsewhere:

• evaluation of word order using permutation trees (PETs)
(Stanojević and Sima’an, 2014b)

• character n-gram matching (Stanojević and Sima’an, 2014a)
• a learning-to-rank model (Stanojević and Sima’an, 2014a)
• a corpus level score that decomposes to sentence level scores

(Stanojević and Sima’an, 2015)
• a tuning model that is not biased for recall (Stanojević and Sima’an, 2015)
• a Treepel version based on syntactic features (Stanojević and Sima’an, 2015)

In the next section we will briefly summarize some these aspects.

2. BEER basics

The model underying the BEER metric is flexible for the integration of an arbitrary
number of new features and has a training method that is targeted for producing
good rankings among systems. Two other characteristic properties of BEER are its
hierarchical reordering component and char n-grams lexical matching component.

BEER is essentially a linear model with which the score can be computed in the
following way:

score(h, r) =
∑
i

wi × ϕi(h, r) = w⃗ · ϕ⃗ (1)

where w⃗ is a weight vector and ϕ⃗ is a feature vector.

2.1. Learning-to-rank

Since the task on which our model is going to be evaluated is ranking translations
it comes natural to train the model using learning-to-rank techniques.
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Our training data consists of pairs of “good” and “bad” translations. By using a
feature vector ϕ⃗good for a good translation and a feature vector ϕ⃗bad for a bad trans-
lation then using the following equations we can transform the ranking problem into
a binary classification problem (Herbrich et al., 1999):

score(hgood, r) > score(hbad, r) ⇔
w⃗ · ϕ⃗good > w⃗ · ϕ⃗bad ⇔

w⃗ · ϕ⃗good − w⃗ · ϕ⃗bad > 0 ⇔
w⃗ · (ϕ⃗good − ϕ⃗bad) > 0

w⃗ · (ϕ⃗bad − ϕ⃗good) < 0

(2)

If we look at ϕ⃗good− ϕ⃗bad as a positive training instance and at ϕ⃗bad− ϕ⃗good as a
negative training instance, we can train any linear classifier to find weight the vector
w⃗ that minimizes mistakes in ranking on the training set.

In practice BEER uses logistic regression as implemented in Weka toolkit (Hall
et al., 2009). So the estimated weights are used in the following way:

score(h, r) =
2

1+ e−
∑

i wi×(ϕi(h,r)−ϕi(r,r))
(3)

The main difference from Equation1 is that here:
1. first substract features of system translation given reference and reference given

reference
2. apply sigmoid function and then
3. we multiply with 2

This formula does not make a difference in ranking compared to Equation 1 but it
makes a difference in scaling the scores. Motivation for it is explained in Stanojević
and Sima’an (2015). This scaling is important for getting a better corpus level score
that is calculated as average sentence level score over whole corpus:

BEERcorpus(c) =

∑
si∈c BEERsent(si)

|c|
(4)

2.2. Lexical component based on char n-grams

Lexical scoring of BEER relies heavily on character n-grams. Precision, Recall and
F1-score are used with char n-gram orders from 1 until 6. These scores are more
smooth on the sentence level than word n-gram matching that is present in other
metrics like BLEU (Papineni et al., 2002) or METEOR (Michael Denkowski and Alon
Lavie, 2014).
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Figure 1: Examples of PETs

BEER also uses precision, recall and F1-score on word level (but not with word n-
grams). Matching of words is computed over METEOR alignments that use WordNet,
paraphrasing and stemming to have more accurate alignment.

We also make distinction between function and content words. For more precise
description on used features and their effectiveness you can look at Stanojević and
Sima’an (2014a).

2.3. Reordering component based on PETs

Alignment between system and reference translation can be simplified and consid-
ered as permutation of words from the reference translation in the system translation.
Previous work by Isozaki et al. (2010) and Birch and Osborne (2010) used this permu-
tation view of word order and applied Kendall τ for evaluating its distance from ideal
(monotone) word order.

BEER goes beyond this skip-gram based evaluation and decomposes permutation
into a hierarchical structure which shows how subparts of permutation form small
groups that can be reordered all together. Figure 1a shows PET for permutation
⟨2, 5, 6, 4, 1, 3⟩. Ideally the permutation tree will be filled with nodes ⟨1, 2⟩ which
would say that there is no need to do any reordering (everything is in the right place).
BEER has features that compute the number of different node types and for each dif-
ferent type it assigns a different weight. Sometimes there are more than one PET for
the same permutation. Consider Figure 1b and 1c which are just 2 out of 3 possible
PETs for permutation ⟨4, 3, 2, 1⟩. Counting the number of trees that could be built is
also a good indicator of the permutation quality.

3. Installing BEER

BEER is implemented in Scala so the only requirement for running it is just having
the latest version of Java virtual machine installed (at least version 8). All the de-
pendencies of BEER are included with the installation except METEOR and Stanford
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CORE dependency parser (Chen and Manning, 2014) which gets installed automati-
cally the first time BEER is ran.

The basic procedure to install BEER is with the following commands in terminal:

wget https://staff.fnwi.uva.nl/m.stanojevic/beer/beer_1.1.tar.gz
tar xfvz beer_1.1.tar.gz
./beer_1.1/beer # this installs METEOR and Stanford parser
rm beer_1.1.tar.gz

4. Usage from command line

BEER has several working modes. They specify if we want to use BEER for evalu-
ation, for computing features, for training, for evaluating reordering or we want to
use it for interactive evaluation on the terminal. We will explain three modes that are
most useful from these: evaluation, evaluateReordering and interactive mode.

Bellow is an example of using BEER with evaluation working mode, where system
translation is given with parameter -s, reference translation with parameter -r and
language with parameter -l.

./beer --workingMode evaluation -l en -s system.en -r reference.en
Because --workingMode evaluation is the default setting we can also skip that pa-

rameter and just write:

./beer -l en -s system.en -r reference.en
This command will print the corpus level BEER score. To get the sentence level

scores we just need to add --printSentScores to the command. The language pa-
rameter -l is an obligatory parameter for BEER because BEER uses language spe-
cific models for scoring and language specific resources (parsers, function words lists,
paraphrase tables, stemmers...) for aligning reference and system translation. All lan-
guages from WMT13 and WMT14 are supported at this point. There is additional
language other which is recommended in case there is no language specific model
available.

This and some other parameters of BEER are shown in Table 1.

5. Usage in interactive mode

In some use cases the user might want to connect some other application with
BEER. This can be done by using BEER as a library in case the other application exe-
cutes on Java virtual machine, but the more general solution is usage of BEER through
the interactive command line. This allows usage of BEER from any application which
can read and write through pipe to some program. Here we describe this interactive
way of using BEER.
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parameter useage
-l input language
-s system translation
-r reference translations separated by column
--printSentScores pritns BEER score for each sentence
--printFeatureValues prints feature values for each sentence
--norm tokenizes the input using METEOR tokenizer
--noLower stops BEER from lowercasing the input
--noPunct excludes punctuation from evaluation
--help prints these and some other parameters of BEER

Table 1: Command line parameters of BEER

To start the interactive shell we need to set the working mode and the language for
evaluation:

./beer --workingMode interactive -l other

When the interactive shell starts, we can type different commands for evaluation.
To evaluate for a sentence level score we can type the following:

EVAL ||| system translation ||| reference 1 ||| reference 2

and then as output we should get the score for each reference translation. If we
want only the best score out of all references we just need to type EVAL BEST instead
of EVAL. In case we need feature values, the format is the same but we use FACTORS
command instead of EVAL. Finally, to exit it is enough to type EXIT.

6. Statistical testing of BEER scores using MultEval

Usually it is not enough to know the final score of the system and whether it is
better (or worse) than the baseline but also to know whether this difference is statis-
tically significant. The tool that became quite popular for this task in MT community
if Multeval (Clark et al., 2011) that has support for BLEU, TER and METEOR. With
BEER we distribute the version of Multeval that contains a metrics module for BEER
with the same interface as for the other metrics.

Here we describe how to use BEER with Multeval. Current implementation has
no bugs that we are aware of, but it is relatively slow (it requires running in parallel
and relatively large amount of RAM memory). This is likely to change soon.

Here is the command for running Multeval with BEER:
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./multeval eval --metrics beer \
--beer.language en \
--refs references.en \
--hyps-baseline translations.en.*

Basically the only additional obligatory parameter is --beer.language, but other than
that all other parameters are standard Multeval parameters.

7. Tuning Moses for BEER – beta

BEER has support for tuning Moses (Koehn et al., 2007) systems parameters for
higher BEER score. In principle all Moses optimization algorithms could be used,
but we tested it only with kbmira (Cherry and Foster, 2012). For now, in order to
add support for tuning Moses with BEER the user needs to recompile Moses by first
adding files located in src_moses of BEER installation into Moses directory and then
compiling. In future releases we hope to add support for BEER in the standard Moses
installation so this manual compilation would not be necessary.

When Moses is compiled with the necessary C++ files, tuning can be done in the
same way as usual by calling mert-moses.pl and by specifying BEER parameters in
--batch-mira-args in the following way:

perl $MOSES/scripts/training/mert-moses.pl \
--batch-mira-args="--sctype BEER --scconfig beerDir:$BEER_DIR,
beerLang:en,beerModelType:tuning,beerThreads:30" ...

With beerDir we specify where Moses can find the installation of BEER that it can use.
Standard models that are trained for human correlation have heavy recall bias and
they are not good for MT tuning. That is why BEER has models without this bias
that perform much better for tuning (Stanojević and Sima’an, 2015). To specify that
we want to use that kind of model we use parameter beerModelType (currently only
English is supported) and beerLang tells which language is evaluated.

8. Evaluating word order with PETs

BEER is a full evaluation metric that scores translation by all ascpects (both fluency
and adequacy). But sometimes we want to put more attention on the evaluation of
ether adequacy or fluency. Evaluating adequacy can be pretty streightforward, which
is not the case for evaluating fluency. Metrics that are more successful in fluency
treat this problem as measuring distance between the permutation of words in system
translation from the ideal permutation (Birch and Osborne, 2010; Isozaki et al., 2010).
In Stanojević and Sima’an (2014b) evaluation over permutations was extended from
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function origin
Kendall Birch and Osborne (2010); Isozaki et al. (2010)
Spearman Isozaki et al. (2010)
Ulam Birch et al. (2010)
Hamming Birch and Osborne (2010)
Fuzzy Talbot et al. (2011)
PETrecursiveViterbi Stanojević and Sima’an (2014b)
PEFrecursive Stanojević and Sima’an (2014b)

Table 2: Implemented ordering(·, ·) functions

treating permutations as flat sequential structures to the hierarchical structures that
better explain the reordering patterns.

In BEER installation, appart from standard trained BEER linear models, there is
additionally an implmentation of the following interpolation of lexical and ordering
score:

score(s, r) = α F1(s, r) + (1− α) ordering(s, r) (5)

F1 is the lexical measure over unigrams and ordering(·, ·) is an ordering function
over alignments (permutation) between words from system and reference translation.
There are many implemented ordering(·, ·) functions shown in Table 2.

We can do the scoring with the following command:

./beer --workingMode evaluateReordering \
--alpha 0.5 \
--reorderingMetric PEFrecursive \
-l en -s system.en -r reference.en

Here α parameter is specified with --alpha and ordering(·, ·) function with
--reorderingMetric. Other BEER parameters are mostly the same.

9. Summary

We have presented different ways in which BEER software can be used for eval-
uation and optimization of MT systems. We hope that this software package would
increase usage of tunable metrics with state-of-the-art correlation with human judg-
ment over standard metrics that are based on heuristics and usually perform badly
on corpus and especially sentence level. BEER is licensed under GPL license and is
available at https://github.com/stanojevic/beer.
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