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Abstract
Domain adaptation for machine translation (MT) can be achieved by selecting training in-

stances close to the test set from a larger set of instances. We consider 7 different domain adap-
tation strategies and answer 7 research questions, which give us a recipe for domain adaptation
in MT. We perform English to German statistical MT (SMT) experiments in a setting where test
and training sentences can come from different corpora and one of our goals is to learn the
parameters of the sampling process. Domain adaptation with training instance selection can
obtain 22% increase in target 2-gram recall and can gain up to 3.55 BLEU points compared with
random selection. Domain adaptation with feature decay algorithm (FDA) not only achieves
the highest target 2-gram recall and BLEU performance but also perfectly learns the test sam-
ple distribution parameter with correlation 0.99. Moses SMT systems built with FDA selected
10K training sentences is able to obtain F1 results as good as the baselines that use up to 2M
sentences. Moses SMT systems built with FDA selected 50K training sentences is able to obtain
1 F1 point better results than the baselines.

1. Introduction

Machine translation (MT) performance is affected by tokens unseen in the train-
ing set, which may be due to specific use of vocabulary or grammatical structures
observed in the test domain of interest. In this paper, we develop a recipe for do-
main adaptation for MT by comparing different strategies for the selection of training
instances close to the test set from larger sets of in-domain (ID) and out-of-domain
(OOD) training data. Each corpus has some characteristic distribution of vocabulary
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and grammar use specific to its domain, reflected in the training instances selected for
a given test corpus or for each test sentence per se. Our goal is to find the best mixture
of the selected training instances in a setting where the training and test corpora can
come from several different parallel corpora. We can view the test sentences as the
result of a mixed selection from different domain corpora since n-grams of a sentence
may come from different domains. Each test sentence defines a domain of interest
that training sentences can be selected for. Therefore, the boundary between ID and
OOD classes is blurred at the sentence level and in-domain or out-of-domainness is
decided by a similarity function measuring the closeness of test sentences to training
sentences from each domain. Each test sentence has a degree of closeness to the train-
ing domains and sampling accordingly can be a good idea. A sampling parameter for
a test set specifies how much of it is selected from which domain.

Domain adaptation can be achieved by model weighting, which works with sep-
arate training and language models to obtain mixture translation models by linear
combination of translation and language model probabilities with weights based on
LM probabilities over training corpora split according to their genre (Foster and Kuhn,
2007). Adaptation can also be achieved by weighing the counts in the maximum like-
lihood estimation of phrase translation probabilities (Sennrich, 2012). Our approach
is related to the instance weighting model (Foster et al., 2010). However, the instance
selection models we use (Section 2) are based on scores over features consisting of n-
grams in contrast to using phrases and relying on the extraction of phrase tables used
during training of SMT models.

Biçici and Yuret (2011a) develop feature decay algorithm (FDA) and dice instance
selection models, which can improve the SMT performance when compared with the
performance of the SMT system using all of the training data. The results obtained
demonstrate that SMT systems can improve their performance by transductive train-
ing set selection. Biçici and Yuret (2011a) focused on training instance selection for a
single domain. By contrast, we demonstrate the effectiveness of instance selection for
domain adaptation in a setting where test and training sets are selected from multiple
separate domains generic enough to be extended to more than two domains. Previous
results show that for translation at the sentence level, using only about 5000 training
instances can be enough to achieve a performance close to the SMT system trained on
millions of sentences (Biçici and Yuret, 2011a; Biçici, 2011).

Statistical MT (SMT) models can make use of various domain-specific training cor-
pora to improve their performance. Adapting to a domain where parallel training
resources are scarce can pose a problem for SMT performance. We provide a solu-
tion to domain adaptation with training instance selection where we retrieve relevant
instances for the test set from a larger set of training instances. Our approach is trans-
ductive since we try to find training instances close to the test set and build an SMT
model using the selected training set. We focus on how to pick training instances
when the test set is a mixture of sentences from two different domains sampled ac-
cording to a specific sampling parameter. Our goal is to closely mimic the sampling
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process of the test set by creating a training set from a mixture of the two domains.
We compare different MT training data selection strategies, the results of which re-
veal how to adapt to a new test set domain. We assume that we have two domains
from which we can select training data from: domain A (DA) and domain B (DB).
Test corpus sentences are sampled from either DA or DB. A sampling parameter α,
0 ≤ α ≤ 1, is randomly assigned to each test set where (100 × α)% of the data is
selected from DA and the rest is selected from DB. We explore the following training
data adaptation strategies:

R Randomly sampling from DA ∪DB.
Rα Randomly sampling from DA or DB according to α.
S0.5 Selecting equally from each domain.
Sα Selecting according to α.
SO Selecting from the known, oracle, test sentence domain.
S∪ Selecting from DA ∪DB.
S∪⇄ Selecting from DA ∪DB using common cover link (CCL) (Section 2.4).

Rα and Sα assume that α is known beforehand, making Rα a competitive base-
line. SO assumes perfect knowledge of the domain. We can also use a classifier to
predict each test source sentence’s domain and select from that domain. We use this
perfect classification information in the oracle setting. We select either by FDA or dice
(Section 2) for each test sentence, which also allows us to compare their performance
under different domain adaptation strategies. Each training set is the union of the
training sentences selected for each test sentence. One of our goals is to understand
whether the sampling parameter α, reflected in the training data selections and learn
α since we can use α to adapt to a target domain.

Mandal et al. (2008) use the language model (LM) perplexity and inter-SMT-system
disagreement to select training data. Moore and Lewis (2010) select training data for
LMs using the difference of the cross-entropy of ID and OOD training data: HID(s)−
HOOD(s). OOD LM training data is randomly sampled to make its size close to the
ID LM training data and the vocabulary used is set to the ID vocabulary items that are
observed at least twice. Axelrod et al. (2011) use bilingual cross-entropy difference:

ϕaml(s, t) = HS

ID(s) −HS

OOD(s) +HT

ID(t) −HT

OOD(t), (1)

where S stands for the source language, T stands for the target language, and (s, t) is
a training sentence pair being scored. Lower ϕaml(s, t) scores correspond to better
training instances. Mansour et al. (2011) use IBM Model 1 (Brown et al., 1993) and
LM perplexity to filter training data and the LM corpus. We also select according to
Equation (1): Saml.

We answer 7 main research questions addressing how much impact does sam-
pling parameter α have on the domain adaptation performance, whether knowing
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the domain from where each test sentence is selected from helps the performance,
how much instance selection improves the performance, whether we can learn α by
instance selection, and what can be the best recipe for domain adaptation in machine
translation:

Q1 How much does knowing α improve the random sampling performance?
(R vs. Rα)

Q2 Would the performance improve if we select from the exact domain where
each test instance is sampled from? (SO vs. S0.5 or Sα)

Q3 How much do we gain by training instance selection? (R vs. S0.5 and Rα

vs. Sα)
Q4 How much does knowing α improve the selection performance? (S0.5 vs.

Sα)
Q5 What happens if only use instance selection methods? (S∪ and S∪⇄ )
Q6 Does the selection α resemble the test set α? (Correlation of α vs. αS∪

and
αS∪⇄

)
Q7 How should we adaptively select SMT training data for a given test domain?

We use state-of-the-art instance selection models to learn a recipe for domain adap-
tation. We validate our the domain adaptation approach for not only a single SMT ex-
periment but for 1400 different SMT systems and answer 7 important research ques-
tions while comparing 7 domain adaptation strategies. Our results demonstrate that
using training instance selection over all of the instances available can increase target
2-gram recall, the percentage of test target 2-grams found in the training set, by 22%
and BLEU (Papineni et al., 2002) by 3.55 points. Our results may generalize to other
domain adaptation tasks in natural language processing as well such as parsing.

2. Instance Selection Algorithms

We use two training instance selection models for domain adaptation: feature de-
cay algorithms and instance selection for alignment (dice), where both try to increase
the recall of test target features in the training set. We use a scaling parameter for
selecting shorter instances having similar source and target lengths. High coverage
of target features in the training sets is important for achieving high BLEU perfor-
mance (Biçici, 2011).

2.1. Feature Decay Algorithm (FDA)

Feature decay algorithms (Biçici and Yuret, 2011a, 2015) increase the diversity of
the training set by decaying the weights of n-gram features that have already been
included and try to maximize the coverage of source side features of the test set. FDA
decays the initial feature weights as instances containing them are included in the se-
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lected training data where the order by which sentences are selected is determined by
a sentence score which is calculated by weighted sum of feature weights. Algorithm 1
presents the FDA algorithm.

Algorithm 1: The Feature Decay Al-
gorithm

Input: Parallel training sentences U ,
test set features F , and
desired number of training
instances N.

Data: A priority queue Q, sentence
scores score, feature values
fval.

Output: Subset of the parallel
sentences to be used as the
training data L ⊆ U .

1 foreach f ∈ F do
2 fval(f)← init(f,U)
3 foreach S ∈ U do
4 score(S)← 1

z

∑
f∈features(S)

fval(f)

5 enqueue(Q, S, score(S))
6 while |L| < N do
7 S← dequeue(Q)

8 score(S)← 1
z

∑
f∈features(S)

fval(f)

9 if score(S) ≥ topval(Q) then
10 L← L ∪ {S}

11 foreach f ∈ features(S) do
12 fval(f)← decay(f,U ,L)
13 else
14 enqueue(Q, S, score(S))

We summarize the initialization, decay-
ing, and scoring used in the FDA version.

Initialization:
init(f) = log(|U |/CU (f))

Decay:
decay(f) = init(f)(1+ CL(f))

−1

Sentence score:

score(S) =
1

z

∑
f∈F(S)

fvalue(f)

The input to the algorithm is parallel
training sentences, U , the number of de-
sired training instances, and the source-
language features of the test set. The fea-
ture decay function, decay, is the most
important part of the algorithm where
feature weights are multiplied by 1/(1+
CL(f)), where CL(f) returns the count of
f inL, the subset of the corpus to be used
as the training data. fvalue(.) is a func-
tion returning the weight of the argu-
ment feature. F(S) returns the features
of sentence S. The initialization function,
init, calculates the log of inverse doc-
ument frequency (idf), where |U | is the
sum of the number of features appear-
ing in the training corpus and CU (f) is
the number of times feature f appear in
U .

In the FDA version used in our experiments, we use a length scaling factor that
prefers balanced shorter sentences defined as: z = |S|max( r|S|

|T |
,

|T |

r|S|
), where r is the

ratio of the target-sentence length to the source-sentence length observed in the train-
ing set. FDA can be used in both transductive learning scenarios where test set is
used to select the training data or in active learning scenarios where training set itself
is used to obtain a sorting of the training data and select.
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2.2. Using FDA5

FDA can be used to model new instance selection methods for natural language
processing, information retrieval, machine translation, domain adaptation, or other
related tasks where diverse and relevant selection of data is needed or phenomena
with decaying feature weights are observed. FDA5 is a 5 parameter version of FDA
providing a class of algorithms with feature decay and capability of modeling the
behavior of other instance selection models as well (Biçici and Yuret, 2015). FDA5 is
developed for efficient parameterization, optimization, and implementation of FDA.
FDA5 allows a shift from developing general purpose SMT systems towards task
adaptive SMT solutions.

FDA5 and instructions on how to use FDA5 are available at github.com/bicici/
FDA and the FDA5 optimizer is available at github.com/bicici/FDAOptimization.
The main parameters to the FDA5 algorithm are presented below:

-n (3): maximum n-gram order for features
-t (0): number of training words output, -t0 for no limit
-i (1.0): initial feature score idf exponent
-l (1.0): initial feature score ngram length exponent
-d (0.5): final feature score decay factor
-c (0.0): final feature score decay exponent
-s (1.0): sentence score length exponent

initial feature score: fscore0 = idf^i * ngram^l
final feature score : fscore1 = fscore0 * d^cnt * cnt^(-c)
sentence score : sscore = sum_fscore1 * slen^(-s)

2.3. Instance Selection for Alignment

Dice’s coefficient (Dice, 1945) is used as a heuristic word alignment technique giv-
ing an association score for each pair of word positions (Och and Ney, 2003). Co-
occurrence of words in the parallel training sentences is used to retrieve sentences
containing co-occurring items. Dice’s coefficient score is defined as: dice(x, y) =
2C(x,y)
C(x)C(y) , where C(x, y) is the number of times x and y co-occur and C(x) is the num-
ber of times x appears in the selected training set. dice takes a test source sentence,
S′, and calculates the goodness of a training sentence pair, (S, T), by the sum of the
alignment scores as in Equation (2):

ϕdice(S
′, S, T) =

1

z

∑
x∈X(S′)

|T |∑
j=1

∑
y∈Y(x)

dice(y, Tj), (2)
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Figure 1. CCL output with arrows representing links, <S> representing the start of the
sentence.

where X(S′) stores the features of S′, Y(x) lists the tokens in feature x, and

z = |S|max(r|S|
|T |

,
|T |

r|S|
)(|T | log |S|+ |S| log |T |)

is the scaling factor, which aims balanced shorter sentences that are not very difficult
to align. ϕdice(S

′, S, T) favours the abundance of multiple cooccurring tokens. dice
selects relevant training sentences for a given test sentence with a goal of improving
word alignment performance (Biçici and Yuret, 2011a). SMT systems heavily rely on
the word alignment of the parallel training sentences to derive a phrase table.

2.4. Features for Instance Selection

We use n-gram features when selecting training instances with up to 3-grams.
We also perform unsupervised parsing using the Common Cover Link (CCL) algo-
rithm (Seginer, 2007) and extract links from the base words to the head words. CCL
allows equivalent classes with reciprocal links between words. CCL structures allow
us to obtain structures representing the grammar used in the training and test sen-
tences. Figure 1 depicts the parsing output obtained by CCL for an example sentence.
Reciprocal links increase the recall and help us find relevant sentences from the train-
ing set more easily.

3. Experiments

We run experiments comparing alternative training data adaptation strategies de-
scribed, which help us answer the research questions we target in Section 1. We per-
form translation domain adaptation experiments using the phrase-based Moses SMT
system (Koehn et al., 2007). We use two parallel corpus domains: domain A (DA) and
domain B (DB), where the training and test instances can come from. DA uses Eu-
roparl 7 and DB uses the News Commentary corpus. Both of these corpora are avail-
able from the WMT’12 translation challenge website (Callison-Burch et al., 2012). 1 We

1Parallel corpora are available from http://www.statmt.org/wmt12/translation-task.html
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use English-German parallel corpora for our experiments and translate from English
to German. DA contains 1, 920, 209 sentences andDB contains 158, 840 sentences with
average target number of words being 23.2 and 22.0, respectively.

We obtain training data by transductively selecting 10, 000 training instances to
translate test sets of 100 sentences sampled according to the domain adaptation strate-
gies. The randomly selected α values used converge to 0.5 on average. Each test set
defines a new domain that we try to adapt accordingly. For each domain adapta-
tion strategy, we perform 100 training data selection experiments. In order to obtain
10, 000 training instances for a given test set of 100 sentences, we select 100 training
instances for each test sentence. This corresponds to 50 times reduction in the number
of training instances selected for each sentence but doubling the training data used
for translating each compared to previous work (Biçici, 2011). We focus on how to
pick the training instances from separate domains when the test set is a mixture of
different domain corpora. We build SMT models using Moses for each training data
experiment and perform tuning over randomly selected 500 instances separately for
each experiment. The LM corpus is Common Crawl from WMT’13 (Bojar et al., 2013)
and it is cleaned such that sentences from DA and DB are excluded and fixed for all
experiments. We train a 4-gram language model using SRILM (Stolcke, 2002). Out
of the 1400 SMT experiments, 500 each are run with dice or FDA, 300 are run for ran-
dom selection, and 100 are run using 50, 000 training instances selected from DA∪DB

using FDA, corresponding to S∪50K
.

We obtain results that span a wide range of distributional similarities between the
training and the test set. In total, we perform 1400 training data selection and SMT
experiments using 18 million training, 700 thousand development, and 10, 000 test
sentences. We can think of a budgeted SMT training scenario where we have a budget
of $10, 000 and pay $1 per training sentence pair used but we do not pay for searching
and picking the ones we want. We are solving the following problem: given a limited
budget of $10, 000, a test set of 100 sentences, and two domains to choose training in-
stances from, how should we construct the training set for SMT? The training corpora
we use is the embodiment of larger domain corpora (e.g. web crawled corpora) from
which training sentences can be selected.

3.1. Training Data Comparison

Table 1 compares the training data selected with each adaptation strategy accord-
ing to the average source and target recall or coverage (scov and tcov), the number of
words per sentence they contain, and the number of target 2-grams found. scovn and
tcovn refer to n-gram scov and tcov, and scov⇄ refer to scov over CCLs. Instance se-
lection results in shorter sentences than the randomly sampled training data but more
relevant due to higher recall, the percentage of test set features found in the training
set. The columns represent the number of words per sentence (wps), the number of
unique 2-grams found on the target side of the training sets, and source and target
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Target Stats scov tcov tcov/n-gram ×105

Exp wps 2-grams scov1 scov2 scov⇄ tcov1 tcov2 1-gram 2-gram
R 25.8 120666 .9021 .5918 .5288 .8340 .5007 3.5077 .4149
Rα 25.4 129838 .9246 .6127 .5448 .8577 .5148 3.2065 .3980
Saml 13.7 53314 .8046 .3653 .2918 .6747 .2769 4.4230 .5989

di
ce

S.5 14.8 83857 .9929 .9125 .8053 .9069 .5849 4.7626 .6978
Sα 15.2 84946 .9923 .9044 .7966 .9074 .5874 4.8480 .7057
SO 9.3 47563 .9789 .8388 .7209 .8498 .4965 7.1526 1.0525
S∪ 13.8 76385 .9943 .9248 .8162 .9064 .5884 5.2403 .7726
S∪⇄ 14.7 78044 .9684 .8534 .8155 .8863 .5652 5.1204 .7266

FD
A

S0.5 17.4 92070 .9935 .9190 .8252 .9101 .5980 4.5641 .6500
Sα 18.3 94564 .9927 .9081 .8082 .9110 .6026 4.6085 .6491
SO 13.9 72231 .9898 .8858 .7694 .8913 .5665 5.4169 .7937
S∪ 17.7 87480 .9947 .9286 .8307 .9127 .6133 4.9965 .7037
S∪⇄ 16.0 81570 .9696 .8630 .8715 .8913 .5797 5.0665 .7133
S∪50K

21.8 366529 .9947 .9288 .8493 .9599 .7419 1.8684 .2032
Dα=1 25.6 5645724 .9329 .8087 .7979 .9164 .7547 .7910 .0134
Dα=0 23.9 1191613 .9058 .6915 .6790 .8412 .6233 .6557 .0523

Table 1. Training data comparison for each experiment. Numbers represent averages
over 100 experiments except the last two rows. Target 2-grams count the number of

unique 2-grams found.

1-gram and 2-gram recall. dice selects relatively shorter and less diverse training sen-
tences than FDA and obtains slightly lower recall. Both selection models improve the
recall significantly. Each coverage level shows the relationship between the test do-
main and the training domain. We obtain baseline training data, Dα=1 and Dα=0, by
selecting all of the training instances from DA (α = 1) or DB (α = 0), excluding the
test sentences.

dice achieves similar source and target recall levels to FDA using fewer target 1-
grams and 2-grams. dice achieves higher scores than FDA for tcov / n-gram, which
calculates the target recall per the n-grams found in the training set and shows the
amount of recall we achieve per n-gram used in the training set. Source recall is
the result of the sentence selection process as we select by looking at the source side
but target recall is unknown. The strategy S∪ lets the instance selection model find
the relevant instances, which achieves the best results. We observe that additional
prior knowledge about the test distribution helps (Sα); even distributing the selec-
tions equally (S0.5) improves the performance in comparison with SO (Q2, see the
next paragraph). We use ϕaml(s, t) with strategy SO where for each test sentence,
only the domain knowledge is used. We randomly select the OOD LM as having sim-
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ilar size as the ID LM corpus. The vocabulary consists of the tokens appearing at least
twice in DB. We train an open-vocabulary LM and treat tokens not appearing in the
vocabulary file as <UNK>. We use ϕaml in the oracle setting as a baseline where for
each test sentence, we know the domain it is coming from and accordingly we calcu-
late ϕaml for all sentences in DA ∪DB and sort them using Equation (1). Top tcov2
is achieved with strategy S∪ using FDA. Instance selection across different domains
achieve remarkable results by obtaining larger scov and tcov levels than either the
individual domains. The ordering obtained among the strategies is given in Equa-
tion (3), which forms a recipe for domain adaptation in MT:

S∪ > Sα > S0.5 > S∪⇄ > SO > Rα > R. (3)

The ordering in the recipe is obtained according to statistical significance tests with
paired t-testing (Wasserman, 2004) using the tcov2 obtained over 100 experiments
with different strategies. A > represents statistically significantly better performance
and ≥ represents better but not statistically significant improvement.

S0.5 gives close results to Sα since we selected α randomly and on average it con-
verges to 0.5. We are surprised to see that SO does not give the best results and obtains
the least diverse training data, which reduces its recall. SO is restricts the domain
of the training sentences selected for each test sentence to the known oracle domain
whereas Sα has more freedom when selecting by benefiting from relevant instances
from the other domain as well. Table 1 shows that SO is not the best strategy. If each
sentence defines a domain of interest, its features may best be utilized by a mixture
selection model for domain adaptation as we observe with the S∪ strategy. S∪⇄ ob-
tains better results than SO but obtains lower recall than S∪, which is likely to be due
to a lot of CCLs being absent from the training set. Our recipe contains the essence
of domain adaptation in a single line and abstracts the results obtained with different
domain adaptation strategies. FDA with S∪50K

improves tcov1 by 5 percentage points
and tcov2 by 13.

Asα converges to 0.5 over all 100 experiments, we have identified 4 cases restricting
the α selection range and looked at the closeness of the training data to the test data
in Table 2 in terms of the test target 2-grams recall. α ≤ 0.1 corresponds to selecting
at least 90% of test set instances from DB and α > 0.9 selects at least 90% of them
from DA. The tcov2 differences between α ≤ 0.5 and α > 0.5 and between α ≤ 0.1

and α > 0.9 are larger in setting ∪. Setting S∪ performs best when α > 0.9, which is
expected since it contains mostly sentences from DA. Table 2 shows that S∪ achieves
the best tcov2 across all α ranges for FDA and most of them for dice.

3.2. Translation Results

Table 3 (left) shows the translation performance using a Moses SMT system trained
with each training set to translate the test sets and the baseline system results with

14
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Exp α ≤ 0.5 α > 0.5 α ≤ 0.1 α > 0.9

R .4684 .5330 .4386 .5550
Rα .4940 .5357 .4777 .5579
ϕaml .3422 .2116 .3908 .1890

di
ce

S0.5 .5690 .6007 .5560 .6098
Sα .5692 .6056 .5618 .6237
SO .4736 .5193 .4575 .5410
S∪ .5666 .6101 .5507 .6263
S∪⇄ .5421 .5883 .5234 .6048

FD
A

S0.5 .5815 .6144 .5690 .6237
Sα .5812 .6240 .5757 .6472
SO .5431 .5898 .5304 .6078
S∪ .5914 .6352 .5742 .6518
S∪⇄ .5565 .6029 .5394 .6173
S∪50K

.7202 .7637 .7009 .7761

Table 2. Average tcov2 comparison of the training data for different α ranges.

Dα=1 and Dα=0
2. tcov2 results get reflected to the BLEU performance we obtain.

FDA achieves better results than dice and both achieve significantly better BLEU per-
formance than random sampling baselines. The BLEU gain becomes 3.55 points ver-
sus R and 3 points versus Rα. We present the BLEU and F1 (Biçici, 2011) performance
obtained for different α ranges in Table 3 (right). FDA using the S∪ strategy achieves
the top performance. Instance selection across different domains in setting S∪50K

achieve remarkable results by obtaining larger F1 score than both of the domain spe-
cific systems. The ordering obtained among the strategies is given in Equation (4):

S∪ > Sα ≥ S0.5 ≥ S∪⇄ ≥ SO > Rα > R. (4)

The ordering is obtained according to statistical significance tests with paired t-testing
using the corpus level BLEU and F1 (Biçici and Yuret, 2011b; Biçici, 2011) scores. S∪⇄ ,
Sα, and S0.5 strategies achieve close performance with each other using FDA. The
S∪ > Sα ≥ SO result in both recipes is very important, which shows that the bound-
aries defining a domain are not clear cut and we are better off using a strong instance
selection model over all the available training data. We plot the BLEU performance for
increasingα in Figure 2 for FDA. We observe that asα→ 1, BLEU increases due toDA

being an easier translation domain. The gap between domain adaptation with FDA
and random selection results is lowest around α = 0.4. We are also able to obtain as
good as the baseline results in terms of F1 scores using strategy S∪ and FDA. F1 score

2Baseline results are not an average but the translation performance over all of the 10K test sentences.
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BLEU F1
Dα=1 .1866 .2458
Dα=0 .1785 .2443

dice FDA dice FDA
R .1248 .1991
Rα .1305 .2066
ϕaml .0851 .1587
S0.5 .1530 .1589 .2385 .2428
Sα .1542 .1572 .2391 .2410
SO .1438 .1549 .2289 .2401
S∪ .1570 .1603 .2409 .2442
S∪⇄ .1520 .1537 .2329 .2342
S∪50K

- .1770 - .2559

Exp α ≤ 0.5 α > 0.5 α ≤ 0.1 α > 0.9

R .1157 .1339 .1031 .1361
Rα .1248 .1363 .1193 .1409
ϕaml .1035 .0885 .1071 .0850

di
ce

S0.5 .1463 .1597 .1427 .1654
Sα .1449 .1634 .1370 .1703
SO .1348 .1528 .1257 .1561
S∪ .1488 .1652 .1385 .1724
S∪⇄ .1423 .1617 .1336 .1680

FD
A

S0.5 .1511 .1667 .1386 .1702
Sα .1483 .1660 .1384 .1727
SO .1466 .1632 .1334 .1673
S∪ .1520 .1686 .1397 .1772
S∪⇄ .1430 .1644 .1329 .1697
S∪50K

.1690 .1850 .1610 .1915

Table 3. Average BLEU and F1 comparison for each experiment setting and baselines
(left) and average BLEU comparison for each experiment setting for different α ranges

(right).

can be easily interpreted and it correlates well with human judgments (Callison-Burch
et al., 2011).

3.3. Instance Selection α

We compare the test sample distribution parameter α with the α present in the
selected training sets in training data adaptation strategies S∪ and S∪⇄ , which select
from DA ∪ DB. We denote the corresponding learned αs as αS∪

and αS∪⇄
. Test

set α affects the distribution of the features in the selected training sets such that the
selection α may mimic the test set α. We use α to measure a given instance selection
model’s effectiveness in learning the inherent α of a new test domain. Table 4 presents
the mean (µ) and variance (σ) of theα values obtained. µ forα is very close to 0.5 since
it is randomly selected for each of the 100 experiments. µ for the learnedαs are around
0.85 with σ around 0.055. Thus, S∪ and S∪⇄ tend to select about 85% of the training
data from DA. This may be expected since the size of DA is about 12 times the size of
DB and there may be more relevant instances in DA. But as we show in the results,
the instance selection models overcome this bias and manage to select with close to
perfect correlation with the actual α.

Table 4 also presents the correlation results we obtain when we compare the actual
αs for all of the 100 experiments with the selected αs. The results show that we can
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µ σ

α 0.5059 0.278
dice FDA dice FDA

αS∪
0.8106 0.8326 0.062 0.066

αS∪⇄
0.8595 0.8731 0.049 0.049

r dice FDA
r(α,αS∪

) 0.9864 0.9857
r(α,αS∪⇄

) 0.9788 0.9783

Table 4. Mean (µ) and variance (σ) of the sampling parameter α values obtained (left)
and their correlation (r) (right).

Figure 2. BLEU and F1 for increasing sampling parameter α for FDA.

achieve close to perfect correlation with the actual αs. Thus, even though the train-
ing data adaptation strategies S∪ and S∪⇄ select more from DA and achieve larger µ
for the selected αs, they perfectly correlate with the sampling parameter α. In other
words, FDA and dice are able to mimic the sampling parameter successfully and still
continue to retrieve relevant training instances at the same time.

4. Contributions

Our results answer the questions we have asked in Section 1, which we summarize
below:

A1 Knowing α increases tcov2 by 3% and BLEU by 0.26 points when sampling ran-
domly.

A2 Knowing the domain of each test sentence does not improve the performance with
FDA or dice.
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A3 Instance selection can increase tcov2 by 22% and BLEU by 3.55 points when com-
pared with random sampling. Instance selection with known α increases tcov2 by
20.4% and BLEU by 3.24 points.

A4 Knowing α improves BLEU by 0.3 points for dice and 0.1 points for FDA but does
not significantly increase tcov2.

A5 Instance selection without known α over all available training data using n-gram
features achieves the best results with 22% increase in tcov2 and BLEU gains of up
to 3.55 points.

A6 Selection αs perfectly mimic the test set α with r ∼ 0.99, which shows the effec-
tiveness of the instance selection models.

A7 We arrive at a recipe to adapt SMT training data to a given new test domain based
on the tcov2 and BLEU performance: S∪ > Sα ≥ S0.5 ≥ S∪⇄ ≥ SO > Rα > R. Our
results demonstrate that following the recipe can result in gains of up to 3.55 BLEU
points and 22% increase in tcov2.

Our results demonstrate that the boundaries defining a domain are not clear cut
and domain selection at the corpus level or the sentence level is not as effective as
sentence-level training instance selection using all of the available corpora. Each sen-
tence defines a domain of interest and we show that its features are best utilized by a
mixture selection model with strategy S∪ using FDA. FDA selected 10K training sen-
tences using strategy S∪ is able to obtain F1 results as good as the baseline systems
using 2M sentences. FDA selected 50K training sentences is able to obtain BLEU re-
sults as good as the baseline and obtains 1 F1 point better results. We also show that
our instance selection techniques are able to perfectly learn the sampling parameter
of the test set. Matching orderings in the recipes obtained according to coverage and
translation performance supports that high coverage is important for achieving high
BLEU performance.

We obtain remarkable results showing that instance selection across different do-
mains achieve better scov and tcov than either the individual domains and better
F1 score than both of the domain specific systems in setting S∪50K

using FDA. Our
results show that sharing data across different domains is providing an advantage
over competing domain specific corpora. Instance selection for domain adaptation is
diminishing the competitive advantage of domain specific corpora and encouraging
data sharing. We provide our SMT experiments’ datasets via a link at github.com/
bicici/MTPPDAT.
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