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Abstract
Average precision (AP) is one of the most widely used metrics in information retrieval and

natural language processing research. It is usually thought that the expected AP of a system
that ranks documents randomly is equal to the proportion of relevant documents in the col-
lection. This paper shows that this value is only approximate, and provides a procedure for
efficiently computing the exact value. An analysis of the difference between the approximate
and the exact value shows that the discrepancy is large when the collection contains few docu-
ments, but becomes very small when it contains at least 600 documents.

1. Introduction

Many tasks in information retrieval, computational linguistics and machine learn-
ing aim at finding relevant items among a collection of items, such as documents
matching a query, subjective statements, collocations, semantic neighbors, sentences
between which textual entailment holds, and so forth. To evaluate the proposed sys-
tems, precision (the proportion of retrieved documents that are relevant) and recall
(the proportion of relevant documents that have been retrieved) are favored. When
the system ranks the documents according to their estimated relevance, performance
is typically assessed through a precision-recall curve that is summarized by average
precision (AP) (Büttcher et al., 2010; Robertson, 2008). AP is equal to the average of
the precision value obtained after each relevant document is retrieved (i.e., when re-
call increases) and corresponds to the area under the uninterpolated precision-recall
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curve (PR) (Voorhees and Harman, 1999). More formally,

AP =

∑N
i=1

i
n

R
(1)

where R is number of relevant documents and n the rank of the ith document ac-
cording to the system. This rank goes from 1 to N, the number of documents in the
collection (see Robertson (2008, p. 689) for another, yet equivalent, formula of AP).

If AP is often used to compare the performance of different systems on the same
test collection, with each system serving as benchmark for the others, the AP obtained
by a system is sometimes compared to a random baseline AP: the expected AP that
would be obtained by a system that ranks the documents in a completely random
way (e.g. Marszalek et al., 2009; Nakano et al., 2011; Pecina, 2010; Pohlmeyer et al.,
2011; Ramisch et al., 2008; Rasiwasia et al., 2010). This baseline AP is considered to
be equal to the proportion of relevant documents in the collection, also called the
category prevalence. This paper shows that this value is only approximate (section
2), and provides a procedure for efficiently computing the exact value (section 3). An
analysis of the difference between the approximate and the exact value shows that the
discrepancy is large when the collection contains few documents, but becomes very
small when it contains at least 600 documents (section 4).

2. The Proportion of Relevant Documents is not Equal to the Expected AP
for the Random Baseline

Researchers employing the proportion of relevant documents as the expected value
of the random baseline AP do not justify the choice of this value. Presumably, they
start from the fact that AP is equal to the area under the PR curve, and that a system
that ranks the documents in a completely random way should uniformly distribute
the relevant documents along the ranking. The proportion of relevant documents re-
trieved relative to the total number of documents considered should thus be constant
at all ranking positions. It follows that the corresponding PR curve is a straight line
whose intercept is the proportion of relevant documents in the collection (p = R/N)
and whose slope is 0. The area under this “curve” is the proportion of relevant docu-
ments.

A very simple example is sufficient to show that the proportion of relevant docu-
ments is only an approximation of the actual AP for the random baseline. Consider a
test collection consisting of five documents, of which two are relevant: p is thus 0.40.
It is very easy to list all the possible rankings and to compute their AP as shown in
Table 1. In this table, document relevance is represented by a binary variable set to
one when the document is relevant. Since all these rankings are equally probable for
a system that ranks documents randomly, the expected AP of the random baseline is
the mean AP computed on all possible permutations. For this example, it is thus not
0.40 (R/N), but 0.593.
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Ranking AP
1st 2nd 3rd 4th 5th

1 1 0 0 0 (1/1 + 2/2) / 2 = 1.00
1 0 1 0 0 (1/1 + 2/3) / 2 = 0.83
1 0 0 1 0 (1/1 + 2/4) / 2 = 0.75
1 0 0 0 1 (1/1 + 2/5) / 2 = 0.70
0 1 1 0 0 (1/2 + 2/3) / 2 = 0.58
0 1 0 1 0 (1/2 + 2/4) / 2 = 0.50
0 1 0 0 1 (1/2 + 2/5) / 2 = 0.45
0 0 1 1 0 (1/3 + 2/4) / 2 = 0.42
0 0 1 0 1 (1/3 + 2/5) / 2 = 0.37
0 0 0 1 1 (1/4 + 2/5) / 2 = 0.33

Sum = 5.93
Expected AP = 5.93 / 10 = 0.593

Table 1. Expected AP of the random baseline for N = 5 and R = 2

3. An Accurate and Efficient Procedure for Calculating the AP for the Ran-
dom Baseline

To compute the expected AP of the random baseline for other values ofN and R (or
p), one could imagine using the procedure outlined in Table 1. The problem is that it
would require enumerating a very large number of permutations when N is large and
R is not too close to 0 or to N. It corresponds to the number of different permutations
of N objects when some of these are identical, that is, N!/(R!× (N− R)!). This results
in more than 17,000 billion different rankings to list for N = 100 and p = 0.10.

Looking at this table, a much more efficient solution can be proposed. If the two
divisors (R and the total number of different permutations) are set aside, there remains
a sum of precision scores at rankn (i.e., i/n),n corresponding to the possible positions
in the ranking of each ith relevant document. For each value of i (i ranging from 1 to
R), there are N − R + 1 possible ranks, since the ith relevant document cannot occur
before the ith rank or after theN−R+i rank; otherwise, there are not enough positions
available for the R− i remaining relevant documents. Furthermore, for each value of
i, there are in theory a total of N!/(R! × (N − R)!) precision scores to compute, since
the ith relevant document is present in every possible permutation. But the problem
can be reformulated in terms of the probability that the ith relevant document occurs
at each of the N − R + 1 possible ranks, all the probabilities computed for a given i

summing to 1. This formulation requires the calculation of only R×(R+N−1) values.
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i n dhyper(i,N,N-R,n) i/n Final prob. P@n Contribution to AP

1 1 0.4 1.00 0.4 1.00 0.400
1 2 0.6 0.50 0.3 0.50 0.150
1 3 0.6 0.33 0.2 0.33 0.067
1 4 0.4 0.25 0.1 0.25 0.025
2 2 0.1 1.00 0.1 1.00 0.100
2 3 0.3 0.67 0.2 0.67 0.134
2 4 0.6 0.50 0.3 0.50 0.150
2 5 1.0 0.40 0.4 0.40 0.160

Sum = 1.186
Expected AP = 1.186 / 2 = 0.593

Note: dhyper() returns the density for the hypergeometric function. P@n
stands for precision at rank n.

Table 2. Calculation of the expected AP of the random baseline for N = 5 and R = 2

The proposed procedure is, therefore, to calculate, for each rank n, the probability
that the ith relevant document occurs at that rank, producing a precision score at
rank n equal to i/n. This probability is equal to the probability of having i successes
in n draws without replacement from a population of size N containing R successes and
N − R failures, with the additional condition that the ith success occurs at the last
draw (i.e., at rank n). The first part of this probability is given by the hypergeometric
distribution whose formula is:

P(X = i) =

(
R
i

)(
N−R
n−i

)(
N
n

) (2)

where
(
R
i

)
is a binomial coefficient, corresponding here to i!/(R!(R − i)!). Regarding

the additional condition, the probability of a success at the last draw when there are
i successes in n draws is obviously i/n. Multiplying this final probability by the pre-
cision score at rank n produces the contribution of each ith relevant document to the
total sum of AP, and it only remains to divide this sum by R to obtain the expected
AP of the random baseline.

Table 2 applies this calculation procedure1 to the example of Table 1. In this ex-
ample, the gain in number of operations is very small (eight instead of 10), but for
N = 100 and R = 10, it is reduced from more than 17,000 billion to 910. Calculating

1In this table, the Final prob. values for each i sum to 1, as explained. This is not the case for the prob-
abilities from the hypergeometric distribution alone, which sum to 1 for a given n only if one adds the
probabilities for all possible i (i.e., the number of successes) including 0 success.
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a hypergeometric probability takes more time than finding a possible permutation,
but extremely efficient procedures for calculating these probabilities are available in
every major statistical software.

The very simple R function (R Core Team, 2013) given below implements the cal-
culation procedure of the expected AP of the random baseline for any values of N and
R.

RandomAPExact = function(N=0, R=0) {
ap = 0
for (i in 1:R) {
for (n in i:(N-R+i)) {
ap = ap + dhyper(i,R,N-R,n)*(i/n)*(i/n)

}
}
ap = ap/R
ap
}

Function call: RandomAPExact(10,4)
Result: [1] 0.5285979

For N = 100 and p = 0.10, this function takes 0.011 seconds to compute the solution,
and just over 131 seconds for N = 10000 and p = 0.40 on an Intel Core i5 2.66GHz
processor. If there is no doubt that the exact procedure is computationally intensive
compared to the calculation of the approximate value, the R code provided allows to
calculate it very easily and it should only be used once for an evaluation task. What
is a handful of minutes compared to the time required for the development of an IR
system and for its evaluation?

4. How Large is the Difference Between the Exact Value and the Usual Es-
timate?

To get an idea of the importance of differences between the exact AP and the ap-
proximate AP for the random baseline, Figure 1 shows the evolution of this difference
for many values of N and p, the exact value being systematically larger than the ap-
proximate value. As can be seen, the difference decreases when N increases or p

increases. As soon as N is at least equal to 600, it is less than 0.01 for all tested values
of p.

5. Conclusion

This paper shows that the AP for the random baseline usually used in informa-
tion retrieval and computational linguistics is only an approximation of the exact AP,
and it presents an efficient procedure to compute the latter. An analysis of the dif-
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Figure 1. Difference between the exact and the approximate AP of the random
baseline for several values of N and p
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ference between the exact value and the approximate value shows that the discrep-
ancy between them reduces when the size of the collection of documents increases.
While many evaluations of IR systems are performed on very large collections of doc-
uments, some research areas use much smaller collections because of the difficulties
encountered in their constitution (i.e., less resourced languages, emerging tasks or
tasks requiring complex relevance judgment that can only be performed by human
experts). The smallness of the collections can be further enhanced by the use of a ran-
dom under-sampling procedure advocated by Jeni et al. (2013) to reduce the impact of
large imbalance between the positive and negative examples on performance metrics.

In conclusion, it can be recommended that researchers who plan to compare their
system to the random baseline AP use the proposed procedure to calculate the exact
expected value when the test collection is of limited size or, when there are at least
600 documents in the collection, state in their report that the proportion of relevant
documents in the collection is an excellent approximation of the exact value.
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