
The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014

EDITORIAL BOARD

Editor-in-Chief

Jan Hajič

Editorial staff

Martin Popel
Ondřej Bojar

Editorial Assistant

Kateřina Stuparičová

Editorial board

Nicoletta Calzolari, Pisa
Walther von Hahn, Hamburg
Jan Hajič, Prague
Eva Hajičová, Prague
Erhard Hinrichs, Tübingen
Aravind Joshi, Philadelphia
Philipp Koehn, Edinburgh
Jaroslav Peregrin, Prague
Patrice Pognan, Paris
Alexandr Rosen, Prague
Petr Sgall, Prague
Hans Uszkoreit, Saarbrücken

Published twice a year by Charles University in Prague

Editorial office and subscription inquiries:
ÚFAL MFF UK, Malostranské náměstí 25, 118 00, Prague 1, Czech Republic
E-mail: pbml@ufal.mff.cuni.cz

ISSN 0032-6585

© 2014 PBML. All rights reserved.

The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014

CONTENTS

Articles

Qualitative: Open source Python tool for Quality Estimation
over multiple Machine Translation outputs
Eleftherios Avramidis, Lukas Poustka, Sven Schmeier

5

A Fast and Simple Online Synchronous Context Free Grammar Extractor
Paul Baltescu, Phil Blunsom

17

Tree Transduction Tools for cdec
Austin Matthews, Paul Baltescu, Phil Blunsom, Alon Lavie, Chris Dyer

27

The Machine Translation Leaderboard
Matt Post, Adam Lopez

37

Depfix, a Tool for Automatic Rule-based Post-editing of SMT
Rudolf Rosa

47

A Set of Annotation Interfaces for Alignment of Parallel Corpora
Anil Kumar Singh

57

An open-source web-based tool for resource-agnostic
interactive translation prediction
Daniel Torregrosa, Mikel L. Forcada, Juan Antonio Pérez-Ortiz

69

OxLM: A Neural Language Modelling Framework for Machine Translation
Paul Baltescu, Phil Blunsom, Hieu Hoang

81

© 2014 PBML. All rights reserved.

PBML 102 OCTOBER 2014

Multilingual Dependency Parsing:
Using Machine Translated Texts instead of Parallel Corpora
Loganathan Ramasamy, David Mareček, Zdeněk Žabokrtský

93

An Interplay between Valency Information and Reflexivity
Václava Kettnerová, Markéta Lopatková, Jarmila Panevová

105

Instructions for Authors 127

4

The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 5–16

Qualitative: Open source Python tool for Quality Estimation
over multiple Machine Translation outputs

Eleftherios Avramidis, Lukas Poustka, Sven Schmeier
German Research Center for Artificial Intelligence (DFKI Berlin)

Abstract
“Qualitative” is a python toolkit for ranking and selection of sentence-level output by dif-

ferent MT systems using Quality Estimation. The toolkit implements a basic pipeline for anno-
tating the given sentences with black-box features. Consequently, it applies a machine learning
mechanism in order to rank data based on models pre-trained on human preferences. The pre-
processing pipeline includes support for language models, PCFG parsing, language checking
tools and various other pre-processors and feature generators. The code follows the principles
of object-oriented programming to allow modularity and extensibility. The tool can operate
by processing both batch-files and single sentences. An XML-RPC interface is provided for
hooking up with web-services and a graphical animated web-based interface demonstrates its
potential on-line use.

1. Introduction

Having been a topic of research for many years, Machine Translation (MT) has
recently reached a wide range of applications for big audiences. Methods and anal-
yses produced in academic labs have been adopted by the industry and transferred
to products and services with numerous use-cases. This has increased the interest
for the field and generously empowered a broad spectrum of research activities and
further development.

In this long history of conveying MT research into everyday use, the software de-
veloped by the relevant research community has been of high value. Through the
open source implementation of majorly important MT and natural language process-
ing tools (Koehn et al., 2007; Federico et al., 2008), researchers had the opportunity

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: eleftherios.avramidis@dfki.de
Cite as: Eleftherios Avramidis, Lukas Poustka, Sven Schmeier. Qualitative: Open source Python tool for Quality
Estimation over multiple Machine Translation outputs. The Prague Bulletin of Mathematical Linguistics No.
102, 2014, pp. 5–16. doi: 10.2478/pralin-2014-0009.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 102 OCTOBER 2014

to test and expand proposed methods and easily introduce new ideas. Additionally,
the industry found pretty strong software engineering prototypes that were not too
far from user-oriented programs and many of them were directly plugged into user
interfaces.

Adopting this line of MT-oriented software development, we provide a Free Soft-
ware implementation in the direction of Quality Estimation (QE). This can be directly
used for further research/applications on MT output ranking, system selection, hy-
brid machine translation etc. Moreover, it provides the basics for further community
development on QE, aiming to gather a wide range of contributions.

The following sections contain a comparison of our software with already existing
open source tools (section 2), a description of the basic functionality (section 3), an
explanation of the methods used in the background (section 4), an introductory guide
for further development (section 5) and the plans for further work (section 6).

2. Previous work

The first collaborative work for development on this field was done in the frame of
the WS’03 Summer Workshop at the John Hopkins University on Confidence Estima-
tion of MT (Blatz et al., 2004), but to our knowledge no application or code has been
publically available, as a result of this effort. Additionally, relevant contributions in-
troduced several open-source tools offering MT evaluation (e.g. METEOR (Banerjee
and Lavie, 2005)), H and A (Berka et al., 2012)), whereas a good amount
of such metrics and scripts were gathered in A (Giménez and Marquez, 2010). All
this work is based on comparing the produced translations with reference transla-
tions, which generally falls out of the scope of QE.

A major contribution directly to the field of QE has been done by the QE tool (Spe-
cia et al., 2013), which included an implementation of various features by numerous
contributors. Whereas there is serious overlapping of QE with our submission,
there are notable differences. In contrast to the regression-based orientation of QuEst,
our software is aimed to sentence-level ranking and selection of MT-output, by imple-
menting comparative Quality Estimation. Additionally, not the same quality features
have been implemented in both toolkits, whereas Python as a dynamic language al-
lows provides more flexible data structures and architecture. Nevertheless, our soft-
ware includes a QE wrapper for conformity with WMT baselines.

3. Basic use

The out-of-the box functionality of the software is based on a use-case, where one
source sentence is translated by several MT systems. The software therefore analyzes
properties of all translations and suggests the proper ranking (ordering), trying to pre-
dict human preference. This can be used for ranking system outputs or combining
several systems on the sentence level.

6

Avramidis, Poustka, Schmeier Python tool for Quality Estimation (5–16)

3.1. Installation

The toolkit is implemented in Python 2.7 and has been developed and tested for
operation in a Linux operating system. The code has to be downloaded1 and the
Python path needs to be set to the /src directory, where all python scripts, mod-
ules and packages reside. Much of the functionality is provided by several publically
available Python extensions, which need to be installed prior to any execution. All ex-
tensions required for the out-of-the-box functionality are provided by the Python pip
package management system, so it is enough to run the respective pip install com-
mands for the packages detailed in INSTALL.txt, These installations can easily take
place on the user’s home folder, without requiring root access (e.g. in experiment
server environments).

The toolkit interacts with several java applications whose ’jar’ and class files have
to be placed in the directory /lib. An installation script that automatically down-
loads all required java dependencies is provided. Additionally, one needs to execute
externally the LM server by Nitin Madnani.2

3.2. Resources and Configuration

The quality features for the given sentences are generated within a pipeline of NLP
analysis tools. Many of these tools require specific resources to be acquired prior to
the execution of the program. In particular, for the out-of-the-box installation and
pre-trained models, one needs a language model, a PCFG grammar and a truecaser
model for the source and target languages, which are also provided by an installation
script through our servers.

All file locations and several other parameters (e.g. the translation language di-
rection) can be specified in one or more complementary configuration files. Sample
configuration files are provided in /cfg/autoranking and can be modified accord-
ingly to fit the user’s specific installation. The configuration files may also include
references to many language-specific resources; the program will only use the ones
which are relevant to the chosen languages.

The reason for allowing many configuration files is that one may want to split the
configuration parameters depending on the environment, i.e. some settings may be
generic and applicable to all computational servers, whereas some others may change
from machine to machine.

1http://www.dfki.de/~elav01/software/qualitative
2http://desilinguist.org At the time that this paper is submitted, the Language Model scores are

provided by using LM server, which wraps around SRILM (Stolcke, 2002) and needs to be compiled and
executed separately. It is in our plans to remove this dependency and include KenLM (Heafield, 2011)

7

http://www.dfki.de/~elav01/software/qualitative
http://desilinguist.org

PBML 102 OCTOBER 2014

3.3. Execution

There are several ways the program can be executed. All relevant scripts can be
found in the directory /src/app/autoranking. In particular, the basic functionality
is provided as following:

• Command-line interaction (application.py): This script allows the user to in-
teract with the sentence selection on the commandline. A configuration file and
a pre-trained selection model need to be passed as parameters. Then the user
can sequentially type the source sentence and the respective translations one
by one. The purpose of this script is mainly to verify that all installation and
settings are correct.

• Batch decoding (decode_batch.py): This script serves for cases where multiple
sentences with their respective translations need to be analyzed in a row (e.g. for
translating full documents). Apart from the configuration file and the trained
classifier, this script accepts the decoding data in an XML file.

• XML-RPC interface (xmlrpcserver.py): This instantiates and XML-RPC await-
ing translation requests for one sentence at a time. The server responds to the
command rank, having as parameters the source and any number of respective
translations. It is useful for binding to web-applications.

In order to assess the installation process we provide pre-trained model for German-
English.

3.4. Demonstration server

As a demonstration for the use of the toolkit in a web service, an additional piece
of software is provided. It is a web-interface3 implemented in PHP which allows the
user to enter source text to be translated. Consequently, it communicates with ex-
ternal translation services (e.g. Moses server, Google Translate API, Lucy RBMT),
and fetches the translations. Finally, the produced translations are given to our rank-
ing/selection mechanism and the result is visualised graphically.

The demonstration server is provided as an example. It is not included in the
architecture of the rest of the toolkit and therefore is distributed as a separate package.
Users have to modify the script, in order to parametrise the necessary URL addresses
and configuration.

4. Under the hood

The core of the program is based on comparative Quality Estimation. The given
sentence is first processed within a pipeline of modules. These modules perform text
pre-processing and various NLP analyses to generate features that indicate the quality

3The demo web interface can be accessed at http://www.qt21.eu/demonstrator

8

Avramidis, Poustka, Schmeier Python tool for Quality Estimation (5–16)

fetch data

tokenize

truecase parse-parallel

LM cross-meteor cross-bleu lang. checkerparse-matches

Figure 1. Sample pipeline of feature generators for one of the most successful feature
sets.

of the translation. The generated features are consequently fed to a machine learning
algorithm, which employs a statistical model for putting the translations in an order
of preference. This statistical model has been previously trained on human-annotated
data.

In principle, there can be various combinations of features and machine learning
algorithms, depending on what performs best given various properties of the qual-
ity estimation task. The optimal combination, which performs similarly to human
decisions, is subject of constant research in the field. The provided vanilla imple-
mentation and pre-trained model follow one of the most successful experiments on
German-English, which includes the feature set #24 with Logistic Regression as de-
scribed in Avramidis (2013a).

4.1. Generation of features

As explained above, the generation of features is a crucial step for acquiring quality
hints regarding the processed sentence. For this purpose, the toolkit provides a set of
modules, thereof called feature generators. A sample pipeline can be seen in Figure 1.

• Language model (LM): It sends a query to the language model in order to ac-
quire LM probabilities for unigrams, bigrams, trigrams etc., and also detects
and counts words unknown to the language model. It also saves the sentence
position (index) of the unknown words and the n-grams with the lowest and
highest probability. Features also include the average and the standard devia-
tion of the n-grams probabilities and the sentence positions. The queries to the
LM can be sent via XML-RPC to an external LM server, or to call the respective
functions from an imported LM library (e.g. KenLM).

• PCFG parsing: It loads a language-specific PCFG grammar and handles the
parsing of source and target sentences by PCFG parsing. It extracts the overall
log-likelihood, the best parse confidence and the count (k) of k-best parse trees
generated. The best parse is included as string meta-data, so that following fea-

9

PBML 102 OCTOBER 2014

ture generators can re-use it for producing their features. One of them counts
how many times each tree node label appears in the parse and calculate their re-
spective sentences position statistics. Another performs naïve source-to-target
tree-label matching, i.e. calculates the ratio of VPs on the source with the re-
spective VPs on the target. The current implementation supports the B
P (Heafield, 2011) via either as included library or as an external XML-RPC
server. There are pre-trained grammars for English, German, Spanish (Taulé
et al., 2008), French, Russian, Chinese and Arabic freely available.

• Cross-target BLEU and METEOR: It encapsulates the calculation of well-known
reference-aware n-gram-based metrics. For the scenario of multiple alternative
translations by different systems, each particular system receives as a feature
its own metric score, as if the other competitive systems were used as refer-
ence translations. For certain scenarios, this may indicate cases when a sys-
tem output is very different than the majority of the other competitive sys-
tem outputs. Here, smoothed sentence level BLEU (Papineni et al., 2002) and
all METEOR components (precision, recall, fragmentation penalty and overall
weighed score) (Lavie and Agarwal, 2007) are supported.

• Language correction: This investigates the usability of language-correction soft-
ware. Such software is based on hand-written rules which detect grammati-
cal, syntactic and other expresional inconsistencies on monolingual text usually
while being written in word processors; the errors are automatically flagged
and suggestions are given to authors. We use the count of each error type in
every sentence as a separate feature, a tactic that unfortunately produces rather
sparse features. A feature generator wraps around the open source Language
Tool library (Naber, 2003; Miłkowski, 2012), whereas remote querying towards
the optional proprietary software Acrolinx IQ (Siegel, 2011) is also supported
via the SUDS protocol.

• IBM1 probabilities: This feature generator supports reading an IBM-1 model
and includes the produced sentence probability as an additional feature.

• Length features include simple counting of the number of tokens, characters
and the average number of characters per word for each sentence.

• Ratios and differences: A last step calculates differences and ratios between
every source and its respective translation feature, if available. Defining explicit
features for known relations between features may be useful for some ML algo-
rithms.

The code includes the default normalisation, tokenisation and truecasing scripts of
M (Koehn et al., 2007). Additional tokenisation and other pre-processing actions,
when needed, are done via NLTK (Loper and Bird, 2002). Also, some functions from
automatic error extraction of H (Popović, 2011) are included.

10

Avramidis, Poustka, Schmeier Python tool for Quality Estimation (5–16)

4.2. Machine Learning

The ranking algorithm is based on binary classifier decisions, which are recom-
bined up into a full ranking (Usunier et al., 2009; Avramidis, 2012). The decision is
every time taken on a sentence level, given the numeric features generated for this
particular sentence and translation. The final algorithm has no access or use for the
given/translated text. Although the pre-trained models use logistic regression (Hos-
mer, 1989) as a pairwise classifier, the interface allows many other learning methods
to be employed and stored, such as SVM (Joachims, 2006), Naive Bayes, k-Nearest
neighbours (Coomans and Massart, 1982) and Decision Trees (Quinlan, 1986).

4.3. Training

Training of new models takes places in two stages, annotation and learning. First,
the training data need to be processed by the feature generators pipeline using the
batch annotation script4 and a given configuration script. Implementing the interface
provided by the R library (Goodstadt, 2010) allows for parallelisation of inter-
mediate steps into a number of CPU cores, whereas it keeps track of finished and
unfinished steps so that they can be resumed if something crashes. Heavy and slow
tasks, such as parsing, are also parallelised after being split into multiple parts.

On the second phase, the learning script5 trains and evaluates the machine learn-
ing algorithms given the features generated previously at the annotation phase. Both
learning algorithms and feature sets can be defined in a configuration file. The learn-
ing pipeline is organised through a modified version of the P E S
(Rückstieß and Schmidhuber, 2011), so intermediate steps are saved on the disk for
resuming or further use, as for example the pickled classifier models.

Machine learning algorithms are primarily provided by O (Demšar et al.,
2004) and optionally by S- (Pedregosa et al., 2011). The entire set of RE-
 scripts (Avramidis, 2013b) are included as part of the software. Many of the eval-
uation functions and calculations are based on NP and SP (Oliphant, 2007).

5. Development

The architecture of the program has been designed to allow for further develop-
ment. The code is open and collaborative efforts are centralised within a Git reposi-
tory.6. The development has been divided in several python packages. Each package
serves a different function, so that the code can be modural and re-usable.

4/src/app/autoranking/annotate_batch.py
5/src/app/autoranking/suite.py
6Please check http://www.dfki.de/~elav01/software/qualitative for details on how to clone the

repository and commit

11

http://www.dfki.de/~elav01/software/qualitative

PBML 102 OCTOBER 2014

The code has been documented based on inline comments following the EpyDoc
standard, and therefore an automatically generated API documentation is provided
for the vast majority of functions and classes. The more important classes and func-
tions are detailed in the following sections.

5.1. Understanding the data structures

The data structures used in all parts of the software are contained in the sentence
package. The basic structures are:

• The SimpleSentence is the basic data structure. It is a class which wraps the
original sentence text as a string. Additionally, it contains a dictionary of “at-
tributes”. These can be features and meta-data provided by the original data;
they are further augmented by the annotation process (see feature generators)
and they are the ones who are important for the machine learning algorithms,
which also put their results as attributes.

• The ParallelSentence is a class that represents the basic unit of a parallel cor-
pus. It contains one source sentence, a list of target sentences and optionally a
reference, All encapsulated sentences are an instance of SimpleSentence. The
ParallelSentence also includes its own attribute dictionary, with the sentence
id, the source and target language asclasses the most common attributes.

• The DataSet is an iterable class which stands one level above, as it encapsulates
a list of parallel sentences and several convenience functions.

Any development effort should use the data structures, which allow for optimal flow
of data between the various modules. In this python package, one can find more
classes which extend the basic data structures. These extensions have been developed
to support breaking the parallel sentences into a set of pairwise sentence comparisons.

5.2. Reading and writing files

In order to facilitate processing data for sentence-level ranking, external data pro-
cessing is based on a XML format called “JCML” for Judged Corpus Markup Language.
In contrast to line-separated simple-text formats used for regression-based QE, this
format allows for a variable number of target sentences per source7, whereas all fea-
tures are aggregated in the same file. In the package support.jcml we provide sev-
eral utility scripts (e.g. for joining and splitting) and also a utility for converting from
multiple plain text files to JCML.

Reading and writing external data is taken care through the classes in the pack-
age dataprocessor. The modules contained in the package allow for reading and
writing using several alternative python libraries, e.g. minidom (batch all-in-memory),

7The ranking-based human evaluation tasks of WMT provides 2-12 system outputs per source sentence.
For this reason JCML was used for the QE ranking task at WMT13

12

Avramidis, Poustka, Schmeier Python tool for Quality Estimation (5–16)

SAX and CElementTree (incremental disk writing/reading). The most commonly-used
reader is from ce.cejcml, whereas the most common writer is IncrementalJcml from
sax.saxps2jcml.

5.3. Adding new features

The classes responsible for generating features reside in the featuregenerator
package. One can add features by developing a new feature generator. The required
steps are:

• create a new module with a new class that extends FeatureGenerator (from
featuregenerator). The initialisation function should load necessary resources
as named arguments. If more modules are required, place them in a new pack-
age.

• override the unimplemented function get_features_tgt, perform the required
analysis of each target sentence and return a dictionary containing the resulting
feature names and values. This function will be automatically repeated for all
target sentences and can also process the source sentence.

• optionally override the unimplemented function get_features_src if you want
to provide features that refer only to the source sentence. Similarly prefixed
functions can be overridden for attaching features as attributes to other parts of
the parallel sentence.

• optionally override the functions add_features_tgt and similarly prefixed func-
tion if you also want to modify the string of the processed sentences (e.g. for
pre-processing, tokenisation etc.).

• add the new feature generator in the annotation process of the relevant appli-
cation. An initialised instance of the class should be added in a list with all
other feature generators that are executed. The order of the feature generators
in the list matters, particularly when some generators require pre-processing or
meta-data from previously executed generators. If possible, parameters should
be loaded from a configuration file.

It is also possible to encapsulate tools and libraries written in Java through the P4J
library, following the example of the BerkeleyParserSocket class.

5.4. New QE applications and machine learning algorithms

The provided code includes implementation for the ranking mechanism by using
pairwise classifiers. Since there is infrastructure for feature generation and machine
learning, other experiments and applications can be easily developed. Additional QE
applications can be added as separate packages in apps by following the example
of the autoranking package. These are mainly executable scripts for annotation and
training (see section 4.3), or other functions (test module, commandline app or XML-
RPC server).

13

PBML 102 OCTOBER 2014

As mentioned, this package already provides support for several functions of O-
 and S-. Further machine learning algorithms can be included in
ml.lib by implementing the abstract functions of the classes in the package ml.

6. Further work

Whereas the provided code contains a fully functional implementation and a mod-
ular architecture, several parts are subject of further improvement. We are currently
working on improving the architecture, e.g. to provide abstract classes for machine
learning methods or better templates for new “apps”. Additionally, a constant goal
are more feature implementations, to cover at least the so-called baseline features.
Readers of this paper are advised to check the latest version of documentation and
architecture in the official web-page.

Acknowledgements

This work has received support by the EC’s FP7 (FP7/2007-2013) under grant agreement num-
ber 610516: “QTLeap: Quality Translation by Deep Language Engineering Approaches”. Early
stages have been developed with the support of the projects TaraXŰ and QT-Launchpad. Many
thanks to: Slav Petrov for modifying the B P in order to allow modification of pars-
ing parameters; Hieu Hoang, Philipp Koehn, Maja Popović, Josh Schroeder and David Vilar as
parts of their open source code have been included in some of our scripts; Aljoscha Burchardt
and Prof. Hans Uszkoreit for the support.

Bibliography

Avramidis, Eleftherios. Comparative Quality Estimation: Automatic Sentence-Level Ranking
of Multiple Machine Translation Outputs. In Proceedings of 24th International Conference on
Computational Linguistics, pages 115–132, Mumbai, India, Dec. 2012. The COLING 2012 Or-
ganizing Committee.

Avramidis, Eleftherios. Sentence-level ranking with quality estimation. Machine Translation
(MT), 28(Special issue on Quality Estimation):1–20, 2013a.

Avramidis, Eleftherios. RankEval: Open Tool for Evaluation of Machine-Learned Ranking.
The Prague Bulletin of Mathematical Linguistics (PBML), 100:63–72, 2013b. doi: 10.2478/
pralin-2013-0012.

Banerjee, Somnath and Alon Lavie. METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic
and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. Association
for Computational Linguistics, 2005.

Berka, Jan, Ondřej Bojar, Mark Fishel, Maja Popović, and Daniel Zeman. Automatic MT Error
Analysis: Hjerson Helping Addicter. In 8th International Conference on Language Resources
and Evaluation, pages 2158–2163, 2012. ISBN 978-2-9517408-7-7.

14

Avramidis, Poustka, Schmeier Python tool for Quality Estimation (5–16)

Blatz, John, Erin Fitzgerald, George Foster, Simona Gandrabur, Cyril Goutte, Alex Kulesza,
Alberto Sanchis, and Nicola Ueffing. Confidence Estimation for Machine Translation. In
Rollins, M., editor, Mental Imagery. Yale University Press, 2004.

Coomans, D. and D.L. Massart. Alternative k-nearest neighbour rules in supervised pattern
recognition. Analytica Chimica Acta, (138):15–27, Jan. 1982. ISSN 00032670.

Demšar, Janez, Blaž Zupan, Gregor Leban, and Tomaz Curk. Orange: From Experimental Ma-
chine Learning to Interactive Data Mining. In Principles of Data Mining and Knowledge Dis-
covery, pages 537–539, 2004.

Federico, Marcello, Nicola Bertoldi, and Mauro Cettolo. IRSTLM: an open source toolkit for
handling large scale language models. In Interspeech, pages 1618–1621. ISCA, 2008.

Giménez, Jesús and Lluís Marquez. Asiya: An Open Toolkit for Automatic Machine Translation
(Meta-)Evaluation. The Prague Bulletin of Mathematical Linguistics, 94:77–86, 2010. doi: 10.
2478/v10108-010-0022-6.

Goodstadt, Leo. Ruffus: a lightweight Python library for computational pipelines. Bioinformat-
ics, 26(21):2778–2779, Nov. 2010. ISSN 1367-4803.

Heafield, Kenneth. KenLM: Faster and Smaller Language Model Queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation, pages 187–197, Edinburgh, Scotland, July
2011. Association for Computational Linguistics.

Hosmer, David. Applied logistic regression. Wiley, New York [u.a.], 8th edition, 1989. ISBN
9780471615538.

Joachims, Thorsten. Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 217–226. ACM, 2006.
ISBN 1595933395.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL), pages 177–180, Prague, Czech Republic, June 2007.

Lavie, Alon and Abhaya Agarwal. METEOR: An Automatic Metric for MT Evaluation with
High Levels of Correlation with Human Judgments. In Proceedings of the Second Workshop
on Statistical Machine Translation, pages 228–231, Prague, Czech Republic, June 2007. Asso-
ciation for Computational Linguistics.

Loper, Edward and Steven Bird. NLTK: The Natural Language Toolkit. In Proceedings of the
ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing
and Computational Linguistics - Volume 1, ETMTNLP ’02, pages 63–70, Stroudsburg, PA, USA,
2002. Association for Computational Linguistics.

Miłkowski, Marcin. Translation Quality Checking in LanguageTool, pages 213–223. Corpus Data
across Languages and Disciplines. Peter Lang, Frankfurt am Main, Berlin, Bern, Bruxelles,
New York, Oxford, Wien, 2012.

Naber, Daniel. A rule-based style and grammar checker. Technical report, Bielefeld University,
Bielefeld, Germany, 2003.

15

PBML 102 OCTOBER 2014

Oliphant, Travis E. SciPy: Open source scientific tools for Python, 2007.
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a Method for Auto-

matic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA,
July 2002. Association for Computational Linguistics.

Pedregosa, F, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondel, P Pretten-
hofer, R Weiss, V Dubourg, J Vanderplas, A Passos, D Cournapeau, M Brucher, M Perrot,
and E Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

Popović, Maja. Hjerson: An Open Source Tool for Automatic Error Classification of Machine
Translation Output. The Prague Bulletin of Mathematical Linguistics, 96(1):59–68, 2011. doi:
10.2478/v10108-011-0011-4.

Quinlan, J. R. Induction of Decision Trees. Machine Learning, 1(1):81–106, Mar. 1986. ISSN
0885-6125.

Rückstieß, Thomas and Jürgen Schmidhuber. Python Experiment Suite Implementation. The
Python Papers Source Codes, 2:4, 2011.

Siegel, Melanie. Autorenunterstützung für die Maschinelle Übersetzung. In Multilingual Re-
sources and Multilingual Applications: Proceedings of the Conference of the German Society for
Computational Linguistics and Language Technology (GSCL), Hamburg, 2011.

Specia, Lucia, Kashif Shah, José Guilherme Camargo de Souza, and Trevor Cohn. QuEst -
A translation quality estimation framework. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pages 79–84, Sofia, Bulgaria,
Aug. 2013. Association for Computational Linguistics.

Stolcke, Andreas. SRILM – An Extensible Language Modeling Toolkit. In Proceedings of the
Seventh International Conference on Spoken Language Processing, pages 901–904. ISCA, Sept.
2002.

Taulé, Mariona, Antònia Martí, and Marta Recasens. AnCora: Multilevel Annotated Corpora
for Catalan and Spanish. In Proceedings of the Sixth International Conference on Language Re-
sources and Evaluation (LREC’08), Marrakech, Morocco, May 2008. European Language Re-
sources Association (ELRA). ISBN 2-9517408-4-0.

Usunier, Nicolas, David Buffoni, and Patrick Gallinari. Ranking with ordered weighted pair-
wise classification. In Proceedings of the 26th Annual International Conference on Machine Learn-
ing ICML 2009 Montreal Quebec Canada June 1418 2009, pages 1057—-1064. ACM, 2009.

Address for correspondence:
Eleftherios Avramidis
eleftherios.avramidis@dfki.de
German Research Center for Artificial Intelligence (DFKI GmbH)
Language Technology Lab
Alt Moabit 91c
10559 Berlin, Germany

16

The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 17–26

A Fast and Simple Online Synchronous Context
Free Grammar Extractor

Paul Baltescu, Phil Blunsom
University of Oxford, Department of Computer Science

Abstract
Hierarchical phrase-based machine translation systems rely on the synchronous context

free grammar formalism to learn and use translation rules containing gaps. The grammars
learned by such systems become unmanageably large even for medium sized parallel corpora.
The traditional approach of preprocessing the training data and loading all possible translation
rules into memory does not scale well for hierarchical phrase-based systems. Online grammar
extractors address this problem by constructing memory efficient data structures on top of the
source side of the parallel data (often based on suffix arrays), which are used to efficiently match
phrases in the corpus and to extract translation rules on the fly during decoding. This paper
describes an open source implementation of an online synchronous context free grammar ex-
tractor. Our approach builds on the work of Lopez (2008a) and introduces a new technique for
extending the lists of phrase matches for phrases containing gaps that reduces the extraction
time by a factor of 4. Our extractor is available as part of the cdec toolkit1 (Dyer et al., 2010).

1. Introduction

Grammar extraction is the part of a machine translation pipeline responsible for
finding the set of applicable translation rules in a word-aligned parallel corpus. Every
time a machine translation system receives a sentence as input, the extractor is queried
for the set of translation rules that match subphrases of the given sentence. The overall
translation time depends on the extractor’s ability to efficiently identify these rules.
This paper introduces a fast and simple grammar extractor for hierarchical phrase
based translation systems.

1Our code is available here: https://github.com/redpony/cdec/tree/master/extractor.

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: paul.baltescu@cs.ox.ac.uk
Cite as: Paul Baltescu, Phil Blunsom. A Fast and Simple Online Synchronous Context Free Grammar Extractor.
The Prague Bulletin of Mathematical Linguistics No. 102, 2014, pp. 17–26. doi: 10.2478/pralin-2014-0010.

https://github.com/redpony/cdec/tree/master/extractor
http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 102 OCTOBER 2014

The traditional approach to grammar extraction is achieved with the help of phrase
tables, dictionary-like data structures that map all the source phrases in the training
corpus to their target side candidates. Phrase tables are generated in a preprocessing
step, by iterating over each sentence in the word-aligned parallel corpus and extract-
ing all phrase pairs up to a fixed width, such that a translation rule contains a word
only if it also contains all the words aligned to it (Och and Ney, 2004). Phrase tables
have been designed with phrase-based systems in mind (Koehn et al., 2003; Och and
Ney, 2004), where the number of extractable phrase pairs is linear in the phrase width
parameter. Even so, loading all the translation rules into memory can be problematic
for large corpora or in memory constrained environments (mobile devices, commod-
ity machines, etc.).

Hierarchical phrase-based translation systems (Chiang, 2007) learn and use trans-
lation rules containing gaps. For such systems, the number of extractable translation
rules is exponential in the phrase width parameter. As a result, the grammars learned
by hierarchical phrase-based systems are too large to fit in memory for almost all rel-
evant setups. A naive solution is to filter the phrase tables and remove all translation
rules that are not applicable for a given test set, but this approach does not scale to
unseen sentences which are to be expected by any machine translation application.

Several memory efficient alternatives to phrase tables have been proposed. Zens
and Ney (2007) store phrase tables on disk organized in a prefix tree data structure for
efficient read access. Callison-Burch et al. (2005) and Zhang and Vogel (2005) intro-
duce a phrase extraction technique based on suffix arrays which extracts translation
rules on the fly during decoding. Lopez (2007) shows how online extractors based
on suffix arrays can be extended to handle phrases with gaps. These two approaches
have comparable lookup times despite the fact that the former has a better asymptotic
complexity (constant vs. logarithmic) because slower disk reads are involved. In most
scenarios, the suffix array approach is preferred (e.g. Schwartz and Callison-Burch
(2010)) because it yields several benefits. The phrase width limitation for translation
rules is no longer required as it has no effect on the memory footprint of the precom-
puted data structures. Also, less time is spent when tuning translation models, as
the precomputed data structures need not be constructed again when new scoring
features are added.

The remainder of this paper describes our suffix array based grammar extractor
for hierarchical phrase-based systems. Section 2 reviews how suffix arrays are used
for contiguous phrase extraction (Lopez, 2008a). Section 3 introduces our new tech-
nique for extracting phrases with gaps. Section 4 briefly covers the intended usage for
our tool and discusses other implementation specific details which might make our
tool appealing to the research community. Section 5 concludes the paper with a set
of experiments demonstrating the benefits of the novel technique introduced in this
paper and other speed gains obtained as a result of careful implementation.

18

Paul Baltescu, Phil Blunsom SCFG Grammar Extraction (17–26)

2. Grammar extraction for contiguous phrases

A suffix array (Manber and Myers, 1990) is a memory efficient data structure which
can be used to efficiently locate all the occurrences of a pattern, given as part of a
query, in some larger string (referred to as text in the string matching literature, e.g.
Gusfield (1997)). A suffix array is simply the list of suffixes in the text string sorted
in lexicographical order. A suffix is encoded by its starting position and the overall
size of the suffix array is linear in the size of text string. A crucial property of suffix
arrays is that all suffixes starting with a given prefix form a compact interval within
the suffix array.

Suffix arrays are well suited to solve the central problem of contiguous phrase ex-
traction: efficiently matching phrases against the source side of the parallel corpus.
Once all the occurrences of a certain phrase are found, candidate translation rules are
extracted from a subsample of phrase matches. The rule extraction algorithm (Och
and Ney, 2004) is linear in the size of the phrase pattern and adds little overhead to
the phrase matching step.

Before a suffix array can be applied to the phrase matching problem, the source
side of the parallel corpus is preprocessed as follows: first, words are replaced with
numerical ids and then all sentences are concatenated together into a single array. The
suffix array is constructed from this array. In our implementation, we use a memory
efficient suffix array construction algorithm proposed by Larsson and Sadakane (2007)
having O(N logN) time complexity. The memory requirements of the suffix array are
linear in the size of the training data.

The algorithm for finding the occurrences of a phrase in the parallel corpus uses
binary search to locate the interval of suffixes starting with that phrase pattern in the
suffix array. Let w1, w2, . . . , wK be the phrase pattern. Since a suffix array is a sorted
list of suffixes, we can binary search the interval of suffixes starting with w1. This
contiguous subset of suffix indices continues to be lexicographically sorted and bi-
nary search may be used again to find the subinterval of suffixes starting with w1, w2.
However, all suffixes in this interval are known to start with w1, so it is sufficient to
base all comparisons on only the second word in the suffix. The algorithm is repeated
until the whole pattern is matched successfully or until the suffix interval becomes
empty, implying that the phrase does not exist in the training data. The complexity
of the phrase matching algorithm is O(K logN). We note that w1, . . . , wK−1 is a sub-
phrase of the input sentence as well and the extractor applies the phrase matching
algorithm for w1, . . . , wK−1 as part of a separate query. Matching w1, . . . , wK−1 exe-
cutes the first K−1 steps of the phrase matching algorithm for w1, . . . , wK. Therefore,
the complexity of the matching algorithm can be reduced to O(logN) per phrase, by
caching the suffix array interval found when searching for w1, . . . , wK−1 and only
executing the last step of the algorithm for w1, . . . , wK.

Let M be the length of a sentence received as input by the decoder. If the decoder
explores the complete set of contiguous subphrases of the input sentence, the suffix

19

PBML 102 OCTOBER 2014

array is queried O(M2) times. We make two trivial observations to further optimize
the extractor by avoiding redundant queries. These optimizations do not lead to major
speed-ups for contiguous phrase extraction, but are important for laying the founda-
tions of the extraction algorithm for phrases containing gaps. First, we note that if
a certain subphrase of the input sentence does not occur in the training corpus, any
phrase spanning this subphrase will not occur in the corpus as well. Second, phrases
may occur more than once in a test sentence, but all such repeating occurrences share
the same matches in the training corpus. We add a caching layer on top of the suffix
array to store the set of phrase matches for each queried phrase. Before applying the
pattern matching algorithm for a phrasew1, . . . , wK, we verify if the cache does not al-
ready contain the result for w1, . . . , wK and check if the search for w1, . . . , wK−1 and
w2, . . . , wK returned any results. The caching layer is implemented as a prefix tree
with suffix links and constructed in a breadth first manner so that shorter phrases are
processed before longer ones (Lopez, 2008a).

3. Grammar extraction for phrases with gaps

Synchronous context free grammars are the underlying formalism which enable
hierarchical translation systems to use translation rules containing gaps. For a de-
tailed introduction to synchronous context free grammars in machine translation see
Lopez (2008b). In this section, we present an algorithm for extracting synchronous
context free rules from a parallel corpus, which requires us to adapt the phrase ex-
traction algorithm from Section 2 to work for discontiguous phrases.

Let us make some notations to ease the exposition of our phrase extraction algo-
rithm. Leta, b and c be words in the source language, X a non-terminal used to denote
the gaps in translation rules and α and β source phrases containing zero or more oc-
currences of X. Let Mα be the set of matches of the phrase α in the source side of the
training corpus, where a phrase match is defined by a sequence of indices marking
the positions where the contiguous subphrases of α are found in the training data.
Our goal is to find Mα for every phrase α. Section 2 shows how to achieve this if X
does not occur in α.

Let us consider the case when α contains at least one non-terminal. If α = Xβ

or α = βX, then Mα = Mβ, because the phrase matches are defined only in terms
of the indices where the contiguous subpatterns match the training data. The words
spanned by the leading or trailing non-terminal are not relevant because they do not
appear in the translation rule. Since |β| < |α|, Mβ is already available in the cache as
a consequence of the breadth first search approach we use to compute the sets M.

The remaining case is α = aβc, where both Maβ and Mβc have been computed
at a previous step. We take into consideration two cases depending on whether the
next-to-last symbol of α is a terminal or not (i.e. α = aβbc or α = aβXc, respec-
tively). In the former case, we calculate Mα by iterating over all the phrase matches
in Maβb and selecting those matches that are followed by the word c. In the sec-

20

Paul Baltescu, Phil Blunsom SCFG Grammar Extraction (17–26)

ond case, we take note of the experimental results of Lopez (2008a) who shows that
translation rules that span more than 15 words have no effect on the overall quality
of translation. In our implementation, we introduce a parameter max_rule_span for
setting the maximum span of a translation rule. For each phrase match in MaβX, we
check if any of the following max_rule_spanwords is c (subject to sentence boundaries
and taking into account the current span of aβX) and insert any new phrase matches
in Mα accordingly. Note that Mα can also be computed by considering two cases
based on the second symbol in α (i.e. α = abβc or α = aXβc) and by searching the
word a at the beginning of the phrase matches in Mbβc or MXβc. In our implemen-
tation, we consider both options and apply the one that is likely to lead to a smaller
number of comparisons. The complexity of the algorithm for computing Mα=aβc is
O(min(|Maβ|, |Mβc|)).

Lopez (2007) presents a similar grammar extraction algorithm for discontiguous
phrases, but the complexity for computing Mα is O(|Maβ| + |Mβc|). Lopez (2007)
introduces a separate optimization based on double binary search (Baeza-Yates, 2004)
of time complexity O(min(|Maβ|, |Mβc|) log max(|Maβ|, |Mβc|)), designed to speed
up the extraction algorithm when one of the lists is much shorter than the other. Our
approach is asymptotically faster than both algorithms. In addition to this, we do not
require the listsMα to be sorted, allowing for a much simpler implementation. (Lopez
(2007) needs van Emde Boas trees and an inverted index to efficiently sort these lists.)

The extraction algorithm can be optimized by precomputing an index for the most
frequent discontiguous phrases (Lopez, 2007). To construct the index, we first need to
identify the set of the most frequent K contiguous phrases in the training data, where
K is an argument for our extraction tool. We use the LCP array (Manber and Myers,
1990), an auxiliary data structure constructed in linear time from a suffix array (Kasai
et al., 2001), to find all the contiguous phrases in the training data that occur above a
certain frequency threshold. We add these phrases to a max-heap together with their
frequencies and extract the most frequent K contiguous patterns. We iterate over the
source side of the training data and populate the index with all the discontiguous
phrases of the form uXv and uXvXw, where u, v and w are amongst the most frequent
K contiguous phrases in the training data.

4. Usage and implementation details

Our grammar extractor is designed as a standalone tool which takes as input a
word-aligned parallel corpus and a test set and produces as output the set of transla-
tion rules applicable to each sentence in the test set. The extractor produces the output
in the format expected by the cdec decoder, but the implementation is self-contained
and easily extendable to other hierarchical phrase-based translation systems.

Our tool performs grammar extraction in two steps. The preprocessing step takes
as input the parallel corpus and the file containing the word alignments and writes to
disk binary representations of the data structures needed in the extraction step: the

21

PBML 102 OCTOBER 2014

symbol table, the source suffix array, the target data array, the word alignment, the
precomputed index of frequent discontiguous phrases and a translation table storing
estimates for the conditional word probabilities p(s|t) and p(t|s), for every source
word s and target word t collocated in the same sentence pair in the training data.
The translation probabilities are required for the scoring features in the extraction
step. The output of the preprocessing step is written to disk in a directory specified
by the user. A configuration file is also produced to reduce the number of parameters
the user has to provide to the extraction step. The preprocessed data structures can
be reused when extracting grammars for different test sets. The extraction step takes
as input the precomputed data structures and a test corpus and produces a set of
grammar files containing the applicable translation rules for each sentence in the test
set. Note that our extraction tool expects the entire test corpus as input only to match
the intended overall usage of the cdec pipeline and that the tool itself at no point takes
advantage of the fact that the whole test corpus is known in advance.

Our extractor is written in C++. Compiling the code yields two binaries, sacompile
and extract, corresponding to the two steps described above. sacompile takes the
following parameters:

• --help: Prints a list of available options.
• --source: The path to the file containing the source side of the parallel corpus,

one sentence per line.
• --target: The path to the file containing the target side of the parallel corpus,

one sentence per line.
• --bitext: The path to the parallel corpus, one pair of sentences per line. The

expected format is source_sentence ||| target_sentence. This parameter
needs to be set only if --source and --target are not provided.

• --alignment: The path to the word alignment file. The expected format is the
same as the one used by tools like cdec or Moses 2.

• --output: The directory where the binary representations are written.
• --config: The path where the config file will be created.
• --max_rule_span: The maximum number of words spanned by a rule.
• --max_symbols: The maximum number of symbols (words and non-terminals

symbols) in the source side of a rule.
• --min_gap_size: The minimum number of words spanned by a non-terminal.
• --frequent: The number of frequent contiguous phrases to be extracted for the

construction of the precomputed index.
• --super_frequent: The number of super frequent contiguous phrases to be

used in the construction of the precomputed index (a subset of the contiguous
phrases extracted with the --frequent parameter). Discontiguous phrases of
the form uXvXw are added to the index only if either both u and v or v and w

are super-frequent.

2More details here: http://www.cdec-decoder.org/guide/fast_align.html

22

http://www.cdec-decoder.org/guide/fast_align.html

Paul Baltescu, Phil Blunsom SCFG Grammar Extraction (17–26)

• --min_frequency: The minimum number of times a phrase must occur in the
corpus to be considered a candidate for the set of most frequent phrases.

• --max_phrase_len: The maximum number of words spanned by a frequent con-
tiguous phrase.

The extract binary takes the following parameters:
• --help: Prints a list of available options.
• --config: The path to the configuration file produced by the preprocessing step.
• --grammars: The directory where the files containing the translation rules for

each sentence are written.
• --threads: The number of threads used for parallel extraction.
• --max_rule_span: The maximum number of words spanned by a rule.
• --max_rule_symbols: The maximum number of symbols (words and non-termi-

nal symbols) in the source side of a rule.
• --min_gap_size: The minimum number of words spanned by a non-terminal.
• --max_nonterminals: The maximum number of non-terminals in a rule.
• --max_samples: A threshold on the number of phrase matches used to extract

translation rules for each phrase.
• --tight_phrases: Use tight constraints for extracting rules (Chiang, 2007).
• --leave_one_out: If the training set is used as a test set, the extractor will ignore

any phrase matches in the test sentence for which the rules are extracted.
The extract binary reads the test corpus from standard input and produces an

summary file at standard output. For both binaries, the only required parameters are
the files and directories required for input and output, while the remaining parame-
ters are initialized with sensible default values.

Our implementation leverages the benefits of a multithreaded environment to speed
up grammar extraction. The test corpus is distributed dynamically across the num-
ber of available threads (specified by the user with the --threads parameter). All the
data structures computed in the preprocessing step are immutable during extraction
and can be effectively shared across multiple threads at no additional time or mem-
ory cost. In contrast, the existing extractor (implementing Lopez (2008a)’s algorithm)
available in cdec uses a multi-process approach to parallel extraction. This is ill-suited
for memory constrained environments because the preprocessed data structures are
copied across all the processes used for extraction. As a result, the amount of memory
available will restrict the degree of parallelization that the extractor can achieve.

Our code is released together with a suite of unit tests based on the Google Test
and Google Mock frameworks. The unit tests are provided to encourage developers to
add their own features to our grammar extractor without the fear that their changes
might have unexpected consequences.

23

PBML 102 OCTOBER 2014

Implementation Time (minutes) Memory (GB)
Original cython extractor 28.518 6.4
C++ reimplementation 2.967 6.4

Current work (C++) 2.903 6.3

Table 1. Results for the preprocessing step.

Implementation Time (minutes) Memory (GB)
Original cython extractor 309.725 4.4
C++ reimplementation 381.591 6.4

Current work (C++) 75.496 5.7

Table 2. Results for the phrase extraction step.

5. Experiments

In this section, we present a set of experiments which illustrate the benefits of our
new extractor. We compare our implementation with the one available in cdec which
implements the algorithm proposed by Lopez (2008a). The existing extractor is writ-
ten in cython. In order to make the comparison fair and to prove that the speed ups
we obtain are indeed a result of our new algorithm, we also report results for an im-
plementation of Lopez (2008a)’s algorithm in C++.

For our experiments, we used the French-English data from the europarl-v7 cor-
pus, a set of 2,002,756 pairs of sentences containing a total of 104,722,300 tokens. The
training corpus was tokenized, lowercased and pairs of sentences with unusual length
ratios were filtered out using the corpus preparation scripts available in cdec3. The
corpus was aligned using fast_align (Dyer et al., 2013) and the alignments were sym-
metrized using the grow-diag-final-and heuristic. We extracted translation rules for
the newstest2012 test corpus4. The test corpus consists of 3,003 sentences and was to-
kenized and lowercased using the same scripts as the training corpus.

Table 1 shows results for the preprocessing step of the three implementations. We
note a 10-fold time reduction when reimplementing Lopez (2008a)’s algorithm in C++.
We believe this is a consequence of inefficient programming when the precomputed
index is constructed in the cython code and not a result of using different program-
ming languages. Our new implementation does not significantly outperform an effi-
cient implementation of the preprocessing step of Lopez (2008a)’s extractor because
it computes the same set of data structures.

3We followed the indications provided here: http://www.cdec-decoder.org/guide/tutorial.html.
4The test corpus is available here: http://www.statmt.org/wmt14/translation-task.html.

24

http://www.cdec-decoder.org/guide/tutorial.html
http://www.statmt.org/wmt14/translation-task.html

Paul Baltescu, Phil Blunsom SCFG Grammar Extraction (17–26)

Implementation Time (minutes) Memory (GB)
Original cython extractor 37.950 35.2
C++ reimplementation 51.700 10.1

Current work (C++) 9.627 6.1

Table 3. Results for parallel extraction using 8 processes/threads.

The second set of results (Table 2) show the running times and memory require-
ments of the extraction step. Our C++ reimplementation of Lopez (2008a)’s algorithm
is slightly less efficient than the original cython extractor, supporting the idea that
the two programming languages have roughly similar performance. We note that our
novel extraction algorithm is over 4 times faster than the original approach of Lopez
(2008a). The increased memory usage is not a real concern because it does not exceed
the amount of memory used in the preprocessing step.

Table 3 demonstrates the benefits of parallel phrase extraction. We repeated the
experiments from Table 2 using 8 processes in cython and 8 threads in C++. As ex-
pected, the running times decrease roughly 8 times. The benefits of shared-memory
parallelism are evident, our new implementation is saving 29.1 GB of memory. Our
implementation continues to use less memory than the preprocessing step even when
running in multithreaded mode.

In conclusion, this paper presents an open source implementation of a SCFG ex-
tractor integrated with cdec that is 4 times faster than the existing extractor (Lopez,
2008a) and that is better designed for parallel environments. Compared to traditional
phrase tables, our approach is considerably more memory efficient without involving
any pruning based on the test corpus, therefore scaling to unseen sentences.

Bibliography

Baeza-Yates, Ricardo A. A fast set intersection algorithm for sorted sequences. In Combinatorial
Pattern Matching, pages 400–408. Springer Berlin Heidelberg, 2004.

Callison-Burch, Chris, Colin Bannard, and Josh Schroeder. Scaling phrase-based statistical ma-
chine translation to larger corpora and longer phrases. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05), pages 255–262, Ann Arbor,
Michigan, June 2005. Association for Computational Linguistics.

Chiang, David. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228,
2007.

Dyer, Chris, Adam Lopez, Juri Ganitkevitch, Jonathan Weese, Ferhan Ture, Phil Blunsom, Hen-
dra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec: A decoder, alignment, and
learning framework for finite-state and context-free translation models. In Proceedings of the
ACL 2010 System Demonstrations, pages 7–12, Uppsala, Sweden, July 2010. Association for
Computational Linguistics.

25

PBML 102 OCTOBER 2014

Dyer, Chris, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective reparameter-
ization of ibm model 2. In Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL ’13), pages 644–648, Atlanta, Georgia,
June 2013. Association for Computational Linguistics.

Gusfield, Dan. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational
Biology. Cambridge University Press, New York, USA, 1997.

Kasai, Toru, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications. In Combinatorial
Pattern Matching, pages 181–192. Springer Berlin Heidelberg, 2001.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In
Proceedings of the 2003 Conference of the North American Chapter of the Association for Compu-
tational Linguistics (NAACL ’03), pages 48–54. Association for Computational Linguistics,
2003.

Larsson, N. Jesper and Kunihiko Sadakane. Faster suffix sorting. Theoretical Computer Science,
387(3):258–272, 2007.

Lopez, Adam. Hierarchical phrase-based translation with suffix arrays. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL ’07), pages 976–985, Prague, Czech Republic,
2007. Association for Computational Linguistics.

Lopez, Adam. Machine translation by pattern matching. ProQuest, 2008a.
Lopez, Adam. Statistical machine translation. ACM Computing Surveys, 40(3):1–49, 2008b.
Manber, Udi and Gene Myers. Suffix arrays: A new method for on-line string searches. In Pro-

ceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’90), pages
319–327. Society for Industrial and Applied Mathematics, 1990.

Och, Franz Josef and Hermann Ney. The alignment template approach to statistical machine
translation. Computational Linguistics, 30(4):417–449, 2004.

Schwartz, Lane and Chris Callison-Burch. Hierarchical phrase-based grammar extraction in
joshua. The Prague Bulletin of Mathematical Linguistics, 93(1), 2010.

Zens, Richard and Hermann Ney. Efficient phrase-table representation for machine translation
with applications to online MT and speech translation. In Proceedings of the 2007 Conference of
the North American Chapter of the Association for Computational Linguistics (NAACL ’07), pages
492–499, Rochester, New York, 2007. Association for Computational Linguistics.

Zhang, Ying and Stephan Vogel. An efficient phrase-to-phrase alignment model for arbitrarily
long phrase and large corpora. In Proceedings of the 10th Conference of the European Association
for Machine Translation (EAMT-05), pages 30–31, 2005.

Address for correspondence:
Paul Baltescu
paul.baltescu@cs.ox.ac.uk
Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom

26

The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 27–36

Tree Transduction Tools for cdec

Austin Matthewsa, Paul Baltescub, Phil Blunsomb, Alon Laviea,
Chris Dyera

a Carnegie Mellon University
b University of Oxford

Abstract
We describe a collection of open source tools for learning tree-to-string and tree-to-tree

transducers and the extensions to the cdec decoder that enable translation with these. Our
modular, easy-to-extend tools extract rules from trees or forests aligned to strings and trees
subject to different structural constraints. A fast, multithreaded implementation of the Cohn
and Blunsom (2009) model for extracting compact tree-to-string rules is also included. The
implementation of the tree composition algorithm used by cdec is described, and translation
quality and decoding time results are presented. Our experimental results add to the body of
evidence suggesting that tree transducers are a compelling option for translation, particularly
when decoding speed and translation model size are important.

1. Tree to String Transducers

Tree-to-string transducers that define relations on strings and trees are a popu-
lar formalism for capturing translational equivalence where syntactic tree structures
are available in either the source or target language (Graehl et al., 2008; Galley et al.,
2004; Rounds, 1970; Thatcher, 1970). The tools described in this paper are a restricted
version of top-down tree transducers that support multi-level tree fragments on one
side and strings on the other, with no copying or deletion (Huang et al., 2006; Cohn
and Blunsom, 2009). Such transducers can elegantly capture syntactic regularities in
translation. For example see Fig. 1, which gives the rules necessary to translate be-
tween English (an SVO language with ditransitive verbs) and Welsh (a VSO language
with prepositional datives). In our notation, transducers consist of a set of rules

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: cdyer@cs.cmu.edu
Cite as: Austin Matthews, Paul Baltescu, Phil Blunsom, Alon Lavie, Chris Dyer. Tree Transduction Tools for
cdec. The Prague Bulletin of Mathematical Linguistics No. 102, 2014, pp. 27–36.
doi: 10.2478/pralin-2014-0011.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 102 OCTOBER 2014

(S NP (VP VBD NP NP)) ↔ 2 1 4 i 3

(NP (DT a) NN) ↔ 1

(VBD gave) ↔ rhoddodd
(NN book)) ↔ lyfr

(NP (PRP me)) ↔ mi
(NP (NNP John)) ↔ Ioan

S

NP

NNP

John

VP

VBD

gave

NP

PRP

me

NP

DT

a

NN

book

cdec text format of above transducer (with example features):
(S [NP] (VP [VBD] [NP] [NP])) ||| [2] [1] [4] i [3] ||| logP(s|t)=-0.2471
(NP (DT a) [NN]) ||| [1] ||| logP(s|t)=-0.6973 Delete_a=1
(VBD gave) ||| rhoddodd ||| logP(s|t)=-2.3613
(NN book) ||| lyfr ||| logP(s|t)=-0.971
(NP (PRP me)) ||| mi ||| logP(s|t)=-1.3688
(NP (NNP John)) ||| Ioan ||| logP(s|t)=0

cdec input text format of above tree:
(S (NP (NNP John)) (VP (VBD gave) (NP (PRP me)) (NP (DT a) (NN book))))

Figure 1. Example single-state transducer that transduces between the SVIO English
tree (upper right of figure) and its VSOP Welsh translation: rhoddodd Ioan lyfr i mi.

(also called edges) which pair a tree fragment in one language with a string of ter-
minal symbols and variables in a second language. Frontier nonterminal nodes in
the tree fragment are indicated with a box around the nonterminal symbol, and the
corresponding substitution site in the string is indicated by a box around a number
indexing the nonterminal variable in the tree fragment (counting in top-down, left to
right, depth first order). Additionally, tree-to-string transducers can be further gen-
eralized so as to have multiple transducer states, shown in Fig. 2. The transducers in
Fig. 1 can be understood to have a single state. For formal properties of tree-to-string
transducers, we refer the reader to the above citations.

Tree-to-string transducers define a relation on strings and trees and, in translation
applications, are capable of transforming either source trees (generated by a parser)
into target language strings or source strings into target-language parse trees. Run-
ning the transducer in the tree-to-string direction can avail itself of specialized algo-
rithms similar to finite state composition (§4); in the string-to-tree direction, they can
be trivially converted to synchronous context free grammars and transduction can be
carried out with standard CFG parsing algorithms (Galley et al., 2004).

28

A. Matthews, P. Baltescu, P. Blunsom, A. Lavie, C. Dyer Tree transduction (27–36)

q0 : (S NP (VP VB NP)) ↔ 1 : q0 2 : q0 3 : qacc

q0 : (NP (DT the) NN) ↔ der 1 : q0

qacc : (NP (DT the) NN) ↔ den 1 : q0

q0 : (NN dog) ↔ Hund

cdec text format of above transducer (with example features):
[Q0] ||| (S [NP] (VP [VB] [NP])) ||| [Q0,1] [Q0,2] [QACC,3] ||| lp=-2.9713
[Q0] ||| (NP (DT the) [NN]) ||| der [Q0,1] ||| lp=-1.3443
[QACC] ||| (NP (DT the) [NN]) ||| den [Q0,1] ||| lp=-2.9402
[Q0] ||| (NN dog) ||| Hund ||| lp=-0.3171

Figure 2. A tree-to-string transducer with multiple states encoding structural
information for choosing the proper nominal inflection in English–German translation.

2. Heuristic Hypergraph-based Grammar Extraction

In this section we describe a general purpose tree-to-string and tree-to-tree rule
learner. We will consider the tree-to-tree alignment problem in this case (the tree-
to-string case is a straightforward simplification). Instead of extracting rules from
a pair of aligned trees, rules from a pair of aligned hypergraphs (any tree can easily
be transformed into an equivalent hypergraph; an example of such a hypergraph is
shown in Fig. 3). By using hypergraphs, the rule extraction algorithm can use forest
outputs from parsers to capture parse uncertainty; furthermore (as discussed below),
it simplifies the rule extraction algorithm so that extraction events—even of so-called
“composed rules” (Galley et al., 2006)—always apply locally to a single edge rather
than considering larger structures. This yields a simpler implementation.

The rule extraction process finds pairs of aligned nodes in the hypergraphs based
on the terminal symbol alignment. We will call a source node S and a target node
T node-aligned if the following conditions hold. First, S and T must either both be
non-terminals or both be terminals. Aligning a terminal to a non-terminal or vice-
versa is disallowed. Second, there must be at least one alignment link from a terminal
dominated by S to a terminal dominated by T . Third, there must be no alignment
links from terminals dominated by S to terminals outside of T or vice-versa.

We define a “rule” to be pair of hyperedges whose heads are node-aligned and
whose non-terminal children are node-aligned in a one-to-one (bijective) manner. For
example, in the sample tree, we see that the source node PP4,6 is node-aligned to
the target node PP5,7 and their children are node-aligned TO4,5 to PREP5,6 and NN5,6
to NP5,7. This edge pair corresponds to the rule [PP::PP] → [TO,1] [NN,2] |||
[PREP,1] [NP,2]. Note in this formalism, no edges headed by terminals, so we will
not extract any rules with terminal “heads”.

29

PBML 102 OCTOBER 2014

The above formulation allows the extraction of so-called “minimal” rules that do
not contain internal structure, but it does not yet include any mechanism for extract-
ing more complex rules. Rather than adding extra mechanisms to the rule extractor,
we create extra edges in the hypergraph so that “composed” edges are available to
the extractor. To do so, we recursively add edges from non-overlapping sets of de-
scendent nodes. For example, one hyperedge added to the source side of the sample
hypergraph pair is VP3,6 → walked TO4,5 NN5,6. Independently, on the target side
we add an edge VP3,7 → a marché PREP5,6 NP5,7.

Figure 3. A pair of aligned hypergraphs.
NP0,3 represents an NP over the span [0, 3).

An example virtual node and its
corresponding virtual edges is shown in

red.

Now when we extract rules, we will
find these two edges will give rise to the
rule [VP::VP]→ walked [TO,1] [NN,2]
||| a marché [PREP,1] [NP,2], a com-
posed rule not extractable by the bald al-
gorithm.

While using composed edges allows
us to extract all permissible rules from
a pair of aligned trees, to be consis-
tent with previous work, we introduce
one more type of hypergraph augmen-
tation. Hanneman et al. (2011) allow for
adjacent sibling non-terminal nodes to
be merged into one virtual node, which
may then be node-aligned to opposite
nodes, be they “real” or virtual. To en-
able this, we explicitly add virtual nodes
to our hypergraph and connect them to
their children with a hyperedge. Fur-
thermore, for every hyperedge that con-
tained all of the sibling nodes as non-
terminal tails, we add a duplicate hyper-
edge that uses the new virtual node in-
stead.

For example, in Fig. 3, we have
added a new non-terminal node labeled
VB3s+VBN3,5 to the hypergraph. This
node represents the fusion of the VB3s3,4 and VBN4,5 nodes. We then add a hyperedge
headed by the new VB3s+VBN3,5 with tails to both VB3s3,4 and VBN4,5. Furthermore,
we make a copy of the edge VP3,7 → VB3s3,4 VBN4,5 PP5,7, and replace the VB3s3,4
and VBN4,5 tail nodes with a single tail, VB3s+VBN3,5, to form the new edge VP3,7 →
VB3s+VBN3,5 PP5,7. The addition of this new hyperedge allows the extraction of the
rules [VBD::VB3s+VBN] → walked ||| a marché and [VP::VP] → [VBD,1] [PP,2]

30

A. Matthews, P. Baltescu, P. Blunsom, A. Lavie, C. Dyer Tree transduction (27–36)

||| [VB3s+VBN,1] [PP,2], both of which were unextractable without the virtual
node.

With the addition of virtual nodes, our work is directly comparable to Hanneman
et al. (2011), while being more modular, extensible and provably correct. One partic-
ularly interesting extension our hypergraph formulation allows is the use of weighted
parse forests rather than 1-best trees. This helps our rule extractor to overcome parser
errors and allows us to easily handle cases of ambiguity, in which two or more trees
may be equally likely for a given input sentence.

3. Bayesian Synchronous Tree to String Grammar Induction

Although HyperGrex, the tool described in the previous section, is flexible, it relies
on heuristic word alignments that were generated without knowledge of the syntactic
structure or the final translation formalism they will be used in. In this section, we
present our open source implementation of the synchronous tree-to-string grammar
induction algorithm proposed by Cohn and Blunsom (2009).1 This model directly
reasons about the most likely tree-to-string grammar that explains the parallel corpus.
Tree-to-tree grammars are not currently supported.

The algorithm relies on a Bayesian model which incorporates a prior preference
for learning small, generalizable STSG rules. The model is designed to jointly learn
translation rules and word alignments. This is important for capturing long distance
reordering phenomena, which might otherwise be poorly modeled if the rules are
inferred using distance penalized alignments (e.g. as in the heuristic proposed by
Galley et al. (2004) or the similar one used by HyperGrex).

The model represents the tree-to-string grammar as a set of distributions {Gc} over
the productions of each non-terminal c. Each distribution Gc is assumed to be gener-
ated by a Dirichlet Process with a concentration parameter αc and a base distribution
P0(· | c), i.e. Gc ∼ DP(αc, P0(· | c)). The concentration parameter αc controls the
model’s tendency towards reusing rules or creating new ones according to the base
distribution and has a direct influence on the size of the resulting grammar. The base
distribution is defined to assign probabilities to an infinite set of rules. The proba-
bilities decrease exponentially as the sizes of the rules increase, biasing the model
towards learning smaller rules.

Instead of representing the distributions Gc explicitly, we integrate over all the
possible values of Gc. We obtain the following formula for estimating the probability
of a rule r with root c, given a fixed set of derivations r for the training corpus:

p(r | r, c;αc, P0) =
nr + αcP0(r | c)

nc + αc

, (1)

where nr is the number of times r occurs in r and nc is the number of rules with root
c in r.

1Our code is publicly available here: https://github.com/pauldb89/worm.

31

https://github.com/pauldb89/worm

PBML 102 OCTOBER 2014

Cohn and Blunsom (2009) train their model using Gibbs sampling. To simplify
the implementation, an alignment variable is defined for every internal node in the
parsed corpus. An alignment variable specifies the interval of target words which
are spanned by a source node. Alternatively, a node may not be aligned to any target
words or may span a discontiguous group of words, in which case it is annotated
with an empty interval. Non-empty alignment variables mark the substitution sites
for the rules in a derivation of a parse tree. Overall, they are used to specify a set of
sampled derivations r for the entire training data. Alignment spans are constrained
to subsume the spans of their descendants and must be contained within the spans of
their ancestors. In addition to this, sibling spans belonging to the frontier of the same
rule must not overlap.

We implement Gibbs sampling with the help of two operators: expand and swap.
The expand operator works by resampling a randomly selected alignment variable a,
while keeping all the other alignment variables fixed. The set of possible outcomes
consists of the empty interval and all the intervals assignable to a such that the pre-
vious conditions continue to hold. Each outcome is scored proportionally to the new
rules it creates, using Equation 1, conditioned on all the rules in the training data that
remain unaffected by the sampling operation. The swap operator randomly selects
two frontier nodes labelled with non-terminals belonging to the same STSG rule and
chooses to either swap their alignment variables or to leave them unchanged. The
outcomes are weighted similarly to the previous case. The goal of the swap opera-
tor is to improve the sampler’s ability to mix, especially in the context of improving
word reordering, by providing a way to execute several low probability expand steps
at once.

Our implementation of the grammar induction algorithm is written in C++. Com-
piling the code results in several binaries, including sampler, which implements our
Gibbs sampler. Our tool takes as input a file containing the parse trees for the source
side of the parallel corpus, the target side of the parallel corpus, the word alignments
of the training data, and two translation tables giving p(s | t) and p(t | s) respectively.
The word alignments are needed only to initialize the sampler with the first set of
derivations (Galley et al., 2004). The remaining input arguments (hyperparameters,
rule restrictions, etc.) are initialized with sensible default values. Running the bi-
nary with the --help option will produce the complete list of arguments and a brief
explanation for each. The tool produces several files as output, including one con-
taining the set of rules together with their probabilities, computed based on the last
set of sampled derivations. The documentation released with our code shows how to
prepare the training data, run the tool and convert the output to the cdec format.

Our tool leverages the benefits of a multithreaded environment to speed up gram-
mar induction. At every sampler iteration, each training sentence is dynamically al-
located to one of the available threads. In our implementation, we use a hash-based
implementation of a Chinese Restaurant Process (CRP) (Teh, 2010) to efficiently com-
pute the rule probabilities given by Equation 1. The data structure is updated when-

32

A. Matthews, P. Baltescu, P. Blunsom, A. Lavie, C. Dyer Tree transduction (27–36)

ever one of the expand or swap operators is applied. To lock this data structure with
every update would completely cancel the effect of parallelization, as all the basic op-
erations performed by the sampler are dependent on the CRP. Instead, we distribute
a copy of the CRP on every thread and synchronize the data structures at the end of
each iteration. Although the CRPs diverge during an iteration through the training
data, no negative effects are observed when inferring STSGs in multithreaded mode.

4. Tree-to-string translation with cdec

S

A

A A

a b

C’

CC

A’

C
c

S’

S

A

a b

C

c

ery inter

(A a b) ↔ x y

↔

(A a) ↔ x
A

a
b

sam

↔

(S A (C c)) ↔ 1 z S
A C c

SA
x y z1

(r1)

(r2)

(r3)

(r3)(r1)

Figure 4. DFA representation of a tree transducer (above) and an input tree (middle).
This transducer will transduce the input tree to the hypergraph (below) yielding a
single string x y z, using rules (r1) and (r3). Red octagons are closing parentheses.

The cdec decoder (Dyer et al., 2010) has a modular decoder architecture that fac-
tors the decoding problem into multiple stages: first, a hypergraph is generated that
represents the translation search space produced by composing the input (a string,
lattice, or tree) with the relevant transducer (a synchronous context-free grammar,
a finite state transducer, etc.); second, the hypergraph is rescored—and possibly re-
structured (in the case of adding an n-gram language model)—with generic feature

33

PBML 102 OCTOBER 2014

extractors; finally, various outputs of interest are extracted (the best translation, the
k-best translations, alignments to a target string, statistics required for parameter op-
timization, etc.).

The original cdec implementation contained hypergraph generators based on a
variety of translation backends, although SCFG translation is the most widely used
(Chiang, 2007). In this section, we describe the tree-to-string algorithm that generates
a translation forest given a source language parse tree and a tree-to-string transducer.

The construction of the hypergraph takes place by composing the input tree with
the tree-to-string transducer using a top down, recursive algorithm. Intuitively, the
algorithm matches all rules in the transducer that start at a given node in the input
tree and match at least one complete rewrite in the source tree. Any variables that
were used in the match are then recursively processed until the entire input tree is
completed. To make this process efficient, the tree side of the input transducer is
determinized by depth-first, left-to-right factoring—this process is analogous to left
factoring a context-free grammar (Klein and Manning, 2001). By representing the
tree using the same depth-first, left-to-right representation, standard DFA intersection
algorithms can be used to compute each step of the recursion. The DFA representation
of a transducer (tree side) and an input tree (starting at nonterminal S) is shown in
Fig. 4.

Extractor ks kt Instances Types
grex 1 1 24.9M 11.8M

HyperGrex 1 1 25.9M 12.7M
HyperGrex 1 10 33.3M 17.7M
HyperGrex 10 1 33.7M 17.9M
HyperGrex 10 10 48.7M 24.3M

Figure 5. Grammar sizes using different
grammar extraction set ups. ks (kt)

represents the number of source (target)
trees used.

To understand how this algorithm
proceeds on this particular input, the
input tree DFA is matched against the
‘S’ DFA. The output transductions are
stored in the final states of the trans-
ducer DFA, and for all final states in the
transducer DFA that are reached in a fi-
nal state of the input DFA, an edge is
added to the output hypergraph, one
per translation option. Variables that
were used in the input DFA are then
recursively processed, starting from the
relevant transducer DFA (in this case
since first (r3) will be used which has an
A variable, then ‘A’ DFA will then be invoked recursively).

5. Experiments

We tested our tree-to-tree rule learner on the FBIS Chinese–English corpus (LDC2003E14),
which consists of 302,966 sentence pairs or 9,350,506 words on the English side. We
first obtain k-best parses for both sides of FBIS using the Berkeley Parser2 and align
the corpus using fastalign (Dyer et al., 2013). We use a 5-gram language model built

2https://code.google.com/p/berkeleyparser/

34

A. Matthews, P. Baltescu, P. Blunsom, A. Lavie, C. Dyer Tree transduction (27–36)

with KenLM on version four of the English GigaWord corpus plus the target side of
FBIS, smoothed with improved Kneser-Ney smoothing. For each set up we extract
rules using grex (Hanneman et al., 2011) or our new tool. When using our tool we
have the option of simply using 1-best trees to compare directly to grex, or using the
weighted forests consisting of all of Berkeley’s k-best parses on the source side, the
target side, or both. For these experiments we use k = 10. Each system is tuned on
mt06 using Hypergraph MERT. We then test each system on both mt03 and mt06.

Details concerning the size of the extracted grammars can be found in Table 5.3
Translation quality results are shown in Table 6.

5.1. Baysiean Grammar Experiments

Extractor ks kt mt06 mt03 mt08
grex 1 1 29.6 31.8 23.4

HyperGrex 1 1 30.1 32.4 24.0
HyperGrex 1 10 30.4 32.9 24.3
HyperGrex 10 1 29.5 32.0 23.1
HyperGrex 10 10 30.0 32.7 23.7

Figure 6. BLEU results on mt06 (tuning set),
mt03, and mt08 using various grammar

extraction configurations.

The Bayesian grammar extractor
we describe is constructed to find
compact grammars that explain a
parallel corpus. We briefly discuss
the performance of these grammars
in a tree-to-string translation task
relative to a standard Hiero base-
line. Each of these systems was
tuned on mt03 and tested on mt08.
Table. 7 summarizes the findings.
Although tree-to-string system with
minimal rules underperforms Hiero
slightly, it uses orders of magnitude

fewer rules—in fact the number of rules in the Hiero grammar filtered for the 691-
sentence test set is twice as large as the Bayesian grammar. The unfiltered Hiero
grammar is 2 orders of magnitude larger than the Bayesian grammar.

Extractor iterations rule count mt08
Hiero – 36.6M 27.9

HyperGrex minimal (§2) – 1.4M 26.5
Bayes (§3) 100 0.77M 26.5
Bayes (§3) 1,000 0.74M 26.9

Figure 7. Comparing HyperGrex (minimal rules), the Bayesian extractor after different
numbers of iterations, and Hiero.

3This indicates that grex failed to extract certain valid rules. This conclusion was validated by our team,
and confirmed with the authors of (Hanneman et al., 2011).

35

PBML 102 OCTOBER 2014

Acknowledgements
This work was supported by the U. S. Army Research Laboratory and the U. S. Army

Research Office under contract/grant number W911NF-10-1-0533, the Qatar National
Research Fund (a member of the Qatar Foundation) under grant NPRP 09-1140-1-177,
by a Google Faculty Research Grant (2012_R2_10), and by the NSF-sponsored XSEDE
program under grant TG-CCR110017.

Bibliography
Chiang, David. Hierarchical phrase-based translation. Computational Linguistics, 2007.
Cohn, Trevor and Phil Blunsom. A bayesian model of syntax-directed tree to string grammar

induction. In Proc. of EMNLP, 2009.
Dyer, Chris, Adam Lopez, Juri Ganitkevitch, Johnathan Weese, Ferhan Ture, Phil Blunsom,

Hendra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec: A decoder, alignment, and
learning framework for finite-state and context-free translation models. In Proc. of ACL,
2010.

Dyer, Chris, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proc. of NAACL, 2013.

Galley, Michel, Mark Hopkins, Kevin Knight, and Daniel Marcu. What’s in a translation rule?
In HLT-NAACL, 2004.

Galley, Michel, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang, and
Ignacio Thayer. Scalable inference and training of context-rich syntactic translation models.
In Proc. of NAACL, 2006.

Graehl, Jonathan, Kevin Knight, and Jonathan May. Training tree transducers. Computational
Linguistics, 34(3), 2008.

Hanneman, Greg, Michelle Burroughs, and Alon Lavie. A general-purpose rule extractor for
SCFG-based machine translation. In Proc. of SSST, 2011.

Huang, Liang, Kevin Knight, and Aravind Joshi. Statistical syntax-directed translation with
extended domain of locality. In Proc. of AMTA, 2006.

Klein, Dan and Christopher D. Manning. Parsing and hypergraphs. In Proc. of IWPT, 2001.
Rounds, William C. Mappings and grammars on trees. Mathematical Systems Theory, 4(3):257–

287, 1970.
Teh, Yee Whye. Dirichlet process. In Encyclopedia of Machine Learning, pages 280–287. 2010.
Thatcher, James W. Generalized sequential machine maps. Journal of Computer and System Sci-

ences, 4:339–367, 1970.

Address for correspondence:
Chris Dyer
cdyer@cs.cmu.edu
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, United States

36

The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 37–46

The Machine Translation Leaderboard

Matt Post, Adam Lopez
Human Language Technology Center of Excellence, Johns Hopkins University

Abstract
Much of an instructor’s time is spent on the management and grading of homework. We

present the Machine Translation Leaderboard, a platform for managing, displaying, and au-
tomatically grading homework assignments. It runs on Google App Engine, which provides
hosting and user management services. Among its many features are the ability to easily define
new assignments, manage submission histories, maintain a development / test set distinction,
and display a leaderboard. An entirely new class can be set up in minutes with minimal con-
figuration. It comes pre-packaged with five assignments used in a graduate course on machine
translation.

1. Introduction

Much of an instructor’s time is spent on the management and grading of home-
work. For many types of learning, such as the grading of essays, this time is a neces-
sary and critical component of the learning process. But there are also many types of
assignments that are easily automatable. Time spent grading them, and in managing
assignment infrastructure (whether physical or digital), are drains on the instructor’s
limited resources which could be better spent elsewhere.

For homework assignments in the data sciences, grading can be automated us-
ing sites like kaggle.com, where students can upload solutions to empirical problems
posed by instructors. Unfortunately, kaggle does not allow instructors to use custom
evaluation measures, which makes it a poor fit for fields like machine translation that
use idiosyncratic, domain-specific metrics.

To help with this, we present the Machine Translation Leaderboard (MTL), a plat-
form for managing, displaying, and automatically grading homework assignments.
It runs on Google App Engine, which provides hosting, authentication, and user

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: post@cs.jhu.edu
Cite as: Matt Post, Adam Lopez. The Machine Translation Leaderboard. The Prague Bulletin of Mathematical
Linguistics No. 102, 2014, pp. 37–46. doi: 10.2478/pralin-2014-0012.

kaggle.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 102 OCTOBER 2014

management services tied to a Google account. Students use a web interface to up-
load the results of their assignments (not code), which are then automatically graded
and displayed. Among the MTL’s many features are the ability to easily define new
assignments, manage student submissions and submission histories, automatically
grade them, maintain a development / test set distinction, and display a competitive
leaderboard. An entirely new class can be setup in minutes, with minimal configura-
tion. Packaged with the MTL are five assignments: alignment, decoding, evaluation,
reranking, and inflection. Each of these assignments includes baseline (default) out-
puts and upper bounds, and provides ample room for improvement on their metrics
through student exploration of both standard and novel approaches to these classic
machine translation problems.

The MTL served as the foundation of a combined graduate and undergraduate
course in machine translation, taught by the authors at Johns Hopkins University in
the spring of 2014. The time we saved allowed us to focus on other aspects of teaching,
including a course emphasis on scientific writing.

2. Quick-Start Guide

A new class with the default set of assignments can be setup in minutes, with
minimal configuration.

1. Create an account at appengine.google.com
2. Create a new application. The name (“Application Identifier”) you choose will

become part of the URL for your class, e.g., “leaderboard” will result in a class
URL of leaderboard.appspot.com. We will use the variable $APPID to refer to
your choice.

3. Install the Google App Engine SDK for Python from
https://developers.google.com/appengine/downloads

4. Clone the repository

$ git clone https://github.com/mjpost/leaderboard.git
$ cd leaderboard

5. Edit app.yaml, changing the value of the “application” key to the identifier you
chose above

application: $APPID

6. Deploy.

$ appcfg.py --oauth2 update .

38

appengine.google.com
leaderboard.appspot.com
https://developers.google.com/appengine/downloads

M. Post, A. Lopez The Machine Translation Leaderboard (37–46)

The first time you do this, a web browser window will open, prompting you to
authenticate.

You can now access the leaderboard interface for uploading assignment results
by loading your course’s base URL ($APPID.appspot.com), and you can access the
leaderboard itself at $APPID.appspot.com/leaderboard.html.

2.1. Administrative accounts

By default, the Google account used to create and host the leaderboard is the ad-
ministrative account. This account has the following special permissions:

• Viewing submissions from all students, regardless of their privacy settings.
• Viewing scores for all submissions on hidden test data.
• Submitting baseline, default, and oracle entries.
• Accessing back-end administration.
You may wish to grant administrative permission to co-instructors and TAs:
1. Navigate to the back-end administration page:

appengine.google.com/dashboard?&app_id=s~$APPID
2. From the navigation menu, click on “Permissions” under “Administration”
3. Add the Google accounts of your colleagues

2.2. Setting Deadlines

By default, only the first assignment is enabled, and its deadline has already passed.
To enable assignments, you must do three things:

1. Uncomment the assignment’s scorer in the file leaderboard.py.

scorer = [
scoring.upload_number,
scoring.alignment,
scoring.decode,
scoring.evaluation,
scoring.rerank,
scoring.inflect,

]

2. Adjust the assignment’s due date. Edit scoring/upload_number.py and set the
value of the deadline variable:

deadline = datetime.datetime(2014, 07, 17, 23, 59)

3. Deploy the changes:

39

$APPID.appspot.com
$APPID.appspot.com/leaderboard.html
appengine.google.com/dashboard?&app_id=s~$APPID

PBML 102 OCTOBER 2014

$ appcfg.py --oauth2 update .

2.3. The Leaderboard

Visit $APPID.appspot.com/leaderboard.html to view the leaderboard. It displays
a grid whose columns are assignments and whose rows are student entries. The rows
are sorted from best to worst according to the most recent assignment.

Note that students have the option to hide their results from the leaderboard. This
settings only hides their results from other students; accessed from an administrative
account, the leaderboard displays everyone’s results, denoting hidden students with
strikeout text. Therefore, if you are displaying the leaderboard on a project, be sure
to logout from your appspot.com account before accessing the leaderboard.

3. Modifying and Creating Assignments

3.1. Data Model and API

We have pre-packaged five assignments with the leaderboard, but it is easy to add
new assignments. Before doing so, it is useful to understand the basic data model and
API implemented in leaderboard.py. It defines two types of database records using
Google’s NDB (entity database) API. The first is a Handle record, which corresponds
to a user that appears on the leaderboard.

class Handle(ndb.Model):
user = ndb.UserProperty() # handle with no user belongs to admins
leaderboard = ndb.BooleanProperty()
handle = ndb.TextProperty()
submitted_assignments = ndb.BooleanProperty(repeated=True)

Handles are managed by the leaderboard code and need not be modified by as-
signment code. New assignment types are more likely to interact with the Assign-
ment record, which corresponds to a single student submission for an assignment.

class Assignment(ndb.Model):
handle = ndb.KeyProperty()
number = ndb.IntegerProperty()
filename = ndb.StringProperty()
filedata = ndb.BlobProperty()
score = ndb.FloatProperty()
test_score = ndb.FloatProperty()

40

$APPID.appspot.com/leaderboard.html
appspot.com

M. Post, A. Lopez The Machine Translation Leaderboard (37–46)

percent_complete = ndb.IntegerProperty()
timestamp = ndb.DateTimeProperty(auto_now_add=True)

When a student uploads a solution to an assignment, the leaderboard code sets
several of these fields, including handle, number, filename, filedata, and timestamp.
An assignment will mostly interact with score, test_score, and percent_complete.
Rather than modify these fields directly, it is preferred to modify them through a
callback function that each new assignment type must provide with the following
signature:

def score(data, assignment_key, test=False)

When a student uploads their results, this function is invoked twice: once with
test=False and once with test=True, to provide development and test set scores,
respectively. Each call provides the full contents of the uploaded file in the data
field and the NDB key of the new assignment record in the assignment_key field.
Although the callback may use this key to update the score or test_score fields di-
rectly, this is not the preferred way to update scores. Instead, score(...) should
return it as the first value of a two-element tuple that the caller expects. The second
element of the tuple is used to update percent_complete of the Assignment record.
So, if an assignment can be scored quickly, the correct behavior is to simply return
(s, 100), where s is the computed score.

However, in special cases computing an assignment’s score may require some time
to compute, and the leaderboard provides functionality to handle this. In this case,
the score(...) callback may return (float("-inf"), 0), to indicate that the score
has not yet been computed. The callback should then invoke a new background task
to complete the scoring behavior, and this function should update percent_complete
periodically until the score is computed. The leaderboard uses this information to dis-
play a progress bar to the student. An example can be found in scoring/decode.py.

3.2. Pre-packaged Assignments

The Leaderboard comes pre-packaged with five assignments. Instructions for each
assignment appear on our course webpages (http://mt-class.org/jhu/), under the
Homework tab.

3.2.1. Assignment 1: Align

In this assignment, the input is a parallel text and students must produce word-
to-word alignments.1 The pre-packaged version of the assignment scores alignments

1http://mt-class.org/jhu/hw1.html

41

http://mt-class.org/jhu/
http://mt-class.org/jhu/hw1.html

PBML 102 OCTOBER 2014

Table 1. List of included assignments. All file locations are relative to the scoring
subdirectory.

Assignment Description File
Setup Make sure everything is working upload_number.py
Alignment Implement a word aligner alignment.py
Decoding Maximize the model score of a decoder decode.py
Evaluation Choose the better of MT system outputs evaluation.py
Reranking Rerank k-best lists by adjusting feature

weights
rerank.py

Inflection Choose the appropriate inflection for
each of a sequence of lemmas

inflect.py

against 484 manually aligned sentences of the Canadian Hansards.2 The alignments
were developed by Och and Ney (2000), which we obtained from the shared task re-
sources organized by Mihalcea and Pedersen (2003). We use the first 37 sentences of
the corpus as development data and the remaining 447 as test. The scorer is imple-
mented in scoring/alignment.py with data in scoring/alignment_data. To score
against a different dataset, simply change the data files.

3.2.2. Assignment 2: Decode

In this assignment, the input is a fixed translation model and a set of input sen-
tences, students and they must produce translations with high model score.3 The
model we provide is a simple phrase-based translation model (Koehn et al., 2003) con-
sisting only of a phrase table and trigram language model. Under this simple model,
for a French sentence f of length I, English sentence e of length J, and alignment a
where each element consists of a span in both e and f such that every word in both
e and f is aligned exactly once, the conditional probability of e and a given f is as
follows.4

p(e, a|f) ∝
∏

⟨i,i ′,j,j ′⟩∈a

p(fi
′

i |e
j ′

j)

J+1∏
j=1

p(ej|ej−1, ej−2) (1)

To evaluate output, we compute the conditional probability of e as follows.

2http://www.isi.edu/natural-language/download/hansard/
3http://mt-class.org/jhu/hw2.html
4For simplicity, this formula assumes that e is padded with two sentence-initial symbols and one

sentence-final symbol, and ignores the probability of sentence segmentation, which we take to be uniform.

42

http://www.isi.edu/natural-language/download/hansard/
http://mt-class.org/jhu/hw2.html

M. Post, A. Lopez The Machine Translation Leaderboard (37–46)

p(e|f) ∝
∑
a

p(e, a|f) (2)

Note that this formulation is different from the typical Viterbi objective of standard
beam search decoders, which do not sum over all alignments, but approximate p(e|f)
by maxa p(e, a|f). Though the computation in Equation 2 is intractable (DeNero and
Klein, 2008), it can be computed in a few minutes via dynamic programming on rea-
sonably short sentences, a criterion met by the 48 sentences we chose from the Cana-
dian Hansards. The corpus-level probability is then the product of all sentence-level
probabilities in the data. Since this computation takes more than a few seconds, we
added functionality to the leaderboard to display a progress bar, which can be reused
by other custom scorers following the methods used in scoring/decode.py. The
corresponding datasets are in scoring/decoding_data. To score against a different
dataset, simply change the data files.

3.2.3. Assignment 3: Evaluate

In this assignment, the input is a dataset in which each sample consists of a ref-
erence sentence and a pair of translation outputs. The task is to decide which of the
translation outputs is better, or if they are of equal quality.5 Hence the task is a three-
way classification problem for each input, optionally using the reference to compute
features (which might include standard evaluation measures such as BLEU). To eval-
uate, results are compared against human assessments of the translation pairs, taken
from the 2012 Workshop on Machine Translation (Callison-Burch et al., 2012). In our
homework assignments, we also provided a training dataset for which human assess-
ments are provided so that students can train classifiers for the problem. The scorer is
implemented in scoring/evaluation.py with data in scoring/eval_data. To score
against a different dataset, simply change the data files.

3.2.4. Assignment 4: Rerank

In this assignment, the input consists of n-best lists of translations and their asso-
ciated features produced by a machine translation system on a test corpus. The task
is to select the best translation for each input sentence according to BLEU, computed
against a hidden reference sentence. The n-best lists were provided by Chris Dyer as
an entry for the Russian-English translation task in the 2013 Workshop on Machine
Translation (Bojar et al., 2013). The scorer is implemented in scoring/rerank.py, and
the corresponding datasets are in scoring/rerank_data. To score against a different
dataset, simply change the data files.

5http://mt-class.org/jhu/hw3.html

43

http://mt-class.org/jhu/hw3.html

PBML 102 OCTOBER 2014

Table 2. Assignment five (inflection) statistics.

split sentences tokens lemmas
train 29,768 518,647 35,701
dev 4,042 70,974 11,304
test 4,672 80,923 11,655

3.2.5. Assignment 5: Inflect

In this assignment, the input is a sequence of lemmatized Czech words. The task
is to choose the correct inflection for each word (reminiscent of Minkov et al. (2007)).
For example:

(1) Oba
oba‘2

tyto
tento

úkoly
úkol

jsou
být

vědecky
vědecky_(̂*1ý)

i
i-1

technicky
technicky_(̂*1ý)

mimořádně
mimořádně_(̂*1ý)

obtížné
obtížný

.

.
‘Both of these tasks are scientifically and technically extremely difficult.‘

The data comes from the Prague Dependency Treebank v2.0, which is distributed
through the Linguistic Data Consortium.6 The homework assignment7 contains in-
structions and a script to format the data directly from the LDC repository directory.

3.3. Creating New Assignments

The MT Leaderboard is easily extended with new assignments:
1. Create an entry for the assignment in list scorernear the top of leaderboard.py:

scorer = [
scoring.upload_number,
scoring.new_assignment,
scoring.alignment,
scoring.decode,
scoring.evaluation,
scoring.rerank,
scoring.inflect,

]

2. Next, create a file scoring/new_assignment.py. This file must define four vari-
ables (the assignment name, a text description of its scoring method for the

6https://catalog.ldc.upenn.edu/LDC2006T01
7http://mt-class.org/jhu/hw5.html

44

https://catalog.ldc.upenn.edu/LDC2006T01
http://mt-class.org/jhu/hw5.html

M. Post, A. Lopez The Machine Translation Leaderboard (37–46)

leaderboard header, a boolean indicating the scoring method sort order, and
the assignment deadline) and two functions, score(...) and oracle()

$ cd scoring
$ cp upload_number.py new_assignment.py
Edit new_assignment.py

3. Place any data in the directory scoring/new_assignment_data/.
That’s it. Assignments become available as soon as they are listed in the main

leaderboard.py script, and students can upload assignments as long as the deadline
hasn’t passed.

4. Case Study

In our spring 2014 class at Johns Hopkins, we received 307 submissions from 17
students over five assignments using the leaderboard as described here. Students
responded positively to the leaderboard, for instance commenting that “The imme-
diate feedback of the automatic grading was really nice”. Some students used the
leaderboard grader for a large number of experiments, which they then reported in
writeups. For further information on how we incorporated the leaderboard into our
class, empirical results, and student responses, see Lopez et al. (2013).

The MTL is only one component of a good class on machine translation. The time
we saved was put into other tasks, including an emphasis on scientific writing: Stu-
dents were required to submit a thorough ACL-style writeup of every homework as-
signment, including a description of the problem, a description of their approach, and
quantitative and qualitative analysis of their findings. These writeups were graded
carefully, and students received feedback on their writing. We also required students
to submit their code, which we manually reviewed.

5. Future Work

With the display of a leaderboard sorted by student scores against hidden devel-
opment data, the MT Leaderboard provides a competitive environment in hopes of
motivating students to experiment with different approaches. However, competition
isn’t always the best motivator; some of our students chose to hide their handles from
the leaderboard. We considered but did not implement a more cooperative approach
in which students work together to improve an oracle computed over all of their sub-
missions. For example, in the alignment setting, we could select, for each sentence,
the one with the best AER across all students, and then compute AER over the whole
set. At submission time, the student could then be shown how much their submission
increased the oracle score. This idea could also be extended to system combination,
for example, by having student submissions vote on alignment links.

45

PBML 102 OCTOBER 2014

Acknowledgements

We thank Chris Dyer for improving our assignments, and the students of our 2014
class at Johns Hopkins for testing everything out.

Bibliography

Bojar, Ondřej, Christian Buck, Chris Callison-Burch, Christian Federmann, Barry Haddow,
Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia Specia. Findings of the
2013 workshop on statistical machine translation. In Proc. of WMT, 2013.

Callison-Burch, Chris, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia Spe-
cia. Findings of the 2012 workshop on statistical machine translation. In Proc. of WMT,
2012.

DeNero, John and Dan Klein. The complexity of phrase alignment problems. In Proc. of ACL,
2008.

Hajič, Jan, Jarmila Panevová, Eva Hajičová, Petr Sgall, Petr Pajas, Jan Štěpánek, Jiří Havelka,
Marie Mikulová, Zdeněk Žabokrtský, and Magda Ševčíková Razímová. Prague Depen-
dency Treebank 2.0. LDC2006T01, Linguistic Data Consortium, Philadelphia, PA, USA,
ISBN 1-58563-370-4, Jul 2006, 2006. URL http://ufal.mff.cuni.cz/pdt2.0/.

Koehn, Philipp, Franz J. Och, and Daniel Marcu. Statistical phrase-based translation. In Proc.
of NAACL, 2003.

Lopez, Adam, Matt Post, Chris Callison-Burch, , Jonathan Weese, Juri Ganitkevitch, Narges
Ahmidi, Olivia Buzek, Leah Hanson, Beenish Jamil, Matthias Lee, Ya-Ting Lin, Henry Pao,
Fatima Rivera, Leili Shahriyari, Debu Sinha, Adam Teichert, Stephen Wampler, Michael
Weinberger, Daguang Xu, Lin Yang, and Shang Zhao. Learning to translate with products
of novices: a suite of open-ended challenge problems for teaching MT. Transactions of the
Association for Computational Linguistics, (1):165–178, 2013.

Mihalcea, Rada and Ted Pedersen. An evaluation exercise for word alignment. In Proc. on
Workshop on Building and Using Parallel Texts, 2003.

Minkov, Einat, Kristina Toutanova, and Hisami Suzuki. Generating complex morphology for
machine translation. In Proceedings of the 45th Annual Meeting of the Association of Computa-
tional Linguistics, volume 45, pages 128–135, 2007.

Och, Franz Josef and Hermann Ney. Improved statistical alignment models. In Proc. of ACL,
2000.

Address for correspondence:
Matt Post
post@cs.jhu.edu
Human Language Technology Center of Excellence
Johns Hopkins University
810 Wyman Park Drive
Baltimore, MD 21211

46

http://ufal.mff.cuni.cz/pdt2.0/

The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 47–56

Depfix, a Tool for Automatic Rule-based Post-editing of SMT

Rudolf Rosa
Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Abstract
We present Depfix, an open-source system for automatic post-editing of phrase-based ma-

chine translation outputs. Depfix employs a range of natural language processing tools to ob-
tain analyses of the input sentences, and uses a set of rules to correct common or serious errors
in machine translation outputs. Depfix is currently implemented only for English-to-Czech
translation direction, but extending it to other languages is planned.

1. Introduction

Depfix is an automatic post-editing system, designed for correcting errors in out-
puts of English-to-Czech statistical machine translation (SMT) systems. An approach
based on similar ideas was first used by Stymne and Ahrenberg (2010) for English-
to-Swedish. Depfix was introduced in (Mareček et al., 2011), and subsequent im-
provements were described especially in (Rosa et al., 2012b) and (Rosa et al., 2013).
For a comprehensive description of the whole Depfix system, please refer to (Rosa,
2013). An independent implementation for English-to-Persian exists, called Grafix
(Mohaghegh et al., 2013).

Depfix consists of a set of rule-based fixes, and a statistical component.1 It utilizes
a range of NLP tools, especially for linguistic analysis of the input (taggers, parsers,
named entity recognizers…), and for generation of the output (morphological gener-
ator, detokenizer…). Depfix operates by analyzing the input sentence, and invoking
a pipeline of error detection and correction rules (called fixes) on it.

Depfix is one of the components of Chimera (Bojar et al., 2013b; Tamchyna et al.,
2014), the current state-of-the-art system for English-to-Czech machine translation

1However, the vital part of Depfix are the rule-based fixes.

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: rosa@ufal.mff.cuni.cz
Cite as: Rudolf Rosa. Depfix, a Tool for Automatic Rule-based Post-editing of SMT. The Prague Bulletin of
Mathematical Linguistics No. 102, 2014, pp. 47–56. doi: 10.2478/pralin-2014-0013.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 102 OCTOBER 2014

System WMT 2011 WMT 2012 System WMT 2011 WMT 2012
CU Bojar +0.47 +0.07 JHU +0.42 +0.32
CU Tamchyna +0.46 +0.02 SFU – +0.41
CU TectoMT −0.10 −0.02 EuroTran +0.21 +0.15
CU Zeman +0.73 +0.34 Microsoft Bing – +0.37
UEDIN +0.64 +0.23 Google Translate +0.23 0.00

Table 1. Automatic evaluation of the Depfix system. Adapted from (Rosa, 2013).
Change of BLEU score when Depfix was applied to the output of the system is

reported. Statistically significant results are marked by bold font.

(MT) – the other components are TectoMT (Žabokrtský et al., 2008) and factored Moses
(Koehn et al., 2007). Chimera has ranked as the best English-to-Czech MT system
in the last two translation tasks of the Workshop on Statistical Machine Translation
(WMT) (Bojar et al., 2013a, 2014). Depfix is currently being developed in the frame
of QTLeap,2 a project focusing on quality translation by deep language engineering
approaches.

Depfix is a stand-alone system, and can be used to post-process outputs of any
MT system. It particularly focuses on errors common in phrase-based SMT outputs;
some of its components have been tuned using outputs of Moses. In a throughout
evaluation on outputs of all systems participating in WMT in 2011 and 2012 (Callison-
Burch et al., 2011, 2012), applying Depfix led to a statistically significant improvement
in BLEU score in most cases, as shown in Table 1.3

Depfix is implemented in the Treex framework (Popel and Žabokrtský, 2010).4 In-
structions on obtaining and using Depfix can be found on http://ufal.mff.cuni.
cz/depfix. We release Depfix under the GNU General Public License v2 to encourage
its improvement and adaptation for other languages, as well as to serve as inspiration
for other researchers.

2. Tools

Depfix basically operates by observing and modifying morphological tags. There-
fore, the two following tools are vital for operation of Depfix:

• A lemmatizing tagger (or a tagger and a lemmatizer) is an analysis tool that as-
signs the word form of each token in the sentence with a combination of lemma

2 http://qtleap.eu/
3We did not perform this kind of evaluation in the following years of WMT, as we focused on the Chimera

hybrid system instead.
4http://ufal.mff.cuni.cz/treex

48

http://ufal.mff.cuni.cz/depfix
http://ufal.mff.cuni.cz/depfix
http://qtleap.eu/
http://ufal.mff.cuni.cz/treex

Rudolf Rosa Depfix, a Tool for Automatic Rule-based Post-editing of SMT (47–56)

and tag. We use MorphoDiTa (Straková et al., 2014) for Czech and Morče (Spous-
tová et al., 2007) for English.

• A morphological generator is a generation tool inverse to the tagger: for a given
combination of lemma and tag, it generates the corresponding word form. We
use Hajič’s Czech morphological generator (Hajič, 2004).

For Czech, we use the Prague dependency treebank positional tagset (Hajič, 1998),
which marks 13 morphological categories, such as part-of-speech, gender, number,
case, person, or tense. One of the properties of this tagset, which is very useful for
us, is that the lemmas and morphological categories are fully disambiguated – for a
given combination of lemma and tag, there is at most one corresponding word form
(the opposite does not hold, as many Czech paradigms have the same word repeated
several times).

For English, we use the Penn treebank tagset (Marcus et al., 1993), which marks
only few morphological categories, such as singular/plural number for nouns, but
does not distinguish e.g. verb person (except for 3rd person singular in present simple
tense).

Apart from the tagger and the morphological generator, many other tools are used
in Depfix. We currently use the following, which are either implemented within the
Treex framework, or are external tools with Treex wrappers:

• a rule-based Treex tokenizer and detokenizer
• a word aligner – GIZA++ (Och and Ney, 2003)
• a dependency parser – MST parser for English (McDonald et al., 2005), and its

variations for Czech: a version by Novák and Žabokrtský (2007) adapted for
Czech in the basic version of Depfix, or MSTperl by Rosa et al. (2012a) adapted
for SMT outputs in full Depfix

• a dependency relations labeller (as the MST parser returns unlabelled parse
trees) – a rule-based Treex labeller for English, and a statistical labeller by Rosa
and Mareček (2012) for Czech

• a named entity recognizer – Stanford NER for English (Finkel et al., 2005), and
a simple Treex NER for Czech

• a rule-based Treex converter to tectogrammatical (deep syntax) dependency trees
There are also other tools that we do not currently use (because they are not part

of Treex yet, some of them probably do not even exist yet), but we believe that they
would be useful for Depfix as well:

• a full-fledged named entity recognizer for Czech
• a coreference resolver
• a fine-grained tagger for English (that would mark e.g. verb person or noun

gender)
• a well-performing labeller for tectogrammatical trees (the current Treex one is

rather basic and lacks proper analysis of verbs, negation, etc., especially for En-
glish)

49

PBML 102 OCTOBER 2014

When porting Depfix to a new language, acquiring the NLP tools is a necessary
first step. Unfortunately, in the Treex framework, support for languages other than
Czech and English is currently very limited. However, one can make use of the Ham-
leDT project (Zeman et al., 2012),5 which collects dependency treebanks for various
languages and harmonizes their tagsets and dependency annotation styles to a com-
mon scheme. We believe this to be an ideal resource for training a tagger as well as a
dependency parser for any of the languages covered – HamleDT 2.0 currently features
30 treebanks and is still growing, and there are also plans of its tighter integration with
Treex.

3. Fixing Rules

The main part of Depfix is a set of fixing rules (there are 28 of them in the current
version). Most of the rules inspect the tag of a Czech word, usually comparing it to
its source English counterpart and/or its Czech neighbours (usually its dependency
parents or children), and if an error is spotted (such as incorrect morphological num-
ber – e.g. the Czech word is in singular but the source English word is in plural), the
tag of the Czech word is changed to the correct one, and the morphological generator
is invoked to generate the corresponding correct word form.6

Some of the rules also delete superfluous words (e.g. a subject pronoun that should
be dropped), change word order (e.g. the noun modifier of a noun, which precedes the
head noun in English but should follow it in Czech), or change tokenization and casing
(by projecting it from the source English sentence where this seems appropriate).

The ideas for the rules are based on an analysis of errors in English-to-Czech SMT
(Bojar, 2011), and the actual rules were implemented and tuned using the WMT 2010
test set (Callison-Burch et al., 2010) translated by Moses. For other language pairs, a
similar error analysis, such as the Terra collection (Fishel et al., 2012), may be used as
a starting point; however, the error analyses are typically not fine-grained enough to
be used directly for Depfix rules implementation, and extensive manual tuning of the
rules by inspecting SMT translation outputs is to be expected.

3.1. Example

Table 2 shows the operation of FixPnom rule.7 In the sentence, there is an error in
agreement of nominal predicate “zdrženliví” (“reticentpl”) with the subject “Obama”.

5http://ufal.mff.cuni.cz/hamledt
6It may happen that the new word form turns out to be identical to the original word form, as there are

often many possible tags for a word – e.g. the nominative and accusative case of a noun is often identical.
However, the fix may still be beneficial, as subsequent fixes might be helped by the corrected tag of the
word – e.g. a fixed noun tag may induce a fix of a modifying adjective.

7The make compare_log Depfix command can be used to obtain this kind of information.

50

http://ufal.mff.cuni.cz/hamledt

Rudolf Rosa Depfix, a Tool for Automatic Rule-based Post-editing of SMT (47–56)

Source: Obama has always been reticent in regards to his prize.
SMT output: Obama byl vždy zdrženliví s ohledem na svou kořist.
Depfix output: Obama byl vždy zdrženlivý s ohledem na svou kořist.
Fixlog: Pnom: zdrženliví[AAMP1—-1A—-] zdrženlivý[AAMS1—-1A—-]

Table 2. Example of application of FixPnom on a sentence from WMT10 dataset
(translated by the CU-Bojar system)

aItree
zone=cs

Obama
Sb
NNMS1

byl
Pred
VpYSXRA

vždy
Adv
Db

zdrženliví
Pnom
AAMP1

s
AuxP
RR7

.
AuxK
Z:

Obama
ps

nItree
zone=cs

aItree
zone=en

Obama
Sb
NNP

has
AuxV
VBZ

always
Adv
RB

been
Pred
VBN

reticent
Pnom
JJ

in
AuxP
IN

.
AuxK
.

...

...

Figure 1. Part of the dependency parse tree of a Czech sentence before applying
FixPnom. Also showing the Czech named entity tree, and corresponding part of the

source English dependency parse tree. Word forms, analytical functions, and
morphological tags are shown.

The morphological number (4th position of the tag) should be identical for both of the
words, but it is not – it is singular (“S”) for “Obama” but plural (“P”) for “zdrženliví”.
See also Figure 1, which shows the parse tree of the Czech sentence (before applying
the fix), the named entity tree for the Czech sentence, and the parse tree of the source
English sentence.8

When the FixPnom rule is invoked on the word “zdrženliví”, it realizes the follow-
ing:

• the word is an adjective and its dependency parent is a copula verb, thus the
word is a nominal predicate and the FixPnom rule applies here,

8These parse trees, as well as the tectogrammatical trees, are contained in intermediate *.treex files in
the Depfix experiment directory, and can be viewed using Tree Editor TrEd – see http://ufal.mff.cuni.
cz/tred/.

51

http://ufal.mff.cuni.cz/tred/
http://ufal.mff.cuni.cz/tred/

PBML 102 OCTOBER 2014

• there is a child of the parent verb (“Obama”) which is marked as subject, and
its English counterpart (“Obama”) is also marked as subject, thus it should be
in agreement with the nominal predicate,

• the subject is in singular, while the nominal predicate is in plural, thus the agree-
ment is violated and should be fixed.

The rule therefore proceeds by fixing the error. This is done in two steps:
1. the tag of “zdrženliví” is changed by changing the number marker from “P”

(plural) to “S” (singular), as indicated in the Fixlog in Table 2,9
2. the morphological generator is invoked to generate a word form that corre-

sponds to the new tag; in this case, the word “zdrženlivý” is generated.
The FixPnom rule also checks and corrects agreement in morphological gender;

however, agreement in gender is not violated in the example sentence.

4. Implementation

Depfix is implemented in the Treex framework, which is required to run it, and is
operated from the command-line via Makefile targets. The commented source code of
Depfix is in Perl and Bash. The fixing blocks are implemented as Treex blocks, usually
taking a dependency edge as their input, checking it for the error that they fix, and
fixing the child or parent node of the edge as appropriate.

The Depfix Manual (Rosa, 2014a), which provides instructions on installing and
running Depfix, is available on the Depfix webpage. The installation consists of in-
stalling Treex and several other modules from CPAN, checking out the Treex subver-
sion repository (which Depfix is contained in), downloading several model files, and
making a test run of Depfix.

Depfix needs a Linux machine to run, with at least 3.5 GB RAM to run the basic
version – i.e. without the MSTperl parser, which is adapted for SMT outputs (Rosa
et al., 2012a; Rosa, 2014b), and without the statistical fixing component (Rosa et al.,
2013). The full version, which achieves slightly higher BLEU improvement than the
basic version, needs at least 20 GB to run.

Depfix takes source English text and its machine translation as its input, and pro-
vides the fixed translations as its output (all plain text files, one sentence per line).
Processing a set of 3000 sentences by Depfix takes about 2 hours; processing a single
sentence takes about 5 minutes (most of this time is spent by initializing the tools).10

9The fix is performed in this direction because the morphological number is more reliable with nouns
in English-to-Czech translation, as noun number is explicitly marked in English while adjective number is
not.

10 These times are provided for illustration only, as they depend on the speed of the processor, the hard-
drive, and other parameters of the machine.

52

Rudolf Rosa Depfix, a Tool for Automatic Rule-based Post-editing of SMT (47–56)

5. Conclusion and Future Work

In this paper, we described Depfix, a successful automatic post-editing system sys-
tem designed for performing rule-based correction of errors in English-to-Czech sta-
tistical machine translation outputs.

As a stand-alone tool, Depfix can be used to post-edit outputs of any machine trans-
lation system, although it focuses especially on shortcomings of the phrase-based
ones, such as Moses. So far, we have implemented Depfix only for the English-to-
Czech translation direction, although there exist similar systems for other languages
by other authors. Depfix has been developed for several years, and is now a compo-
nent of Chimera, the state-of-the-art machine translation system for English-to-Czech
translation.

The future plans for Depfix development are directed towards extending it to new
translation directions, starting with a refactoring to separate language-independent
and language-specific parts, so that fixing rules for a new language pair can be imple-
mented easily while reusing as much from the already implemented functionality as
possible. Another future research path aims to complement or replace the manually
written rules by machine learning techniques, with preliminary experiments indicat-
ing viability of such an approach.

To improve the ease of use of Depfix, we also wish to implement an online interface
that would enable invoking Depfix remotely from the web browser or as a web service,
with no need of installing it. The interface will be implemented using the Treex::Web
front-end (Sedlák, 2014).11

Acknowledgements

This research was supported by the grants FP7-ICT-2011-7-288487 (MosesCore),
FP7-ICT-2013-10-610516 (QTLeap), GAUK 1572314, and SVV 260 104. This work has
been using language resources developed, stored and distributed by the LINDAT/
CLARIN project of the Ministry of Education, Youth and Sports of the Czech Republic
(project LM2010013).

Bibliography

Bojar, Ondřej. Analyzing Error Types in English-Czech Machine Translation. Prague Bulletin of
Mathematical Linguistics, 95:63–76, March 2011. ISSN 0032-6585.

Bojar, Ondrej, Christian Buck, Chris Callison-Burch, Christian Federmann, Barry Haddow,
Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia Specia. Findings of the
2013 workshop on statistical machine translation. In Proceedings of the Eighth Workshop on
Statistical Machine Translation, pages 1–44, 2013a.

11https://ufal.mff.cuni.cz/tools/treex-web

53

https://ufal.mff.cuni.cz/tools/treex-web

PBML 102 OCTOBER 2014

Bojar, Ondřej, Rudolf Rosa, and Aleš Tamchyna. Chimera – three heads for English-to-Czech
translation. In Proceedings of the Eight Workshop on Statistical Machine Translation, pages 92–
98, Sofija, Bulgaria, 2013b. Bălgarska akademija na naukite, Association for Computational
Linguistics.

Bojar, Ondrej, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Aleš Tamchyna. Findings of the 2014 workshop on statistical machine trans-
lation. In Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 12–58,
Baltimore, Maryland, USA, June 2014. Association for Computational Linguistics.

Callison-Burch, Chris, Philipp Koehn, Christof Monz, Kay Peterson, Mark Przybocki, and Omar
Zaidan. Findings of the 2010 joint workshop on statistical machine translation and metrics
for machine translation. In Proceedings of the Joint Fifth Workshop on Statistical Machine Trans-
lation and MetricsMATR, pages 17–53, Uppsala, Sweden, July 2010. Association for Compu-
tational Linguistics. URL http://www.statmt.org/wmt10/pdf/WMT03.pdf.

Callison-Burch, Chris, Philipp Koehn, Christof Monz, and Omar Zaidan. Findings of the 2011
workshop on statistical machine translation. In Proceedings of the Sixth Workshop on Statistical
Machine Translation, pages 22–64, Edinburgh, Scotland, July 2011. Association for Compu-
tational Linguistics.

Callison-Burch, Chris, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia Spe-
cia. Findings of the 2012 workshop on statistical machine translation. In Proceedings of
the Seventh Workshop on Statistical Machine Translation, pages 10–51, Montréal, Canada, June
2012. Association for Computational Linguistics.

Finkel, Jenny Rose, Trond Grenager, and Christopher Manning. Incorporating non-local infor-
mation into information extraction systems by Gibbs sampling. In Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, pages 363–370. Association for
Computational Linguistics, 2005.

Fishel, Mark, Ondrej Bojar, and Maja Popovic. Terra: a collection of translation error-annotated
corpora. In LREC, pages 7–14, 2012.

Hajič, Jan. Disambiguation of Rich Inflection (Computational Morphology of Czech). Nakladatelství
Karolinum, 2004.

Hajič, Jan. Building a Syntactically Annotated Corpus: The Prague Dependency Treebank. In
Hajičová, Eva, editor, Issues of Valency and Meaning. Studies in Honor of Jarmila Panevová, pages
12–19. Prague Karolinum, Charles University Press, 1998.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In ACL 2007, Proceedings of the 45th Annual Meeting of the Association for
Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages
177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large an-
notated corpus of English: the Penn treebank. Comp. Ling., 19:313–330, June 1993. ISSN
0891-2017.

54

http://www.statmt.org/wmt10/pdf/WMT03.pdf

Rudolf Rosa Depfix, a Tool for Automatic Rule-based Post-editing of SMT (47–56)

Mareček, David, Rudolf Rosa, Petra Galuščáková, and Ondřej Bojar. Two-step translation with
grammatical post-processing. In Callison-Burch, Chris, Philipp Koehn, Christof Monz, and
Omar Zaidan, editors, Proceedings of the Sixth Workshop on Statistical Machine Translation,
pages 426–432, Edinburgh, UK, 2011. University of Edinburgh, Association for Computa-
tional Linguistics.

McDonald, Ryan, Koby Crammer, and Fernando Pereira. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, pages 91–98. Association for Computational Linguistics, 2005.

Mohaghegh, Mahsa, Abdolhossein Sarrafzadeh, and Mehdi Mohammadi. A three-layer ar-
chitecture for automatic post-editing system using rule-based paradigm. WSSANLP-2013,
page 17, 2013.

Novák, Václav and Zdeněk Žabokrtský. Feature engineering in maximum spanning tree de-
pendency parser. In Matoušek, Václav and Pavel Mautner, editors, Lecture Notes in Arti-
ficial Intelligence, Proceedings of the 10th International Conference on Text, Speech and Dialogue,
Lecture Notes in Computer Science, pages 92–98, Pilsen, Czech Republic, 2007. Springer
Science+Business Media Deutschland GmbH.

Och, Franz Josef and Hermann Ney. A Systematic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29(1):19–51, 2003.

Popel, Martin and Zdeněk Žabokrtský. TectoMT: modular NLP framework. In Proceedings of
the 7th international conference on Advances in natural language processing, IceTAL’10, pages
293–304, Berlin, Heidelberg, 2010. Springer-Verlag.

Rosa, Rudolf. Automatic post-editing of phrase-based machine translation outputs. Master’s
thesis, Charles University in Prague, Faculty of Mathematics and Physics, Praha, Czechia,
2013. URL http://ufal.mff.cuni.cz/rudolf-rosa/master-thesis.

Rosa, Rudolf. Depfix manual. Technical Report TR-2014-55, ÚFAL MFF UK, 2014a. URL http:
//ufal.mff.cuni.cz/techrep/tr55.pdf.

Rosa, Rudolf. MSTperl parser, 2014b. URL http://hdl.handle.net/11858/
00-097C-0000-0023-7AEB-4.

Rosa, Rudolf and David Mareček. Dependency relations labeller for Czech. In Sojka, Petr, Aleš
Horák, Ivan Kopeček, and Karel Pala, editors, Text, Speech and Dialogue: 15th International
Conference, TSD 2012. Proceedings, number 7499 in Lecture Notes in Computer Science, pages
256–263, Berlin / Heidelberg, 2012. Masarykova univerzita v Brně, Springer Verlag.

Rosa, Rudolf, Ondřej Dušek, David Mareček, and Martin Popel. Using parallel features in
parsing of machine-translated sentences for correction of grammatical errors. In Proceedings
of Sixth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-6), ACL,
pages 39–48, Jeju, Korea, 2012a. Association for Computational Linguistics.

Rosa, Rudolf, David Mareček, and Ondřej Dušek. DEPFIX: A system for automatic correction
of Czech MT outputs. In Proceedings of the Seventh Workshop on Statistical Machine Translation,
pages 362–368, Montréal, Canada, 2012b. Association for Computational Linguistics.

Rosa, Rudolf, David Mareček, and Aleš Tamchyna. Deepfix: Statistical post-editing of statisti-
cal machine translation using deep syntactic analysis. In 51st Annual Meeting of the Associa-
tion for Computational Linguistics Proceedings of the Student Research Workshop, pages 172–179,

55

http://ufal.mff.cuni.cz/rudolf-rosa/master-thesis
http://ufal.mff.cuni.cz/techrep/tr55.pdf
http://ufal.mff.cuni.cz/techrep/tr55.pdf
http://hdl.handle.net/11858/00-097C-0000-0023-7AEB-4
http://hdl.handle.net/11858/00-097C-0000-0023-7AEB-4

PBML 102 OCTOBER 2014

Sofija, Bulgaria, 2013. Bălgarska akademija na naukite, Association for Computational Lin-
guistics.

Sedlák, Michal. Treex::Web. Bachelor’s thesis, Charles University in Prague, Faculty of Mathe-
matics and Physics, Prague, Czechia, 2014. URL https://lindat.mff.cuni.cz/services/
treex-web/.

Spoustová, Drahomíra, Jan Hajič, Jan Votrubec, Pavel Krbec, and Pavel Květoň. The best of two
worlds: Cooperation of statistical and rule-based taggers for Czech. In Proceedings of the
Workshop on Balto-Slavonic Natural Language Processing, ACL 2007, pages 67–74, Praha, 2007.

Straková, Jana, Milan Straka, and Jan Hajič. Open-Source Tools for Morphology, Lemmatiza-
tion, POS Tagging and Named Entity Recognition. In Proceedings of 52nd Annual Meeting of
the Association for Computational Linguistics: System Demonstrations, pages 13–18, Baltimore,
Maryland, June 2014. Association for Computational Linguistics.

Stymne, Sara and Lars Ahrenberg. Using a grammar checker for evaluation and postprocessing
of statistical machine translation. In LREC, 2010.

Tamchyna, Aleš, Martin Popel, Rudolf Rosa, and Ondřej Bojar. CUNI in WMT14: Chimera still
awaits Bellerophon. In Proceedings of the Ninth Workshop on Statistical Machine Translation,
pages 195–200, Baltimore, MD, USA, 2014. Association for Computational Linguistics.

Žabokrtský, Zdeněk, Jan Ptáček, and Petr Pajas. TectoMT: Highly modular MT system with
tectogrammatics used as transfer layer. In ACL 2008 WMT: Proceedings of the Third Workshop
on Statistical Machine Translation, pages 167–170, Columbus, OH, USA, 2008. Association for
Computational Linguistics.

Zeman, Daniel, David Mareček, Martin Popel, Loganathan Ramasamy, Jan Štěpánek, Zdeněk
Žabokrtský, and Jan Hajič. HamleDT: To parse or not to parse? In Calzolari, Nicoletta,
Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani,
Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Eight International Conference on
Language Resources and Evaluation (LREC’12), Istanbul, Turkey, May 2012. European Lan-
guage Resources Association (ELRA).

Address for correspondence:
Rudolf Rosa
rosa@ufal.mff.cuni.cz
Charles University in Prague,
Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics
Malostranské náměstí 25
118 00 Praha 1, Czech Republic

56

https://lindat.mff.cuni.cz/services/treex-web/
https://lindat.mff.cuni.cz/services/treex-web/

The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 57–68

A Set of Annotation Interfaces for Alignment of Parallel Corpora

Anil Kumar Singh
IIT (BHU), Varanasi, India

Abstract
Annotation interfaces for parallel corpora which fit in well with other tools can be very use-

ful. We describe a set of annotation interfaces which fulfill this criterion. This set includes a
sentence alignment interface, two different word or word group alignment interfaces and an
initial version of a parallel syntactic annotation alignment interface. These tools can be used
for manual alignment, or they can be used to correct automatic alignments. Manual alignment
can be performed in combination with certain kinds of linguistic annotation. Most of these
interfaces use a representation called the Shakti Standard Format that has been found to be
very robust and has been used for large and successful projects. It ties together the different
interfaces, so that the data created by them is portable across all tools which support this rep-
resentation. The existence of a query language for data stored in this representation makes it
possible to build tools that allow easy search and modification of annotated parallel data.

1. Introduction

Machine translation, at least for certain language pairs, has reached a point where
it is now being practically used by professional translators as well as users. Many,
perhaps a majority of these machine translation systems are based on the statistical
approach (Koehn et al., 2007). The general architecture of these machine translation
systems is easily portable to other language pairs than those for which they were
made. However, the one major drawback of these systems is that they need a large
quantity of aligned parallel text. While the rule-based approach (Corbí-Bellot et al.,
2005) may provide a feasible solution in many cases where such corpora are lacking,
the other alternative, i.e., creating the needed parallel corpora for language pairs that
lack them can still be an effective solution under certain conditions such as the avail-
ability of sufficient quantity of parallel text in electronic form. Still, even when such

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: nlprnd@gmail.com
Cite as: Anil Kumar Singh. A Set of Annotation Interfaces for Alignment of Parallel Corpora. The Prague
Bulletin of Mathematical Linguistics No. 102, 2014, pp. 57–68. doi: 10.2478/pralin-2014-0014.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 102 OCTOBER 2014

text is available, there is a lot of work that needs to be done if the text is not already
sentence aligned. Therefore, sentence alignment tools are one of the first enablers for
creating machine translation systems based on the statistical approach in cases where
sentence alignment accuracy is not close to 100%. If the text can be further aligned at
the word level, it becomes a valuable resource for many other purposes.

Tools for automatic alignment of text, both at the sentence level (Brown et al., 1991;
Gale and Church, 1991) and at the word level (Gale and Church, 1993; Och and Ney,
2003) are available. However, word alignment tools do not have an accuracy that will
allow them to be used directly without further correction, except as part of a statisti-
cal machine translation system. Sentence alignment tools reportedly have very good
accuracies, but on closer inspection we find that they do break down under certain
conditions which are especially likely to occur for language pairs which lack sentence
aligned parallel corpora. The languages should not be very different in phylogenetic
terms and, more importantly, the text should not be ‘noisy’ (Singh and Husain, 2005),
which practically means that it should be almost aligned already.

Beyond the word level, we could also have corpora which are partially aligned for
specific grammatical elements such as nominal compounds, or even corpora which
are syntactically aligned, e.g. parallel treebanks (Li et al., 2012). Such corpora are even
more valuable for not only linguistic analysis and extraction of linguistic patterns but
also for machine learning of Natural Language Processing (NLP) tasks.

2. The Workflow

The above are the reasons why we need annotation interfaces for parallel corpora.
We need a set of interfaces that enable the complete workflow from sentence align-
ment to word alignment to syntactic (or even semantic) alignment. There are not many
such interfaces available, at least in the open source domain. One that is available is
called Uplug1 (Tiedemann, 2003). It allows sentence alignment, word alignment and
with some extensions such as in UplugConnector2, even treebank alignment.

In the following paragraphs we describe a set of interfaces that aim to implement
the complete process of parallel corpora alignment up to the syntactic (treebank) level.
All these interfaces are part of the same suite of tools and APIs called Sanchay3.

The workflow starts with some parallel text that is not sentence aligned, but is
tokenized into sentences and words. An automatic sentence alignment tool can op-
tionally be run on this parallel text. The text is then fed into the sentence alignment in-
terface, where a user manually corrects the alignments marked by the sentence align-
ment tool. Alternatively, the user can directly mark the alignments completely man-
ually. The output of the sentence alignment interface can then be run through an

1http://sourceforge.net/projects/uplug/
2http://www2.lingfil.uu.se/personal/bengt/uconn113.html
3http://sanchay.co.in

58

http://sourceforge.net/projects/uplug/
http://www2.lingfil.uu.se/personal/bengt/uconn113.html
http://sanchay.co.in

A. K. Singh Interfaces for Parallel Corpora (57–68)

automatic word alignment tool, and then to the word alignment interface. A user
then corrects the word alignments errors. The user can also start from scratch at the
word alignment level and mark all the alignments manually. It is possible at this stage
to create a shallow parsed aligned parallel corpus. Such a corpus will have chunks or
word groups marked, (optionally) tagged and aligned.

The output of the word alignment interface can be run through an automatic syn-
tactic analysis tool such as a parser. If the goal is ambitious, it may be possible to create
parallel treebanks using the syntactic annotation interface available in the same suite.
This interface is meant for creating syntactico-semantic resources such as treebanks.

Finally, there is a parallel syntactic annotation tool that will allow users to align the
parallel treebanks at the deep syntactic level. Aligned parallel treebanks can allow a
wealth of information to be extracted from them.

3. The Representation

For all the interfaces mentioned here except one, the data is stored in memory as
well in files using a representation called the Shakti Standard Format or SSF (Bharati
et al., 2014). This representation is a robust way of storing data which is the result of
linguistic analysis, particularly syntactico-semantic analysis.

An example sentence in SSF is show below:
Address Token Category Attribute-value pairs

1 ((NP
1.1 children NNS <fs af=child,n,m,p,3,0,,>

))
2 ((VG
2.1 are VBP <fs af=be,v,m,p,3,0,,>
2.2 watching VBG <fs af='watch,v,m,s,3,0,,' aspect=PROG>

))
3 ((NP
3.1 some DT <fs af=some,det,m,s,3,0,,>
3.2 programmes NNS <fs af=programme,n,m,p,3,0,,>

))
4 ((PP
4.1 on IN <fs af=on,p,m,s,3,0,,>
4.1.1 ((NP
4.1.2 television NN <fs af=television,n,m,s,3,0,,>

))
))

Shakti Standard Format

In this representation, sentences are the nodes of a tree at the document level and
the constituents are the nodes at the sentence level. Each node has a possible lexical

59

PBML 102 OCTOBER 2014

item, a tag (such as a part-of-speech or POS tag or a phrase tag) and a feature struc-
ture associated with it. SSF allows not only features of nodes to be stored, but also
features across nodes, which represent relationships across words, chunks, phrases,
nodes of a dependency tree or even sentences and documents. We have used an at-
tribute called ‘alignedTo’ for storing the alignments, whether of words, chunks, word-
groups, phrases or of sentences or documents. This attribute takes a string value and
multiple alignments can be given by using semi-colon as the separator.

Figures 1 and 2 show the same sentence analyzed according to phrase structure
grammar and dependency grammar, respectively. SSF can encode both of them in
the same place. For example, the underlying tree can be a phrase structure tree and
the dependency tree can be encoded over the phrase structure tree using an attribute
like ‘drel’ (dependency relation) and ‘name’ (a unique identifier for the node). The
value of the ‘drel’ attribute is in two parts, separated by a colon, e.g. ‘k1:children’. The
first part is the dependency relation and the second part is the unique name.

Ram ate the banana

N V Det N

NP NP

VP

S

Figure 1. Phrase structure tree

 the

 Ram banana

ate

Figure 2. Dependency tree

We have opted for SSF because it allows us to preserve many different kinds of
linguistic information about the text being aligned. The alignment information is
added as an extra layer in the form of the ‘alignedTo’ attribute. Moreover, since we are
storing alignments on both sides, the interfaces have to ensure that the values of the
‘alignedTo’ attribute are kept synchronized on the two sides. This makes it possible
to get the alignments from either side to the other side. SSF allows us to keep all the
information in one place and to have the data in a readable form so that even without
a visualizer it can still be made sense of by a human user.

4. Sentence Alignment Interface

The sentence alignment interface (Figure 3) takes as input the text which has been
tokenized into sentences. It shows one sentence per row in each table: one table on
the source side and one on the target side. It includes an implementation of a sentence
alignment algorithm which is based on sentence lengths. Such algorithms are based
on the intuition that the lengths of translations are likely to be roughly proportional
to lengths of sentences in the source language. The length can be calculated in terms

60

A. K. Singh Interfaces for Parallel Corpora (57–68)

Figure 3. Sentence Alignment Interface: Initial alignments have been marked
automatically

of words (Brown et al., 1991) or in terms of characters (Gale and Church, 1991). The
latter has been shown to work better, perhaps because more data is available. In our
implementation, we use both of them as features with weights. The alignment algo-
rithm is a dynamic programming based algorithm. This implementation is available
as the default, but with some minimal effort it is possible to plug-in any other avail-
able implementation of some sentence alignment algorithm, such as that in (Moore,
2002), which has been shown to be quite robust (Singh and Husain, 2007).

The user can mark manual alignments or correct automatic alignments by the sim-
ple mechanism of drag-and-drop. Deleting an alignment also uses this mechanism:
If an alignment already exists, drag-and-drop deletes it. Multiple alignments to the
same sentence are allowed on either sides. The interface tries to keep the sentences
displayed according to the alignments, i.e., the display changes based on the align-
ments. This ensures that the user does not have to drag-and-drop too far because the
potential alignment is as close to the source language sentence as possible.

The interface design is based on the assumption that sometimes the input to the
interface can come from a machine translation system. In such a case, it is possible
to extend the interface to allow the annotation of quality estimation measurement as
well as to allow it to be used as a post-editing tool. Some work has already been done
in this direction. Completing it is one of the future directions of this work.

The first step in using all the interfaces is to start Sanchay (see http://sanchay.
co.in). Then the respective interfaces can be opened either by clicking on the buttons
in the toolbox or from the ‘File’ menu. The toolbox buttons have two letter symbols
for each interface. For example, the symbol for the word alignment interface is ‘WI’.
These could perhaps better be replaced by suitable icons. Hovering the cursor on the
symbols displays their full name. Clicking on ‘WI’ will open the word alignment in-

61

http://sanchay.co.in
http://sanchay.co.in

PBML 102 OCTOBER 2014

terface. The symbol for the sentence alignment interface is ‘SI’, for the parallel corpus
markup interface it is ‘PA’, for the syntactic annotation interface it is ‘SA’ and for the
parallel syntactic annotation alignment interface it is ‘PS’.

To start the alignment process, the user has to first browse to the source and the
target files, where the target file should be the translation of the source file. Then
clicking on the button ‘Load’ opens these files and displays them in the interface. The
‘Auto Align’ button is for running the automatic sentence aligner on the opened files,
so that the work is reduced and only automatic alignment errors need to be corrected.
Now the user can start marking the alignments by drag-and-drop.

The output is in the form of two files: source and target. Both files have sentences
in the Shakti Standard Format. Each aligned sentence has an attribute ‘alignedTo’,
whose value points to the unique id of the aligned sentence in the other file:
<Sentence id='1' alignedTo='1'>

5. Word Alignment Interface

Since the data representation (SSF) is common, the word alignment interface (Fig-
ure 4) can directly take in the output of the sentence alignment interface. This interface
is actually more than a word alignment interface. It allows words to be grouped to-
gether on both sides, to be tagged, and then allows these groups to be aligned. Just
like in the sentence alignment interface, a drag-and-drop over an existing alignment
deletes that alignment.

Figure 4. Word Alignment Interface

There is an implementation of a word alignment algorithm based on the first three
IBM models (Brown et al., 1993), but that is not yet connected to the interface (another
possible future direction for this work). However, the interface can read the output of

62

A. K. Singh Interfaces for Parallel Corpora (57–68)

the most popular word alignment tool, namely GIZA++4. Therefore, it is possible to
use this interface to correct the output of GIZA++. It can also save data in the same
(GIZA++) format for those who are not comfortable with SSF or because the user
wants to further process the corrected alignments in this format. This connectivity
with GIZA++ makes the tool more useful.

While the sentence alignment interface uses the ‘alignedTo’ attribute at the sen-
tence level, this interface uses the same attribute at the word or the chunk level to
mark the alignments in the data representation.

Figure 5. Parallel Markup Interface

The user can start the alignment process in two ways. One is by loading the source
and target files (whether containing automatic alignments or not) and start working
on them, either from scratch or by correcting errors. The other is to load the output
of GIZA++ (in ‘*.A3.*’ format) into the interface and correct the errors in automatic
alignment. Since the interface allows grouping and tagging also, the source and target
tag files may also need to be loaded.

The output from the interface is again in the form of two files, one source and one
target, and both files have sentences in the Shakti Standard Format. Each aligned node
has an attribute ‘alignedTo’, whose value points to the unique name of the aligned
node in the corresponding sentence in the other file:
<Sentence id='1' alignedTo='1'>
...
8 ancient <fs name='ancient' alignedTo='prAcIna'>
9 flute <fs name='flute' alignedTo='vInA'>
...

4https://code.google.com/p/giza-pp

63

https://code.google.com/p/giza-pp

PBML 102 OCTOBER 2014

6. Parallel Markup Interface

Unlike the other interfaces in the suite, this one (Figure 5) does not use SSF. Instead,
it uses a sentence level stand-off based representation. As a result, the alignments are
stored in a file separate from the source and target data files. Otherwise, this interface
has almost the same functionality as the the word alignment interface. It allows words
to be grouped together. It allows them (or the groups) to be assigned some tags. And
it allows their alignments to be marked. It does differ, however, in the way these
alignments are marked. Instead of drag-and-drop, it requires the user to select the
contiguous text to be grouped as a unit and then to select a tag from a drop-down list.
A table below allows the alignments to be marked. The selected units appear in this
table. To make the process easier, the cells on the target side only list (as a drop-down
list) the possible alignments, out of which the user has to select one. This interface has
been used for creating a parallel corpus of tense, aspect and modality (TAM) markers
(how they are translated) and also for marking translations of nominal compounds.

A tool associated with this interface makes it possible to gather some statistics. This
tool can be used to find out, for example, what are the possible translations of a word
group and how many times do they occur in the corpus. The statistics are about the
source side, the target side and about the alignments (or translations). Such statistics
were used for extracting features for training a CRF based model for automatically
finding the translations of TAM markers (Singh et al., 2007).

This interface runs by default in what we call the task mode. In this mode, the
user does not browse to input files directly. Instead, the user can create task groups
and task lists within each group. Out of these, one task can be selected by the user
to work on when the interface is started. The task configuration files are stored in
the ‘workspace’ directory of Sanchay. The file listing the task groups is stored in
‘workspace/parallel-corpus-markup’ directory and is named ‘task-groups.txt’. Within
this are listed the files which, in turn, list the specific tasks. The description of each
task includes the source and the target text files which are to be aligned as well as
the lists of tags on the two sides. These tags are used to tag the aligned units. The
input text files are plaintext files with one sentence per line and they are assumed
to be sentence aligned with one-to-one mapping. These files are not changed during
the annotation process. The output is in the form of three extra files. Two of them
(the ‘.marked’ files) contain the sentence level offsets and the tag indices of the units
(words or word groups) that are marked for alignment. The third (the ‘.mapping’ file)
contains the actual alignments.

7. Syntactic Annotation Interface

It is not possible to describe all the features of this interface here as it is the interface
with the most functionality in Sanchay. We briefly describe it here. We plan to prepare
detailed manuals for this and other interfaces and post them on the Sanchay website.

64

A. K. Singh Interfaces for Parallel Corpora (57–68)

Figure 6. Syntactic Annotation Interface

This interface is meant for marking up the complete syntactico-semantic analysis
of sentences. It can be used for annotating a sentence according to a phrase struc-
ture framework or a dependency structure framework. This includes information
about the morphological analysis, POS tags, chunks, phrases, dependency relations
and even certain kinds of semantic features. (There is also a separate but untested
ProbBank annotation interface in the suite).

It is an easy to use interface that has evolved over the years based on the feedback
of annotators and other kinds of users. The underlying representation is SSF. There
is an API available for data in SSF and there are also various tools in the API to work
on such data. There is a query language implementation in the API that allows easy
search and modification of annotated data (Singh, 2012).

Figure 6 shows an example sentence in this interface, analyzed up to the depen-
dency structure level. Dependency markup in this interface can be performed in a
pop-up window by using the drag-and-drop mechanism, although there is a longer
and more tedious method available too. The wealth of functionality in this interface
makes it natural for us to use it for creating a parallel syntactic annotation interface.

8. Work In Progress: Parallel Syntactic Annotation Alignment Interface

This is an interface (Figure 7) that is still under construction. Only an initial pro-
totype is ready. It uses the syntactic annotation interface on the source as well as the
target side. The ‘alignedTo’ attribute here is used first at the document level and de-
fines the scope of the alignments marked at the sentence and lower levels, and then
at the setence and node levels. The input to this interface can be the output of either
the sentence alignment interface or the word alignment interface.

65

PBML 102 OCTOBER 2014

Figure 7. Parallel Syntactic Annotation Alignment Interface

The initial version of the interface simply has two panels, each containing the syn-
tactic annotation interface, one for the source side and one for the target side. Align-
ments are marked again by simple drag-and-drop across the two panels. It can poten-
tially be used to create parallel aligned treebanks such as the GALE Arabic-English
Parallel Aligned Treebank5.

The completion of this interface is the major future direction of this work. It will
require resolving many issues that make it difficult to create such an interface. For
example, how do we align dependency structures in this interface? Since the un-
derlying representation is SSF, which has shallow parsed sentences at the core and
has dependency relations marked by using attributes such as ‘drel’ (dependency re-
lation), it is not directly possible to mark alignment of dependency nodes in the data
representation (although it can be done in a visualizer). As the annotation of depen-
dency relations is marked at the feature or attribute level, we essentially have to mark
alignments also at the same level. This problem does not arise for phrase structure
annotation, because such annotation is represented at the node level in SSF.

The above issue can be generalized to any information that is not directly repre-
sented at the node level. For example, alignments of parts of constituents even in the
phrase structure framework poses the problem of not only representation, but also
visualization in the interface. We do not yet have solutions for these issues. There
may be other issues which we have not yet discovered and might find out once we try
to complete the implementation of this interface.

The input to this interface is currently in the form of two files (source and target)
in the Shakti Standard Format. The output is also stored in these same files. No addi-
tional files are created, but this may change as the interface develops.

5http://catalog.ldc.upenn.edu/LDC2014T08

66

http://catalog.ldc.upenn.edu/LDC2014T08

A. K. Singh Interfaces for Parallel Corpora (57–68)

9. Conclusion

Parallel aligned corpus can be a precious resource, especially if such corpus is an-
notated with linguistic analysis, as in a parallel aligned treebank. Even just sentence
aligned parallel corpus is valuable enough to be the main resource needed for creating
a statistical machine translation system. Therefore, user friendly annotation interfaces
for creating parallel aligned corpora can be immensely useful. We described a set of
annotation interfaces that ultimately aim to implement the entire process of the cre-
ation of parallel aligned treebanks, right from sentence alignment to word alignment
to treebank alignment. This set of interfaces probably goes further than any other
similar tool available in the open source domain. However, we find that, using our
representation scheme (Shakti Standard Format or SSF), there are many issues which
make it difficult to implement the entire treebank alignment process. One of them
is that anything that is not represented directly at the node (document, sentence or
word/chunk/constituent) level is difficult to mark up for alignment. Alignment of
the dependency structure and non-node parts of phrase structure constituents are ex-
amples of this. The parallel markup interface, which uses the stand-off notation, does
not have this problem, but it may be less user friendly.

Completing the implementation of the parallel syntactic annotation alignment in-
terface is the main goal for the future. We also mentioned some other future direc-
tions such as completing the implementation of machine translation quality estima-
tion measurement and post-editing functionality to the sentence alignment interface.
To the word alignment interface, we can add the facility to tag alignment links as in
the GALE Arabic-English Parallel Aligned Treebank. It can also be explored whether
there is a better alternative to drag-and-drop.

Bibliography

Bharati, Akshar, Rajeev Sangal, Dipti Sharma, and Anil Kumar Singh. SSF: A Common Repre-
sentation Scheme for Language Analysis for Language Technology Infrastructure Develop-
ment. In Proceedings of the COLING Workshop on Open Infrastructures and Analysis Frameworks
for HLT (To Appear), 2014.

Brown, Peter F., Jennifer C. Lai, and Robert L. Mercer. Aligning Sentences in Parallel Corpora.
In Proceedings of the Annual Meeting of the Association of Computational Linguistics (ACL), pages
169–176, 1991.

Brown, Peter F., Vincent J.Della Pietra, Stephen A. Della Pietra, and Robert. L. Mercer. The
Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Lin-
guistics, 19:263–311, 1993.

Corbí-Bellot, Antonio M., Mikel L. Forcada, Sergio Ortiz-Rojas, Juan Antonio Pérez-Ortiz,
Gema Ramírez-Sánchez, Felipe Sánchez-Martínez, Iñaki Alegria, Aingeru Mayor, and Kepa
Sarasola. An Open-source Shallow-transfer Machine Translation Engine for the Romance
Languages of Spain. In Proceedings of the Tenth Conference of the European Association for Ma-
chine Translation, pages 79–86, May 2005.

67

PBML 102 OCTOBER 2014

Gale, William A. and Kenneth Ward Church. A Propgram for Aligning Sentences in Bilingual
Corpora. In Proceedings of the 29th Annual Meeting of the Association of Computational Linguis-
tics (ACL), 1991.

Gale, William A. and Kenneth W. Church. A Program for Aligning Sentences in Bilingual
Corpora. Computational Linguistics, 19(1):75–102, Mar. 1993. ISSN 0891-2017.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In Proceedings of the Annual Meeting of the Association of Computational
Linguistics (ACL), 2007.

Li, Xuansong, Stephanie Strassel, Stephen Grimes, Safa Ismael, Mohamed Maamouri, Ann Bies,
and Nianwen Xue. Parallel Aligned Treebanks at LDC: New Challenges Interfacing Existing
Infrastructures. In Proceedings of the Eighth International Conference on Language Resources and
Evaluation (LREC), pages 1848–1855, 2012.

Moore, Robert C. Fast and Accurate Sentence Alignment of Bilingual Corpora. In Proceedings
of the 5th conference of the Association for Machine Translation in the Americas (AMTA), pages
135–144, 2002.

Och, Franz Josef and Hermann Ney. A Systematic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29(1):19–51, 2003.

Singh, Anil Kumar. A Concise Query Language with Search and Transform Operations for
Corpora with Multiple Levels of Annotation. In Proceedings of the Eighth International Con-
ference on Language Resources and Evaluation (LREC), Instanbul, Turkey, 2012. ELRA.

Singh, Anil Kumar and Samar Husain. Comparison, Selection and Use of Sentence Alignment
Algorithms for New Language Pairs. In Proceedings of the ACL 2005 Workshop on Parallel Text,
Ann Arbor, Michigan, 2005. Association for Computational Linguistics.

Singh, Anil Kumar and Samar Husain. Exploring Translation Similarities for Building a Better
Sentence Aligner. In Proceedings of the 3rd Indian International Conference on Artificial Intelli-
gence, Pune, India, 2007.

Singh, Anil Kumar, Samar Husain, Harshit Surana, Jagadeesh Gorla, Chinnappa Guggilla, and
Dipti Misra Sharma. Disambiguating Tense, Aspect and Modality Markers for Correcting
Machine Translation Errors. In Proceedings of the Conference on Recent Advances in Natural
Language Processing (RANLP), Borovets, Bulgaria, 2007.

Tiedemann, Jörg. Recycling Translations – Extraction of Lexical Data from Parallel Corpora and their
Application in Natural Language Processing. PhD thesis, Uppsala University, Uppsala, Swe-
den, 2003. Anna Sågvall Hein, Åke Viberg (eds): Studia Linguistica Upsaliensia.

Address for correspondence:
Anil Kumar Singh
nlprnd@gmail.com
Dept. of CSE, IIT (BHU)
Varanasi-221005, U.P., India

68

The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 69–80

An open-source web-based tool for resource-agnostic
interactive translation prediction

Daniel Torregrosa, Mikel L. Forcada, Juan Antonio Pérez-Ortiz
Departament de Llenguatges i Sistemes Informàtics, Universitat d’Alacant, Spain

Abstract
We present a web-based open-source tool for interactive translation prediction (ITP)

and describe its underlying architecture. ITP systems assist human translators by making
context-based computer-generated suggestions as they type. Most of the ITP systems in
literature are strongly coupled with a statistical machine translation system that is conve-
niently adapted to provide the suggestions. Our system, however, follows a resource-agnostic
approach and suggestions are obtained from any unmodified black-box bilingual resource.
This paper reviews our ITP method and describes the architecture of Forecat, a web tool,
partly based on the recent technology of web components, that eases the use of our ITP ap-
proach in any web application requiring this kind of translation assistance. We also evaluate
the performance of our method when using an unmodified Moses-based statistical machine
translation system as the bilingual resource.

1. Introduction

Translation technologies are being increasingly used to assist human translators.
Within this context, the objective of interactive translation prediction (ITP) tools (Fos-
ter et al., 1997; Barrachina et al., 2009) is to assist human translators in the translation
of texts for dissemination by making context-based computer-generated suggestions as
they type. Most works in the field of ITP have solely used specifically-adapted statis-
tical machine translation (SMT) systems to obtain the suggestions. On the contrary,
the resource-agnostic approach considered for the tool described in this paper explores
how non-adapted black-box bilingual resources of any kind (a machine translation sys-

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: japerez@dlsi.ua.es
Cite as: Daniel Torregrosa, Mikel L. Forcada, Juan Antonio Pérez-Ortiz. An open-source web-based tool
for resource-agnostic interactive translation prediction. The Prague Bulletin of Mathematical Linguistics
No. 102, 2014, pp. 69–80. doi: 10.2478/pralin-2014-0015.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 102 OCTOBER 2014

tem, a translation memory, a bilingual dictionary, etc.) can be accommodated into
an interoperable ITP framework.

This paper reviews the main aspects of our method and describes the architecture
of Forecat, an HTML5 web tool, based on the recent technology of web components (see
section 5.2), that eases the use of our ITP approach in any web application requiring
this kind of translation assistance. To our knowledge, this is the first ITP tool that
has been programmed as a web component.

The remainder of the paper is organised as follows. After reviewing the state-of-
the-art in ITP in Section 2, we outline our resouce-agnostic proposal in Section 3. We
then present unpublished results for a fully automatic evaluation of our approach in
Section 4. After that, the architecture of an open-source web tool that implements
our method is discussed in Section 5. Finally, we draw some conclusions in Section 6.

2. Related work

The systems which have most significantly contributed to the field of ITP are those
built in the pioneering TransType project (Foster et al., 1997; Langlais et al., 2000),
and its continuation, the TransType2 project (Macklovitch, 2006; Barrachina et al.,
2009). These systems observe the current partial translation already typed by the user
and, by exploiting an embedded SMT engine whose behaviour is modified to meet the
needs of the ITP system, propose one or more continuations for the next words (or even
the complete remainder of the sentence) that are compatible with the current sentence
prefix. An automatic best-scenario evaluation (Barrachina et al., 2009) showed that
it might theoretically be possible to use only 20–25% of the keystrokes needed in
unassisted translation for English–Spanish translation (both directions) and around
45% for English–French and English–German. The results of user trials (Macklovitch,
2006) showed gains in productivity (measured in number of words translated per hour)
of around 15–20%. A number of projects (Koehn, 2009; Ortiz-Martínez, 2011; Alabau
et al., 2010, 2013) have recently continued the research where TransType2 left it off.
As regards tools, both Caitra (Koehn, 2009) and the CASMACAT Workbench (Alabau
et al., 2013) are web applications with an underlying SMT-based ITP system. Caitra
consults the internal translation table of the SMT system Moses (Koehn et al., 2007)
in order to show the most likely translation options to the human translator. Users can
freely type the translation or accept any of the context-based suggestions generated on
the fly: the most likely completion is directly shown next to the input field; the other
translation candidates are also included in the interface so that users may click on any
of them in order to incorporate it to the translation. The CASMACAT Workbench

70

Torregrosa, Forcada, Pérez-Ortiz A tool for interactive translation (69–80)

also makes use of inner elements of Moses to offer assistance in the form of ITP,
interactive editing with confidence information and adaptive translation models.1

Finally, many commercial translation memory systems also include the possibility
of using ITP (see, for example, MT AutoSuggest,2 a plug-in for the SDL Trados Studio
tool).

3. A resource-agnostic interactive translation prediction approach

We propose a black-box treatment of the bilingual resources in contrast to the
glass-box approaches found in literature. Unlike in the latter, access to the inner de-
tails of the translation system is consequently not necessary; this resource-agnostic
approach minimises the coupling between the ITP tool and the underlying system
and provides the opportunity to incorporate additional sources of bilingual informa-
tion beyond purposely-designed SMT systems. These resources may include bilingual
resources that cannot be adapted to produce a continuation for the remainder of the
target-language sentence given a sentence prefix (for instance, because their code can-
not be accessed or because they do not provide full sentence translations), but are
able to supply the translation of a particular source-language segment. The under-
lying idea behind our approach is that resources such as machine translation (MT)
cannot usually deliver appropriate translations at the sentence level, but their pro-
posals usually contain acceptable segments that do not cover the whole sentence but
which can be accepted by the user to assemble a good translation, saving as a result
keystrokes, mouse actions or gestures, and, possibly, time. Note that by using the
bilingual resources as black boxes that just provide translations, our system could be
deprived of additional features that could prove useful if access to the inner details of
the resource was possible.

A complete description of the method can be found in the paper by Pérez-Ortiz
et al. (2014). What follows is an overview of its most relevant aspects.

Potential suggestions. Our method starts by splitting the source-language sen-
tence S up into all the (possibly overlapping) segments of length l ∈ [1, L], where L

is the maximum source segment length measured in words.3 The resulting segments
are then translated by means of one or more bilingual resources. The set of potential

1Our tool is currently in an early stage of development, but some of these features could be incor-
porated into it in later stages. Note, however, that one of the major premises behind its development
is to keep it as simple as possible so that it can been easily deployed as a standalone web component.

2http://www.codingbreeze.com/products/mtautosuggest/autosuggest_overview.htm
3Suitable values for L will depend on the bilingual resource: on the one hand, we expect higher

values of L to be useful for high-quality MT systems, such as those translating between closely
related languages, since adequate translations may stretch to a relatively large number of words; on
the other hand, L should be kept small for resources such as dictionaries or low-quality MT systems
whose translations quickly deteriorate as the length of the input segment increases.

71

http://www.codingbreeze.com/products/mtautosuggest/autosuggest_overview.htm

PBML 102 OCTOBER 2014

proposals PS for sentence S is made up of pairs comprising the translation of each
segment and the position in the input sentence of the first word of the corresponding
source-language segment. For example, the source-language segments obtained when
translating the English sentence S = “My tailor is healthy” into Spanish with L = 3 are
My, My tailor, My tailor is, tailor, tailor is, tailor is healthy, is, is healthy, and healthy;
the corresponding set of potential suggestions PS is made up of (Mi, 1), (Mi sastre, 1),
(Mi sastre es, 1), (sastre, 2), (sastre es, 2), (sastre está sano, 2), (es, 3), (está sano,
3), and (sano, 4). We shall represent the i-th suggestion as pi, its target-language
segment as t(pi) and its corresponding source-language word position as σ(pi).

Compatible suggestions. Let PS
C(ŵ) be the subset of PS including the compati-

ble suggestions which can be offered to the user after typing ŵ as the prefix of the
current word in the translated sentence T . The elements of PS

C(ŵ) are determined by
considering only those suggestions in PS that have the already-typed word prefix as
their own prefix:

PS
C(ŵ) = {pi ∈ PS : ŵ ∈ Prefix(t(pi))}

For example, in the case of the translation of the previous English sentence, if
the user types an M, the set of compatible suggestions PS

C(M , 1) will contain the
suggestions with target-language segments Mi, Mi sastre and Mi sastre es, since they
are the only proposals in PS starting with an M.

Except for very short sentences, the number of compatible suggestions usually
exceeds what users are expected to tolerate. Therefore, adequate strategies are nec-
essary in order to reduce the number of suggestions eventually offered to the user to
an appropriate value. The degree of success that can be achieved in this task will be
explored in greater depth in future work, but a naïve distance-based approach that
ranks the suggestions in PS

C(ŵ) based solely on the position j of the current word in
the target sentence has already provided interesting results (Pérez-Ortiz et al., 2014).

Ranking suggestions. Under the distance-based approach, suggestions pi whose
source position σ(pi) is closer (in terms of the absolute difference) to the position j in
the target sentence of ŵ are prioritised.4 For example, in the case of the translation
mentioned above, if the user has just typed Mi s and is introducing the second word
of the translation, suggestions starting with sastre (originated at source position 2)
will be ranked before those starting with sano (originated at position 4).

Let M be the maximum number of suggestions that will eventually be offered to
the human translator. For the small values of M that are acceptable for a user-friendly

4We cannot in principle expect this ranker to work reasonably well on unrelated languages with
very divergent grammatical structures (e.g., when translating a language with a verb–subject–object
order into another one with a subject–verb–object order).

72

Torregrosa, Forcada, Pérez-Ortiz A tool for interactive translation (69–80)

interface, it may easily happen that all the suggestions offered are obtained starting at
the same source position (that closest to the current target position) although better
suggestions from different positions exist. In order to mitigate the impact of this,
the distance-based ranking is partially relaxed in the experiments in this paper in a
similar way as proposed by Pérez-Ortiz et al. (2014): only the longest and the shortest
suggestions from each position are in principle chosen; the rest of the suggestions,
if any, would only be offered if the number of maximum offered suggestions M is
not reached after exhausting the longest and shortest proposals from all compatible
positions.

4. Experiments

Although the main purpose of this paper is to introduce the architecture of our
ITP tool, in this section we show the results of an automatic evaluation carried on
using a black-box phrase-based SMT system as the only bilingual resource. This
evaluation will provide an idea of the best results attainable with our method by human
translators. The approach followed for the automatic evaluation is identical to that
described by Langlais et al. (2000), in which a parallel corpus with pairs of sentences
was used. In the context of our automatic evaluation, each source-language sentence
S is used as the input sentence to be translated and the corresponding target-language
T is considered as the output a user is supposed to have in mind and stick to while
typing. The longest suggestion in the list of offered suggestions which concatenated
to the already typed text results in a new prefix of T is always used. If there are
no suggestions at a particular point, then the automatic evaluation system continues
typing according to T . The performance of our system is measured by using the
keystroke ratio (KSR), that is, the ratio between the number of keystrokes and the
length of the translated sentence (Langlais et al., 2000).5

We have evaluated whether the domain of the corpora used to train the Moses-based
SMT system (Koehn et al., 2007) affects the KSR. For this, the phrase-based SMT
systems have been trained in the standard way, more exactly as described by Haddow
and Koehn (2012).6 Only the best translation proposed by Moses for each segment
has been considered in our experiments. Tests have been performed with 3 different
systems: one trained and tuned with out-of-domain corpora, another trained with
out-of-domain corpora but tuned with in-domain corpora, and a third one trained and
tuned with in-domain corpora.

Both L and M are set to 4 following the recommendations from previous automatic
evaluations (Pérez-Ortiz et al., 2014). On the one hand, L = 4 represents a good com-
promise between computational load and usefulness of the suggestions; only marginal

5A lower KSR represents a greater saving in keystrokes.
6The method for the compression of translation phrase tables proposed by Junczys-Dowmunt

(2012) has also been used.

73

PBML 102 OCTOBER 2014

performance improvement is attained when incrementing it, with the drawback of hav-
ing more equivalents to obtain through the bilingual resources, more suggestions to
filter out, etc. On the other hand, the performance with M = 4 has proved to be close
to that obtained considering all the possible candidate suggestions without posing a
significant hindrance for the human translators.

Corpora. From all the pairs considered in the work by Haddow and Koehn (2012)7,
English–Spanish (en–es) and English–Czech (en–cs) were chosen (in both translation
directions), as they are, respectively, the best and worst performing pairs in that work.
For English–Czech and English–Spanish, we used the most up-to-date version of the
corpora used by Haddow and Koehn (2012): the v7 release of the Europarl corpora.8
and the ACL2013 News Commentary corpora9. 2 000 sentences from each corpora
were selected as tuning set, and 15 000 from News Commentary were extracted as
test. The rest of the corpora was used as training set: in the case of Europarl, 623 913
sentences for English–Czech, and 1 912 074 for English–Spanish; in the case of News
Commentary, 122 720 sentences for English–Czech and 155 760 for English–Spanish.

Results. The KSR values for the automatic evaluation are shown in table 1. As
expected, English–Spanish performed better (savings in keystrokes up to 48%) than
English–Czech (savings in keystrokes up to 31%) because it is generally easier to trans-
late between English and Spanish, and the available corpora were larger in this case as
well. Though statistically significant, the differences between the different in-domain
and out-of-domain systems are relatively small. For the purposes of comparison, the
rule-based MT system Apertium (Forcada et al., 2011) has been reported (Pérez-Ortiz
et al., 2014) to provide a KSR of 0.76 for English–Spanish and 0.70 for Spanish–English
when using, in both cases, L = 4 and M = 4; note, however, that Apertium is an
already-built general-purpose MT system, which makes it impossible to differentiate
between results for in-domain or out-of-domain scenarios.

5. Technical Issues and Implementation

In this section we describe Forecat, an open-source web-based tool that we have
implemented to demonstrate the validity of our ITP approach and incorporate its use
in real-life applications. Forecat can be used in three different ways as described next.

Firstly, it can be used as a simple web application for computer-assisted translation.
Under this perspective, our tool has a web interface similar to that in the projects

7In their paper, the influence of in-domain and out-of-domain corpora when training SMT systems
was evaluated.

8http://www.statmt.org/europarl/
9http://www.statmt.org/wmt13/translation-task.html

74

http://www.statmt.org/europarl/
http://www.statmt.org/wmt13/translation-task.html

Torregrosa, Forcada, Pérez-Ortiz A tool for interactive translation (69–80)

en–es es–en en–cs cs–en
ep 0.70 0.53 0.78 0.69

ep+nc 0.62 0.52 0.75 0.66
nc 0.62 0.52 0.76 0.64

Table 1. KSR values from the automatic evaluation of our ITP method. In the table, ep
stands for the system trained and tuned with Europarl (out-of-domain); nc for the one
trained and tuned with News Commentary (in-domain); and ep+nc for the one trained
with Europarl but tuned with News Commentary. In all cases, the test set consisted of

sentences extracted from the News Commentary corpus. For the purposes of comparison,
the rule-based MT system Apertium (Forcada et al., 2011) has been

reported (Pérez-Ortiz et al., 2014) to provide a KSR of 0.76 for English–Spanish and
0.70 for Spanish–English.

discussed in Section 2: users freely type the translation of the source sentence, and
are offered suggestions on the fly in a drop-down list with items based on the current
prefix; users may accept these suggestions (using cursor keys, the mouse or specific hot
keys) or ignore them and continue typing. A screenshot of the interface is shown in
Figure 1. Despite the cognitive load inherent to any predictive interface, the interface
is easy and intuitive to use, even for inexperienced users, as can be deduced from the
results of a preliminary user trial (Pérez-Ortiz et al., 2014).

Secondly, it can be deployed as a set of web services with an application program-
ming interface (API) that provides the basic functionalities for integrating our ITP
method in third-party applications. The web API that can be deployed with Forecat
has four GET services that use JSON-formatted10 data. First, the list of available
language pairs has to be obtained by the client. Then, the sentence to translate is
submitted to the server and the total number of resulting proposals is returned. After
that, the list of suggestions to be offered according to the current typed prefix is re-
quested. If the user selects one of the suggestions, the server has to be notified about
this by the client through a fourth service.

Finally, we have recently started to build a web component from the existing code
of Forecat. Web components comply with a number of standards11 whose objective is
to enable fully encapsulated and reusable components for the web.12 See section 5.2
for additional details about Forecat’s web component.

10http://www.ecma-international.org/publications/standards/Ecma-404.htm
11See http://www.w3.org/TR/components-intro/ for more information.
12Web components are called upon to dramatically change how developers build web applications

by allowing them to declaratively incorporate independent widgets into their applications with a
number of possibilities and advantages not possible with today’s established technologies.

75

http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.w3.org/TR/components-intro/

PBML 102 OCTOBER 2014

Figure 1. Screenshot of the interface of our ITP web application showing a translation in
progress with some suggestions being offered. The top text box contains the source

sentence, whereas users type the translation into the bottom box.

5.1. Programming Languages and Frameworks

Forecat’s logic is mostly written in Java with the help of the Google Web Toolkit13

(GWT), an open-source framework for developing web applications. At the core of
the framework is a compiler which translates Java code to JavaScript code which
runs flawlessly in current browsers. This allows for a twofold use of the Java code
that implements our resource-agnostic ITP method: on the one hand, it can be used
locally in Java when performing the automatic evaluation of our approach or when a
client calls the corresponding web services; on the other hand, the same code (except
for the module responsible of the translation of the segments) can be executed on the
browser in JavaScript when human translators interact with the tool either through
the web aplication or the web component, thus improving the performance of the tool.

A small part of Forecat, the one dealing with the interface of both the web ap-
plication or the web component, has been originally written in JavaScript, since we
decided not to use GWT for programming the elements of the interface in order to
decouple them from the implementation of the method.

5.2. Web Component

We envision Forecat’s future as a web component more than as a full web applica-
tion. This very recent technology allows us to define an encapsulated and interoperable
HTML5 custom element (in this case, a translation box) which can easily be imported
into any webpage to provide the functionalities of our ITP approach. Forecat code

13http://www.gwtproject.org/

76

http://www.gwtproject.org/

Torregrosa, Forcada, Pérez-Ortiz A tool for interactive translation (69–80)

already includes a working first prototype of an ITP component.14 For this, it uses
Polymer,15 an open-source Javascript library that simplifies the creation of web com-
ponents and makes it possible to benefit from them even in those browsers which do
not implement the latest version of the underlying standards. The interface of the
web component is similar to the bottom box in Figure 1, but the tool works in this
case as a standalone widget. The following code shows an example of a simple web-
page including a translation box that will offer suggestions as the user translates the
sentence My tailor is healthy into Spanish, if this pair is available in the component.

<!DOCTYPE html>
<html>
<head>

<script src="bower_components/platform/platform.js"></script>
<link rel="import" href="elements/translation-box.html">

</head>
<body>
<translation-box id="itp"></translation-box>
<script>
var component = document.querySelector('#itp');
component.addEventListener('languagesReady', function (e) {

if (contains(e.detail,"en-es")) {
component.pair= "en-es";
component.sourceText= "My tailor is healthy.";

}
});
</script>
</body>

The script element loads the Polymer library. The next line imports our web
component which provides the custom element translation-box used in the docu-
ment body. The JavaScript code waits for the languagesReady event fired by the
component when it is ready to operate and then changes its public attributes pair
and sourceText. The component observes changes in these attributes and then uses
their values to obtain the suggestions that will be offered to the translator. The dec-
laration of the component includes a template that contains an editable div element
where the translation will be typed.

14See the libjs/component directory in the Forecat code.
15http://www.polymer-project.org/

77

libjs/component

PBML 102 OCTOBER 2014

5.3. License Choice and Download

Forecat is licensed under version 3 of the GNU Affero General Public License16

(AGPL). This license is fully compatible with the GNU General Public License (GPL)
and equally proposed by the Free Software Foundation, which in fact recommends17

that “developers consider using the GNU AGPL for any software which will commonly
be run over a network”. AGPL has been suggested as a means to close a loophole in
the ordinary GPL which does not force organisations to distribute derivative code
when it is only deployed as a web service. The entire code of the application can be
downloaded from the Github repository.18

6. Conclusions and future work

Resource-agnostic interactive translation prediction (ITP) is a low-cost approach
for computer-assisted translation. Forecat, the open-source resource-agnostic ITP tool
whose architecture has been discussed in this paper provides a convenient implemen-
tation of the ideas behind this approach in the form of a web application, a number
of web services, and a web component that can be easily integrated into third-party
solutions.

We plan to improve the ranking strategy shown in Section 3 by automatically
detecting the part of the input sentence being translated at each moment so that
segments that originate in those positions are prioritised. We intend to achieve this
by combining word alignment and distortion models. On the one hand, the former
will be used to determine the alignments between the last words introduced by the
user and the words in the input sentence. On-the-fly, light alignment models have
been proposed (Esplà-Gomis et al., 2012) which do not require parallel corpora and
are based on the translation of all the possible segments of the sentence with the help
of black-box bilingual resources; these models would fit nicely into our ITP method.
On the other hand, distortion models, as those proposed by Al-Onaizan and Papineni
(2006), will be used to predict which source words will be translated next, partly by
using information from the alignment model.

We also plan to explore the impact of simultaneously using different black-box
bilingual resources. Different strategies will be evaluated in order to integrate the
available resources: combining the findings of the various translation resources into a
single suggestion as done by Nirenburg and Frederking (1994) in their multi-engine
MT system; using confidence-based measures in order to select the most promising
translations as performed by Blatz et al. (2004); or predicting the best candidates for
the translation of each particular segment by using only source-language information,

16http://www.gnu.org/licenses/agpl-3.0.html
17http://www.fsf.org/licensing/licenses/
18https://github.com/jaspock/forecat/

78

http://www.gnu.org/licenses/agpl-3.0.html
http://www.fsf.org/licensing/licenses/
https://github.com/jaspock/forecat/

Torregrosa, Forcada, Pérez-Ortiz A tool for interactive translation (69–80)

thus avoiding the need to consult every available resource, as explored by Sánchez-
Martınez (2011).

Although there is room for many future improvements, a distance-based ranker,
in spite of its simplicity, already provides encouraging results: according to the best
results of our automatic experiments, when a maximum of M = 4 suggestions are
offered and the system selects the longest one that matches the reference translation,
around 25–50% keystrokes could be saved depending on the language pair and on the
domain of the corpora used to train the SMT system used as bilingual resource.

Acknowledgments
This work has been partly funded by the Spanish Ministerio de Economía y Com-

petitividad through project TIN2012-32615.

Bibliography
Al-Onaizan, Yaser and Kishore Papineni. Distortion models for statistical machine transla-

tion. In Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguistics, pages
529–536. Association for Computational Linguistics, 2006.

Alabau, Vicent, Daniel Ortiz-Martínez, Alberto Sanchis, and Francisco Casacuberta. Mul-
timodal interactive machine translation. In ICMI-MLMI ’10: Proceedings of the 2010
International Conference on Multimodal Interfaces, 2010.

Alabau, Vicent, Ragnar Bonk, Christian Buck, Michael Carl, Francisco Casacuberta, Mer-
cedes García-Martínez, Jesús González-Rubio, Philipp Koehn, Luis A. Leiva, Bar-
tolomé Mesa-Lao, Daniel Ortiz, Herve Saint-Amand, Germán Sanchis-Trilles, and Chara
Tsoukala. CASMACAT: An open source workbench for advanced computer aided trans-
lation. Prague Bull. Math. Linguistics, 100:101–112, 2013.

Barrachina, Sergio, Oliver Bender, Francisco Casacuberta, Jorge Civera, Elsa Cubel,
Shahram Khadivi, Antonio Lagarda, Hermann Ney, Jesús Tomás, Enrique Vidal, and
Juan-Miguel Vilar. Statistical approaches to computer-assisted translation. Computa-
tional Linguistics, 35(1):3–28, 2009.

Blatz, John, Erin Fitzgerald, George Foster, Simona Gandrabur, Cyril Goutte, Alex Kulesza,
Alberto Sanchis, and Nicola Ueffing. Confidence estimation for machine translation. In
Proceedings of the 20th International Conference on Computational Linguistics, COLING
’04, Stroudsburg, PA, USA, 2004. Association for Computational Linguistics. doi: 10.
3115/1220355.1220401. URL http://dx.doi.org/10.3115/1220355.1220401.

Esplà-Gomis, Miquel, Felipe Sánchez-Martínez, and Mikel L. Forcada. Using external sources
of bilingual information for on-the-fly word alignment. Technical report, Departament de
Llenguatges i Sistemes Informàtics, Universitat d’Alacant, 2012.

Forcada, Mikel L, Mireia Ginestí-Rosell, Jacob Nordfalk, Jim O’Regan, Sergio Ortiz-Rojas,
Juan Antonio Pérez-Ortiz, Felipe Sánchez-Martínez, Gema Ramírez-Sánchez, and Fran-
cis M Tyers. Apertium: a free/open-source platform for rule-based machine translation.
Machine Translation, 25(2):127–144, 2011.

79

http://dx.doi.org/10.3115/1220355.1220401

PBML 102 OCTOBER 2014

Foster, George F., Pierre Isabelle, and Pierre Plamondon. Target-text mediated interactive
machine translation. Machine Translation, 12(1-2):175–194, 1997.

Haddow, Barry and Philipp Koehn. Analysing the effect of out-of-domain data on SMT
systems. In Proceedings of the Seventh Workshop on Statistical Machine Translation,
Montreal, Canada, June 2012. Association for Computational Linguistics.

Junczys-Dowmunt, Marcin. Phrasal rank-encoding: Exploiting phrase redundancy and trans-
lational relations for phrase table compression. The Prague Bulletin of Mathematical
Linguistics, 98:63–74, 2012.

Koehn, Philipp. A web-based interactive computer aided translation tool. In Proceedings of
the ACL-IJCNLP 2009 Software Demonstrations, pages 17–20, 2009.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al. Moses:
Open source toolkit for statistical machine translation. In Proceedings of the 45th Annual
Meeting of the ACL on Interactive Poster and Demonstration Sessions, pages 177–180.
Association for Computational Linguistics, 2007.

Langlais, Philippe, Sébastien Sauvé, George Foster, Elliott Macklovitch, and Guy Lapalme.
Evaluation of TransType, a computer-aided translation typing system: a comparison
of a theoretical-and a user-oriented evaluation procedures. In Conference on Language
Resources and Evaluation (LREC), 2000.

Macklovitch, Elliott. TransType2: The last word. In Proceedings of the 5th International
Conference on Languages Resources and Evaluation (LREC 06), pages 167–172, 2006.

Nirenburg, Sergei and Robert Frederking. Toward multi-engine machine translation. In
Proceedings of the Workshop on Human Language Technology, HLT ’94, pages 147–151,
Stroudsburg, PA, USA, 1994. Association for Computational Linguistics. ISBN 1-55860-
357-3. doi: 10.3115/1075812.1075842. URL http://dx.doi.org/10.3115/1075812.1075842.

Ortiz-Martínez, Daniel. Advances in Fully-Automatic and Interactive Phrase-Based Statistical
Machine Translation. PhD thesis, Universitat Politècnica de València, 2011.

Pérez-Ortiz, Juan Antonio, Daniel Torregrosa, and Mikel Forcada. Black-box integration of
heterogeneous bilingual resources into an interactive translation system. In Proceedings
of the EACL 2014 Workshop on Humans and Computer-Assisted Translation, 2014.

Sánchez-Martınez, Felipe. Choosing the best machine translation system to translate a sen-
tence by using only source-language information. In Proceedings of the 15th Annual
Conference of the European Associtation for Machine Translation, pages 97–104, 2011.

Address for correspondence:
Juan Antonio Pérez-Ortiz
japerez@dlsi.ua.es
Departament de Llenguatges i Sistemes Informàtics
Universitat d’Alacant
Carretera Sant Vicent del Raspeig s/n
03690 Sant Vicent del Raspeig, Alacant, Spain

80

http://dx.doi.org/10.3115/1075812.1075842

The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 81–92

OxLM: A Neural Language Modelling Framework
for Machine Translation

Paul Baltescua, Phil Blunsoma, Hieu Hoangb
a University of Oxford, Department of Computer Science

b University of Edinburgh, School of Informatics

Abstract
This paper presents an open source implementation1 of a neural language model for ma-

chine translation. Neural language models deal with the problem of data sparsity by learning
distributed representations for words in a continuous vector space. The language modelling
probabilities are estimated by projecting a word’s context in the same space as the word repre-
sentations and by assigning probabilities proportional to the distance between the words and
the context’s projection. Neural language models are notoriously slow to train and test. Our
framework is designed with scalability in mind and provides two optional techniques for re-
ducing the computational cost: the so-called class decomposition trick and a training algorithm
based on noise contrastive estimation. Our models may be extended to incorporate direct n-
gram features to learn weights for every n-gram in the training data. Our framework comes
with wrappers for the cdec and Moses translation toolkits, allowing our language models to be
incorporated as normalized features in their decoders (inside the beam search).

1. Introduction

Language models are statistical models used to score how likely a sequence of
words is to occur in a certain language. They are central to a number of natural lan-
guage applications, including machine translation. The goal of a language model in
a translation system is to ensure the fluency of the output sentences.

1Our code is publicly accessible at: https://github.com/pauldb89/oxlm

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: paul.baltescu@cs.ox.ac.uk
Cite as: Paul Baltescu, Phil Blunsom, Hieu Hoang. OxLM: A Neural Language Modelling Framework for Machine
Translation. The Prague Bulletin of Mathematical Linguistics No. 102, 2014, pp. 81–92.
doi: 10.2478/pralin-2014-0016.

https://github.com/pauldb89/oxlm
http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 102 OCTOBER 2014

Most machine translation systems today use highly efficient implementations of
n-gram language models (Heafield, 2011; Stolcke, 2002). N-gram language models
represent the target vocabulary as a discrete set of tokens and estimate the conditional
probabilities P(wi|wi−1, . . . , wi−n) via frequency counting. Kneser-Ney smoothing
(Chen and Goodman, 1999) is typically used to ameliorate the effect of data sparsity.
Querying n-gram language models is extremely fast as the only operations involved
are hashtable or trie lookups, depending on the implementation.

Neural language models (Bengio et al., 2003) are a more recent class of language
models which use neural networks to learn distributed representations for words.
Neural language models project words and contexts into a continuous vector space.
The conditional probabilities P(wi|wi−1, . . . , wi−n) are defined to be proportional to
the distance between the continuous representation of the word wi and the context
wi−1, . . . , wi−n. Neural language models learn to cluster word vectors according to
their syntactic and semantic role. The strength of neural language models lies in their
ability to generalize to unseen n-grams, because similar words will share the proba-
bility of following a context. Neural language models have been shown to outperform
n-gram language models using intrinsic evaluation (Chelba et al., 2013; Mikolov et al.,
2011a; Schwenk, 2007) or as part of other natural language systems such as speech rec-
ognizers (Mikolov et al., 2011a; Schwenk, 2007). In machine translation, it has been
shown that neural language models improve translation quality if incorporated as
an additional feature into a machine translation decoder (Botha and Blunsom, 2014;
Vaswani et al., 2013) or if used for n-best list rescoring (Schwenk, 2010). Querying
a neural language model involves an expensive normalization step linear in the size
of the vocabulary and scaling this operation requires special attention in order for a
translation system to maintain an acceptable decoding speed.

The goal of this paper is to introduce an open source implementation of a feed
forward neural language model. As part of our implementation, we release wrap-
pers which enable the integration of our models as normalized features in the cdec
(Dyer et al., 2010) and Moses (Koehn et al., 2007) decoders. Our framework is designed
with scalability in mind and provides two techniques for speeding up training: class-
based factorization (Morin and Bengio, 2005) and noise contrastive estimation (Mnih
and Teh, 2012). The class decomposition trick is also helpful for reducing the cost
of querying the language model and allows a decoder incorporating our feature to
maintain an acceptable decoding speed. In addition to this, our framework option-
ally extends neural language models by incorporating direct n-gram features (similar
to Mikolov et al. (2011a)).

2. Related work

In this section, we briefly analyze three open source neural language modelling
toolkits. We discuss how each implementation is different from our own and show
where our approach has additional strengths.

82

Paul Baltescu, Phil Blunsom, Hieu Hoang Neural Language Models (81–92)

CSLM (Schwenk, 2010) is an open source toolkit implementing a continuous space
language model which has a similar architecture to our own. CSLM employs a short-list
to reduce the computational cost of the normalization step. A short-list contains the
most frequent words in the training corpus. Schwenk (2010) reports setting the size of
the short-list to 8192 or 12288 words. The continuous space language model is used to
predict only the words in the short-list, while the remaining words are scored using a
back-off n-gram language model. We believe this optimization hurts the model where
the potential benefit is the greatest, as the strength of neural language models relies
in predicting rare words. In addition to this, CSLM may only be used to rescore n-best
lists and cannot be incorporated as a feature in a decoder.

NPLM (Vaswani et al., 2013) is another open source implementation of a neural lan-
guage model. In contrast to our implementation, Vaswani et al. (2013) do not explic-
itly normalize the values produced by their model and claim that these scores can
be roughly interpreted as probabilities. In practice, we observed that unnormalized
scores do not sum up to values close to 1 when the predicted word is marginalized
over the vocabulary. Our approach trades decoding speed for the guarantee of using
properly scaled feature values.

RNNLM (Mikolov et al., 2011b) is an open source implementation of a recurrent neu-
ral language model. Recurrent neural language models have a somewhat different
architecture where the hidden layer at step i is provided as input to the network at
step i + 1. RNNLM uses the class decomposition trick to speed up queries. The toolkit
also allows extending the language models with direct n-gram features. RNNLM has
been successfully used in speech recognition tasks (Mikolov et al., 2011a), and Auli
and Gao (2014) show that recurrent neural language models considerably improve
translation quality when integrated as an unnormalized feature into a decoder.

3. Model description

Our implementation follows the basic architecture of a log-bilinear language model
(Mnih and Hinton, 2007). We define two vector representations qw, rw ∈ RD for ev-
ery wordw in the vocabulary V . qw representsw’s syntactic and semantic role when
the word is part of the conditioning context, while rw is used to represent w’s role
as a prediction. For some word wi in a given corpus, let hi denote the conditioning
context wi−1, . . . , wi−n. To find the conditional probability P(wi|hi), our model first
computes a context projection vector:

p =

n−1∑
j=1

Cjqhij
, (1)

whereCj ∈ RD×D are position-specific transformation matrices. Our implementation
provides an optional flag which applies a component-wise sigmoid non-linearity to
the projection layer, transforming the model into one similar to Bengio et al. (2003).

83

PBML 102 OCTOBER 2014

The model computes a set of similarity scores indicating how well each word w ∈ V
matches the context projection of hi. The similarity score is defined as:

ϕ(w,hi) = rTwp + bw, (2)

where bw is a bias term incorporating the prior probability ofw. The similarity scores
are transformed into a probability distribution using the softmax function:

P(wi|hi) =
exp(ϕ(wi, hi))∑
w∈V exp(ϕ(w,hi))

(3)

The complete set of parameters is (Cj, Q, R,b), where Q,R ∈ RD×|V | and b ∈ R|V |.
The model is trained using minibatch stochastic gradient descent to minimize the neg-
ative log-likelihood of the training data. L2 regularization is used to prevent overfit-
ting.

3.1. Class based factorization

The difficulty of scaling neural language models lies in optimizing the normal-
ization step illustrated in Equation 3. Our implementation relies on class based de-
composition (Morin and Bengio, 2005; Goodman, 2001) to reduce the cost of normal-
ization. We partition our vocabulary in K classes {C1, . . . , CK} using Brown clustering
(Liang, 2005; Brown et al., 1992) such thatV =

∪K
i=1 Ci and Ci∩Cj = ∅, ∀1 ≤ i < j ≤ K.

We define the conditional probability as:

P(wi|hi) = P(ci|hi)P(wi|ci, hi), (4)

where ci is the index of the class wi is assigned to, i.e. wi ∈ Cci
. We associate a

vector representation sc and a bias term tc for each class c. The class conditional
probability is computed reusing the prediction vector p by means of a scoring function
ψ(c, hi) = sTcp+ tc. Each conditional distribution is now normalized separately:

P(ci|hi) =
exp(ψ(ci, hi))∑K
j=1 exp(ψ(cj, hi))

(5)

P(wi|ci, hi) =
exp(ϕ(wi, hi))∑

w∈Cci
exp(ϕ(w,hi))

(6)

The best performance is achieved when K ≈
√

|V | and the word classes have roughly
equal sizes. In that case, the normalization cost for predicting a word is reduced from
O(|V |) to O(

√
|V |).

84

Paul Baltescu, Phil Blunsom, Hieu Hoang Neural Language Models (81–92)

3.2. Noise contrastive estimation

Training neural language models using stochastic gradient descent is slow because
the entire matrix R ∈ RD×|V | is modified with every gradient update. The class based
factorization reduces the cost of computing the gradient of R to O(D ×

√
|V |). In

our implementation, we provide an optimization for computing the gradient updates
based on noise contrastive estimation, a technique which does not involve normalized
probabilities (Mnih and Teh, 2012). Noise contrastive training can be used with or
without class based decomposition.

The key idea behind noise contrastive estimation is to reduce a density estimation
problem to a classification problem, by training a binary classifier to discriminate be-
tween samples from the data distribution and samples from a known noise distribu-
tion. In our implementation, we draw the noise samples ni from the unigram distri-
bution denoted by Pn(w). Following Mnih and Teh (2012), we use k times more noise
samples than data samples, where k is specified via an input argument. The posterior
probability that a word is generated from the data distribution given its context is:

P(C = 1|wi, hi) =
P(wi|hi)

P(wi|hi) + kPn(wi)
(7)

Mnih and Teh (2012) show that the gradient of the classification objective:

J(θ) =

m∑
i=1

logp(C = 1|θ,wi, hi) +

km∑
i=1

logp(C = 0|θ, ni, hi) (8)

is an approximation which converges to the maximum likelihood gradient as k→ ∞.
Noise contrastive estimation allows us to replace the normalization terms with model
parameters. Mnih and Teh (2012) showed that setting these parameters to 1 results
in no perplexity loss. In our implementation of noise contrastive training, we simply
ignore the normalization terms, but this optimization is not applicable at test time.

3.3. Direct n-gram features

Direct features (or connections) for unigrams were originally introduced in neural
language models by Bengio et al. (2003). Mikolov et al. (2011a) extend these features
to n-grams and show they are useful for reducing perplexity and improving word
error rate in speech recognizers. Direct n-gram features are reminiscent of maximum
entropy language models (Berger et al., 1996) and are sometimes called maximum
entropy features (e.g. in Mikolov et al. (2011a)).

The basic idea behind direct features is to define a set of binary feature functions
f(w,h) and to assign each function a weight from a real valued vector u. In our im-
plementation, we define a feature function f(w,h) for every n-gram in the training

85

PBML 102 OCTOBER 2014

data, up to some order specified by an input argument. To account for word classes,
we also define a set of n-gram features gc(w,h) and a vector of weights vc for each
word cluster c. An n-gram (w,h) has a corresponding feature function gc(w,h) only
ifw ∈ Cc. To incorporate the features into our model, we update the scoring functions
as follows:

ψ(ci, hi) = sTci
p + tci

+ uT f(wi, hi) (9)
ϕ(wi, hi) = rTwi

p + bwi
+ vT

ci
gci

(wi, hi) (10)

Otherwise, our model definition remains unchanged. The weight vectors u and vc

are learned together with the rest of the parameters using gradient descent. From
the perspective of the machine translation system, the language model is extended to
learn weights for every n-gram in the training data, weights which bear a similar role
to the frequency counts used by traditional n-gram language models.

4. Implementation details

4.1. Training language models

Our language modelling framework is implemented in C++. Compiling it will re-
sult in a number of binaries. train_sgd, train_factored_sgd and train_maxent_sgd
are used for training language models, while the other binaries are useful for evalu-
ation and debugging. Due to lack of space, we will only discuss the most important
arguments provided in the training scripts. For a complete list of available options
and a short description of each, any binary may be run with the --help argument.
Examples of intended usage and recommended configurations are released together
with our code.

train_sgd is used to train neural language models without class factorization or
direct features. The binary reads the training data from the file specified via the --
input parameter. The optional --test-set parameter is used to specify the file con-
taining the test corpus. If specified, the training script computes the test set perplexity
every 1000 minibatches and at the end of every training epoch. The --model-out ar-
gument specifies the path where the language model is saved. The language model
is written to disk every time the test set perplexity reaches a new minimum. The --
order parameter specifies the order of the model, the --word-width parameter spec-
ifies the size of the distributed representations and the --lambda-lbl parameter is
the inverse of the variance for the L2 regularizer. If --noise-samples is set to 0, the
model is trained using stochastic gradient descent. Otherwise, the parameter specifies
the number of noise samples drawn from the unigram distribution for each training
instance during noise contrastive training.

Factored models are trained with the train_factored_sgd binary. In addition to
the previous arguments, this script includes the --class-file option which points

86

Paul Baltescu, Phil Blunsom, Hieu Hoang Neural Language Models (81–92)

to the files containing the Brown clusters. The expected format matches the output
format of Liang (2005)’s agglomerative clustering tool2. If the --class-file argument
is not specified, the user is required to set the --classes argument. In this case, the
word clusters are obtained using frequency binning.

Factored models incorporating direct features are trained with train_maxent_sgd.
We implement two types of feature stores for storing the weights of the n-gram fea-
tures. Sparse feature stores use identity mapping to map every n-gram with its corre-
sponding weight. Collision stores hash the n-grams to a lower dimensional space in-
stead, leading to potential collisions. If configured correctly using the --hash-space
parameter, collision stores require less memory than sparse feature stores, without
any perplexity loss. If the argument is set to 0, sparse stores are used instead. The --
min-ngram-freq argument may be used to ignore n-grams below a frequency thresh-
old, while --max-ngrams may be used to restrict the number of direct features to the
most frequent n-grams in the training data.

4.2. Feature wrappers for cdec and Moses

Our language models may be incorporated into the cdec and Moses decoders as
normalized features to score partial translation hypotheses during beam search. The
decoders often keep the conditioning context unchanged and create new translation
hypotheses by adding new words at the end of the conditioning context. We signifi-
cantly speed up decoding by caching the normalization terms to avoid recomputing
them every time a new word is added after the same context. The normalization cache
is reset every time the decoders receive a new sentence as input.

Compiling our framework results in the libcdec_ff_lbl.so shared library which
is used to dynamically load our language models as a feature in the cdec decoder. To
load the feature, a single line must be added to the decoder configuration file speci-
fying the path to the shared library, the file containing the language model and the
type of the language model (standard, factored or factored with direct features). A
complete cdec integration example is provided in the documentation released with
our code.

The feature wrapper for Moses is included in the Moses repository3. To include
our language models in the decoder, Moses must be compiled with the --with-lbllm
argument pointing to the location of the oxlm repository. The decoder configuration
file must be updated to include the feature definition, the path to the file containing
the language model and the initial feature weight. A complete example on how to
integrate our language models in Moses is provided in the documentation released
with our code.

2The tool is publicly available at: https://github.com/percyliang/brown-cluster
3The feature wrapper is accessible here: https://github.com/moses-smt/mosesdecoder/tree/

master/moses/LM/oxlm

87

https://github.com/percyliang/brown-cluster
https://github.com/moses-smt/mosesdecoder/tree/master/moses/LM/oxlm
https://github.com/moses-smt/mosesdecoder/tree/master/moses/LM/oxlm

PBML 102 OCTOBER 2014

4.3. Optimizations

Our framework includes several smaller optimizations designed to speed up train-
ing and testing. We provide an optional --diagonal-contexts argument which in-
forms the framework to learn a model with diagonal context matrices. This optimiza-
tion significantly speeds up querying the language model and helps the training al-
gorithm converge after fewer iterations without any loss in perplexity.

Our implementation leverages the benefits of a multithreaded environment to dis-
tribute the gradient calculation during training. The training instances in a minibatch
are shared evenly across the number of available threads (specified by the user via
the --threads parameter). In our gradient descent implementation, we use adaptive
learning (Duchi et al., 2011) to converge to a better set of parameters.

We rely on Eigen, a high-level C++ library for linear algebra, to speed up the matrix
and vector operations involved in training and querying our models. Where possible,
we group together multiple similar operations to further speed up the computations.

Finally, we speed up the process of tuning the translation system feature weights
by taking advantage of the fact that the development corpus is decoded for several it-
erations with different weights. As a result, the n-grams scored by the language model
often repeat themselves over a number of iterations. We maintain sentence-specific
caches mapping n-grams to language model probabilities which are persistent be-
tween consecutive iterations of the tuning algorithm. A persistent cache is loaded
from disk when a sentence is received as input and saved back to disk when the sys-
tem has finished decoding the sentence. This optimization massively speeds up the
process of tuning the translation system and can be enabled via the --persistent-
cache flag in the decoder configuration file.

5. Experiments

In this section, we provide experimental results to illustrate the strengths of our
language modelling framework. We report perplexities and improvements in the
BLEU score when the language model is used as an additional feature in the decoder.
We also report the training times for stochastic gradient descent and noise contrastive
estimation. Finally, we compare the average time needed to decode a sentence with
our language modelling feature against a standard system using only an efficient im-
plementation of a backoff n-gram model.

In our experiments, we used the europarl-v7 and the news-commentary-v9 French-
English data to train a hierarchical phrase-based translation system (cdec). The cor-
pus was tokenized, lowercased and filtered to exclude sentences longer than 80 words
or having substantially different lengths using the preprocessing scripts available in
cdec4. After preprocessing, the training corpus consisted of 2,008,627 pairs of sen-

4We followed the indications provided here: http://www.cdec-decoder.org/guide/tutorial.html

88

http://www.cdec-decoder.org/guide/tutorial.html

Paul Baltescu, Phil Blunsom, Hieu Hoang Neural Language Models (81–92)

Model Training Training time Perplexity BLEU
algorithm (hours)

KenLM - 0.1 267.814 24.75
FactoredLM SGD 34.1 226.44 25.2
FactoredLM NCE 1 9.4 258.623 25.25
FactoredLM NCE 10 12.5 245.748 25.06
FactoredLM NCE 50 18.1 241.481 25.23

DirectFactoredLM SGD 42.0 210.275 25.46

Table 1. Training time, perplexities and BLEU scores for various models.

tences. The corpus was aligned using fast_align (Dyer et al., 2013) and the align-
ments were symmetrized using the grow-diag-final-and heuristic. We split the new-
stest20125 data evenly into a development set and a test set, by assigning sentences
to each dataset alternatively. The translation system is tuned on the development set
using MIRA. We report average BLEU scores over 3 MIRA runs.

The baseline system includes an efficient implementation (Heafield, 2011) of a 5-
gram language model (KenLM). The language models are trained on the target side
of the parallel corpus, on a total of 55,061,862 tokens. Before training the neural lan-
guage models, singletons are replaced with a special <unk> token. The neural lan-
guage model vocabulary consists of 57,782 words and is factored into 240 classes using
Brown clustering. In our experiments, we set the order of the neural language models
to 5, the dimensionality of the word representations to 200 and make use of diagonal
contexts. The standard factored language model is labelled with FactoredLM. Direct-
FactoredLM is an extension incorporating direct n-gram features. In our experiments,
we define a feature function for every n-gram (n ≤ 5) observed at least 3 times in the
training corpus. The feature weights are hashed into a collision store with a capacity
of 5 million features.

Table 1 summarizes the results of our experiments. We indicate the algorithm used
to train each neural language model. Stochastic gradient descent is denoted by SGD,
while noise contrastive estimation is denoted by NCE and followed by the number
of noise samples used for estimating the gradient for each data point. In both cases,
the gradient optimization was distributed over 8 threads and the minibatch size was
set to 10,000 data points. We note that noise contrastive estimation leads to models
with higher perplexities. However, that has no effect on the overall quality of the
translation system, while massively reducing the training time of the neural language
models. Overall, we observe a BLEU score improvement of 0.7 when a factored lan-
guage model with direct n-gram features is used in addition to a standard 5-gram
language model.

5The corpus is available here: http://www.statmt.org/wmt14/translation-task.html

89

http://www.statmt.org/wmt14/translation-task.html

PBML 102 OCTOBER 2014

Model Decoding time (seconds)
KenLM 0.447

FactoredLM 3.356
DirectFactoredLM 6.633

Table 2. Average decoding speed.

Table 2 shows the average decoding speed with our neural language modelling
features. The average decoding time is reported on the first 100 sentences of the devel-
opment set. Overall, the neural language models slow down the decoder by roughly
an order of magnitude.

In conclusion, this paper presents an open source implementation of a neural lan-
guage modelling toolkit. The toolkit provides techniques for speeding up training and
querying language models and incorporates direct n-gram features for better trans-
lation quality. The toolkit facilitates the integration of the neural language models
as a feature in the beam search of the cdec and Moses decoders. Although our lan-
guage modelling features slow down the decoders somewhat, they guarantee that the
probabilities used to score partial translation hypotheses are properly normalized.

Bibliography

Auli, Michael and Jianfeng Gao. Decoder integration and expected bleu training for recurrent
neural network language models. In Proceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (ACL ’14), pages 136–142, Baltimore, Maryland, June 2014.
Association for Computational Linguistics.

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic
language model. Journal of Machine Learning Research, 3:1137–1155, 2003.

Berger, Adam L., Vincent J. Della Pietra, and Stephen A. Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–71, 1996.

Botha, Jan A. and Phil Blunsom. Compositional morphology for word representations and
language modelling. In Proceedings of the 31st International Conference on Machine Learning
(ICML ’14), Beijing, China, 2014.

Brown, Peter F., Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai.
Class-based n-gram models of natural language. Computational Linguistics, 18(4):467–479,
1992.

Chelba, Ciprian, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp Koehn.
One billion word benchmark for measuring progress in statistical language modeling.
CoRR, 2013.

Chen, Stanley F. and Joshua Goodman. An empirical study of smoothing techniques for lan-
guage modeling. Computer Speech & Language, 13(4):359–393, 1999.

90

Paul Baltescu, Phil Blunsom, Hieu Hoang Neural Language Models (81–92)

Duchi, John, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Dyer, Chris, Adam Lopez, Juri Ganitkevitch, Jonathan Weese, Ferhan Ture, Phil Blunsom, Hen-
dra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec: A decoder, alignment, and
learning framework for finite-state and context-free translation models. In Proceedings of the
ACL 2010 System Demonstrations, pages 7–12, Uppsala, Sweden, July 2010. Association for
Computational Linguistics.

Dyer, Chris, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective reparameter-
ization of ibm model 2. In Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL ’13), pages 644–648, Atlanta, Georgia,
June 2013. Association for Computational Linguistics.

Goodman, Joshua. Classes for fast maximum entropy training. CoRR, 2001.
Heafield, Kenneth. Kenlm: Faster and smaller language model queries. In Proceedings of the

Sixth Workshop on Statistical Machine Translation (WMT ’11), pages 187–197, Edinburgh, Scot-
land, July 2011. Association for Computational Linguistics.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proceedings of the 45th Annual Meeting of the Association for Computa-
tional Linguistics (ACL ’07), pages 177–180, Prague, Czech Republic, June 2007. Association
for Computational Linguistics.

Liang, P. Semi-supervised learning for natural language. Master’s thesis, Massachusetts Insti-
tute of Technology, 2005.

Mikolov, Tomas, Anoop Deoras, Daniel Povey, Lukas Burget, and Jan Cernocky. Strategies for
training large scale neural network language models. In Proceedings of the 2011 Automatic
Speech Recognition and Understanding Workshop, pages 196–201. IEEE Signal Processing Soci-
ety, 2011a.

Mikolov, Tomas, Stefan Kombrink, Anoop Deoras, Lukas Burget, and Jan Cernocky. Rnnlm -
recurrent neural network language modeling toolkit. In Proceedings of the 2011 Automatic
Speech Recognition and Understanding Workshop, pages 1–4. IEEE Signal Processing Society,
2011b.

Mnih, Andriy and Geoffrey Hinton. Three new graphical models for statistical language mod-
elling. In Proceedings of the 24th International Conference on Machine Learning (ICML ’07), pages
641–648, Corvallis, OR, USA, 2007.

Mnih, Andriy and Yee Whye Teh. A fast and simple algorithm for training neural probabilis-
tic language models. In Proceedings of the 29th International Conference on Machine Learning
(ICML ’12), pages 1751–1758, Edinburgh, Scotland, 2012.

Morin, Frederic and Yoshua Bengio. Hierarchical probabilistic neural network language model.
In Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics (AISTATS
’05), pages 246–252. Society for Artificial Intelligence and Statistics, 2005.

Schwenk, Holger. Continuous space language models. Computer Speech & Language, 21(3):492–
518, 2007.

91

PBML 102 OCTOBER 2014

Schwenk, Holger. Continuous-space language models for statistical machine translation.
Prague Bulletin of Mathematical Linguistics, 93:137–146, 2010.

Stolcke, Andreas. Srilm - an extensible language modeling toolkit. In Proceedings of the Interna-
tional Conference on Acoustics, Speech and Signal Processing, pages 901–904, 2002.

Vaswani, Ashish, Yinggong Zhao, Victoria Fossum, and David Chiang. Decoding with large-
scale neural language models improves translation. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pages 1387–1392, Seattle, Washington,
USA, October 2013. Association for Computational Linguistics.

Address for correspondence:
Paul Baltescu
paul.baltescu@cs.ox.ac.uk
Department of Computer Science
University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD,
United Kingdom

92

The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 93–104

Multilingual Dependency Parsing:
Using Machine Translated Texts instead of Parallel Corpora

Loganathan Ramasamy, David Mareček, Zdeněk Žabokrtský
Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Abstract
This paper revisits the projection-based approach to dependency grammar induction task.

Traditional cross-lingual dependency induction tasks one way or the other, depend on the ex-
istence of bitexts or target language tools such as part-of-speech (POS) taggers to obtain reason-
able parsing accuracy. In this paper, we transfer dependency parsers using only approximate
resources, i.e., machine translated bitexts instead of manually created bitexts. We do this by
obtaining the the source side of the text from a machine translation (MT) system and then ap-
ply transfer approaches to induce parser for the target languages. We further reduce the need
for the availability of labeled target language resources by using unsupervised target tagger.
We show that our approach consistently outperforms unsupervised parsers by a bigger margin
(8.2% absolute), and results in similar performance when compared with delexicalized transfer
parsers.

1. Introduction

Inducing dependency structures has been an important topic of research within
the parsing community for many years. Dependency parsers that can produce de-
pendency structures for novel sentences often rely on manually constructed treebanks
for training the parsers. Unlike other annotation tasks such as POS tagging, treebank
annotation is much more complex and expensive. Zeman et al. (2012) identified the
availability of treebanks for 30 languages. However, still majority of languages do
not have treebanks. Thus, inducing treebanks for languages that have small or no
training data is definitely a challenging task. Though fully unsupervised dependency
parsing approaches (Mareček and Straka, 2013; Spitkovsky et al., 2013, Blunsom and

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: ramasamy@ufal.mff.cuni.cz
Cite as: Loganathan Ramasamy, David Mareček, Zdeněk Žabokrtský. Multilingual Dependency Parsing: Using
Machine Translated Texts instead of Parallel Corpora. The Prague Bulletin of Mathematical Linguistics No. 102,
2014, pp. 93–104. doi: 10.2478/pralin-2014-0017.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 102 OCTOBER 2014

Figure 1. Schematic depiction of how the target parse trees are obtained

Cohn, 2010) are quite attractive for they don’t require any hand annotated data for
training, their quality is still lower than other class of approaches mainly known as
cross-lingual syntactic transfer techniques. This is a useful alternative in transferring
syntactic knowledge from one or more languages.

Hwa et al. (2005) used parallel corpus and word alignments to project English
parse trees to Spanish and Chinese. They have also used small number of language
specific transformation rules to reduce projection errors due to different annotation
choices in the treebanks. Most of the earlier transfer based approaches (Ganchev et al.,
2009; Kuhn, 2004) heavily rely on bitexts or some other target1 language resources
(such as POS taggers).

Transfer based techniques such as Zeman and Resnik (2008) and McDonald et al.
(2011b) decouple this target language resource requirement by directly parsing tar-
get sentences via delexicalized source parser (trained with source POS tag sequence).
Delexicalized parsing depends only on target POS tagger which uses the same POS
tagset as the source language tagger. Augmenting delexicalized parsers by cross-
lingual clusters (Täckström et al., 2012), bilingual lexicon (Durrett et al., 2012) and
target adaptation techniques (Täckström et al., 2013) further improved the delexical-
ized parsers. Most of the recent works on transfer parsers sought to reduce POS an-
notation differences between source and target languages by mapping to a common
coarse-grained tagset (Petrov et al., 2012). Addressing annotation differences at the
structural level in transfer parsers is still an open problem, though there are some
early attempts such as Smith and Eisner (2009) and more recently Zeman et al. (2012);
McDonald et al. (2013) through treebank harmonization and by common annotation
standards.

It has been well established from previous works that the availability of bitexts
or target POS taggers (or both) is very crucial for transferring dependency parsers
from one or multiple source languages. Imagine a situation where we don’t have di-
rect access to bitexts or a target POS tagger but only to a translation system from a
resource-poor (RP) language to a resource-rich (RR) language. This presents an inter-
esting scenario for the existing transfer based approaches. In this paper, we propose
to combine bitexts obtained from machine translation and target POS obtained from

1target refers to language(s) for which we would be interested in inducing dependency parser. source in
other words refers to language(s) from which we will transfer the dependencies. It is also assumed that
target languages are resource-poor whereas source languages are resource-rich.

94

Ramasamy, Mareček, Žabokrtský Dependency Transfer Using MT Texts (93–104)

unsupervised clusters to obtain transfer parsers. We use MT system to translate target
language texts to resource-rich source language texts (for which parsers and taggers
are available). Our overall approach is similar to Hwa et al. (2005) and McDonald et al.
(2011b), but the main difference lies is in the nature of bitexts we use for transferring
the parsers.

Later in the results section, we show that this approach outperforms state-of-the-
art unsupervised approaches even though we use only approximate bitexts for our
transfers.

2. Dependency Transfer With Machine Translated Texts

The heart of our approach lies in how we obtain bitexts and target POS taggers
(for resource-poor languages), which are crucial for transfer parsers. Unlabeled data
is available in plenty even for resource-poor languages. We obtain both the resources
from unlabeled target texts only. For word aligned bitexts, we first translate target
texts into English via an MT system, in our case Google Translate API.2 Our system
is single source, i.e., all our experiments are carried out with English as a source lan-
guage against a variety of target languages. For word alignments, we use alignment
links provided by the MT system. If word alignments are not provided by the MT
system, then any automatic word aligners can be used to obtain the word alignments.
We parse translated English source texts using the parsing model trained on the En-
glish treebank from CoNLL shared task (Nivre et al., 2007). Our overall approach is
depicted in Figure 1.

We obtain fully connected target language parse trees by projecting English parse
trees onto target sentences via word alignment links. Before projection, we initialize
the target tree by connecting all the target tokens to the default root node of the tree.
The projection algorithm then starts from the source root and visits all the source
nodes in a pre-order fashion while making adjustments to parents in the target tree.

In the case of 1-M alignments, we first determine the head of the chunk on the
target side and connect the remaining members of that chunk to the chunk head. We
make a simplistic assumption about chunk head: i.e., we consider the last member (its
absolute position should also be higher than other members) to be the chunk head.
Unlike Hwa et al. (2005), we do not add empty nodes on the target in the case of
determining target parents for 1-M and unaligned source nodes. We do that so for
simplifying the evaluation of target trees.

We use the projected target trees to train various parsing models. Previous works
have mostly relied on using target POS taggers for training the parsers. McDonald
et al. (2011b) demonstrated that POS information alone carries much of the syntactic
information, thus making use of target POS taggers considerably improved the accu-
racy of the target parse trees. To make our work applicable in realistic scenarios, we

2Google Translate API – https://developers.google.com/translate/

95

https://developers.google.com/translate/

PBML 102 OCTOBER 2014

ar bg ca cs da de
Sentences 3.0K 13.2K 14.9K 25.6K 5.5K 38.0K
Tokens 116.8K 196.2K 443.3K 437.0K 100.2K 680.7K
Train/Test(%) 96/4 97/3 88/12 99/1 94/6 95/5
el es et fi hi hu
Sentences 2.9K 16.0K 1.3K 4.3K 13.3K 6.4K
Tokens 70.2K 477.8K 09.5K 58.6K 294.5K 139.1K
Train/Test(%) 93/7 90/10 90/10 90/10 91/9 94/6
it nl pt sl sv tr
Sentences 3.4K 13.7K 9.4K 1.9K 11.4K 5.9K
Tokens 76.3K 200.7K 212.5K 35.1K 197.1K 69.7K
Train/Test(%) 93/7 97/3 97/3 79/21 97/3 95/5

Table 1. Target language treebank texts that are translated to English using MT system

induce target POS information using unsupervised techniques. Unsupervised POS
tagging is arguably less complex than inducing tree structures and previous works
on unsupervised POS techniques (Blunsom and Cohn, 2011; Clark, 2000) have proven
to be effective even in practical applications. In this work, we use unsupervised target
POS tags instead of supervised or universal POS tags, but for the sake of compari-
son, we also provide results with supervised and universal POS tags. We experiment
with various tagset size and show results for the tagset size that gives the best average
accuracy on target languages. Our approach can be used within the transfer frame-
work for languages that lack even POS taggers, thus making the approach suitable for
languages that do not have any labeled target language resources.

3. Experiments

We use 18 treebanks (see Table 1) for most of our experiments. In certain exper-
iments, we show results for a subset of those languages for comparison with other
works. For training/testing, we use the same data split as described in Zeman et al.
(2012). The target language treebanks we use mostly come from past CoNLL shared
tasks (2006, 2007 and 2009). For Hindi, we have used the latest version (ICON 2012) of
the treebank instead of the version mentioned in Zeman et al. (2012). All our results
show only unlabeled attachment score (UAS) accuracies – similar to other works in the
field.

3.1. Projection

The schema of the projection procedure is depicted in Figure 1. It consists of four
steps:

96

Ramasamy, Mareček, Žabokrtský Dependency Transfer Using MT Texts (93–104)

Lang. Baseline UDP Projection (+ reparsing) sup
left right unsup40 dir proj univ sup gold

ar 5.2 58.8 34.1 51.8 40.3 56.1 58.3 60.0 74.2
bg 17.9 38.8 56.7 46.4 41.4 55.3 53.6 56.3 81.5
ca 24.7 28.8 24.6 56.9 46.0 - 59.0 60.2 87.6
cs 24.1 28.9 55.0 45.4 51.4 54.7 58.4 62.3 74.9
da 13.2 47.9 42.0 41.6 36.9 41.6 42.1 43.1 79.8
de 24.2 18.9 43.5 46.4 43.0 47.8 48.7 50.1 84.2
el 32.0 18.5 30.9 49.2 52.0 59.2 65.4 65.2 78.5
es 24.7 29.0 36.3 56.9 47.0 - 58.2 59.0 88.1
et 34.1 17.4 63.8 54.8 58.0 - 58.3 66.0 72.9
fi 39.3 13.6 36.7 37.1 43.1 - 39.5 46.2 60.7
hi 24.4 27.3 15.6 24.9 24.6 - 28.0 28.3 75.1
hu 42.8 5.3 34.7 43.4 41.1 48.2 51.2 53.2 75.2
it 23.0 37.4 49.7 55.6 53.1 53.7 59.3 62.0 80.5
nl 27.9 24.7 27.6 60.9 53.2 - 59.3 61.4 76.7
pt 25.8 31.1 39.8 61.8 56.4 62.2 62.9 66.5 84.2
sl 24.4 26.6 45.9 44.4 50.4 45.7 53.1 56.6 76.7
sv 25.9 27.8 49.1 53.9 48.2 56.8 54.3 55.8 82.7
tr 65.1 2.0 42.3 46.0 51.4 - 57.2 57.0 75.5

avg 27.7 26.8 40.5 48.7 46.5 52.8 53.7 56.1 78.3

Table 2. UAS for baselines, supervised/unsupervised parsers and various projected
parsing models. Resource requirements for projection under various settings:
unsup40 requires bitext, source parser and unsupervised target tagger; dir proj

requires only bitext; univ requires bitext, source parser, and universal source/target
taggers; sup (column 8) requires bitext, source parser, and target tagger; the resource

requirements for gold is similar to sup but requires gold POS during testing. sup
(column 10) is a regular supervised parser results. UDP shows results for

unsupervised dependency parsing. Numbers in bold indicate the best accuracy for
each row (excluding columns 9 and 10).

1. The target language corpus is translated to English using Google Translate API
v1. The API provides also alignment links, which will be used for projection.
The translated English sentences are then tokenized and the original alignment
links are adjusted.3 For the translation task, we confined ourselves to translating
only the treebank data, but much larger texts can be used in the future.

3For instance, when a punctuation is separated from a form on the English side, we link the separated
punctuation to the corresponding punctuation on the treebank data.

97

PBML 102 OCTOBER 2014

2. English sentences are tagged by the Morce tagger (Spoustová et al., 2007) and
parsed by the MST parser (McDonald et al., 2005). For parsing English, we used
the parser model trained on the version of Penn treebank supplied during the
CoNLL 2007 shared task (Nivre et al., 2007).

3. English dependency trees are projected to the target language sentences (only
the training part of the treebank) using the alignment links.

4. Three target parser models are trained (using MST parser with 2nd order and
non-projective setting) on the projected target corpus with different POS anno-
tations (next subsection).

3.2. Training with different POS tags

To tag target test data, we train two supervised taggers and one unsupervised tag-
ger on the training section of the target treebanks.

• Supervised POS: We train Stanford tagger (Toutanova and Manning, 2000) on
the training section of the treebanks.

• Universal POS: We first convert the annotated training data to universal POS
tags (Petrov et al., 2012) and train the tagger on it.

• Unsupervised POS tagger: We use unsupervised hidden Markov model (HMM)
POS tagger by Blunsom and Cohn (2011). Not knowing which tagset size is suit-
able for the projected treebanks, we obtain POS tags for different arbitrary tagset
size: 20, 40, 80 and 160. Besides the training and testing parts of the treebanks4,
we used additional monolingual texts from W2C Wikipedia corpus (Majliš and
Žabokrtský, 2012) to enlarge the size of the data to one million words for each
language.

3.3. Direct transfer of delexicalized parser

We train delexicalized English parsers under two settings. In the first setting, we
convert the POS tags of CoNLL 2007 English data into universal POS tags using the
mapping provided by Petrov et al. (2012), strip all the word forms and train the parser.
In the second setting, we first tag the English translations from Google Translate using
the Morce tagger (Spoustová et al., 2007), convert them to universal POS tags and after
stripping all the word forms, we train delexicalized parser on them. We obtain target
universal POS tags using the universal POS tagger trained from the training part of
the target treebanks. So, the main difference between McDonald et al. (2011b) and
our approach is that they obtained target POS tags by POS projection from English,
whereas we used POS information from target language treebanks and trained uni-

4The unsupervised POS tagger by Blunsom and Cohn (2011) does not produce a trained POS model.
Given an unlabeled data and tagset size, the tagger produces unsupervised tags for the unlabeled data.
Our unlabeled data included the training/testing part of the treebanks and some additional monolingual
corpus.

98

Ramasamy, Mareček, Žabokrtský Dependency Transfer Using MT Texts (93–104)

versal POS taggers on them. At the moment, our experiments on unsupervised POS
taggers deal with varying tagset size, and it would also be interesting in the future
to make a comparison with different unsupervised approaches such as unsupervised
POS projection (Das and Petrov, 2011).

3.4. Unsupervised parsing

To compare the projection results with a completely unsupervised approach, we
used the software for dependency grammar induction by Mareček and Straka (2013).5
We run the experiments in the same manner as they described for all our testing lan-
guages.

4. Results

Our major results are presented in Table 2 and 3. The left and right baselines in
Table 2 indicate that some languages have a strong preference for either left or right
branching.

• sup presents UAS scores from a supervised parser trained on the training portion
of the target treebanks.

• UDP presents UAS scores achieved in unsupervised dependency parsing (Mareček
and Straka, 2013) on the test portion of the target treebank data.

• Projected results under different settings
– unsup40 presents UAS scores for parsing the test data with unsupervised

POS tags (tagset size 40). We also experimented with different tagset size:
20, 80 and 160. We chose the tagset size that gave the best average accuracy.

– dir proj shows UAS scores from directly projecting translated English test
data onto target test sentences.

– univ: test data is tagged by universal POS tagger before parsing.
– gold: test data is tagged with gold POS tags before parsing.
– sup: test data is tagged by supervised POS tagger before parsing.

For the sake of comparison, we reproduce delexicalized parser results on our data
with two settings: (i) delexicalized parser trained on the POS tags of CoNLL 2007 (Nivre
et al., 2007) English data and (ii) delexicalized parser trained on the POS tags of En-
glish translations obtained from the MT system. The results are shown in Table 3. For
both settings, we obtain target POS tags in a supervised manner. We also provide
delexicalized parser results from McDonald et al. (2011a). One intriguing aspect of
these results is that delexicalized parsers obtained from the machine translated texts
perform better than the delexicalized parser obtained from the CoNLL 2007 data (48.4
vs. 47.8). McD 2011 has better overall results compared to our delexicalized parsers.
We attribute this to difference in parser training parameters as well as the usage of

5http://ufal.mff.cuni.cz/udp/

99

http://ufal.mff.cuni.cz/udp/

PBML 102 OCTOBER 2014

Lang. Delex CoNLL Delex GT McD 2011
ar 29.1 31.9 -
bg 52.8 51.4 -
cs 35.6 35.4 -
da 44.6 39.7 45.5
de 47.5 48.1 47.5
el 59.0 60.5 65.2
es - - 52.4
hu 45.0 46.2 -
it 52.9 57.2 56.3
nl - - 66.5
pt 65.4 63.5 67.7
sl 36.5 44.2 -
sv 57.7 54.5 59.7
avg 47.8 48.4 57.6

Table 3. Delexicalized direct transfer parsers comparison (unlabeled attachment score
– UAS). Delex CoNLL – delexicalized parser trained on the CoNLL 2007 (Nivre et al.,

2007) data. Delex GT – delexicalized parser trained on the POS tags of English
translations obtained using Google Translate API. McD 2011 – results from McDonald

et al. (2011a).

POS projection instead of a supervised POS tagger. When we make an overall com-
parison (Tables 2 & 3), the advantages of training the supervised taggers (both original
and universal POS) are clearly visible. However, unsup40 outperforms UDP by 8.2%
absolute UAS score, and also gives slightly better results with respect to delex CoNLL
and delex GT. Remember, both delex CoNLL and delex GT use supervised target taggers,
that means, unsup40 does not use any labeled target resources, but still performs bet-
ter than other strategies. This suggests that, the syntactic projection which crucially
relies on bitexts can still be beneficial even in the absence of high quality bitexts.

5. Discussion

From the results given in the previous section we can see that the average UAS
of parsing models trained on the projected trees outperforms left and right baselines,
while it is well below the supervised parser UAS, which was expected. In most cases it
is above the unsupervised parser UAS, which was not guaranteed before performing
our experiments. The performance difference between using hand-designed POS tags
of the original treebanks and unsupervised tags (induced from large unannotated
data) is surprisingly small.

Many techniques have been proposed in the past to address variety of resource
poor scenarios, to which we would like to add one more scenario, the availability of an

100

Ramasamy, Mareček, Žabokrtský Dependency Transfer Using MT Texts (93–104)

MT system from a resource-poor language to a resource-rich language. To summarize,
if one wants to parse a text in a language, the following procedure typically leads to
the best performance:

1. If there is a treebank for the language, use it for training a supervised parser.
2. If there is no treebank, but a POS tagger exists, then develop a conversion to the

universal tagset and use the delexicalized parser.
3. If the tagger is not available, but an MT system from the language to English

exists, then use our approach.
4. If none of the previous steps is applicable, then use unsupervised parsing.
There are published treebanks for around 40 languages, and there are more than

70 languages supported by Google Translate. So one can expect around 30 languages
for which either step 2 or 3 leads to state-of-the-art results. Given the quick growth of
the number of languages covered by Google Translate, we believe that our approach
will be viable for more and more languages.

In addition, our approach might be helpful for languages whose treebanks and
taggers are available only under very restrictive licenses.

6. Conclusion

In this paper, we have considered the dependency induction task for a specific
resource-poor scenario in which only MT system from a resource-poor language to
a resource-rich language is available. We have used machine translated bitexts as a
substitute for high quality bitexts, and used source language MT outputs and target
language texts as a basis for projection-based transfer approach. The experimental re-
sults show that, in realistic scenarios, the projection-based transfer can be combined
with unsupervised target POS tagger to achieve better parsing performance than un-
supervised parser and similar performance as delexicalized transfer parsers. In the
future, it would be interesting to compare transfer parsers induced from human trans-
lated bitexts and machine translated bitexts and ascertain whether MT outputs can be
used as a substitute for tasks which require bitexts.

Acknowledgements

This research has been supported by the grant no. GPP406/14/06548P of the Grant
Agency of the Czech Republic. This work has been using language resources devel-
oped and/or stored and/or distributed by the LINDAT/CLARIN project of the Min-
istry of Education of the Czech Republic (project LM2010013).

Bibliography

Blunsom, Phil and Trevor Cohn. Unsupervised induction of tree substitution grammars for
dependency parsing. In Proceedings of the 2010 Conference on Empirical Methods in Natural

101

PBML 102 OCTOBER 2014

Language Processing, EMNLP ’10, pages 1204–1213, Stroudsburg, PA, USA, 2010. Association
for Computational Linguistics.

Blunsom, Phil and Trevor Cohn. A hierarchical Pitman-Yor process HMM for unsupervised
part of speech induction. In Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies, pages 865–874, Portland, Oregon, USA,
June 2011. Association for Computational Linguistics.

Clark, Alexander. Inducing syntactic categories by context distribution clustering. In Proceed-
ings of the 2Nd Workshop on Learning Language in Logic and the 4th Conference on Computational
Natural Language Learning - Volume 7, CoNLL ’00, pages 91–94, Stroudsburg, PA, USA, 2000.
Association for Computational Linguistics.

Das, Dipanjan and Slav Petrov. Unsupervised part-of-speech tagging with bilingual graph-
based projections. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages 600–609, Stroudsburg,
PA, USA, 2011. Association for Computational Linguistics. ISBN 978-1-932432-87-9. URL
http://dl.acm.org/citation.cfm?id=2002472.2002549.

Durrett, Greg, Adam Pauls, and Dan Klein. Syntactic transfer using a bilingual lexicon. In Pro-
ceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pages 1–11, Jeju Island, Korea, July 2012. Associa-
tion for Computational Linguistics. URL http://www.aclweb.org/anthology/D12-1001.

Ganchev, Kuzman, Jennifer Gillenwater, and Ben Taskar. Dependency grammar induction via
bitext projection constraints. In Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP:
Volume 1 - Volume 1, ACL ’09, pages 369–377, Stroudsburg, PA, USA, 2009. Association for
Computational Linguistics. ISBN 978-1-932432-45-9. URL http://dl.acm.org/citation.
cfm?id=1687878.1687931.

Hwa, Rebecca, Philip Resnik, Amy Weinberg, Clara Cabezas, and Okan Kolak. Bootstrapping
parsers via syntactic projection across parallel texts. Natural Language Engineering, 11:311–
325, 9 2005. ISSN 1469-8110. doi: 10.1017/S1351324905003840. URL http://journals.
cambridge.org/article_S1351324905003840.

Kuhn, Jonas. Experiments in parallel-text based grammar induction. In Proceedings of the
42Nd Annual Meeting on Association for Computational Linguistics, ACL ’04, Stroudsburg, PA,
USA, 2004. Association for Computational Linguistics. doi: 10.3115/1218955.1219015. URL
http://dx.doi.org/10.3115/1218955.1219015.

Majliš, Martin and Zdeněk Žabokrtský. Language richness of the web. In Proceedings of the Eight
International Conference on Language Resources and Evaluation (LREC 2012), Istanbul, Turkey,
May 2012. European Language Resources Association (ELRA). ISBN 978-2-9517408-7-7.

Mareček, David and Milan Straka. Stop-probability estimates computed on a large corpus im-
prove Unsupervised Dependency Parsing. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 281–290, Sofia, Bul-
garia, August 2013. Association for Computational Linguistics.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-Projective Dependency
Parsing using Spanning Tree Algorithms. In Proceedings of Human Langauge Technology Con-

102

http://dl.acm.org/citation.cfm?id=2002472.2002549
http://www.aclweb.org/anthology/D12-1001
http://dl.acm.org/citation.cfm?id=1687878.1687931
http://dl.acm.org/citation.cfm?id=1687878.1687931
http://journals.cambridge.org/article_S1351324905003840
http://journals.cambridge.org/article_S1351324905003840
http://dx.doi.org/10.3115/1218955.1219015

Ramasamy, Mareček, Žabokrtský Dependency Transfer Using MT Texts (93–104)

ference and Conference on Empirical Methods in Natural Language Processing (HTL/EMNLP),
pages 523–530, Vancouver, BC, Canada, 2005.

McDonald, Ryan, Slav Petrov, and Keith Hall. Multi-source transfer of delexicalized depen-
dency parsers. In Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP ’11, pages 62–72, Stroudsburg, PA, USA, 2011a. Association for Computa-
tional Linguistics. ISBN 978-1-937284-11-4. URL http://dl.acm.org/citation.cfm?id=
2145432.2145440.

McDonald, Ryan, Slav Petrov, and Keith Hall. Multi-source transfer of delexicalized depen-
dency parsers. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pages 62–72, Edinburgh, Scotland, UK., July 2011b. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/D11-1006.

McDonald, Ryan, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das,
Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, Claudia Bedini,
Núria Bertomeu Castelló, and Jungmee Lee. Universal dependency annotation for multi-
lingual parsing. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 92–97, Sofia, Bulgaria, August 2013. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P13-2017.

Nivre, Joakim, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and
Deniz Yuret. The CoNLL 2007 Shared Task on Dependency Parsing. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 915–932, Prague, Czech Republic,
June 2007. Association for Computational Linguistics.

Petrov, Slav, Dipanjan Das, and Ryan McDonald. A universal part-of-speech tagset. In Pro-
ceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12),
Istanbul, Turkey, may 2012. European Language Resources Association (ELRA). ISBN 978-
2-9517408-7-7.

Smith, David A. and Jason Eisner. Parser adaptation and projection with quasi-synchronous
grammar features. In Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing: Volume 2 - Volume 2, EMNLP ’09, pages 822–831, Stroudsburg, PA,
USA, 2009. Association for Computational Linguistics. ISBN 978-1-932432-62-6. URL
http://dl.acm.org/citation.cfm?id=1699571.1699620.

Spitkovsky, Valentin I., Hiyan Alshawi, and Daniel Jurafsky. Breaking out of local optima with
count transforms and model recombination: A study in grammar induction. In Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1983–1995,
Seattle, Washington, USA, October 2013. Association for Computational Linguistics.

Spoustová, Drahomíra, Jan Hajič, Jan Votrubec, Pavel Krbec, and Pavel Květoň. The Best of Two
Worlds: Cooperation of Statistical and Rule-Based Taggers for Czech. In ACL ’07: Proceed-
ings of the Workshop on Balto-Slavonic Natural Language Processing, pages 67–74, Morristown,
NJ, USA, 2007. Association for Computational Linguistics.

Täckström, Oscar, Ryan McDonald, and Jakob Uszkoreit. Cross-lingual word clusters for direct
transfer of linguistic structure. In Proceedings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
477–487, Montréal, Canada, June 2012. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/N12-1052.

103

http://dl.acm.org/citation.cfm?id=2145432.2145440
http://dl.acm.org/citation.cfm?id=2145432.2145440
http://www.aclweb.org/anthology/D11-1006
http://www.aclweb.org/anthology/P13-2017
http://dl.acm.org/citation.cfm?id=1699571.1699620
http://www.aclweb.org/anthology/N12-1052

PBML 102 OCTOBER 2014

Täckström, Oscar, Ryan McDonald, and Joakim Nivre. Target language adaptation of dis-
criminative transfer parsers. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
1061–1071, Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/N13-1126.

Toutanova, Kristina and Christopher D. Manning. Enriching the Knowledge Sources Used in
a Maximum Entropy Part-of-Speech Tagger. In Proceedings of the Joint SIGDAT Conference on
Empirical Methods in Natural Language Processing and Very Large Corpora (EMNLP/VLC-2000),
pages 63–70, Hong Kong, October 2000.

Zeman, Daniel and Philip Resnik. Cross-language parser adaptation between related lan-
guages. In IJCNLP 2008 Workshop on NLP for Less Privileged Languages, pages 35–42, Hyder-
abad, India, 2008. Asian Federation of Natural Language Processing, International Institute
of Information Technology.

Zeman, Daniel, David Mareček, Martin Popel, Loganathan Ramasamy, Jan Štěpánek, Zdeněk
Žabokrtský, and Jan Hajič. HamleDT: To Parse or Not to Parse? In Proceedings of the Eight In-
ternational Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, may
2012. European Language Resources Association (ELRA). ISBN 978-2-9517408-7-7.

Address for correspondence:
Loganathan Ramasamy
ramasamy@ufal.mff.cuni.cz
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics,
Charles University in Prague
Malostranské náměstí 25
118 00 Praha 1, Czech Republic

104

http://www.aclweb.org/anthology/N13-1126

The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 105–126

An Interplay between Valency Information and Reflexivity

Václava Kettnerová, Markéta Lopatková, Jarmila Panevová
Charles University in Prague, Faculty of Mathematics and Physics

A Response to R. Wagner’s Contribution:
A Case of Collision in Principles of Language Description?

Abstract
A language description based on a formally defined framework has many advantages: The

possibility to check the inner consistency of the model as well as the possibility of comparison
with other models or with pure descriptive approaches belong to its main priorities.

Roland Wagner’s contribution published in the last issue of this journal – focusing (among
other ideas) on the role of Czech reflexives – presents several critical remarks concerning the
Functional Generative Description. These remarks represent a good challenge for the authors
developing this model to fill empirical gaps and to make clear some theoretical presupposi-
tions concerning valency frames of verbs and their respective reflexive counterparts that are
primarily addressed by Roland Wagner’s critical survey.

1. Introduction

Roland Wagner’s (RW in sequel) account how the Czech reflexives se/si are an-
alyzed within the theoretical framework of the Functional Generative Description
(FGD in sequel) – summarized in his article (Wagner, 2014) as Principle 2 – is cor-
rect: (i) Those reflexives that are either parts of a lexical entry of a verb lemma, see
examples (1) and (2), or those that are grammatical markers of generalized Actors,
see (3), are considered reflexive particles, while (ii) the reflexives se/si representing
the valency complementation coreferential with the subject of the sentence (or with

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: lopatkova@ufal.mff.cuni.cz
Cite as: Václava Kettnerová, Markéta Lopatková, Jarmila Panevová. An Interplay between Valency Information
and Reflexivity. The Prague Bulletin of Mathematical Linguistics No. 102, 2014, pp. 105–126.
doi: 10.2478/pralin-2014-0018.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 102 OCTOBER 2014

another embedded subject), see examples (4) and (5), are interpreted in FGD as re-
flexive pronouns expressing the respective syntactic function in the sentence.

(1) Jan
John

se
refl

smál.
laughed

En. John was laughing.
(2) Dny

daytime
se
refl

v létě
in summer

prodlužují.
prolong

En. Daytime is becoming longer in summer.
(3) Termín

the deadline
odeslání
for submitting

článku
a paper

se
refl

prodloužil.
extended

En. The deadline for submitting a paper was extended.
(4) Petr

Peter
se
refl

každé ráno
every morning

myl
washed

studenou vodou.
with cold water

En. Peter washed himself with cold water every morning.
(5) Matka

mother
nařídila
ordered

Petrovi
Peter

umýt
wash

se.
refl

En. The mother ordered Peter to wash himself.

Further, the overall claim that according to FGD “differences in valency frames
correlate with differences in lexical meaning […]” (Principle 1 in RW’s text) reflects
one of the main ideas of the valency theory of verbs in FGD and its consequence (pos-
tulated by the author) that a single lexical unit of a verb cannot be assigned with more
than one valency frame is entirely acceptable. However, the notion of (grammatical)
meaning and its reflection in valency frames of verbs require clarification.

In valency lexicons elaborated within FGD – henceforth we (similarly as RW) refer
to the valency lexicon of Czech verbs, VALLEX1 – valency frames are modeled as a
sequence of valency slots; each slot stands for one complementation and consists of:

• the semantic relation to its governing verb (labeled by a functor),
• the information on the type of valency complementation with respect to its obli-

gatoriness, and
• possible morphemic forms which are specified for the complementations whose

form is prescribed by the verb.
However, in the strict sense, only the information on the number and the type of va-
lency complementations is relevant for grammatically structured meaning (the tec-
togrammatical layer of FGD) of the verb; the information on possible morphemic
form(s) of a valency complementation characterizes its surface syntactic expression.
As it is the correlation between functors and morphemic forms that determines the

1The Valency Lexicon of Czech Verbs, VALLEX, is available at http://ufal.mff.cuni.cz/vallex/2.5,
or in the published version (Lopatková et al., 2008).

106

http://ufal.mff.cuni.cz/vallex/2.5

Kettnerová, Lopatková, Panevová Valency Information and Reflexivity (105–126)

meaning of a lexical unit, both types of information are encoded in valency frames.2
Let us stress that in the FGD based valency lexicons, the morphemic expressions of
valency complementations are limited to the usage of a lexical unit of a verb in active,
nonreflexive, nonreciprocal constructions, see esp. (Lopatková et al., 2008).

Let us now repeat the case of seeming collision of Principles 1 and 2 as it was
exemplified by RW in his article by the verb vnímat ‘to see, to perceive’, see examples
(6)–(8) ((2)–(4) in his paper). RW demonstrates the change of the morphological form
of the participant EFFect from jako+Acc (in (6)) into jako+Nom when PATient is lexically
expressed by the clitic form of the reflexive pronoun (in (7)) (while the morphemic
form jako+Acc of EFF is indicated in the VALLEX lexicon, the morphemic expression
jako+Nom is missing there, see (20)). Then he infers that – on the basis of Principle 1
– the change in morphosyntactic form of EFFect implies the necessity of two different
lexical units for the two usages of the verb vnímat ‘to see, to perceive’ in examples (6)
and (7). However, in accordance with Principle 2, the usages of the verb vnímat ‘to see,
to perceive’ in sentences (7) and (8) represent the same lexical unit since the non-clitic
reflexive together with the clitic reflexive forms a single morphological paradigm of
the pronoun.

(6) Vnímá
(he) sees

syna
sonAcc

jako soka.
as a rivaljako+Acc

(RW (2))

En. He sees his son as a rival.

(7) Sám
himselfNom

se
reflclitic

Acc

vnímá
(he) sees

jako síla „ochraňující divadlo“. (RW (3), SYN2005)
as a forcejako+Nom “sheltering theatre”

En. He sees himself as a force “sheltering theatre”.

2 Another possibility is to accept the concept of structural and lexical cases, as it is proposed by Karlík
(2000), and limit the information on possible morphemic expression(s) only to valency complementations
expressed by lexical cases. However, there are several issues undermining such solution.

(i) From a theoretical point of view, non-prototypical changes of structural cases should be described
and taken into account when operating with this dichotomy (compare the prototypical change of Acc into
Nom in the passive construction with the non-prototypical change of the Acc into Dat in the nominalization:
Prezident vyzvalactive premiéraacc k rezignaci → Premiérnom byl vyzvánpassive k rezignaci prezidentem, however,
Prezident vyzvalactive premiéraacc k rezignaci → výzva (prezidenta) premiérovidat) (Kolářová, 2010).

(ii) From a lexicographic point of view, structural cases can be omitted on condition that there exists
an elaborated classification of verbs allowing for the prediction of changes of structural cases in different
syntactic contexts. For the time being, we are not aware of a sophisticated reliable classification of Czech
verbs that could be adopted for the lexicon.

Technically, as the information on the (in)transitivity (and maybe other features) of individual lexical
units should be recorded for each lexical unit, we opt for the equivalent information on the nominative and
accusative complementation.

107

PBML 102 OCTOBER 2014

(8) Karel IV.
Charles IV

vnímá
sees

sebe
reflnon-clitic

Acc

jako vyvoleného třetího krále.
as chosen third kingjako+Acc

(RW (4), SYN2005)

En. Charles IV sees himself as the chosen third king.

Let us point out that – with respect to the clarified interpretation of Principle 1
(see above) – we do not face in fact a collision of the two principles (as the morphemic
changes related to reflexivity are not considered relevant for delimiting a new lexical
unit of a verb). What we must in fact cope with is a gap in the description of changes
in valency structures of Czech verbs as described for VALLEX, see esp. (Kettnerová
and Lopatková, 2009), (Kettnerová et al., 2012a).3

Though the number of the verbs concerned is very limited4 (despite the fact that
this change is exhibited by relatively frequent verbs, it is very rare in corpus data, see
the Appendix for the statistics), RW’s remarks remind the authors of the VALLEX lex-
icon that the changes in morphosyntactic expressions of valency complementations
conditioned by a broader syntactic context have not yet been described exhaustively
enough.

In the next sections, we demonstrate that the linguistic phenomenon addressed by
RW can be easily integrated in the descriptive apparatus of FGD. In the following
section, an enhanced version of FGD that takes a close interplay of lexical and gram-
mar information into account is introduced (Section 2). Further, the application of the
principles of the enhanced version of FGD on the analysis of the addressed phenom-
ena is presented in Section 3. Finally, theoretical considerations concerning reflexivity
are addressed in Section 4.

2. Enhanced FGD: grammar and lexical components

Contemporary linguistic frameworks are based on the division of labor between
lexical and grammar components; each of which gives greater or lesser prominence
either to a lexical, or to a grammar part of the linguistic description. Let us point
to Chomskyan generative grammar and the Meaning Text Theory as two illustrative
examples of almost opposing tendencies: in the former, the key role is performed by

3We would like to express our gratitude to Richard Wagner for pointing out this specific change in
valency structure of verbs related to reflexivity.

4RW found 21 lexical units of verbs contained in VALLEX in total leading to the seeming conflict be-
tween Principle 1 and Principle 2. We agree with his findings (with the exception of verbs angažovat1,
brát7, udržovat/udržet3 and fotografovat1, which do not meet the required pattern; on the other hand, we
can add other verbs as stanovit2, přijímat/přijmout5, and přijímat/přijmout9; see the Appendix for the full
list of affected verbs in VALLEX). We can realize that the analyzed phenomenon is quite rare – for most
verbs it concerns less than 1% of their occurrences in CNC (only for the verbs prezentovat ‘to present’ and
označovatimpf ‘to declare, to call’ the rough estimation exceeds 3.2% and 2.4%, respectively; for three other
verbs the estimation reaches 1–2% (for one of their aspectual counterparts)).

108

Kettnerová, Lopatková, Panevová Valency Information and Reflexivity (105–126)

a grammar component, while the latter relies esp. on a thoroughly elaborated lexical
component.

Since the original proposal of FGD (Sgall, 1967), both grammar and lexical mod-
ules have been taking into account; however, the main focus has been laid on gram-
mar, esp. syntactic description of a language (Sgall et al., 1986). The importance of
a lexical module has been growing since the extensive application of the theoretical
results on corpus data during the work on the Prague Dependency Treebank (Hajič
et al., 2006). At present, there are several lexicons elaborated within the theoretical
framework of FGD: PDT-VALLEX (Urešová, 2011), VALLEX (Lopatková et al., 2008),
EngVALLEX (Cinková, 2006; Šindlerová and Bojar, 2009).

Recently, a special attention has been devoted to linguistic phenomena on the lexi-
con-grammar interface, requiring a close interplay between grammar and lexical mod-
ules: e.g., grammatical diatheses, reflexivity and reciprocity. They represent more or
less productive syntactic operations that are regular enough to be described by for-
mal syntactic rules. Although general semantic and syntactic observations can be
usually made about these phenomena, their applicability is still lexically conditioned
and as such has to be recorded in lexical entries of relevant verbs in a lexicon, see esp.
(Kettnerová and Lopatková, 2009, 2011; Kettnerová et al., 2012a,b) and (Panevová and
Ševčíková, 2013).

As a result, the valency characteristics of lexical units are partially stored in a va-
lency lexicon, partially they are derived by grammatical rules (closely cooperating
with the lexicon). Let us exemplify this cooperation on the example of the passive
diathesis:

(9) Stát zvýhodní podnikatelské záměry v hospodářsky problémových oblastech vyššími
podporami a speciálními programy. (PDT, modified)
En. The government makes business plans in business problem regions favor-
able by higher grants and special programs.

(10) Podnikatelské záměry v hospodářsky problémových oblastech jsou zvýhodněny vyššími
podporami a speciálními programy. (PDT)
En. Business plans in business problem regions are made favorable by higher
grants and special programs.

(11) zvýhodnit1 ‘to make favorable’ … ACT1 PAT4 MEANStyp7
-diat: pass, deagent, res-být, res-mít

First, the valency frame of the verb zvýhodnit1 ‘to make favorable’ consists of two
valency complementations, ACTor and PATient. The VALLEX lexicon contains infor-
mation on possible morphemic forms of valency complementations for the active us-
age of the verb, as in (9) – namely ACTor in nominative and PATient in accusative,

109

PBML 102 OCTOBER 2014

see (11);5 moreover, the lexicon entry should include the information that the lexical
unit allows for passivization (attribute -diat, value pass).6 Second, the grammatical
rule (12) is formulated that makes it possible to derive the valency frame for passive
usages of the verb, see (Kettnerová and Lopatková, 2009). On the basis of this rule,
a derived valency frame for the verb zvýhodnit1 ‘to give an advantage’ is generated7

(see also Urešová and Pajas, 2009; Urešová, 2011):

(12) ACT1 PAT4 MEANStyp7 ⇒ ACT7,od+2 PAT1 MEANStyp7

Let us focus on the examples introduced by Roland Wagner now. In general,
the forms introduced by jako ‘as’ represent (as RW pointed) a tricky question in the
description of the Czech language: jako – which can introduce both prepositionless
nouns and prepositional noun groups (and clauses as well) – has an unclear morpho-
logical status and the case of the nominal varies depending on the syntactic context, as
examples (6)–(8) demonstrate. The following example sheds more light on the prob-
lem of valency complementations that are introduced with the expression jako and
the way it can be treated within the descriptive apparatus of FGD (and VALLEX in
particular).

(13) Občanský princip lidských práv chápal jako její základní prvek/hodnotu, nikoli vyčer-
pávající cíl a smysl. (PDT, the word hodnotu ‘value’ added due to the morpho-
logical ambiguity of prvek ‘component’)
En. He viewed the civil principle of human rights as her substantial compo-
nent/value, not as an overall aim and sense.

(14) Občanský princip lidských práv byl chápán jako její základní prvek/hodnota, nikoli
vyčerpávající cíl a smysl. (PDT, modified)
En. The civil principle of human rights was viewed as its substantial compo-
nent/value, not as an overall aim and sense.

(15) chápat2 ‘to interpret’ … ACT1 PAT4 EFFjako+4
-diat: pass, deagent, res-být

5The abbreviation ‘typ’ denotes so called ‘typical’ free modifications as they were introduced in
VALLEX; they are typically related to some verbs (or even to whole classes of them) but they do not enter
the core valency frame.

6Whereas the proposal of the structure of the VALLEX lexicon has been already published and discussed
in the linguistic forum, an on-line version of the lexicon with explicit information on possible diatheses (and
lexicalized alternations) is under development (a new lexicon release is planned at the end of 2015).

7Note that the instrumental form of the ACTor in a passive sentence is possible but it cannot be combined
with an instrumental MEANS.

Further, the prepositional group od+Gen of ACT is rare in the corpus data but it is not excluded as the
following example illustrates: Obce, ve kterých se bude důsledně třídit sklo, jsou zvýhodněny při platbě odměn
od společnosti EKO-KOM. (from the Czech National Corpus (CNC), SYN series, https://kontext.korpus.
cz/).

110

https://kontext.korpus.cz/
https://kontext.korpus.cz/

Kettnerová, Lopatková, Panevová Valency Information and Reflexivity (105–126)

The verb chápat2 ‘to interpret’ is characterized by the valency frame given in (15)
for an unmarked active usage (as in (13)). The verb can be definitely used also in a
passive construction, see (14). Then the passivization affects not only the form of the
ACTor and PATient complementations, but also the form of the EFFect complementa-
tion (jako+Acc → jako+Nom) – all these changes are treated by the respective gram-
matical rule (16), which derives the valency frame for marked passive usages from the
frame corresponding to the unmarked active ones provided in (15), see (Kettnerová
and Lopatková, 2009):

(16) ACT1 PAT4 EFFjako+4 ⇒ ACT7,od+2 PAT1 EFFjako+1

3. FGD solution of the seeming collision

RW’s examples represent a prototypical case of such syntactic operation as men-
tioned above. Let us illustrate the proposed cooperation of the grammar and lexical
components of FGD in the description of this phenomenon.

In the VALLEX lexicon, possible reflexivization of the verbal participant corefer-
ential with the subject is indicated by the presence of the value cork in the attribute
reflexivity (-rfl; the index k encodes the morphemic case, i.e., 4 for accusative and 3 for
dative). This value – identifying unambiguously the complementation that can be re-
flexivized8 – is introduced for each lexical unit of a verb allowing for reflexivization of
a particular member of a core valency frame (i.e., inner participants either obligatory
or optional, and obligatory free modifications). For instance, in the lexical entry of
the verb obdivovat1 ’to admire’, the attribute reflexivity records the information on the
possibility of the accusative PATient to be reflexivized, see (17), and the verb usages in
examples (18)–(19); whereas in (18) the slot for PATient is filled by žáky ‘pupils’, in (19)
the reflexive se fills this slot (the coreferential items are marked by the index i in the
examples).

8From the theoretical point of view, it would be more appropriate to specify reflexivity in terms of
functors of valency complementations (not in terms of morphemic forms). However, the information on
reflexivity is not complete in the VALLEX lexicon at present, see below. Thus we prefer to use special values
(cor3, cor4) not to make an impression that all instances of possible reflexivization of individual valency
members are recorded.

In the current version, reflexivity is captured only in such cases when a participant can be lexically
expressed by the clitic forms of the reflexive pronoun se/si (certainly, also the non-clitic forms sebe/sobě may
be used here due to the substitutability criterion (according to which the clitic forms can be substitute by
the non-clitic forms if the occurrence of the reflexive stands for the pronoun)). However, VALLEX does not
encode cases where the non-clitic variant of the reflexive pronoun is grammaticalized (i.e., prepositional
groups, the instrumental and genitive case). The clitic variant has been given preference in the description
of reflexivity due to the ambiguity of the clitic reflexives se/si, which produces severe problems for both
human users and NLP tools.

111

PBML 102 OCTOBER 2014

(17) obdivovat1 ‘to admire’ … ACT1 PAT4,že,cont
-rfl: cor4

(18) Učitel obdivoval žáky, jak dobře zvládli výuku. (= žáci zvládli)
En. The teacher admired pupils how well they managed the lessons.

(19) Učitel
the teacheri

se
reflclitic

i

obdivoval,
admired

jak dobře zvládl neposlušné děti. (= sám sebe)
how well (hei) managed disobedient children

En. The teacher admired himself how well he managed disobedient children.

Let us return to RW’s example of the verb vnímat3 ‘to see, to perceive’. Its valency
frame in the meaning discussed here should have the following form in VALLEX:

(20) vnímat3 ‘to see, to perceive’ … ACT1 PAT4,že EFFjako+4
-rfl: cor4

As the verb definitely allows for reflexivization of PATient, the attribute -rfl should
provide the value cor4, see (20). As the morphemic form of EFFect is sensitive to
syntactic context in which it is used – namely its form changes from jako+Acc into
jako+Nom when the lexical unit is used in a reflexive construction with PATient lex-
ically realized by the clitic form of the reflexive pronoun se, see (21) (RW correctly
pointed out that the non-clitic long form of the reflexive pronoun sebe does not bring
about such change, see (22)). The grammar component of FGD provides a formal syn-
tactic rule capturing this change. This rule (as other rules describing changes in va-
lency structure of verbs) allows for the derivation of the valency frame of the marked
reflexive usage of the verb vnímat3 ‘to see, to perceive’ (23) from the valency frame
corresponding to an unmarked usage given in (20):

(21) Otec
fatheri

se
reflclitic

i

vnímá
sees

jako sok/jako génius.
as a rival/as a geniusi,Nom

(= otec se cítí někomu sokem/otec se pokládá za génia)
En. The father sees himself as a rival/as a genius.

(22) Otec
fatheri

sebe
reflnon-clitic

i

(na rozdíl od matky)
(in constrast to the mother)

vnímá
sees

jako soka /
as a rivali,Acc

* jako sok
* as a rivali,Nom

(svého syna).
(of his son)
En. (Contrary to the mother), the father sees himself as a rival (of his son).

(23) ACT1 PAT4,že EFFjako+4 ⇒ ACT1 PAT4,že EFFjako+1

The rule allowing for the generating the valency frame underlying the usage of a
verb in reflexive constructions consists of a single change in the morphemic form of
the EFFect complementation and its application is conditioned by the choice of the

112

Kettnerová, Lopatková, Panevová Valency Information and Reflexivity (105–126)

clitic reflexive pronoun. The grammar module of FGD cooperates with the data stored
in the lexical module where the possibility of the verb vnímat3 ‘to see, to perceive’ to
occur in reflexive constructions is specified in its lexical entry. On the same basis, the
other verbs with EFFect changing its morphemic expression depending on the reflex-
ive context (e.g., deklarovat2 ‘to declare’, hodnotit1 ‘to evaluate’, chápat2 ‘to perceive, to
take as’, interpretovat1 ‘to interpret’, nazývat/nazvat1 ‘to call’, ohodnocovat/ohodnotit1 ‘to
rate’, označovat/označit2 ‘to declare, to call’, pojímat/pojmout3 ‘to comprehend, to con-
ceive’, prezentovat2 ‘to present’, přijímat/přijmout5,9 ‘to accept’, stanovit2 ‘to appoint’,
určovat/určit3 ‘to appoint, to designate’, ustavovat/ustavit2 ‘to establish’, usvědčovat/u-
svědčit2 ‘to convict’, uznávat/uznat2 ‘to recognize’, vídat/vidět5 ‘to see’, vnímat3 ‘to see,
to perceive’, vyhlašovat/vyhlásit2 ‘to proclaim’, znát1 ‘to know’) indicated by RW as the
source of “collision between two descriptive Principles of FGD” can be analyzed.9

4. Further grammatical aspects of the issue

We accept two issues from RW’s study as most urgent for a further analysis: (i) The
integration of the morphosyntactic change from jako+Acc into jako+Nom associated
with the EFFect complementation into the descriptive apparatus of FGD (which we
have addressed in Sections 2 and 3) and (ii) the explanation of the congruence: possi-
ble alternative jako+Nom within the verbal reflexivity with the form jako+Acc for the
EFFect complementation (as an obligatory or optional valency member) is discussed
in this Section.

4.1. EFFect and COMPLement verbal complementations

In addition to the valency complementation EFFect, the forms introduced by jako
’as’ (either with the accusative case or with the nominative case) can function also as
a free modification COMPLement. We can notice that the change of the morphemic ex-
pression from jako+Acc into jako+Nom may in fact reflect a change in the dependency
structure (namely the type of the complementation and the target of a coreferential
link) of the sentence, which brings about a semantic shift, see examples (24)–(26) and
their dependency trees in Figures 1–4 (in the examples, subscripts display corefer-
ences captured by arrows in the trees).

(24) Klaus
Klausi,Nom

vnímá
takes

své soky
hisi rivalsj,Acc

jako hráč. (RW 25a)
as a sportsmani,Nom

En. Klaus takes his rivals as a sportsman. (= Klaus is a sportsman)

9Note that this type of constructions concerns not only the above mentioned verbs with the EFFect but we
can observe the same change in the morphemic form of the optional COMPLement free modification with,
e.g., the verbs definovat ‘to define’, charakterizovat ‘to characterize’, identifikovat ‘to identify’, kvalifikovat ‘to
qualify’, poznávat/poznat ‘to get to know’, předkládat/předložit ‘to introduce, to propose’, představovat/představit
‘to introduce’, vyfotografovat ‘to take a photo’, zachovávat /zachovat ‘to keep’, zapisovat/zapsat ‘to record, to
register’.

113

PBML 102 OCTOBER 2014

(25) Jak
how

vnímáte
(youi,Nom) take

Prahu
Praguej,Acc

jako architekt? (RW 25b)
as an architecti,Nom

En. What do you as an architect think of Prague? (= you are an architect)
(26) Klaus

Klausi,Nom

vnímá
takes

své soky
hisi rivalsj,Acc

jako hráče.
as sportsmenj,Acc

En. Klaus takes his rivals as sportsmen. (= Klaus’s rivals are sportsmen)
(27) Jako křesťan

(Ii,Nom) as a Christiani,Nom

vnímám
take

lidský život
a human lifej,Acc

jako dar Boží,
as God’s giftj,Acc

s nímž nemám právo nakládat.
which I have no right to treat
En. I as a Christian see a human life as a God’s gift which I have no right to
treat.

(28) R. Steiner
R. Steineri,Nom

se
reflclitic

i,Acc

jako tvůrce teosofie
as an authori,Nom of theosophy

vždy
always

chápal
perceived

především
primarily

jako okultista.
as an occultisti,Nom

En. R. Steiner, as an author of the theosophy, always perceived himself pri-
marily as an occultist. (CNC, modified (jako tvůrce teosofie ‘as an author of
theosophy’ added))

(29) vnímat4 ‘to see, to perceive’ … ACT1 PAT4,že MANN
-rfl: cor4

The verb vnímat ‘to see, to perceive’ in (24) is described as the lexical unit vnímat4
in VALLEX with obligatory MANNer, see (29) (as RW also suggests). Then the com-
plementation expressed as jako+Nom has the function of an optional COMPLement
(Klaus, jsa hráč(em) ‘Klaus being a sportsman’), see Figure 1; the obligatory MANN is
not present in the surface structure (it can be understood as Klaus vnímá své soky způ-
sobem, jak to dělají hráči ‘Klaus takes his rivals in the same manner as sportsmen do’).
In sentence (25), the form jako+Nom clearly documents the function of COMPLement
(jakožto architekt ‘as being an architect’), with the pronominal adverb jak ‘how’ filling
the MANNer valency position of vnímat4, see Figure 2.

On the other hand, in example (26), vnímat3 is used and the regular form for EFFect
(jako+Acc) is used, see its valency frame (20); Figure 3 displays the dependency struc-
ture of the sentence.

An interesting example (27) with the verb vnímat3 illustrates that the forms with
jako ‘as’ can be used in both meanings in a single sentence: jako+Nom in jako křesťan
‘as a Christian’ has a function of COMPLement, whereas jako+Acc in jako dar Boží ‘as
God’s gift’ is EFFect (the substitution jako nadílku Boží ‘as God’s gift’ – documenting
the case form more transparently – may be used here), see see Figure 4.

114

Kettnerová, Lopatková, Panevová Valency Information and Reflexivity (105–126)

Klaus.ACT

vnímat.PRED

hráč.COMPL sok.PAT

Klaus vnímá své soky jako hráč.

#PersPron.APP

#Oblfm.MANN

Figure 1. Dependency structure of sentence (24) Klaus vnímá své soky jako hráč.

Jak vnímáte Prahu jako architekt?

jak.MANN

vnímat.PRED

architekt.COMPL Praha.PAT #PersPron.ACT

Figure 2. Dependency structure of sentence (25) Jak vnímáte Prahu jako architekt?

Moreover, example (28) (though rare in the corpus data) demonstrates that in case
of the reflexive construction with the clitic variant of the reflexive pronoun bothCOMPL-
ement and EFFect (if they are present) are expressed in nominative.

4.2. Agreement for EFFect and COMPLement complementations

Let us return to the issue of agreement for EFFect and COMPLement complemen-
tations in general. Based on the discussion presented below, we would like to clarify
an appropriateness of different cases agreement in sentences (30)–(34).

(30) Otec
the fatherj

vnímá
perceives

(svého) syna
(hisj) soni,Acc

jako soka.
as a rivali,Acc

En. The father perceives his son as a rival. (= son is a rival)

Klaus.ACT

vnímat.PRED

hráč.EFF sok.PAT

Klaus vnímá své soky jako hráče.

#PersPron.APP

Figure 3. Dependency structure of sentence (26) Klaus vnímá své soky jako hráče.

115

PBML 102 OCTOBER 2014

#PersPron.

ACT

vnímat.PRED

křesťan.
COMPL

život.
PAT

Jako křesťan vnímám lidský život jako dar Boží, …

lidský.
RSTR

dar.

EFF boží.
RSTR

Figure 4. Dependency structure of sentence (27) Jako křesťan vnímám lidský život jako
dar Boží, …

(31) Otec
the fatheri,Nom

se
reflclitic

vnímá
perceives

jako sok / jako génius.
as a rivali,Nom / as a geniusi,Nom

(= otec se cítí někomu sokem/otec se pokládá za génia)
En. The father perceives himself as a rival / as a genius.

(= father is a rival/genius)
(32) * Otec

the fatheri,Nom

se
reflclitic

i

vnímá
perceives

jako soka (svého syna).
* as a rivali,Acc (of hisi son)

(33) Otec
the fatheri,Nom

sebe
reflnon-clitic

i

(na rozdíl od matky)
(unlike the mother)

vnímá
perceives

jako soka (svého syna).
as a rivali,Acc (of hisi son)
En. (Unlike the mother,) the father perceives himself as a rival (of his son).

(34) * Otec
the fatheri,Nom

sebe
reflnon-clitic

i

(na rozdíl od potomků)
(unlike children)

vnímá
perceives

jako génius.
* as a geniusi,Nom

Both RW as well as the authors of this response do not accept the proposal given
by Oliva (2000, 2001) according to which the form se plays the role of particle without
its sentence function in all occurrences.10 Then other arguments for the distinction
between the pairs of examples (31)–(32) and (33)–(34) have to be found. Looking for
such arguments, it turns up to be an analogy of the “mysterious” complement agree-

10According to Oliva’s proposal, the following sentences (a)–(c) have (i) different lemmas (vidět for (a),
(c) and vidět se for (b)) and (ii) different syntactic structures (transitive verb in (a), (c) and intransitive verb
in (b)).

(a) Vidím tě. vs. (b) Vidím se. vs. (c) Vidím sebe.
Such analysis neglects parallelism in morphological paradigms of the non-reflexive and reflexive pronouns
(as pointed out by Wagner, 2014) and suppresses syntactic parallelism of the structures with (almost) iden-
tical meaning structure. Moreover, Oliva’s interpretation of all clitic reflexives as particles impedes the
explanation of reciprocity. See esp. (Panevová, 2001; Komárek, 2001; Wagner, 2014).

As a result, the treatment of the reflexives proposed by Oliva would lead to large (and theoretically
inadequate) expansion of the lexical data.

116

Kettnerová, Lopatková, Panevová Valency Information and Reflexivity (105–126)

ment pointed out in the arguments of Oliva (2000) in favor of his proposal. The same
arguments appeared also in the old observation made by Havránek (1928), see below.

The alternative description given by Panevová (2001, 2008) is based on the differ-
ence between possible antecedents (sources) for agreement in the case and number
of an analyzed complementation. Her analysis can be exemplified on examples (35)–
(38): In (37) and (38) there is only one source11 of agreement, i.e. chlapec ‘boy’, while in
(35) and (36) two possible sources of agreement (matka ‘mother’ and chlapec ‘boy’) are
present. The choice of the source of agreement is semantically motivated: whereas
in (35), it is chlapec, který je umyt celý ‘the boy who is entire washed’, and thus, it is
chlapce ‘boyAcc’ that is chosen as the source of agreement; in (36), it is matka, která je
celá uplakaná ‘mother who is entirely tearful’ that represents this source. To summa-
rize, examples (35) and (36) differ with respect to the sources for agreement and this
difference is reflected in the change of the form of the target of agreement (Acc in (35),
Nom in (36)).

The structure of sentence (37) is parallel to (35), the source of agreement remains
the same, i.e., the reflexive pronominal complementation in accusative. The only
change consists in the additional coreferential link between the reflexive pronoun sebe
and the ACTor chlapec ‘boy’. Although in example (38), the structure analogical to ex-
amples (35) and (37) is theoretically expected, the source of agreement differs – here
it is not the complementation in the accusative case, but the nominative complemen-
tation.

(35) Matka
mother

umyla
washed

chlapce
the boyi,Acc

celého.
wholei,Acc

En. The mother washed the entire boy. (= the boy was entirely washed)
(36) Matka

motheri,Nom

umyla
washed

chlapce
the boy

celá
wholei,Nom

uplakaná.
tearfuli,Nom

En. Being entirely tearful, the mother washed the boy. (= the mother was
tearful)

(37) Sebe
reflnon-clitic

i,Acc

chlapec
the boyi,Nom

umyl
washed

celého
wholei,Acc

(ale sestru ne).
(but not hisi sister)

En. The boy washed himself entirely (but not his sister).
(38) Chlapec

the boyi,Nom

se
reflclitic

i,Acc

umyl
washed

celý.
wholei,Nom

En. The boy washed himself entirely.

The tendency of the complement to agree as to the congruence with the subject
in nominative when the clitic variant of the reflexive pronoun is present has been

11The terminology controller and target in the domain of congruence is used by Corbett (2006); he admits
also the terms source or trigger (see Corbett, 2000, 2006). We prefer the term source here instead of the term
controller (used within FGD for coreferential relations).

117

PBML 102 OCTOBER 2014

already reflected by Havránek (1928), see (39). According to the author, the accusative
congruence – being rare already in the Old Czech – is limited to cases when the clitic
reflexive pronoun does not in fact refer to the ACT or himself but to his (future or past)
vision (thus a speaker sees himself as someone else). See Havránek’s examples (40)
and (41) interpreted by the author as acceptable in the context of memories (40) or in
the situation when a speaker was making a double of himself (41).

(39) cítí
(hei,Nom) feels

se
reflclitic

i,Acc

zdráv
fiti,Nom

(Havránek)

En. he feels fit
(40) viděl

(hei,Nom) saw
se
reflclitic

i,Acc

ležícího u řeky (Havránek)
lyingi,Acc by the river

En. he saw himself lying by the river
(41) udělal

(hei,Nom) made
se
reflclitic

i,Acc

tlustýho (Havránek)
fati,Acc

En. he made himself fat

The corpus data support Havránek’s interpretation also in the contemporary
Czech, see examples (42) and (45) and their paraphrases (43) and (46), respectively,
substantiating the semantic shift brought about by the accusative and nominative con-
gruence. In (42) the speaker describes himself in the future: the speaker is not actually
the man who has a house, a family and children at present but it is his future vision
of himself. The paraphrase with the nominative congruence is much more suitable in
the present context: in the situation when the speaker actually has a house, a family
and children, see (43). In (45), the speaker disapprovingly characterizes the presi-
dent of the Czech Republic Miloš Zeman; the accusative congruence emphasizes the
speaker’s disapproval: the president sees himself as a wise man but he is not actually
wise.

According to our introspective, although the nominative congruence for express-
ing the same meanings as in (42) and (45), respectively, is not entirely excluded, the
accusative agreement sounds more suitable for expressing that the PATient – despite
being lexically realized by the reflexive pronoun – is not in fact referentially identical
with the ACTor but it is rather a vision of himself, see (44) and (46). However, sparse
corpus data do not allow us to make any definitive conclusions about the semantic
shift between accusative and nominative congruence.

(42) „Kdybych si měl představit sám sebe za deset let,
“if I should imagine myself in ten years,

vidím
(Ii) see

se
reflclitic

i,Acc

jako člověka,
as a mani,Acc ,

který má dům, rodinu a děti,“
who has a house, a family and children,”

dodává. (CNC)
he is adding

En. “If I should imagine myself in ten years, I will see myself as a man who
has a house, a family and children,” he is adding.

118

Kettnerová, Lopatková, Panevová Valency Information and Reflexivity (105–126)

(43) Vidím
(Ii) see

se
reflclitic

i,Acc

jako člověk,
as a mani,Nom ,

který má dům, rodinu a děti,”
who has a house, a family and children,”

dodává. (CNC, modified)
he is adding.
En. “I see myself as a man who has a house, a family and children,” he is
adding.

(44) ? „Kdybych si měl představit sám sebe za deset let,
“if I should imagine myself in ten years,

vidím
(Ii) see

se
reflclitic

i,Acc

jako člověk,
as a mani,Nom ,

který má dům, rodinu a děti,“
who has a house, a family and children,”

dodává. (CNC, modified)
he is adding.

En. “If I should imagine myself in ten years, I will see myself as a man who
has a house, a family and children,” he is adding.

(45) Ale zároveň je miluje, protože zvětšují jeho důležitost,
However, hei loves them magnifying his importance,
dávají mu gloriolu významné osobnosti, poskytují mu možnost v narcistním opojení
giving him VIP’s glory, giving him the opportunity in a narcissistic intoxication
slyšet sama sebe,
to hear himself,

vidět
to see

se
reflclitic

i,Acc

jako moudrého člověka,
as a wise mani,Acc ,

který nemá na politické scéně, ne-li mnohem dál,
who has not a rival on the political scene, if not even much further,
ani po tolika letech valnou konkurenci.
after so many years

(CNC)

En. However, he loves them magnifying his importance, giving him VIP’s
glory and opportunity, in a narcissistic intoxication, to hear and see himself
as a wise man who has not a rival on the political scene, if not even much
further, after so many years.

(46) Ale zároveň je miluje, protože zvětšují jeho důležitost,
However, hei loves them magnifying his importance,
dávají mu gloriolu významné osobnosti, poskytují mu možnost v narcistním opojení
giving him VIP’s glory, giving him the opportunity in a narcissistic intoxication
slyšet sama sebe,
to hear himself,

vidět
to see

se
reflclitic

i,Acc

jako moudrý člověk,
as a wise mani,Nom ,

[…]
[…]

En. However, he loves them magnifying his importance, giving him VIP’s
glory and opportunity, in a narcissistic intoxication, to hear and see himself
as a wise man […].

The nominative congruence – which is predominant in the reflexive constructions
with the clitic form of the reflexive pronoun – has not yet been satisfactorily accounted
for in the Czech linguistics. Karlík (1999) pointed out that the clitic variants of the

119

PBML 102 OCTOBER 2014

Czech personal pronouns generally exhibit morphosyntactic properties similar to af-
fixes to a greater (the reflexive pronoun) or lesser (the non-reflexive pronoun) extent,
see examples given by Karlík (2000). On the other hand, he avoids Oliva’s extreme
viewpoint of all clitic reflexives as particles stressing that the non-clitic and clitic forms
of the reflexives should be interpreted not dichotomously (i.e., either as pronouns, or
as particles), but gradually. Among other morphosyntactic properties attesting that
the clitic variants of the reflexive pronoun behave similarly to affixes, see the coordi-
nation test (47)–(48) and impossibility of separate usages in (49); Karlík introduces the
nominative congruence addressed in this paper as well, see (50)–(51).

(47) * Holí
(hei) shaves

se
* reflclitic

i,Acc

a
and

Pavla.
Paul

(Karlík)

(48) Holí
(hei) shaves

sebe
reflnon-clitic

i,Acc

a
and

Pavla.
Paul

(Karlík)

En. He shaves himself as well as Paul.
(49) Kohos

whoAcc

holil?
(you) shaved

* Se. /
* reflclitic

i,Acc

Sebe. (Karlík)
reflnon-clitic

i,Acc
En. Who did you shave? Myself.

(50) Petr
Peteri

se
reflclitic

i,Acc

umyl
washed

celý.
wholei,Nom

(Karlík)

En. Peter washed himself entirely.
(51) Petr

Peteri

umyl
washed

sebe
reflnon-clitic

i,Acc

celého.
wholei,Acc

(Karlík)

En. Peter washed himself entirely.

We propose a hypothesis that the changes in the case forms of EFFect introduced by
jako ‘as’ – combined (i) either with the accusative case in constructions with PATient
lexically expressed by the non-clitic, see (33), or (ii) with the nominative case with
the clitic variant of the reflexive pronoun, see (31) – may have the same basis as the
changes in the complement congruence lying in specific morphosyntactic properties
of the clitic forms of the reflexive pronoun, as illustrated by Havránek’s and Karlík’s
examples. However, we leave this question open as confirming this hypothesis repre-
sents a tricky task as the available corpus data12 are too sparse to study the distribu-
tion of se vs. sebe in the nominative and accusative form with the funcEFF or COMPL
functions. The ideas proposed by RW about the role of these forms in the functional
sentence perspective and the contrasts among the sentence members are promising
for the future research.

12Syntactically annotated PDT is too small for such phenomena. Morphologically annotated CNC is large
enough; however, it is not easy to formulate corpus queries identifying relevant concordances necessary
for our research.

120

Kettnerová, Lopatková, Panevová Valency Information and Reflexivity (105–126)

In conclusion, let us remark that in addition to the “mysterious’’ agreement of the
complement expressing the EFFect/COMPLement members in constructions with the
reflexive pronoun se/sebe in accusative, similar changes in the source of agreement ap-
pear in constructions with the dative case of the reflexive pronouns si/sobě. As it goes
beyond the scope of this paper, we only note that studying the congruence changes
in constructions with the dative reflexive pronoun si/sobě would be fruitful too.

(52) Jan
Johni

sobě
reflnon-clitic

i,Dat

jako vítězi
as a winneri,Dat

koupil
bought

nové kolo.
a new bike

En. John bought a new bike to himself as to the winner.
(53) Sobě

(to) reflnon-clitic
i,Dat

Jan
Johni

jako vítěz
as a winneri,Nom

koupil
bought

nové kolo.
a new bike

En. John as a winner bought a new bike to himself.
(54) Jan

Johni

si
(to) reflclitic

i,Dat

jako vítěz
as a winneri,Nom

koupil
bought

nové kolo.
a new bike

En. John as a winner bought a new bike to himself.
(55) * Jan

Johni

si
* (to) reflclitic

i,Dat

jako vítězi
as a winneri,Dat

koupil
bought

nové kolo.
a new bike

5. Conclusion

Ronald Wagner´s critical remarks stimulated our deeper analysis of the marginal
(see the Appendix) but theoretically important aspects of the operation of reflexiviza-
tion and its requirements on modification of verbal valency frames undergoing this
syntactic operation.

We have clarified here the criterion for delimitation of different lexical units within
FGD (Principle 1) – when using the test of differences in valency frames, we restrict
ourselves only to those changes that appear in active, nonreflexive, nonreciprocal con-
structions.

We have focused especially on the apparatus proposed in FGD (and the valency
lexicons PDT-VALLEX and VALLEX elaborated within this theoretical framework)
that allows for the effective description of paradigmatic changes in valency frames of
Czech verbs related not only to grammatical diatheses but also to reciprocity; we have
shown that it can be easily adopted for the description of reflexivity (as addressed by
Ronald Wagner) as well.

Further, we propose a preliminary hypothesis on the alternation between jako+Acc
and jako+Nom: some of them are semantically conditioned (EFFect vs. COMPLement),
the other reflect the grammatical requirements (reflexivity). Since this analysis could
not be based on extensive corpus data (due to the low frequency of the studied con-
structions in corpora, see also the Appendix), our conclusion is only preliminary and
requires further research.

121

PBML 102 OCTOBER 2014

We have demonstrated that there can be observed a strong parallelism between ac-
cusative and nominative congruence of complements and the constructions with the
reflexive pronoun, which indicates that the focused changes in congruence in reflex-
ive constructions might have the same basis given by specific morphosyntactic status
of the clitic forms of the reflexive pronoun. We have pointed out that it would be ben-
eficial to extend the analysis to the dative reflexive pronoun si vs. sobě, which has not
been focused in the syntactic description so far.

Acknowledgements

The research reported in this paper has been supported by the Czech Science Foun-
dation GA ČR, grant No. P406/12/0557. This work has been using language resources
developed and/or stored and/or distributed by the LINDAT/CLARIN project of the
Ministry of Education, Youth and Sports of the Czech Republic (project LM2010013).

Bibliography

Cinková, Silvie. From PropBank to EngValLex: Adapting the PropBank-Lexicon to the Valency
Theory of the Functional Generative Description. In Proceedings of the 5th International Con-
ference on Language Resources and Evaluation (LREC 2006), pages 2170–2175, Genova, Italy,
2006. ELRA.

Corbett, Greville G. Number. Cambridge University Press, Cambridge, 2000.
Corbett, Greville G. Agreement. Cambridge University Press, Cambridge, 2006.
Hajič, Jan, Jarmila Panevová, Eva Hajičová, Petr Sgall, Petr Pajas, Jan Štěpánek, Jiří Havelka,

Marie Mikulová, Zdeněk Žabokrtský, and Magda Ševčíková Razímová. Prague Depen-
dency Treebank 2.0. LDC2006T01, Linguistic Data Consortium, Philadelphia, PA, USA,
ISBN 1-58563-370-4, Jul 2006, 2006. URL http://ufal.mff.cuni.cz/pdt2.0/.

Havránek, Bohuslav. Genera verbi v slovanských jazycích I. Nová řada (VIII), čís. 2, Edice:
Rozpravy Královské české společnosti nauk. Třída filosoficko-historicko-jazykozpytná. Kr.
česká spol. nauk, Praha, 1928.

Karlík, Petr. Reflexiva v češtině. Přednášky a besedy z XXXII. běhu Letní školy slovanských studií,
pages 44–52, 1999.

Karlík, Petr. Hypotéza modifikované valenční teorie. Slovo a slovesnost, 61(3):170–189, 2000.
Kettnerová, Václava and Markéta Lopatková. Changes in Valency Structure of Verbs: Grammar

vs. Lexicon. In Levická, Jana and Radovan Garabík, editors, Proceedings of Slovko 2009, NLP,
Corpus Linguistics, Corpus Based Grammar Research, pages 198–210, Bratislava, 2009. Sloven-
ská akadémia vied.

Kettnerová, Václava and Markéta Lopatková. The Lexicographic Representation of Czech
Diatheses: Rule Based Approach. In Majchráková, Daniela and Radovan Garabík, edi-
tors, Natural Language Processing, Multilinguality, pages 89–100, Bratislava, Slovakia, 2011.
Slovenská akadémia vied, Tribun EU.

122

http://ufal.mff.cuni.cz/pdt2.0/

Kettnerová, Lopatková, Panevová Valency Information and Reflexivity (105–126)

Kettnerová, Václava, Markéta Lopatková, and Eduard Bejček. The Syntax-Semantics Interface
of Czech Verbs in the Valency Lexicon. In Fjeld, Ruth and Julie Torjusen, editors, Proceedings
of the 15th EURALEX International Congress, pages 434–443, Oslo, Norway, 2012a. Depart-
ment of Linguistics and Scandinavian Studies, University of Oslo.

Kettnerová, Václava, Markéta Lopatková, and Zdeňka Urešová. The Rule-Based Approach to
Czech Grammaticalized Alternations. In Sojka, Petr, Aleš Horák, Ivan Kopeček, and Karel
Pala, editors, Text, Speech and Dialogue: 15th International Conference, TSD 2012. Proceedings,
number 7499 in LNCS, pages 158–165, Berlin / Heidelberg, 2012b. Springer Verlag.

Kolářová, Veronika. Valence deverbativních substantiv v češtině (na materiálu substantiv s dativní
valencí). Karolinum, Praha, 2010.

Komárek, Miroslav. Několik poznámek k reflexi reflexivity reflexiv. Slovo a slovesnost, 62:207–
209, 2001.

Lopatková, Markéta, Zdeněk Žabokrtský, and Václava Kettnerová. Valenční slovník českých
sloves. Nakladatelství Karolinum, Praha, 2008. (with co-authors: K. Skwarska, E. Bejček,
K. Hrstková, M. Nová, M. Tichý).

Oliva, Karel. Hovory k „sobě/si/sebe/se“. In Karlík, Petr and Zdenka Hladká, editors, Čeština
– univerzália a specifika, Sborník konference ve Šlapanicích U Brna, volume 2, pages 167–171,
2000.

Oliva, Karel. Reflexe reflexivity reflexiv. Slovo a slovesnost, 62:200–207, 2001.
Panevová, Jarmila. Problémy reflexivního zájmena v češtině. In Sborník přednášek z 44. běhu

Letní školy slovanský́ch studií, pages 81–88, Praha, 2001. UK FF.
Panevová, Jarmila. Problémy se slovanským reflexivem. Slavia, 77(1-3):153–163, 2008.
Panevová, Jarmila and Magda Ševčíková. The Role of Grammatical Constraints in Lexical Com-

ponent in Functional Generative Description. In Apresjan, Valentina, Boris Iomdin, and
Ekaterina Ageeva, editors, Proceedings of the 6th International Conference on Meaning-Text The-
ory (MTT 2013), pages 134–143, Praha, 2013. Univerzita Karlova v Praze.

Sgall, Petr. Generativní popis jazyka a česká deklinace. Academia, Praha, 1967.
Sgall, Petr, Eva Hajičová, and Jarmila Panevová. The Meaning of the Sentence in Its Semantic and

Pragmatic Aspects. Reidel, Dordrecht, 1986.
Šindlerová, Jana and Ondřej Bojar. Towards English-Czech Parallel Valency Lexicon via Tree-

bank Examples. In Proceedings of 8th Treebanks and Linguistic Theories Workshop (TLT), pages
185–195, Milano, Italy, 2009. Università Cattolica del Sacro Cuore.

Urešová, Zdeňka and Petr Pajas. Diatheses in the Czech Valency Lexicon PDT-Vallex. In Lev-
ická, Jana and Radovan Garabík, editors, Slovko 2009, NLP, Corpus Linguistics, Corpus Based
Grammar Research, pages 358–376, Bratislava, 2009. Slovenská akadémia vied.

Urešová, Zdeňka. Valence sloves v Pražském závislostním korpusu, volume 8 of Studies in Com-
putational and Theoretical Linguistics. Institute of Formal and Applied Linguistics, Prague,
2011.

Wagner, Roland. A case of collision in principles of language description? The Prague Bulletin
of Mathematical Linguistics, 101:123–146, 2014.

123

PBML 102 OCTOBER 2014

Appendix

The following Table 1 summarizes rough estimations of the frequency of the stud-
ied phenomenon in CNC –- the entire SYN (Synchronic written corpora) series was
used.

Comment. The columns in Table 1 store the following information:
lemma …verb lemma (the slash mark separates imperfective and perfective lemmas (if appli-

cable))
SYN …number of occurrences of the specified verb in the entire SYN series

(i) sample query … [lemma="vnímat"]

no VS …number of occurrences of the specified verb excluding the past participle/passive
forms

(ii) sample query … [lemma="vnímat" & tag="V[ˆs].*"]

jako+Acc …number of occurrences of the specified verb excluding the past participle/passive
forms that co-occur with the word jako immediately followed by a wordform in accusative
(iii) positive filter on the results of query (ii):

– interval [−5; 5] including KWIC
– positive filter [word="jako"][tag="....4.*"]

jako+Nom …number of occurrences of the specified verb excluding the past participle/passive
forms that co-occur with the word jako immediately followed by a wordform in nomina-
tive
(iv) positive filter on the results of query (ii):

– interval [−5; 5] including KWIC
– positive filter [word="jako"][tag="....1.*"]

jako+Nom with se …number of occurrences of the specified verb excluding the past partici-
ple/passive forms that co-occur with the word jako immediately followed by a wordform
in nominative and combined with the word se

(v) positive filter on the results of query (iv):
– interval [−5; 5] including KWIC
– positive filter [word="se"]

ratio (%) …ratio of the result from (v) (i.e., occurrences of the specified verb excluding the
past participle/passive forms that co-occur with the word jako immediately followed by
a wordform in nominative and combined with the word se) related to the number of
occurrences of the specified verb in the entire SYN series (column SYN)

124

Kettnerová, Lopatková, Panevová Valency Information and Reflexivity (105–126)

lemma SYN no Vs jako+Acc jako+Nom1 jako+Nom ratio
with se1 (%)

deklarovat 16 763 15 192 360 547 307 1,83
hodnotit 199 363 180 225 9 587 4 523 596 0,30
chápat 194 218 184 175 23 792 4 100 985 0,51
interpretovat 16 409 13 604 1 528 822 195 1,19
nazývat / 66 095 56 572 214 328 110 0,17
/ nazvat 63 299 58 744 347 496 146 0,23

ohodnocovat / 461 389 2 2 0 0,00
/ ohodnotit 17 445 12 764 774 364 20 0,11

označovat / 88 882 68 399 3 263 3 872 2 171 2,45
/ označit 218 550 186 784 7 050 3 159 606 0,28

pojímat / 4 802 3 780 1 074 477 67 1,39
/ pojmout 39 781 35 577 4 946 1 647 116 0,29

prezentovat 105 628 92 518 3 169 4 755 3 405 3,22
přijímat / 111 143 101 152 1 542 962 130 0,12
/ přijmout 351 964 298 849 4 684 2 668 182 0,05

stanovovat / 21 323 20 840 160 139 47 0,22
/ stanovit 184 129 118 425 2 342 853 182 0,10

určovat / 55 632 53 135 216 332 44 0,08
/ určit 272 499 112 202 2 536 429 57 0,02

ustavovat / 685 643 21 7 1 0,15
/ ustavit 14 868 8 647 90 168 100 0,67

usvědčovat / 3 799 3 697 18 12 2 0,05
/ usvědčit 14 064 10 564 54 33 3 0,02

uznávat / 48 989 45 816 1 512 891 132 0,27
/ uznat 123 000 108 597 1 904 1 099 70 0,06

vidat / 17 304 16 624 146 130 38 0,22
/ vidět 1 249 642 1 240 557 19 058 10 349 1 054 0,08

vnímat 148 961 131 121 26 378 8 932 982 0,66
vyhlašovat / 31 042 29 224 115 162 42 0,14
/ vyhlásit 213 251 137 996 756 597 43 0,02

znát 606 505 606 505 9 026 5 074 528 0,09
1Including occurrences with errors in disambiguation, complements, deagentive constructions
etc.

Table 1. Rough estimations of the frequency of the studied phenomenon in CNC

125

PBML 102 OCTOBER 2014

Address for correspondence:
Markéta Lopatková
lopatkova@ufal.mff.cuni.cz
Malostranské nám. 25, Prague 1, 118 00, Czech Republic

126

The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014

INSTRUCTIONS FOR AUTHORS

Manuscripts are welcome provided that they have not yet been published else-
where and that they bring some interesting and new insights contributing to the broad
field of computational linguistics in any of its aspects, or of linguistic theory. The sub-
mitted articles may be:

• long articles with completed, wide-impact research results both theoretical and
practical, and/or new formalisms for linguistic analysis and their implementa-
tion and application on linguistic data sets, or

• short or long articles that are abstracts or extracts of Master’s and PhD thesis,
with the most interesting and/or promising results described. Also

• short or long articles looking forward that base their views on proper and deep
analysis of the current situation in various subjects within the field are invited,
as well as

• short articles about current advanced research of both theoretical and applied
nature, with very specific (and perhaps narrow, but well-defined) target goal in
all areas of language and speech processing, to give the opportunity to junior
researchers to publish as soon as possible;

• short articles that contain contraversing, polemic or otherwise unusual views,
supported by some experimental evidence but not necessarily evaluated in the
usual sense are also welcome.

The recommended length of long article is 12–30 pages and of short paper is 6–15
pages.

The copyright of papers accepted for publication remains with the author. The
editors reserve the right to make editorial revisions but these revisions and changes
have to be approved by the author(s). Book reviews and short book notices are also
appreciated.

The manuscripts are reviewed by 2 independent reviewers, at least one of them
being a member of the international Editorial Board.

Authors receive a printed copy of the relevant issue of the PBML together with the
original pdf files.

The guidelines for the technical shape of the contributions are found on the web
site http:// ufal.mff.cuni.cz/pbml. If there are any technical problems, please con-
tact the editorial staff at pbml@ufal.mff.cuni.cz.

