
The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 5–16

Qualitative: Open source Python tool for Quality Estimation
over multiple Machine Translation outputs

Eleftherios Avramidis, Lukas Poustka, Sven Schmeier
German Research Center for Artificial Intelligence (DFKI Berlin)

Abstract
“Qualitative” is a python toolkit for ranking and selection of sentence-level output by dif-

ferent MT systems using Quality Estimation. The toolkit implements a basic pipeline for anno-
tating the given sentences with black-box features. Consequently, it applies a machine learning
mechanism in order to rank data based on models pre-trained on human preferences. The pre-
processing pipeline includes support for language models, PCFG parsing, language checking
tools and various other pre-processors and feature generators. The code follows the principles
of object-oriented programming to allow modularity and extensibility. The tool can operate
by processing both batch-files and single sentences. An XML-RPC interface is provided for
hooking up with web-services and a graphical animated web-based interface demonstrates its
potential on-line use.

1. Introduction

Having been a topic of research for many years, Machine Translation (MT) has
recently reached a wide range of applications for big audiences. Methods and anal-
yses produced in academic labs have been adopted by the industry and transferred
to products and services with numerous use-cases. This has increased the interest
for the field and generously empowered a broad spectrum of research activities and
further development.

In this long history of conveying MT research into everyday use, the software de-
veloped by the relevant research community has been of high value. Through the
open source implementation of majorly important MT and natural language process-
ing tools (Koehn et al., 2007; Federico et al., 2008), researchers had the opportunity

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: eleftherios.avramidis@dfki.de
Cite as: Eleftherios Avramidis, Lukas Poustka, Sven Schmeier. Qualitative: Open source Python tool for Quality
Estimation over multiple Machine Translation outputs. The Prague Bulletin of Mathematical Linguistics No.
102, 2014, pp. 5–16. doi: 10.2478/pralin-2014-0009.

http://creativecommons.org/licenses/by-nc-nd/3.0/


PBML 102 OCTOBER 2014

to test and expand proposed methods and easily introduce new ideas. Additionally,
the industry found pretty strong software engineering prototypes that were not too
far from user-oriented programs and many of them were directly plugged into user
interfaces.

Adopting this line of MT-oriented software development, we provide a Free Soft-
ware implementation in the direction of Quality Estimation (QE). This can be directly
used for further research/applications on MT output ranking, system selection, hy-
brid machine translation etc. Moreover, it provides the basics for further community
development on QE, aiming to gather a wide range of contributions.

The following sections contain a comparison of our software with already existing
open source tools (section 2), a description of the basic functionality (section 3), an
explanation of the methods used in the background (section 4), an introductory guide
for further development (section 5) and the plans for further work (section 6).

2. Previous work

The first collaborative work for development on this field was done in the frame of
the WS’03 Summer Workshop at the John Hopkins University on Confidence Estima-
tion of MT (Blatz et al., 2004), but to our knowledge no application or code has been
publically available, as a result of this effort. Additionally, relevant contributions in-
troduced several open-source tools offering MT evaluation (e.g. METEOR (Banerjee
and Lavie, 2005)), H and A (Berka et al., 2012)), whereas a good amount
of such metrics and scripts were gathered in A (Giménez and Marquez, 2010). All
this work is based on comparing the produced translations with reference transla-
tions, which generally falls out of the scope of QE.

A major contribution directly to the field of QE has been done by the QE tool (Spe-
cia et al., 2013), which included an implementation of various features by numerous
contributors. Whereas there is serious overlapping of QE with our submission,
there are notable differences. In contrast to the regression-based orientation of QuEst,
our software is aimed to sentence-level ranking and selection of MT-output, by imple-
menting comparative Quality Estimation. Additionally, not the same quality features
have been implemented in both toolkits, whereas Python as a dynamic language al-
lows provides more flexible data structures and architecture. Nevertheless, our soft-
ware includes a QE wrapper for conformity with WMT baselines.

3. Basic use

The out-of-the box functionality of the software is based on a use-case, where one
source sentence is translated by several MT systems. The software therefore analyzes
properties of all translations and suggests the proper ranking (ordering), trying to pre-
dict human preference. This can be used for ranking system outputs or combining
several systems on the sentence level.

6



Avramidis, Poustka, Schmeier Python tool for Quality Estimation (5–16)

3.1. Installation

The toolkit is implemented in Python 2.7 and has been developed and tested for
operation in a Linux operating system. The code has to be downloaded1 and the
Python path needs to be set to the /src directory, where all python scripts, mod-
ules and packages reside. Much of the functionality is provided by several publically
available Python extensions, which need to be installed prior to any execution. All ex-
tensions required for the out-of-the-box functionality are provided by the Python pip
package management system, so it is enough to run the respective pip install com-
mands for the packages detailed in INSTALL.txt, These installations can easily take
place on the user’s home folder, without requiring root access (e.g. in experiment
server environments).

The toolkit interacts with several java applications whose ’jar’ and class files have
to be placed in the directory /lib. An installation script that automatically down-
loads all required java dependencies is provided. Additionally, one needs to execute
externally the LM server by Nitin Madnani.2

3.2. Resources and Configuration

The quality features for the given sentences are generated within a pipeline of NLP
analysis tools. Many of these tools require specific resources to be acquired prior to
the execution of the program. In particular, for the out-of-the-box installation and
pre-trained models, one needs a language model, a PCFG grammar and a truecaser
model for the source and target languages, which are also provided by an installation
script through our servers.

All file locations and several other parameters (e.g. the translation language di-
rection) can be specified in one or more complementary configuration files. Sample
configuration files are provided in /cfg/autoranking and can be modified accord-
ingly to fit the user’s specific installation. The configuration files may also include
references to many language-specific resources; the program will only use the ones
which are relevant to the chosen languages.

The reason for allowing many configuration files is that one may want to split the
configuration parameters depending on the environment, i.e. some settings may be
generic and applicable to all computational servers, whereas some others may change
from machine to machine.

1http://www.dfki.de/~elav01/software/qualitative
2http://desilinguist.org At the time that this paper is submitted, the Language Model scores are

provided by using LM server, which wraps around SRILM (Stolcke, 2002) and needs to be compiled and
executed separately. It is in our plans to remove this dependency and include KenLM (Heafield, 2011)

7

http://www.dfki.de/~elav01/software/qualitative
http://desilinguist.org


PBML 102 OCTOBER 2014

3.3. Execution

There are several ways the program can be executed. All relevant scripts can be
found in the directory /src/app/autoranking. In particular, the basic functionality
is provided as following:

• Command-line interaction (application.py): This script allows the user to in-
teract with the sentence selection on the commandline. A configuration file and
a pre-trained selection model need to be passed as parameters. Then the user
can sequentially type the source sentence and the respective translations one
by one. The purpose of this script is mainly to verify that all installation and
settings are correct.

• Batch decoding (decode_batch.py): This script serves for cases where multiple
sentences with their respective translations need to be analyzed in a row (e.g. for
translating full documents). Apart from the configuration file and the trained
classifier, this script accepts the decoding data in an XML file.

• XML-RPC interface (xmlrpcserver.py): This instantiates and XML-RPC await-
ing translation requests for one sentence at a time. The server responds to the
command rank, having as parameters the source and any number of respective
translations. It is useful for binding to web-applications.

In order to assess the installation process we provide pre-trained model for German-
English.

3.4. Demonstration server

As a demonstration for the use of the toolkit in a web service, an additional piece
of software is provided. It is a web-interface3 implemented in PHP which allows the
user to enter source text to be translated. Consequently, it communicates with ex-
ternal translation services (e.g. Moses server, Google Translate API, Lucy RBMT),
and fetches the translations. Finally, the produced translations are given to our rank-
ing/selection mechanism and the result is visualised graphically.

The demonstration server is provided as an example. It is not included in the
architecture of the rest of the toolkit and therefore is distributed as a separate package.
Users have to modify the script, in order to parametrise the necessary URL addresses
and configuration.

4. Under the hood

The core of the program is based on comparative Quality Estimation. The given
sentence is first processed within a pipeline of modules. These modules perform text
pre-processing and various NLP analyses to generate features that indicate the quality

3The demo web interface can be accessed at http://www.qt21.eu/demonstrator

8



Avramidis, Poustka, Schmeier Python tool for Quality Estimation (5–16)

fetch data

tokenize

truecase parse-parallel

LM cross-meteor cross-bleu lang. checkerparse-matches

Figure 1. Sample pipeline of feature generators for one of the most successful feature
sets.

of the translation. The generated features are consequently fed to a machine learning
algorithm, which employs a statistical model for putting the translations in an order
of preference. This statistical model has been previously trained on human-annotated
data.

In principle, there can be various combinations of features and machine learning
algorithms, depending on what performs best given various properties of the qual-
ity estimation task. The optimal combination, which performs similarly to human
decisions, is subject of constant research in the field. The provided vanilla imple-
mentation and pre-trained model follow one of the most successful experiments on
German-English, which includes the feature set #24 with Logistic Regression as de-
scribed in Avramidis (2013a).

4.1. Generation of features

As explained above, the generation of features is a crucial step for acquiring quality
hints regarding the processed sentence. For this purpose, the toolkit provides a set of
modules, thereof called feature generators. A sample pipeline can be seen in Figure 1.

• Language model (LM): It sends a query to the language model in order to ac-
quire LM probabilities for unigrams, bigrams, trigrams etc., and also detects
and counts words unknown to the language model. It also saves the sentence
position (index) of the unknown words and the n-grams with the lowest and
highest probability. Features also include the average and the standard devia-
tion of the n-grams probabilities and the sentence positions. The queries to the
LM can be sent via XML-RPC to an external LM server, or to call the respective
functions from an imported LM library (e.g. KenLM).

• PCFG parsing: It loads a language-specific PCFG grammar and handles the
parsing of source and target sentences by PCFG parsing. It extracts the overall
log-likelihood, the best parse confidence and the count (k) of k-best parse trees
generated. The best parse is included as string meta-data, so that following fea-

9



PBML 102 OCTOBER 2014

ture generators can re-use it for producing their features. One of them counts
how many times each tree node label appears in the parse and calculate their re-
spective sentences position statistics. Another performs naïve source-to-target
tree-label matching, i.e. calculates the ratio of VPs on the source with the re-
spective VPs on the target. The current implementation supports the B
P (Heafield, 2011) via either as included library or as an external XML-RPC
server. There are pre-trained grammars for English, German, Spanish (Taulé
et al., 2008), French, Russian, Chinese and Arabic freely available.

• Cross-target BLEU and METEOR: It encapsulates the calculation of well-known
reference-aware n-gram-based metrics. For the scenario of multiple alternative
translations by different systems, each particular system receives as a feature
its own metric score, as if the other competitive systems were used as refer-
ence translations. For certain scenarios, this may indicate cases when a sys-
tem output is very different than the majority of the other competitive sys-
tem outputs. Here, smoothed sentence level BLEU (Papineni et al., 2002) and
all METEOR components (precision, recall, fragmentation penalty and overall
weighed score) (Lavie and Agarwal, 2007) are supported.

• Language correction: This investigates the usability of language-correction soft-
ware. Such software is based on hand-written rules which detect grammati-
cal, syntactic and other expresional inconsistencies on monolingual text usually
while being written in word processors; the errors are automatically flagged
and suggestions are given to authors. We use the count of each error type in
every sentence as a separate feature, a tactic that unfortunately produces rather
sparse features. A feature generator wraps around the open source Language
Tool library (Naber, 2003; Miłkowski, 2012), whereas remote querying towards
the optional proprietary software Acrolinx IQ (Siegel, 2011) is also supported
via the SUDS protocol.

• IBM1 probabilities: This feature generator supports reading an IBM-1 model
and includes the produced sentence probability as an additional feature.

• Length features include simple counting of the number of tokens, characters
and the average number of characters per word for each sentence.

• Ratios and differences: A last step calculates differences and ratios between
every source and its respective translation feature, if available. Defining explicit
features for known relations between features may be useful for some ML algo-
rithms.

The code includes the default normalisation, tokenisation and truecasing scripts of
M (Koehn et al., 2007). Additional tokenisation and other pre-processing actions,
when needed, are done via NLTK (Loper and Bird, 2002). Also, some functions from
automatic error extraction of H (Popović, 2011) are included.

10



Avramidis, Poustka, Schmeier Python tool for Quality Estimation (5–16)

4.2. Machine Learning

The ranking algorithm is based on binary classifier decisions, which are recom-
bined up into a full ranking (Usunier et al., 2009; Avramidis, 2012). The decision is
every time taken on a sentence level, given the numeric features generated for this
particular sentence and translation. The final algorithm has no access or use for the
given/translated text. Although the pre-trained models use logistic regression (Hos-
mer, 1989) as a pairwise classifier, the interface allows many other learning methods
to be employed and stored, such as SVM (Joachims, 2006), Naive Bayes, k-Nearest
neighbours (Coomans and Massart, 1982) and Decision Trees (Quinlan, 1986).

4.3. Training

Training of new models takes places in two stages, annotation and learning. First,
the training data need to be processed by the feature generators pipeline using the
batch annotation script4 and a given configuration script. Implementing the interface
provided by the R library (Goodstadt, 2010) allows for parallelisation of inter-
mediate steps into a number of CPU cores, whereas it keeps track of finished and
unfinished steps so that they can be resumed if something crashes. Heavy and slow
tasks, such as parsing, are also parallelised after being split into multiple parts.

On the second phase, the learning script5 trains and evaluates the machine learn-
ing algorithms given the features generated previously at the annotation phase. Both
learning algorithms and feature sets can be defined in a configuration file. The learn-
ing pipeline is organised through a modified version of the P E S
(Rückstieß and Schmidhuber, 2011), so intermediate steps are saved on the disk for
resuming or further use, as for example the pickled classifier models.

Machine learning algorithms are primarily provided by O (Demšar et al.,
2004) and optionally by S- (Pedregosa et al., 2011). The entire set of RE-
 scripts (Avramidis, 2013b) are included as part of the software. Many of the eval-
uation functions and calculations are based on NP and SP (Oliphant, 2007).

5. Development

The architecture of the program has been designed to allow for further develop-
ment. The code is open and collaborative efforts are centralised within a Git reposi-
tory.6. The development has been divided in several python packages. Each package
serves a different function, so that the code can be modural and re-usable.

4/src/app/autoranking/annotate_batch.py
5/src/app/autoranking/suite.py
6Please check http://www.dfki.de/~elav01/software/qualitative for details on how to clone the

repository and commit

11

http://www.dfki.de/~elav01/software/qualitative


PBML 102 OCTOBER 2014

The code has been documented based on inline comments following the EpyDoc
standard, and therefore an automatically generated API documentation is provided
for the vast majority of functions and classes. The more important classes and func-
tions are detailed in the following sections.

5.1. Understanding the data structures

The data structures used in all parts of the software are contained in the sentence
package. The basic structures are:

• The SimpleSentence is the basic data structure. It is a class which wraps the
original sentence text as a string. Additionally, it contains a dictionary of “at-
tributes”. These can be features and meta-data provided by the original data;
they are further augmented by the annotation process (see feature generators)
and they are the ones who are important for the machine learning algorithms,
which also put their results as attributes.

• The ParallelSentence is a class that represents the basic unit of a parallel cor-
pus. It contains one source sentence, a list of target sentences and optionally a
reference, All encapsulated sentences are an instance of SimpleSentence. The
ParallelSentence also includes its own attribute dictionary, with the sentence
id, the source and target language asclasses the most common attributes.

• The DataSet is an iterable class which stands one level above, as it encapsulates
a list of parallel sentences and several convenience functions.

Any development effort should use the data structures, which allow for optimal flow
of data between the various modules. In this python package, one can find more
classes which extend the basic data structures. These extensions have been developed
to support breaking the parallel sentences into a set of pairwise sentence comparisons.

5.2. Reading and writing files

In order to facilitate processing data for sentence-level ranking, external data pro-
cessing is based on a XML format called “JCML” for Judged Corpus Markup Language.
In contrast to line-separated simple-text formats used for regression-based QE, this
format allows for a variable number of target sentences per source7, whereas all fea-
tures are aggregated in the same file. In the package support.jcml we provide sev-
eral utility scripts (e.g. for joining and splitting) and also a utility for converting from
multiple plain text files to JCML.

Reading and writing external data is taken care through the classes in the pack-
age dataprocessor. The modules contained in the package allow for reading and
writing using several alternative python libraries, e.g. minidom (batch all-in-memory),

7The ranking-based human evaluation tasks of WMT provides 2-12 system outputs per source sentence.
For this reason JCML was used for the QE ranking task at WMT13

12



Avramidis, Poustka, Schmeier Python tool for Quality Estimation (5–16)

SAX and CElementTree (incremental disk writing/reading). The most commonly-used
reader is from ce.cejcml, whereas the most common writer is IncrementalJcml from
sax.saxps2jcml.

5.3. Adding new features

The classes responsible for generating features reside in the featuregenerator
package. One can add features by developing a new feature generator. The required
steps are:

• create a new module with a new class that extends FeatureGenerator (from
featuregenerator). The initialisation function should load necessary resources
as named arguments. If more modules are required, place them in a new pack-
age.

• override the unimplemented function get_features_tgt, perform the required
analysis of each target sentence and return a dictionary containing the resulting
feature names and values. This function will be automatically repeated for all
target sentences and can also process the source sentence.

• optionally override the unimplemented function get_features_src if you want
to provide features that refer only to the source sentence. Similarly prefixed
functions can be overridden for attaching features as attributes to other parts of
the parallel sentence.

• optionally override the functions add_features_tgt and similarly prefixed func-
tion if you also want to modify the string of the processed sentences (e.g. for
pre-processing, tokenisation etc.).

• add the new feature generator in the annotation process of the relevant appli-
cation. An initialised instance of the class should be added in a list with all
other feature generators that are executed. The order of the feature generators
in the list matters, particularly when some generators require pre-processing or
meta-data from previously executed generators. If possible, parameters should
be loaded from a configuration file.

It is also possible to encapsulate tools and libraries written in Java through the P4J
library, following the example of the BerkeleyParserSocket class.

5.4. New QE applications and machine learning algorithms

The provided code includes implementation for the ranking mechanism by using
pairwise classifiers. Since there is infrastructure for feature generation and machine
learning, other experiments and applications can be easily developed. Additional QE
applications can be added as separate packages in apps by following the example
of the autoranking package. These are mainly executable scripts for annotation and
training (see section 4.3), or other functions (test module, commandline app or XML-
RPC server).

13



PBML 102 OCTOBER 2014

As mentioned, this package already provides support for several functions of O-
 and S-. Further machine learning algorithms can be included in
ml.lib by implementing the abstract functions of the classes in the package ml.

6. Further work

Whereas the provided code contains a fully functional implementation and a mod-
ular architecture, several parts are subject of further improvement. We are currently
working on improving the architecture, e.g. to provide abstract classes for machine
learning methods or better templates for new “apps”. Additionally, a constant goal
are more feature implementations, to cover at least the so-called baseline features.
Readers of this paper are advised to check the latest version of documentation and
architecture in the official web-page.

Acknowledgements

This work has received support by the EC’s FP7 (FP7/2007-2013) under grant agreement num-
ber 610516: “QTLeap: Quality Translation by Deep Language Engineering Approaches”. Early
stages have been developed with the support of the projects TaraXŰ and QT-Launchpad. Many
thanks to: Slav Petrov for modifying the B P in order to allow modification of pars-
ing parameters; Hieu Hoang, Philipp Koehn, Maja Popović, Josh Schroeder and David Vilar as
parts of their open source code have been included in some of our scripts; Aljoscha Burchardt
and Prof. Hans Uszkoreit for the support.

Bibliography

Avramidis, Eleftherios. Comparative Quality Estimation: Automatic Sentence-Level Ranking
of Multiple Machine Translation Outputs. In Proceedings of 24th International Conference on
Computational Linguistics, pages 115–132, Mumbai, India, Dec. 2012. The COLING 2012 Or-
ganizing Committee.

Avramidis, Eleftherios. Sentence-level ranking with quality estimation. Machine Translation
(MT), 28(Special issue on Quality Estimation):1–20, 2013a.

Avramidis, Eleftherios. RankEval: Open Tool for Evaluation of Machine-Learned Ranking.
The Prague Bulletin of Mathematical Linguistics (PBML), 100:63–72, 2013b. doi: 10.2478/
pralin-2013-0012.

Banerjee, Somnath and Alon Lavie. METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic
and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. Association
for Computational Linguistics, 2005.

Berka, Jan, Ondřej Bojar, Mark Fishel, Maja Popović, and Daniel Zeman. Automatic MT Error
Analysis: Hjerson Helping Addicter. In 8th International Conference on Language Resources
and Evaluation, pages 2158–2163, 2012. ISBN 978-2-9517408-7-7.

14



Avramidis, Poustka, Schmeier Python tool for Quality Estimation (5–16)

Blatz, John, Erin Fitzgerald, George Foster, Simona Gandrabur, Cyril Goutte, Alex Kulesza,
Alberto Sanchis, and Nicola Ueffing. Confidence Estimation for Machine Translation. In
Rollins, M., editor, Mental Imagery. Yale University Press, 2004.

Coomans, D. and D.L. Massart. Alternative k-nearest neighbour rules in supervised pattern
recognition. Analytica Chimica Acta, (138):15–27, Jan. 1982. ISSN 00032670.

Demšar, Janez, Blaž Zupan, Gregor Leban, and Tomaz Curk. Orange: From Experimental Ma-
chine Learning to Interactive Data Mining. In Principles of Data Mining and Knowledge Dis-
covery, pages 537–539, 2004.

Federico, Marcello, Nicola Bertoldi, and Mauro Cettolo. IRSTLM: an open source toolkit for
handling large scale language models. In Interspeech, pages 1618–1621. ISCA, 2008.

Giménez, Jesús and Lluís Marquez. Asiya: An Open Toolkit for Automatic Machine Translation
(Meta-)Evaluation. The Prague Bulletin of Mathematical Linguistics, 94:77–86, 2010. doi: 10.
2478/v10108-010-0022-6.

Goodstadt, Leo. Ruffus: a lightweight Python library for computational pipelines. Bioinformat-
ics, 26(21):2778–2779, Nov. 2010. ISSN 1367-4803.

Heafield, Kenneth. KenLM: Faster and Smaller Language Model Queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation, pages 187–197, Edinburgh, Scotland, July
2011. Association for Computational Linguistics.

Hosmer, David. Applied logistic regression. Wiley, New York [u.a.], 8th edition, 1989. ISBN
9780471615538.

Joachims, Thorsten. Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 217–226. ACM, 2006.
ISBN 1595933395.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL), pages 177–180, Prague, Czech Republic, June 2007.

Lavie, Alon and Abhaya Agarwal. METEOR: An Automatic Metric for MT Evaluation with
High Levels of Correlation with Human Judgments. In Proceedings of the Second Workshop
on Statistical Machine Translation, pages 228–231, Prague, Czech Republic, June 2007. Asso-
ciation for Computational Linguistics.

Loper, Edward and Steven Bird. NLTK: The Natural Language Toolkit. In Proceedings of the
ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing
and Computational Linguistics - Volume 1, ETMTNLP ’02, pages 63–70, Stroudsburg, PA, USA,
2002. Association for Computational Linguistics.

Miłkowski, Marcin. Translation Quality Checking in LanguageTool, pages 213–223. Corpus Data
across Languages and Disciplines. Peter Lang, Frankfurt am Main, Berlin, Bern, Bruxelles,
New York, Oxford, Wien, 2012.

Naber, Daniel. A rule-based style and grammar checker. Technical report, Bielefeld University,
Bielefeld, Germany, 2003.

15



PBML 102 OCTOBER 2014

Oliphant, Travis E. SciPy: Open source scientific tools for Python, 2007.
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a Method for Auto-

matic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA,
July 2002. Association for Computational Linguistics.

Pedregosa, F, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondel, P Pretten-
hofer, R Weiss, V Dubourg, J Vanderplas, A Passos, D Cournapeau, M Brucher, M Perrot,
and E Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

Popović, Maja. Hjerson: An Open Source Tool for Automatic Error Classification of Machine
Translation Output. The Prague Bulletin of Mathematical Linguistics, 96(1):59–68, 2011. doi:
10.2478/v10108-011-0011-4.

Quinlan, J. R. Induction of Decision Trees. Machine Learning, 1(1):81–106, Mar. 1986. ISSN
0885-6125.

Rückstieß, Thomas and Jürgen Schmidhuber. Python Experiment Suite Implementation. The
Python Papers Source Codes, 2:4, 2011.

Siegel, Melanie. Autorenunterstützung für die Maschinelle Übersetzung. In Multilingual Re-
sources and Multilingual Applications: Proceedings of the Conference of the German Society for
Computational Linguistics and Language Technology (GSCL), Hamburg, 2011.

Specia, Lucia, Kashif Shah, José Guilherme Camargo de Souza, and Trevor Cohn. QuEst -
A translation quality estimation framework. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pages 79–84, Sofia, Bulgaria,
Aug. 2013. Association for Computational Linguistics.

Stolcke, Andreas. SRILM – An Extensible Language Modeling Toolkit. In Proceedings of the
Seventh International Conference on Spoken Language Processing, pages 901–904. ISCA, Sept.
2002.

Taulé, Mariona, Antònia Martí, and Marta Recasens. AnCora: Multilevel Annotated Corpora
for Catalan and Spanish. In Proceedings of the Sixth International Conference on Language Re-
sources and Evaluation (LREC’08), Marrakech, Morocco, May 2008. European Language Re-
sources Association (ELRA). ISBN 2-9517408-4-0.

Usunier, Nicolas, David Buffoni, and Patrick Gallinari. Ranking with ordered weighted pair-
wise classification. In Proceedings of the 26th Annual International Conference on Machine Learn-
ing ICML 2009 Montreal Quebec Canada June 1418 2009, pages 1057—-1064. ACM, 2009.

Address for correspondence:
Eleftherios Avramidis
eleftherios.avramidis@dfki.de
German Research Center for Artificial Intelligence (DFKI GmbH)
Language Technology Lab
Alt Moabit 91c
10559 Berlin, Germany

16


	Introduction
	Previous work 
	Basic use 
	Installation
	Resources and Configuration
	Execution
	Demonstration server

	Under the hood
	Generation of features
	Machine Learning
	Training

	Development
	Understanding the data structures
	Reading and writing files
	Adding new features
	New QE applications and machine learning algorithms

	Further work 

