
The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013

EDITORIAL BOARD

Editor-in-Chief

Eva Hajičová

Editorial staff

Matěj Korvas
Ondřej Bojar
Martin Popel

Editorial board

Nicoletta Calzolari, Pisa
Walther von Hahn, Hamburg
Jan Hajič, Prague
Eva Hajičová, Prague
Erhard Hinrichs, Tübingen
Aravind Joshi, Philadelphia
Philipp Koehn, Edinburgh
Jaroslav Peregrin, Prague
Patrice Pognan, Paris
Alexandr Rosen, Prague
Petr Sgall, Prague
Hans Uszkoreit, Saarbrücken

Published twice a year by Charles University in Prague

Editorial office and subscription inquiries:
ÚFAL MFF UK, Malostranské náměstí 25, 118 00, Prague 1, Czech Republic
E-mail: pbml@ufal.mff.cuni.cz

ISSN 0032-6585

© 2013 PBML. All rights reserved.

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013

CONTENTS

Editorial 5

Articles

Makefiles for Moses
Ulrich Germann

9

QuEst — Design, Implementation and Extensions of a Framework
for Machine Translation Quality Estimation
Kashif Shah, Eleftherios Avramidis, Ergun Biçici, Lucia Specia

19

MTMonkey: A Scalable Infrastructure
for a Machine Translation Web Service
Aleš Tamchyna, Ondřej Dušek, Rudolf Rosa, Pavel Pecina

31

DIMwid — Decoder Inspection for Moses (using Widgets)
Robin Kurtz, Nina Seemann, Fabienne Braune, Andreas Maletti

41

morphogen: Translation into Morphologically Rich Languages
with Synthetic Phrases
Eva Schlinger, Victor Chahuneau, Chris Dyer

51

RankEval: Open Tool for Evaluation of Machine-Learned Ranking
Eleftherios Avramidis

63

XenC: An Open-Source Tool for Data Selection
in Natural Language Processing
Anthony Rousseau

73

© 2013 PBML. All rights reserved.

PBML 100 OCTOBER 2013

COSTA MT Evaluation Tool:
An Open Toolkit for Human Machine Translation Evaluation
Konstantinos Chatzitheodorou, Stamatis Chatzistamatis

83

Open Machine Translation Core:
An Open API for Machine Translation Systems
Ian Johnson

91

CASMACAT: An Open Source Workbench
for Advanced Computer Aided Translation
Vicent Alabau, Ragnar Bonk, Christian Buck, Michael Carl, Francisco Casacuberta,
Mercedes García-Martínez, Jesús González, Philipp Koehn, Luis Leiva,
Bartolomé Mesa-Lao, Daniel Ortiz, Herve Saint-Amand, Germán Sanchis,
Chara Tsoukala

101

Sequence Segmentation by Enumeration: An Exploration
Steffen Eger

113

Instructions for Authors 133

4

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013

EDITORIAL

50 years of The Prague Bulletin of Mathematical Linguistics

Half a century of the existence of a scientific journal is quite a long life span, es-
pecially if one takes into account the specificity of the political development and tur-
bulences in the country of origin, namely Czech Republic (former Czechoslovakia),
and the branch of science, namely computational (mathematical) linguistics. And yet,
it was fifty years ago, in 1964, when the first issue of The Prague Bulletin of Mathe-
matical Linguistics, published by Charles University in Prague, appeared, with 3 full
papers and 5 review articles, in an edition of 250. The ambitions of the editor-in-
chief (Petr Sgall, still participating in the present-day editorial board) and the edito-
rial board (a logician Karel Berka, a general linguist Pavel Novák and a specialist in
quantitative linguistics Marie Těšitelová; to our deep sorrow, none of the three can
celebrate with us today) as declared in the first Editorial were rather modest but also
rather urgent at the time: to provide a forum for Czech researchers in the newly devel-
oping field of mathematical linguistics and its applications to inform the international
community about their research activities, results and standpoints. As the university
department that was responsible for the publication of PBML included in its name
the attribute “algebraic linguistics”, the Editorial also referred to its orientation using
this attribute (borrowed from Y. Bar-Hillel) to distinguish the new trend in linguistics
from the at that time already well-established field of quantitative (called also sta-
tistical, sic!) linguistics. The editors expressed their appreciation of N. Chomsky’s
contribution to theoretical linguistics esp. in connection with the formal specification
of language by means of generative system and the assignment of structural char-
acteristics to sentences and emphasized the possibility offered by such an approach
to compare different types of grammars by means of usual mathematical methods.
However, they also warned that there are some difficulties concerning the mathe-
matical formulation of transformational grammar and its linguistic interpretation and
suggested that it is desirable to have another alternative of the generative description
of language. They referred to classical Praguian understanding of the relation of form
and function and the multilevel approach on the one side, and to such (at that time)
contemporary researchers as H. B. Curry, H. Putnam, S. K. Shaumjan or I. I. Revzin on
the other. It should be noticed that already in this very brief Editorial the possibility
to use a dependency rather than a constituency based account of syntactic relations

© 2013 PBML. All rights reserved.

PBML 100 OCTOBER 2013

was mentioned, as well as the importance of including semantic considerations into
linguistic description (as well as into possible applications, which, at that time, mostly
concerned machine translation).

It should be remembered that this Editorial was written at the beginning of 1964,
before the appearance of Katz and Postal’s monograph on an integrated theory of
linguistic description and one year before the publication of Chomsky’s Aspects and
his idea of the difference between deep and surface structure, not to speak about the
split within transformational grammar in the years 1967–1969 into the so-called inter-
pretative and generative semantics. In a way, the contents of the Editorial somehow
signaled the appearance of the alternative generative approach of formal description
of language as proposed in mid-sixties by Petr Sgall and as developed further by his
collaborators and pupils, i.e. the so-called Functional Generative Description (FGD).
There are three distinguishing features of this theoretical approach, namely (i) a multi-
level (stratificational) organization of linguistic description, with the underlying syn-
tactic level (called tectogrammatical, using Putnam’s terminological distinction be-
tween pheno- and tecto-grammatics) as its starting point, (ii) a dependency account
of syntactic relations with valency as its basic notion, and (iii) the inclusion of the de-
scription of the topic-focus articulation (TFA, now commonly referred to as the infor-
mation structure of the sentence) into the underlying level of the formal description of
language. In the years to follow, FGD was not only used as the theoretical framework
for the description of multifarious linguistic phenomena (not only of Czech, but also
in comparative studies of Czech and English, or other, mostly Slavonic languages),
but also as a basis for the formulation of an annotation scheme for corpora applied in
the so-called Prague Dependency Treebank 30 years later.

Back to the history of PBML. Its appearance in 1964 actually indicates that the po-
litical situation in the mid-sixties though still very tough, intolerable and difficult to
live through was not so strictly adversative to some till then unimaginable movements
in cultural and scientific life, especially if some parallel tendencies could be found in
Soviet Russia. It was in the same year, September 18–22, 1964, when a first (rather
small) international meeting on computational linguistics took place in Prague, called
Colloquium on Algebraic Linguistics, in which such prominent scholars as J. J. Ross
and E. S. Klima from the U.S., M. Bierwisch, J. Kunze and H. Schnelle from Germany,
J. Mey from Norway, H. Karlgren and B. Brodda from Sweden, B. Vauquois from
France, F. Papp, F. Kiefer and L. Kálmár from Hungary participated; altogether there
were 35 participants from abroad and tens of interested mostly young scholars from
Czechoslovakia. (One should be aware of the fact that this was one year before the
start of the regular international meetings on computational linguistics later known as
COLING (organized by the International Committee on Computational Linguistics)
and the Annual ACL conferences organized by the Association for Computational
Linguistics.) However, the situation dramatically changed soon (though not immedi-
ately, but with a delay of a year or two) after the Russian invasion to Czechoslovakia
in 1968. This change was reflected also in the position of the research team of mathe-

6

EDITORIAL (5–8)

matical linguistics at the Faculty of Arts at Charles University in Prague: in 1970 the
team lost the status of a department, in 1972 the Head of the Laboratory Petr Sgall
was threatened to have to leave the University and a similar fate was expected to be
faced by all of the members. Thanks to the consistence and solidarity of the team and
also to the help of our colleagues at the Faculty of Mathematics and Physics all the
members of the team found an “asylum” at different departments (though not as a
laboratory of its own) at this ideologically less strictly watched faculty.

At that point, it was clear to us that the very existence of the Prague Bulletin was
in a great danger. And again, solidarity was a crucial factor: one of the original Ed-
itorial Board members, the well-known logician prof. Karel Berka, the only member
of the Communist Party in the Board and actually not a computational linguist, took
over the initiative and actively fought for the continuation of the Bulletin. Its existence
was really extremely important – it helped to keep us in contact with the international
scene, not only by informing our colleagues abroad about our work but also, maybe
even more importantly at that time, to have something to offer “in exchange” for pub-
lications and journals published abroad which were – due to currency restrictions –
not otherwise available in our country. In this way, Czech(oslovak) computational
linguistics has never lost contacts with the developments in the field. One of the re-
markable sources of information, for example, were the mimeographed papers, PhD
theses and pre-publications produced and distributed by the Indiana University Lin-
guistics Club at Bloomington University, Indiana, which we were receiving free of
charge, not “piece for piece” (which would mean only two papers in a year, since
PBML was a bi-annual journal), but tens of papers for one PBML issue. Thanks to
the solidarity and friendliness of our colleagues at most different universities and re-
search institutions abroad, a similar exchange policy was in existence for more than
two decades, even between the PBML publishers and Editorial Boards or publishers
of some regular scientific journals.

In the course of the fifty years of its existence, our journal has faced not only dif-
ficulties but also some favorable developments. The journal has become more inter-
national: the contents is no longer restricted to contributions of Czech scholars, as
originally planned, the Editorial Board has undergone several changes the most im-
portant of which was introduced in June 2007 (PBML 87), when the Editorial Board
was enlarged by prominent scholars of the field from different geographical areas as
well as domains of interest, and the review process was made more strict by hav-
ing at least one reviewer for each submission from abroad. At the same time, we
started to make the individual issues available on the web and also the format of the
journal and its graphical image has considerably improved. Starting from PBML 89,
all articles have assigned DOI identifiers and they are published also via the Versita
(De Gruyter) open access platform.

The thematic scope of PBML is also rather broad; the Editorial Board is open to
publish papers both with a theoretical as well as with an application orientation, as
testified by the fact that since 2009 (PBML 91) we publish regularly the papers accepted

7

PBML 100 OCTOBER 2013

for presentation at the regular Machine Translation Marathon events organized by a
series of EU-funded projects: EuroMatrix, EuroMatrixPlus and now MosesCore. We
are most grateful to the group of reviewers of the Marathon event who present their
highly appreciated comments on the tools described in the papers. PBML has thus
become one of a very few journals that provide a traditional scientific credit for rather
practical outcomes: open-source software, which can be employed in further research
and often also outside of academia right away.

We are convinced that in the course of the fifty years of its existence, The Prague
Bulletin of Mathematical Linguistics has developed into a fully qualified member of
the still growing family of journals devoted to many-sided issues of computational
linguistics and as such will provide an interesting and well-received forum for all
researchers irrespective of their particular specialization, be they members of the the-
oretically or application oriented community.

Eva Hajičová, Petr Sgall and Jan Hajič

{hajicova,sgall,hajic}@ufal.mff.cuni.cz

8

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 9–18

Makefiles for Moses

Ulrich Germann
University of Edinburgh

Abstract
Building MT systems with the Moses toolkit is a task so complex that it is rarely done man-

ually. Over the years, several frameworks for building, running, and evaluating Moses systems
have been developed,most notably theExperiment Management System (EMS).While EMSworks
well for standard experimental set-ups and offers good web integration, designing new exper-
imental set-ups within EMS is not trivial, especially when the new processing pipeline differs
considerably from the kind EMS is intended for. In this paper, I present M4M (Makefiles for
Moses), a framework for building and evaluating Moses MT systems with the GNU Make utility.
I illustrate the capabilities by a simple set-up that builds and compares two different systems
with common resources. This set-up requires littlemore than putting training, tuning and eval-
uation data into the right directories and running Make.1 The purpose of this paper is twofold:
to guide first-time users of Moses through the process of building baseline MT systems, and to
discuss some lesser-known features of the Make utility that enable theMT practitioner to set up
complex experimental scenarios efficiently. M4M is part of the Moses distribution.

1. Introduction

The past fifteen years have seen the publication of numerous open source toolkits
for statistical machine translation (SMT), from word alignment of parallel text to de-
coding, parameter tuning and evaluation (Och and Ney, 2003; Koehn et al., 2007; Li
et al., 2009; Gao and Vogel, 2008; Dyer et al., 2010, and others). While all these tools
greatly facilitate SMT research, building actual systems remains a tedious and com-
plex task. Training, development and testing data have to be preprocessed, cleaned

1For the sake of convenience, I use Make to refer to GNU Make in this paper. GNU Make provides a number
of extensions not available in the original Make utility.

© 2013 PBML. All rights reserved. Corresponding author: ugermann@inf.ed.ac.uk
Cite as: Ulrich Germann. Makefiles for Moses. The Prague Bulletin of Mathematical Linguistics No. 100, 2013,
pp. 9–18. doi: 10.2478/pralin-2013-0007.

PBML 100 OCTOBER 2013

up and word-aligned. Language and translation models have to be built, and system
parameters have to be tuned for optimal performance. Some of these tasks can be
performed in parallel. Some can be parallelized internally by a split-and-merge ap-
proach. Others need to be executed in sequence, as some build steps depend on the
output of others.

There are generally three approaches to automating the build process. The first ap-
proach is to use shell scripts that produce a standard system setup. This is the ap-
proach taken in Moses for Mere Mortals.2 This approach works well in a production
scenario where there is little variation in the setup, and where systems are usually
built only once. In a research scenario, where it is typical to pit numerous systems
variations against one another, this approach suffers from the following drawbacks.

• Many of the steps in building SMT systems are computationally very expen-
sive. Word alignment, phrase table construction and parameter tuning can each
easily take hours, if not days, especially when run without parallelization. It is
therefore highly desirable not to recreate resources unnecessarily. Building such
checks into regular shell scripts is possible but tedious and error-prone.

• When the build process fails, it can be hard to determine the exact point of fail-
ure.

• Parallelization, if desired, has to be hand-coded.

The second approach is to write a dedicated build system, such as the Experiment
Management System (EMS) for Moses (Koehn, 2010), or Experiment Manager (Eman), a
more general framework for designing, running, and documenting scientific experi-
ments (Bojar and Tamchyna, 2013).

EMS was designed specifically for Moses. It is capable of automatically scheduling
independent tasks in parallel and includes checks to ensure that resources are only
(re)created when necessary. EMS works particularly well for setting up a standard
baseline system and then tweaking its configurationmanually, while EMS keeps track
of the changes and records the effect that each tweak has on overall system perfor-
mance. In its job scheduling capabilities, EMS is reminiscent of generic build systems
such asMake. In fact, the development of EMS is partly due to perceived shortcomings
of Make (P. Koehn, personal communication), some of which we will address later on.

As a specialized tool that implements a specificway of runningMoses experiments,
EMS has a few drawbacks, too. Experimental setups that stray from the beaten path
can be difficult to specify in EMS. In addition, the point of failure is not always easy to
find when the system build process crashes, especially when the build failure is due
to errors in the EMS configuration file.

2http://en.wikipedia.org/wiki/Moses_for_Mere_Mortals,
https://code.google.com/p/moses-for-mere-mortals

10

http://en.wikipedia.org/wiki/Moses_for_Mere_Mortals
https://code.google.com/p/moses-for-mere-mortals

Ulrich Germann Makefiles for Moses (9–18)

Eman (Bojar and Tamchyna, 2013) also has its roots in SMT research but is designed
as a general framework for running scientific experiments. Its primary objectives are
to avoid unnecessary recreation of intermediate results, and to ensure that all exper-
iments are replicable by preserving and thoroughly documenting all experimental
parameters and intermediate results. To achieve this, Eman has a policy of never over-
writing or re-creating existing files. Instead, Eman clones and branches whenever an
experiment is re-run. Due to its roots, Eman comes with a framework for running
standard SMT experiments.

The third approach is to rely on established generic build systems, such as the
Make utility. Make has the reputation of being arcane and lacking basic features such
as easy iteration over a range of integers, andmuch of this criticism language is indeed
justified—Make is not for the faint-of-heart. On the other hand, it is a tried-and-tested
power tool for complex build processes, andwith the help of some of the lesser-known
language features, it can be extremely useful also in the hands of the MT practitioner.

This article is foremost and above all a tutorial on how to useMake for building and
experimenting with Moses MT systems. It comes with a library of Makefile snippets
that have been included in the standard Moses distribution.3

2. Makefile Basics

While inconveniently constrained in some respects, the Make system is very versa-
tile and powerful in others. In this section I present the features of Make that are the
most relevant for using Make for building Moses systems.

2.1. Targets, Prerequisites, Rules, and Recipes

Makefile rules consist of a target, usually a file that we want to create, prerequisites
(other files necessary to create the target), and a recipe: the sequence of shell com-
mands that need to be run to create the target. The target is (re-)created when a file
of that name does not exist, or if any of the prerequisites is missing or younger than
the target itself. Prior to checking the target, Make recursively checks all prerequisites.
The relation between target and prerequisite is called a dependency.

Makefile rules are written as follows.

target: prerequisite(s)
commands to produce target from prerequisite(s)

Note that each line of the recipe must be indented by a single tab. Within the
recipe, the special variables $@, $<, $ˆ, and $| can be used to refer to the target, the
first normal prerequisite, the entire list of normal prerequisites, and the entire list of
order-only prerequisites, respectively.

3https://github.com/moses-smt/mosesdecoder; Makefiles for Moses is located under contrib/m4m

11

https://github.com/moses-smt/mosesdecoder

PBML 100 OCTOBER 2013

In addition to regular prerequisites, prerequisites can also be specified as order-
only prerequisites. Order-only prerequisites only determine the order in which rules
are applied, but the respective target is not updated when the prerequisite is younger
than the target. Order-only dependencies are specified as follows (notice the bar after
the colon).

target: | prerequisite(s)
commands to produce target from prerequisite(s)

Makefiles for Moses uses order-only dependencies extensively; it is a safe-guard
against expensive resource recreation should a file time stamp be changed acciden-
tally, e.g. by transferring files to a different location without preservation of the re-
spective time stamps.

A number of special built-in targets, all starting with a period, carry special mean-
ings. Files listed as prerequisites of these targets are treated differently from normal
files. In the context of this work, the following are important.

.INTERMEDIATE: Intermediate files are files necessary only to create other targets
but not important for the final system. If an intermediate file listed as the pre-
requisite of other targets does not exist, it is created only if the target needs to
be (re)created. Declaring files as intermediate allows us to remove files that are
no longer needed without triggering the recreation of dependent targets when
Make is run again.

.SECONDARY: Make usually deletes intermediate files when they are no longer re-
quired. Files declared as secondary, on the other hand, are never deleted auto-
matically by Make. Especially in a research setting we may want to keep certain
intermediate files for future use, without having to recreate themwhen they are
needed again. The combination of .INTERMEDIATE and .SECONDARY give us
control over (albeit also the burden ofmanagement of) if andwhen intermediate
files are deleted.

2.2. Pattern Rules

Pattern rules are well-known to anyone who uses Make for compiling code. The
percent symbol serves as a place holder that matches any string in the target and at
least one prerequisite. For example, the pattern rule

crp/trn/pll/tok/%.de.gz: | crp/trn/pll/raw/%.de.gz
zcat $< | tokenize.perl -l de | gzip > $@

will match any target that matches the pattern crp/trn/pll/tok/*.de.gz, check for
the existence of a file of the same name in the directory crp/trn/pll/raw and execute
the shell command

zcat $< | tokenize.perl -l de | gzip > $@

12

Ulrich Germann Makefiles for Moses (9–18)

2.3. Variables

Make knows two ‘flavors’ of variables. By default, variables are expanded recur-
sively. Consider the following example. Unlike variables in standard Unix shells,
parentheses or braces around the variable name are mandatory in Make when ref-
erencing a variable.4

a = 1
b = $(a)
a = 2
all:

echo $(b)

In most conventional programming languages, the result of the expansion of $(b)
in the recipe would be 1. Not so in Make: what is stored in the variable is actually a
reference to a, not the value of $(a) at the time of assignment. It is only when the
value is needed in the recipe that each variable reference is recursively replaced by its
value at that (later) time.

On the other hand, simply expanded variables expand their value at the time of as-
signment. The flavor of variable is determined at the point of assignment. The opera-
tor ’=’ (as well as the concatenation operator ’+=’ when used to create a new variable)
creates a recursively expanded variable; simply expanded variables are created with
the assignment operator ‘:=’.

Multi-line variables can be defined by sandwiching them between the define and
endef keywords, e.g.

define tokenize

$(1)/tok/%.$(2).gz: | $(1)/raw/%.$(2).gz
zcat $$< | tokenize.perl -l $(2) | gzip > $$@

endef

Notice the variables $(1) and $(2) as well as the escaping of the variables $< and
$@ by double $$. The use of the special variables $(1), . . . $(9) turns this variable into
a user-defined function. The blank lines around the variable content are intentional to
ensure that the target starts at the beginning of a new line and the recipe is terminated
by a new line during the expansion by $(eval $(call ...)) below.

The call syntax for built-in Make functions is as follows.
$(function-name arg1,arg2,...)

4Except variables with a single-character name.

13

PBML 100 OCTOBER 2013

User-defined functions are called via the built-in Make function call. The value of
$(call tokenize,crp/trn/pll,de)

is thus
crp/trn/pll/tok/%.de.gz: | crp/trn/pll/raw/%.de.gz

zcat $< | tokenize.perl -l de | gzip > $@

Together with the built-in Make functions foreach (iteration over a list of space-
separated tokens) and eval (which inserts its argument at the location where it is
called in theMakefile), we can use thismechanism to programmatically generateMake
rules on the fly and in response to the current environment. For example,

directories := $(shell find -L crp -type d -name raw)
$(foreach d,$(directories:%/raw=%),\
$(foreach l,de en,\
$(eval $(call tokenize,$(d),$(l)))))

creates tokenization rules for the languages de and en for all subdirectories in the di-
rectory crp that are named raw. The substitution reference $(directories:%/raw=%)
removes the trailing /raw on each directory found by the shell call to find.

3. Building Systems and Running Experiments

3.1. A Simple Comparison of Two Systems

With these preliminary remarks, we are ready to show in Fig. 1 how to run a simple
comparison of two phrase-based Moses systems, using mostly tools included in the
Moses distribution. For details on the M4M modules used, the reader is referred to
the actual code and documentation in the M4M distribution. The first system in our
example relies on word alignments obtained with fast_align5 (Dyer et al., 2013); the
second uses mgiza++ (Gao and Vogel, 2008). Most of the functionality is hidden in the
M4M files included by the line

include ${MOSES_ROOT}/contrib/m4m/modules/m4m.m4m

The experiment specified in this Makefile builds the two systems, tunes each five
times on each tuning set (with random initialization), and computes the BLEU score
for each tuning run on each of the data sets in the evaluation set.

The design goal behind the setup shown is to achieve what I call the washing ma-
chine model: put everything in the right compartment, and the machine will auto-
matically process everything in the right order. There is a standard directory struc-
ture that determines the role of the respective data in the training process, shown in
Table 1.

5https://github.com/clab/fast_align

14

https://github.com/clab/fast_align

Ulrich Germann Makefiles for Moses (9–18)

MOSES_ROOT = ${HOME}/code/moses/master/mosesdecoder
MGIZA_ROOT = ${HOME}/tools/mgiza
fast_align = ${HOME}/bin/fast_align
L1: source language; L2: target language
L1 = de
L2 = en
WDIR = $(CURDIR)

include ${MOSES_ROOT}/contrib/m4m/modules/m4m.m4m

both systems use the same language model
L2raw := $(wildcard ${WDIR}/crp/trn/*/raw/*.${L2}.gz)
L2data := $(subst /raw/,/cased/,${L2trn})
lm.order = 5
lm.factor = 0
lm.lazy = 1
lm.file = ${WDIR}/lm/${L2}.5-grams.kenlm
${lm.file}: | $(L2data)
$(eval $(call add_kenlm,${lm.file},${lm.order},${lm.factor},${lm.lazy}))
.INTERMEDIATE: ${L2data}

for the first system, we use fast_align
word-alignment = fast
system = ${word-alignment}-aligned
ptable = model/tm/$(system).${L1}-${L2}
dtable = model/tm/$(system).${L1}-${L2}
$(eval $(call add_binary_phrase_table,0,0,5,${ptable}))
$(eval $(call add_binary_reordering_table,0,0,8,\

wbe-mslr-bidirectional-fe-allff,${dtable},${ptable}))
$(eval $(call create_moses_ini,${system}))
SYSTEMS := $(system)

for the second system, we use mgiza
word-alignment = giza
$(eval $(clear-ptables))
$(eval $(clear-dtables))
$(eval $(call add_binary_phrase_table,0,0,5,${ptable}))
$(eval $(call add_binary_reordering_table,0,0,8,\

wbe-mslr-bidirectional-fe-allff,${dtable},${ptable}))
$(eval $(call create_moses_ini,${system}))
SYSTEMS += $(system)
ifdef tune.runs
EVALUATIONS :=
$(eval $(tune_all_systems))
$(eval $(bleu_score_all_systems))
all: ${EVALUATIONS}

echo EVALS ${EVALUATIONS}
else
all:

$(foreach n,$(shell seq 1 5),${MAKE} tune.runs="$n␣$n";)
endif

Figure 1. Makefile for a simple baseline system. All the details for building the system
are handled by M4M.

15

PBML 100 OCTOBER 2013

crp/trn/pll/ parallel training data
crp/trn/mno/ monolingual training data
crp/dev/ development data for parameter tuning
crp/tst/ test sets for evaluation
model/tm phrase tables
model/dm distortion models
model/lm language models
system/tuned/tset/n/moses.ini result of tuning system system on

tuning set tset (n-th tuning run)
system/eval/tset/n/eset.* evaluation results for test set eset, translated

by system system/tuned/tset/n/moses.ini

Table 1. Directory structure for standard M4M setups

3.2. Writing Modules

The bulk of the system building and evaluation work is done by the various M4M
modules. While an in-depth discussion of all modules is impossible within the space
limitations of this paper, a few points are worth mentioning here.

One of the inherent risks in using build systems is that two independent concur-
rent build runs with overlapping targets may interfere with one another, overwriting
each other’s files. In deviation from the usual philosophy of build systems— recreate
files when their prerequisites change—M4M adopts a general policy of only creating
files when they do not exist, never recreating them. It is up to the user to first delete
the files that they do want to recreate. To prevent concurrent creation of the same
target, we adopt the following lock/unlock mechanism.

define lock
mkdir -p ${@D}
test ! -e $@
mkdir $@.lock
echo -n "Started␣at␣$(shell␣date)␣" > $@.lock/owner
echo -n "by␣process␣$(shell␣echo␣$$PPID)␣" >> $@.lock/owner
echo "on␣host␣$(shell␣hostname)" >> $@.lock/owner
endef

define unlock
rm $@.lock/owner
rmdir $@.lock
endef

The first line of the lockmechanism ensures that the target’s directory exists. The
second line triggers an error when the target already exists. Recall that our policy is
to never re-create existing files. The third line creates a semaphore (directory creation
is an atomic file system operation). When invoked without the -p parameter, mkdir

16

Ulrich Germann Makefiles for Moses (9–18)

will refuse to create a directory that already exists. The logging information added
in the fourth and subsequent lines is helpful in error tracking. It allows us to deter-
mine easily which process created the respective lock and check if the process is still
running.

Another risk is that partially created target files may falsely be interpreted as fully
finished targets, either due to concurrent Make runs with overlapping targets, or due
to a build failure in an earlier run. (Normally, Make deletes the affected target if the
underlying recipe fails. However, we disabled this behavior by declaring all files .SEC-
ONDARY.) We can address this issue by always creating a temporary target under a
different name and renaming that to the proper name upon successful creation. The
pattern for a module definition thus looks as follows.

target: prerequisite
$(lock)
create-target > $@_
mv $@_ $@
$(unlock)

4. Conclusion

I have presentedMakefiles for Moses, a framework for building and evaluatingMoses
MT system within the GNU Make framework. The use of the eval function in combi-
nation with custom functions allows us to dynamically create Make rules for multiple
systems in the same Makefile, beyond the limitations of simple pattern rules.

A simple but effective semaphore mechanism protects us from the dangers of run-
ning multiple instances of Make over the same data. By using order-only dependen-
cies and .INTERMEDIATE statements, we can specify a build system that creates re-
sources only once, and allows for the removal of intermediate files that are no longer
needed, without Make recreating them when run again.

Make’s tried-and-tested capabilities for parallelization in the build process are fully
available.

While Makefiles for Moses lacks the bells and whistles of EMS particularly with re-
spect to progress monitoring and web integration of the experimental results, it of-
fers greater flexibility in experimental design, especially with respect to scriptability
of system setup.

5. Acknowledgements

The work described in this paper was performed as part of the following projects
funded under the European Union’s Seventh Framework Programme for Research
(FP7): Accept (grant agreement 288769), Matecat (grant agreement 287688), and Cas-
macat (grant agreement 287576).

17

PBML 100 OCTOBER 2013

Bibliography

Bojar, Ondřej andAleš Tamchyna. The design of Eman, an experimentmanager. Prague Bulletin
of Mathematical Linguistics, 99:39–58, April 2013.

Dyer, Chris, Adam Lopez, Juri Ganitkevitch, Johnathan Weese, Ferhan Ture, Phil Blunsom,
Hendra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec: A decoder, alignment, and
learning framework for finite-state and context-free translation models. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, July 2010.

Dyer, Chris, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective reparameter-
ization of IBM Model 2. In Proceedings of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages 644–648,
Atlanta, Georgia, June 2013. Association for Computational Linguistics.

Gao, Qin and Stephan Vogel. Parallel implementations of word alignment tool. In Workshop
on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages
49–57, Columbus, Ohio, June 2008. Association for Computational Linguistics.

Koehn, Philipp. An experimental management system. Prague Bulletin of Mathematical Linguis-
tics, 94:87–96, September 2010.

Koehn, Philipp, HieuHoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proceedings of the 45th Annual Meeting of the Association for Computa-
tional Linguistics: Demonstration Session, Prague, Czech Republic, June 2007.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Sanjeev Khudanpur, Lane Schwartz, Wren Thorn-
ton, Jonathan Weese, and Omar Zaidan. Joshua: An open source toolkit for parsing-based
machine translation. In Proceedings of the Fourth Workshop on Statistical Machine Translation,
pages 135–139, Athens, Greece, March 2009. Association for Computational Linguistics.

Och, Franz Josef and Hermann Ney. A systematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51, March 2003.

Address for correspondence:
Ulrich Germann
ugermann@inf.ed.ac.uk
School of Informatics
University of Edinburgh
10 Crichton Street
Edinburgh, EH8 9AB, United Kingdom

18

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 19–30

QuEst — Design, Implementation and Extensions
of a Framework for Machine Translation Quality Estimation

Kashif Shaha, Eleftherios Avramidisb, Ergun Biçicic, Lucia Speciaa
a University of Sheffield

b German Research Center for Artificial Intelligence
c Centre for Next Generation Localization, Dublin City University

Abstract
In this paper we present QE, an open source framework for machine translation qual-

ity estimation. The framework includes a feature extraction component and a machine learn-
ing component. We describe the architecture of the system and its use, focusing on the fea-
ture extraction component and on how to add new feature extractors. We also include exper-
iments with features and learning algorithms available in the framework using the dataset of
the WMT13 Quality Estimation shared task.

1. Introduction

Quality Estimation (QE) is aimed at predicting a quality score for a machine trans-
lated segment, in our case, a sentence. The general approach is to extract a number of
features from source and target sentences, and possibly external resources and infor-
mation from the Machine Translation (MT) system for a dataset labelled for quality,
and use standard machine learning algorithms to build a model that can be applied
to any number of unseen translations. Given its independence from reference trans-
lations, QE has a number of applications, for example filtering out low quality trans-
lations from human post-editing.

Most of current research focuses on designing feature extractors to capture differ-
ent aspects of quality that are relevant to a given task or application. While simple
features such as counts of tokens and language model scores can be easily extracted,
feature engineering for more advanced information can be very labour-intensive. Dif-

© 2013 PBML. All rights reserved. Corresponding author: Kashif.Shah@sheffield.ac.uk
Cite as: Kashif Shah, Eleftherios Avramidis, Ergun Biçici, Lucia Specia. QuEst — Design, Implementation and
Extensions of a Framework for Machine Translation Quality Estimation. The Prague Bulletin of Mathematical
Linguistics No. 100, 2013, pp. 19–30. doi: 10.2478/pralin-2013-0008.

PBML 100 OCTOBER 2013

ferent language pairs or optimisation against specific quality scores (e.g., post-editing
time versus translation adequacy) can benefit from different feature sets.

QE is a framework for quality estimation that provides a wide range of feature
extractors from source and translation texts and external resources and tools (Sec-
tion 2). These range from simple, language-independent features, to advanced, lin-
guistically motivated features. They include features that rely on information from the
MT system that generated the translations, and features that are oblivious to the way
translations were produced, and also features that only consider the source and/or
target sides of the dataset (Section 2.1). QE also incorporates wrappers for a well-
known machine learning toolkit, scikit-learn1 and for additional algorithms (Sec-
tion 2.2).

This paper is aimed at both users interested in experimenting with existing fea-
tures and algorithms and developers interested in extending the framework to incor-
porate new features (Section 3). For the former, QE provides a practical platform
for quality estimation, freeing researchers from feature engineering, and facilitating
work on the learning aspect of the problem, and on ways of using quality predictions
in novel extrinsic tasks, such as self-training of statistical machine translation systems.
For the latter, QE provides the infrastructure and the basis for the creation of new
features, which may also reuse resources or pre-processing techniques already avail-
able in the framework, such as syntactic parsers, and which can be quickly bench-
marked against existing features.

2. Overview of the QE Framework

QE consists of two main modules: a feature extraction module and a machine
learning module. It is a collaborative project, with contributions from a number of
researchers.2 The first module provides a number of feature extractors, including
the most commonly used features in the literature and by systems submitted to the
WMT12–13 shared tasks on QE (Callison-Burch et al., 2012; Bojar et al., 2013). It is
implemented in Java and provides abstract classes for features, resources and pre-
processing steps so that extractors for new features can be easily added.

The basic functioning of the feature extraction module requires a pair of raw text
files with the source and translation sentences aligned at the sentence-level. Addi-
tional resources such as the source MT training corpus and language models of source
and target languages are necessary for certain features. Configuration files are used
to indicate the resources available and a list of features that should be extracted. It
produces a CSV file with all feature values.

The machine learning module provides scripts connecting the feature file(s) with
the scikit-learn toolkit. It also uses GPy, a Python toolkit for Gaussian Processes
regression, which showed good performance in previous work (Shah et al., 2013).

1http://scikit-learn.org/
2See http://www.quest.dcs.shef.ac.uk/ for a list of collaborators.

20

http://scikit-learn.org/
http://www.quest.dcs.shef.ac.uk/

K. Shah, E. Avramidis, E. Biçici, L. Specia QuEst (19–30)

Confidence
indicators

Complexity
indicators

Fluency
indicators

Adequacy
indicators

Source text TranslationMT system

Figure 1: Families of features in QE.

2.1. Feature Sets

In Figure 1 we show the families of features that can be extracted in QE. Al-
though the text unit for which features are extracted can be of any length, most fea-
tures are more suitable for sentences. Therefore, a “segment” here denotes a sentence.
Most of these features have been designed with Statistical MT (SMT) systems in mind,
although many do not explore any internal information from the actual SMT system.
Further work needs to be done to test these features for rule-based and other types of
MT systems, and to design features that might be more appropriate for those.

From the source segments QE can extract features that attempt to quantify the
complexity or translatability of those segments, or how unexpected they are given
what is known to the MT system. From the comparison between the source and target
segments, QE can extract adequacy features, which attempt to measure whether
the structure and meaning of the source are preserved in the translation. Informa-
tion from the SMT system used to produce the translations can provide an indication
of the confidence of the MT system in the translations. They are called “glass-box”
features (GB) to distinguish them from MT system-independent, “black-box” features
(BB). To extract these features, QE assumes the output of Moses-like SMT systems,
taking into account word- and phrase-alignment information, a dump of the decoder’s
standard output (search graph information), global model score and feature values,
n-best lists, etc. For other SMT systems, it can also take an XML file with relevant
information. From the translated segments QE can extract features that attempt to
measure the fluency of such translations.

The most recent version of the framework includes a number of previously under-
explored features that can rely on only the source (or target) side of the segments and
on the source (or target) side of the parallel corpus used to train the SMT system.
Information retrieval (IR) features measure the closeness of the QE source sentences
and their translations to the parallel training data available to predict the difficulty of
translating each sentence. These have been shown to work very well in recent work

21

PBML 100 OCTOBER 2013

(Biçici et al., 2013; Biçici, 2013). We use Lucene3 to index the parallel training corpora
and obtain a retrieval similarity score based on tf-idf. For each source sentence and
its translation, we retrieve top 5 distinct training instances and calculate the following
features:

• IR score for each training instance retrieved for the source sentence or its trans-
lation

• BLEU (Papineni et al., 2002) and F1 (Biçici, 2011) scores over source or target
sentences

• LIX readability score4 for source and target sentences
• The average number of characters in source and target words and their ratios.
In Section 4 we provide experiments with these new features.
The complete list of features available is given as part of QE’s documentation.

At the current stage, the number of BB features varies from 80 to 143 depending on
the language pair, while GB features go from 39 to 48 depending on the SMT system.

2.2. Machine Learning

QE provides a command-line interface module for the scikit-learn library
implemented in Python. This module is completely independent from the feature
extraction code. It reads the extracted feature sets to build and test QE models. The
dependencies are the scikit-learn library and all its dependencies (such as NumPy
and SciPy). The module can be configured to run different regression and classi-
fication algorithms, feature selection methods and grid search for hyper-parameter
optimisation.

The pipeline with feature selection and hyper-parameter optimisation can be set
using a configuration file. Currently, the module has an interface for Support Vector
Regression (SVR), Support Vector Classification, and Lasso learning algorithms. They
can be used in conjunction with the feature selection algorithms (Randomised Lasso
and Randomised decision trees) and the grid search implementation of scikit-learn
to fit an optimal model of a given dataset.

Additionally, QE includes Gaussian Process (GP) regression (Rasmussen and
Williams, 2006) using the GPy toolkit.5 GPs are an advanced machine learning frame-
work incorporating Bayesian non-parametrics and kernel machines, and are widely
regarded as state of the art for regression. Empirically we found its performance to
be similar or superior to that of SVR for most datasets. In contrast to SVR, inference
in GP regression can be expressed analytically and the model hyper-parameters opti-
mised using gradient ascent, thus avoiding the need for costly grid search. This also
makes the method very suitable for feature selection.

3lucene.apache.org
4http://en.wikipedia.org/wiki/LIX
5https://github.com/SheffieldML/GPy

22

lucene.apache.org
http://en.wikipedia.org/wiki/LIX
https://github.com/SheffieldML/GPy

K. Shah, E. Avramidis, E. Biçici, L. Specia QuEst (19–30)

3. Design and Implementation

3.1. Source Code

We made available three versions of the code, all available from http://www.
quest.dcs.shef.ac.uk:

• An installation script that will download the stable version of the source code, a
built up version (jar), and all necessary pre-processing resources/tools (parsers,
etc.).

• A stable version of the above source code only (no linguistic processors).
• A vanilla version of the source code which is easier to run (and re-build), as it

relies on fewer pre-processing resources/tools. Toy resources for en-es are also
included in this version. It only extracts up to 50 features.

In addition, the latest development version of the code can be accessed on GitHub.6

3.2. Setting Up

Once downloaded, the folder with the code contains all files required for running
or building the application. It contains the following folders and resources:

• src: java source files
• lib: jar files, including the external jars required by QE
• dist: javadoc documentation
• lang-resources: example of language resources required to extract features
• config: configuration files
• input: example of input training files (source and target sentences, plus quality

labels)
• output: example of extracted feature values

3.3. The Feature Extractor

The class that performs feature extraction is shef.mt.FeatureExtractor. It han-
dles the extraction of glass-box and/or black-box features from a pair of source-target
input files and a set of additional resources specified as input parameters. Whilst the
command line parameters relate to the current set of input files, FeatureExtractor
also relies on a set of project-specific parameters, such as the location of resources.
These are defined in a configuration file in which resources are listed as pairs of
key=value entries. By default, if no configuration file is specified in the input, the
application will search for a default config.properties file in the current working
folder (i.e., the folder where the application is launched from). This default file is
provided with the distribution.

Another input parameter required is the XML feature configuration file, which
gives the identifiers of the features that should be extracted by the system. Unless

6https://github.com/lspecia/quest

23

http://www.quest.dcs.shef.ac.uk
http://www.quest.dcs.shef.ac.uk
https://github.com/lspecia/quest

PBML 100 OCTOBER 2013

a feature is present in this feature configuration file it will not be extracted by the
system. Examples of such files for all features, black-box, glass-box, and a subset of
17 “baseline” features are provided with the distribution.

3.4. Running the Feature Extractor

The following command triggers the features extractor:
FeatureExtractor -input <source file> <target file> -lang
<source language> <target language> -config <configuration file>
-mode [gb|bb|all] -gb [list of GB resources]

where the arguments are:
• -input <source file> <target file> (required): the input source and target

text files with sentences to extract features from
• -lang <source language> <target language>: source and target languages

of the files above
• -config <configuration file>: file with the paths to the input/output, XML-

feature files, tools/scripts and language resources
• -mode <gb|bb|all>: a choice between glass-box, black-box or both types of fea-

tures
• -gb [list of files]: input files required for computing the glass-box features.

The options depend on the MT system used. For Moses, three files are required:
a file with the n-best list for each target sentence, a file with a verbose output of
the decoder (for phrase segmentation, model scores, etc.), and a file with search
graph information.

3.5. Packages and Classes

Here we list the important packages and classes. We refer the reader to QE
documentation for a comprehensive list of modules.

• shef.mt.enes: This package contains the main feature extractor classes.
• shef.mt.features.impl.bb: This package contains the implementations of

black-box features.
• shef.mt.features.impl.gb: This package contains the implementations of

glass-box features.
• shef.mt.features.util: This package contains various utilities to handle in-

formation in a sentence and/or phrase.
• shef.mt.tools: This package contains wrappers for various pre-processing

tools and Processor classes for interpreting the output of the tools.
• shef.mt.tools.stf: This package contains classes that provide access to the

Stanford parser output.
• shef.mt.util: This package contains a set of utility classes that are used

throughout the project, as well as some independent scripts used for various
data preparation tasks.

24

K. Shah, E. Avramidis, E. Biçici, L. Specia QuEst (19–30)

• shef.mt.xmlwrap: This package contains XML wrappers to process the output
of SMT systems for glass-box features.

The most important classes are as follows:
• FeatureExtractor: FeatureExtractor extracts glass-box and/or black-box fea-

tures from a pair of source-target input files and a set of additional resources
specified as input parameters.

• Feature: Feature is an abstract class which models a feature. Typically, a Fea-
ture consist of a value, a procedure for calculating the value and a set of depen-
dencies, i.e., resources that need to be available in order to be able to compute
the feature value.

• FeatureXXXX: These classes extend Feature and to provide their own method
for computing a specific feature.

• Sentence: Models a sentence as a span of text containing multiple types of in-
formation produced by pre-processing tools, and direct access to the sentence
tokens, n-grams, phrases. It also allows any tool to add information related to
the sentence via the setValue() method.

• MTOutputProcessor: Receives as input an XML file containing sentences and
lists of translation with various attributes and reads it into Sentence objects.

• ResourceProcessor: Abstract class that is the basis for all classes that process
output files from pre-processing tools.

• Pipeline: Abstract class that sets the basis for handling the registration of the
existing ResourceProcessors and defines their order.

• ResourceManager: This class contains information about resources for a partic-
ular feature.

• LanguageModel: LanguageModel stores information about the content of a lan-
guage model file. It provides access to information such as the frequency of
n-grams, and the cut-off points for various n-gram frequencies necessary for
certain features.

• Tokenizer: A wrapper around the Moses tokenizer.

3.6. Developer’s Guide

A hierarchy of a few of the most important classes is shown in Figure 2. There are
two principles that underpin the design choice:

• pre-processing must be separated from the computation of features, and
• feature implementation must be modular in the sense that one is able to add

features without having to modify other parts of the code.
A typical application will contain a set of tools or resources (for pre-processing),

with associated classes for processing the output of these tools. A Resource is usually
a wrapper around an external process (such as a part-of-speech tagger or parser), but
it can also be a brand new fully implemented pre-processing tool. The only require-
ment for a tool is to extend the abstract class shef.mt.tools.Resource. The imple-
mentation of a tool/resource wrapper depends on the specific requirements of that

25

PBML 100 OCTOBER 2013

particular tool and on the developer’s preferences. Typically, it will take as input a file
and a path to the external process it needs to run, as well as any additional parameters
the external process requires, it will call the external process, capture its output and
write it to a file.

The interpretation of the tool’s output is delegated to a subclass of
shef.mt.tools.ResourceProcessor associated with that particular Resource.
A ResourceProcessor typically:

• Contains a function that initialises the associated Resource. As each Resource
may require a different set of parameters upon initialisation, ResourceProces-
sor handles this by passing the necessary parameters from the configuration file
to the respective function of the Resource.

• Registers itself with the ResourceManager in order to signal the fact that it
has successfully managed to initialise itself and it can pass information to be
used by features. This registration should be done by calling ResourceMan-
ager.registerResource(String resourceName). resourceName is an arbitrary
string, unique among all other Resources. If a feature requires this particular
Resource for its computation, it needs to specify it as a requirement (see Sec-
tion 3.7).

• Reads in the output of a Resource sentence by sentence, retrieves some informa-
tion related to that sentence and stores it in a Sentence object. The processing of
a sentence is done in the processNextSentence(Sentence sentence) function
which all ResourceProcessor-derived classes must implement. The informa-
tion it retrieves depends on the requirements of the application. For example,
shef.mt.tools.POSProcessor, which analyses the output of the TreeTagger, re-
trieves the number of nouns, verbs, pronouns and content words, since these
are required by certain currently implemented features, but it can be easily ex-
tended to retrieve, for example, adjectives, or full lists of nouns instead of counts.

A Sentence is an intermediate object that is, on the one hand, used by Resour-
ceProcessor to store information and, on the other hand, by Feature to access this
information. The implementation of the Sentence class already contains access meth-
ods to some of the most commonly used sentence features, such as the text it spans,
its tokens, its n-grams, its phrases and its n-best translations (for glass-box features).
For a full list of fields and methods, see the associated javadoc. Any other sentence
information is stored in a HashMap with keys of type String and values of generic
type Object. A pre-processing tool can store any value in the HashMap by calling set-
Value(String key, Object value) on the currently processed Sentence object. This
allows tools to store both simple values (integer, float) as well as more complex ones
(for example, the ResourceProcessor).

A Pipeline defines the order in which processors will be initialised and run. They
are defined in the shef.mt.pipelines package. They allow more flexibility for the
execution of pre-processors, when there are dependencies between each other. At
the moment QE offers a default pipeline which contains the tools required for the
“vanilla” version of the code and new FeatureExtractors have to register there. A

26

K. Shah, E. Avramidis, E. Biçici, L. Specia QuEst (19–30)

more convenient solution would be a dynamic pipeline which automatically identifies
the processors required by the enabled features and then initialises and runs only
them. This functionality is currently under development in QE.

3.7. Adding a New Feature

In order to add a new feature, one has to implement a class that extends
shef.mt.features.impl.Feature. A Feature will typically have an index and a
description which should be set in the constructor. The description is optional,
whilst the index is used in selecting and ordering the features at runtime, there-
fore it should be set. The only function a new Feature class has to implement is
run(Sentence source, Sentence target). This will perform some computation
over the source and/or target sentence and set the return value of the feature by call-
ing setValue(float value). If the computation of the feature value relies on some
pre-processing tools or resources, the constructor can add these resources or tools in
order to ensure that the feature will not run if the required files are not present. This is
done by a call to addResource(String resource_name), where resource_name has to
match the name of the resource registered by the particular tool this feature depends
on.

4. Benchmarking

In this section we briefly benchmark QE using the dataset of the main WMT13
shared task on QE (subtask 1.1) using all our features, and in particular the new
source-based and IR features. The dataset contains English-Spanish sentence trans-
lations produced by an SMT system and judged for post-editing effort in [0,1] using
TERp,7 computed against a human post-edited version of the translations (i.e. HTER).
2, 254 sentences were used for training, while 500 were used for testing.

As learning algorithm we use SVR with radial basis function (RBF) kernel, which
has been shown to perform very well in this task (Callison-Burch et al., 2012). The
optimisation of parameters is done with grid search based on pre-set ranges of values
as given in the code distribution.

For feature selection, we use Gaussian Processes. Feature selection with Gaus-
sian Processes is done by fitting per-feature RBF widths. The RBF width denotes the
importance of a feature, the narrower the RBF the more important a change in the
feature value is to the model prediction. To avoid the need of a development set to
optimise the number of selected features, we select the 17 top-ranked features (as in
our baseline system) and then train a model with these features.

For given dataset we build the following systems with different feature sets:
• BL: 17 baseline features that have been shown to perform well across languages

in previous work and were used as a baseline in the WMT12 QE task

7http://www.umiacs.umd.edu/~snover/terp/

27

http://www.umiacs.umd.edu/~snover/terp/

PBML 100 OCTOBER 2013

(a) The Feature class

(b) A particular feature extends the
Feature class and is associated with
the Sentence class

(c) An abstract Resource class acts as a wrapper for external processes

(d) ResourceProcessor reads the output of a tool and stores it in a Sentence object

Figure 2: Class hierarchy for most important classes.
28

K. Shah, E. Avramidis, E. Biçici, L. Specia QuEst (19–30)

• AF: All features available from the latest stable version of QE, either black-
box (BB) or glass-box (GB)

• IR: IR-related features recently integrated into QE (Section 2.1)
• AF+IR: All features available as above, plus recently added IR-related features
• FS: Feature selection for automatic ranking and selection of top features from

all of the above with Gaussian Processes.
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are used to

evaluate the models. The error scores for all feature sets are reported in Table 1. Bold-
faced figures are significantly better than all others (paired t-test with p ≤ 0.05).

Feature type System #feats. MAE RMSE

BB

Baseline 17 14.32 18.02
IR 35 14.57 18.29
AF 108 14.07 18.13

AF+IR 143 13.52 17.74
FS 17 12.61 15.84

GB AF 48 17.03 20.13
FS 17 16.57 19.14

BB+GB AF 191 14.03 19.03
FS 17 12.51 15.64

Table 1: Results with various feature sets.

Adding more BB features (systems AF) improves the results in most cases as com-
pared to the baseline systems BL, however, in some cases the improvements are not
significant. This behaviour is to be expected as adding more features may bring more
relevant information, but at the same time it makes the representation more sparse
and the learning prone to overfitting. Feature selection was limited to selecting the
top 17 features for comparison with our baseline feature set. It is interesting to note
that system FS outperformed the other systems in spite of using fewer features.

GB features on their own perform worse than BB features but the combination of
GB and BB followed by feature selection resulted in lower errors than BB features only,
showing that the two features sets can be complementary, although in most cases BB
features suffice. These are in line with the results reported in (Specia et al., 2013; Shah
et al., 2013). A system submitted to the WMT13 QE shared task using QE with
similar settings was the top performing submission for Task 1.1 (Beck et al., 2013).

5. Remarks

The source code for the framework, the datasets and extra resources can be down-
loaded from http://www.quest.dcs.shef.ac.uk/. The project is also set to receive
contribution from interested researchers using a GitHub repository. The license for

29

http://www.quest.dcs.shef.ac.uk/

PBML 100 OCTOBER 2013

the Java code, Python and shell scripts is BSD, a permissive license with no restrictions
on the use or extensions of the software for any purposes, including commercial. For
pre-existing code and resources, e.g., scikit-learn, GPy and Berkeley parser, their
licenses apply, but features relying on these resources can be easily discarded if nec-
essary.

Acknowledgements

This work was supported by the QuEst (EU FP7 PASCAL2 NoE, Harvest program)
and QTLaunchPad (EU FP7 CSA No. 296347) projects. We would like to thank our
many contributors, especially José G. C. Souza for the integration with scikit-learn,
and Lukas Poustka for his work on the refactoring of some of the code.

Bibliography

Beck, Daniel, Kashif Shah, Trevor Cohn, and Lucia Specia. SHEF-Lite: When less is more for
translation quality estimation. In Proceedings of WMT13, pages 337–342, Sofia, 2013.

Biçici, E. The Regression Model of Machine Translation. PhD thesis, Koç University, 2011.
Biçici, E. Referential translation machines for quality estimation. In Proceedings of WMT13,

pages 341–349, Sofia, 2013.
Biçici, E., D. Groves, and J. van Genabith. Predicting sentence translation quality using extrinsic

and language independent features. Machine Translation, 2013.
Bojar, O., C. Buck, C. Callison-Burch, C. Federmann, B. Haddow, P. Koehn, C. Monz, M. Post,

R. Soricut, and L. Specia. Findings of the 2013 Workshop on Statistical Machine Translation.
In Proceedings of WMT13, pages 1–44, Sofia, 2013.

Callison-Burch, C., P. Koehn, C. Monz, M. Post, R. Soricut, and L. Specia. Findings of the 2012
Workshop on Statistical Machine Translation. In Proceedings of WMT12, pages 10–51, Mon-
tréal, 2012.

Papineni, K., S. Roukos, T. Ward, and W. Zhu. BLEU: a method for automatic evaluation of
machine translation. In Proceedings of the 40th ACL, pages 311–318, Philadelphia, 2002.

Rasmussen, C.E. and C.K.I. Williams. Gaussian processes for machine learning, volume 1. MIT
Press, Cambridge, 2006.

Shah, K., T. Cohn, and L. Specia. An investigation on the effectiveness of features for translation
quality estimation. In Proceedings of MT Summit XIV, Nice, 2013.

Specia, L., K. Shah, J. G. C. Souza, and T. Cohn. QuEst – a translation quality estimation frame-
work. In Proceedings of the 51st ACL: System Demonstrations, pages 79–84, Sofia, 2013.

Address for correspondence:
Kashif Shah
Kashif.Shah@sheffield.ac.uk
Department of Computer Science
University of Sheffield
Regent Court, 211 Portobello, Sheffield, S1 4DP UK

30

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 31–40

MTMonkey: A Scalable Infrastructure
for a Machine Translation Web Service

Aleš Tamchyna, Ondřej Dušek, Rudolf Rosa, Pavel Pecina
Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Abstract
We present a web service which handles and distributes JSON-encoded HTTP requests for

machine translation (MT) among multiple machines running an MT system, including text
pre- and post-processing. It is currently used to provide MT between several languages for
cross-lingual information retrieval in the EU FP7 Khresmoi project. The software consists of an
application server and remote workers which handle text processing and communicate trans-
lation requests to MT systems. The communication between the application server and the
workers is based on the XML-RPC protocol. We present the overall design of the software and
test results which document speed and scalability of our solution. Our software is licensed
under the Apache 2.0 licence and is available for download from the Lindat-Clarin repository
and Github.

1. Introduction

In this paper, we describe an infrastructure for a scalable machine translation web
service capable of providing MT services among multiple languages to remote clients
posting JSON-encoded requests.

The infrastructure was originally developed as a component of the EU FP7 Khres-
moi project, a multilingual multimodal search and access system for biomedical in-
formation and documents (Aswani et al., 2012), to provide MT services for real-time
translation of user queries and retrieved document summaries. The service is used
with three language pairs (Czech–English, French–English, and German–English) in
both directions within the Khresmoi project, but the system is designed to be langu-
age-independent and capable of serving multiple translation directions.

© 2013 PBML. All rights reserved. Corresponding author: tamchyna@ufal.mff.cuni.cz
Cite as: Aleš Tamchyna, Ondřej Dušek, Rudolf Rosa, Pavel Pecina. MTMonkey: A Scalable Infrastructure for a
Machine Translation Web Service. The Prague Bulletin of Mathematical Linguistics No. 100, 2013, pp. 31–40.
doi: 10.2478/pralin-2013-0009.

PBML 100 OCTOBER 2013

For Khresmoi to run smoothly, the translation system must be able to quickly and
reliably react to translation requests, typically with multiple requests arriving at the
same time. Since machine translation is a highly computationally demanding task,
solutions as efficient as possible must be sought. The system must also contain error
detection and recovery mechanisms to ensure uninterrupted operation of the service.
Moreover, the solution must be naturally scalable to allow for flexible increase of com-
putational power to reach higher performance if required by its customers’ demand.

In this paper, we describe the structure of our translation system, and detail the
results of several performance tests. We make the system available as free software,
licensed under the Apache 2.0 licence.1 MTMonkey 1.0 is published via the Lindat-
Clarin repository,2 updated code is released on GitHub and open for comments and
further contributions.3

2. Pre-considerations

We build upon Moses (Koehn et al., 2007), a statistical machine translation system.
Koehn (2013, Section 3.3.22) explains how to operate Moses as Moses Server respond-
ing to translation requests on a given port. Support for using multiple translation
directions was originally available as Using Multiple Translation Systems in the Same
Server (Koehn, 2013, p. 121), later to be replaced by more general Alternate Weight Set-
tings (Koehn, 2013, p. 135), which is still under development and currently does not
work with multi-threaded decoding. We therefore decided to handle different trans-
lation directions using separate stand-alone Moses Server instances.

Moses does not provide any built-in support for load balancing, which is needed
to distribute the translation requests evenly among the Moses instances. We there-
fore explored RabbitMQ,4 a robust open-source messaging toolkit which can be used
to implement even complex application communication scenarios. However, we con-
cluded that for our relatively simple task where the main focus is on efficiency, its
overhead is unpleasant while the benefits it brings are only moderate. We therefore
decided to implement our own solution for request distribution and load balancing.

We implement our solution in Python, which was chosen due to its relatively high
efficiency combined with the comfortable programming experience it offers.

There are several remote procedure call (RPC) protocols available that could be
used in our system. For the public API, we use JSON-RPC,5 which is simple and
lightweight in comparison to other RPC protocols, making it highly suitable for RPC

1http://www.apache.org/licenses/LICENSE-2.0
2http://hdl.handle.net/11858/00-097C-0000-0022-AAF5-B
3https://github.com/ufal/mtmonkey
4http://www.rabbitmq.com/
5http://www.jsonrpc.org/

32

http://www.apache.org/licenses/LICENSE-2.0
http://hdl.handle.net/11858/00-097C-0000-0022-AAF5-B
https://github.com/ufal/mtmonkey
http://www.rabbitmq.com/
http://www.jsonrpc.org/

Tamchyna, Dušek, Rosa, Pecina MTMonkey: Scalable Infrastructure for MT (31–40)

over the Internet (other formats could be easily added if needed). Moses Server im-
plements XML-RPC,6 which is similar to JSON-RPC, although not as lightweight. We
employ XML-RPC for the internal API as well, since it has a native Python implemen-
tation, which is more efficient and seamless than JSON-RPC Python libraries.

MTMonkey is in its architecture very similar to the MT Server Land system (Fe-
dermann and Eisele, 2010), which uses XML-RPC as a response format and focuses
more on the possibility of comparing different MT systems for the same translation
direction than on low-latency processing of a large number of simultaneous requests.
A similar approach to ours was also taken by Arcan et al. (2013), who built a multi-
lingual financial term translation system on top of Moses.7 They make their system
freely available through both a web GUI and a RESTful service, using JSON as the re-
sponse format. They provide lists of n-best translations and allow the users to upload
their own dictionaries, which are used to override the SMT system-generated transla-
tions. The WebTranslation toolkit8 for translating web pages which is built into Moses
also supports distributing translation requests to multiple instances of Moses servers
but this solution is a proof of concept only and not designed for production environ-
ments.

3. Implementation

MTMonkey consists of an application server and a set of workers. The application
server handles translation request arriving through the public API and uses the inter-
nal API to distribute them to the workers, which perform the translations. The sys-
tem is able to handle multiple incoming translation requests by load balancing and
queuing. Self-check mechanisms are also included. The architecture of the system is
visualized in Figure 1 and described in detail in Sections 3.1–3.6.

The application server and workers are implemented in Python and are compatible
with Python versions 2.6 and 2.7. The installation and support scripts are written in
Bash. In addition, we provide a very simple PHP-based web client that allows for an
easy interactive testing of the service and serves as an example client implementation.
We tested the whole system under Ubuntu 10.04, but it should be able to operate on
any Unix-like system.

3.1. Public API

The application server provides a public API based on the REST9 principles, ac-
cepting requests over HTTP in the JSON format as objects with the following keys:

6http://www.xmlrpc.com/
7http://monnet01.sindice.net/monnet-translation/
8http://www.statmt.org/moses/?n=Moses.WebTranslation
9http://en.wikipedia.org/wiki/Representational_state_transfer

33

http://www.xmlrpc.com/
http://monnet01.sindice.net/monnet-translation/
 http://www.statmt.org/moses/?n=Moses.WebTranslation
 http://en.wikipedia.org/wiki/Representational_state_transfer

PBML 100 OCTOBER 2013

Figure 1. The overall architecture of the translation system. English-to-German
translation is shown in detail.

sourceLang the ISO 639-1 code of the source language (cs, de, en, fr);
targetLang the ISO 639-1 code of the target language (cs, de, en, fr);
text the text to be translated, in the UTF-8 character encoding;
detokenize detokenize the translation (boolean);
alignmentInfo request alignment information (boolean).

The response is a JSON object with the following keys:

errorCode 0, or error code;
translation the translation, in the UTF-8 character encoding;
alignment-raw alignment information (if requested by alignmentInfo) as a list of

objects containing indexes of start- and end-tokens of correspond-
ing source and target text chunks.

The only currently implemented advanced feature is the option to request align-
ment information, which can be used to determine which part of the input texts cor-
responds to which part of the translation. There are several other fields reserved for
future use, such as nBestSize to request multiple translation options.10 For simplic-
ity, we omit description of parts of the API that are unused at the moment or that are
only technical.

10Due to preparation for a future implementation of the nBestSize option, the actual structure of the
response is more complicated than described, with the actual text of the translation being wrapped in an
object that itself is a member of an array of translation options.

34

Tamchyna, Dušek, Rosa, Pecina MTMonkey: Scalable Infrastructure for MT (31–40)

3.2. Application Server

The application server distributes incoming translation requests to individual wor-
kers. Available workers are listed in a simple configuration file – for each worker, its
IP address, port, and translation direction (source and target language) are given. Be-
cause the workers are identified by a combination of the IP address and port number,
there can be multiple workers on one machine listening on different ports.

If there are multiple workers available for a given translation direction, a simple
round-robin load balancing is used. No other information, such as text length or
worker configuration, is taken into account. However, we found that such a sim-
ple approach is sufficient for our needs, and at the same time it is fast enough not to
unnecessarily increase the response time, making the application server lightweight
enough to require only moderate computational resources. If more machines support
several translation directions, a set of translation requests for that direction can be dis-
tributed relatively evenly among all the respective machines. The number of workers
is potentially unlimited, i.e. the only limit is the available computational power.

3.3. Internal API

The application server communicates with workers through XML-RPC. A worker
implements two XML-RPC methods:

process_task used to request a translation, returning the translated text (with ad-
ditional information if requested, such as the alignment);

alive_check tests if the worker is running.

3.4. Workers

Each worker uses one instance of Moses providing translation in one direction and
another instance of Moses that performs recasing. The only configuration parameters
of a worker are the ports on which the Moses servers listen. The worker communicates
with the Moses servers through XML-RPC. Workers run as multi-threaded XML-RPC
servers which allows for transparent and light-weight asynchronous processing and
parallelism. One physical machine may house multiple instances of a worker, each
using its own MT system instance, providing translation in a different direction. Only
the available RAM and hard drive space are the limits on the number of running
worker instances.

3.5. Text Processing Tools

The input texts have to be preprocessed before translation. We use the usual pi-
peline of a sentence splitter and a lowercasing tokenizer. The sentence splitter is our
reimplementation of the Moses sentence splitter in Python and uses the same non-
breaking prefixes definition files.

35

PBML 100 OCTOBER 2013

Due to our system being used as a component of a complex project, the sources of
incoming translation requests are varied, and the texts to be translated can appear in
various tokenizations. We therefore implemented our own language-independent to-
kenizer, which is robust with respect to possible pre-tokenization. We achieve this by
“aggressive tokenization”: splitting the text on any punctuation, including hyphens
compounds and full stops in abbreviations (but keeping sequences of identical punc-
tuation marks unsplit, as in “…”). Although such approach might hurt translation
fluency, it helps prevent data sparsity. The same approach must be applied on the
training data.

As a post-processing step, we use a Moses instance to perform recasing and a deto-
kenizer, which is our reimplementation of the Moses detokenizer in Python.

3.6. Fault Recovery

To ensure uninterrupted operation, worker machines may be configured to per-
form scheduled self-tests and automatically restart the worker application as well as
Moses servers in case of an error. We provide a testing script that may be added to
the machines’ crontab.

In addition, we run automatic external tests that are scheduled to translate a test
sentence and notify the administrator of the service by e-mail in case of any error.
These tests connect to the service in exactly the same way as other clients, i.e. they
reflect the actual service state from the outside.

4. Evaluation

The evaluation presented in this section is focused on efficiency. We measure how
fast the system is in serving various numbers of simultaneous requests.

4.1. System Configuration

We test the system using eight worker machines, each with four CPUs and 32 GB
RAM. Each of the machines runs three worker instances (each for a different transla-
tion direction), i.e. there are four workers for each translation direction.

We use binarized models (for both the phrase-table and the language model) with
lazy loading in Moses, which causes a slight decrease in translation speed.11 However,
this setup gives us more flexibility as it allows us to fit multiple instances of Moses
into RAM on a single machine and begin translating almost instantly after starting
the Moses servers. More details about the setup of the Moses translation system itself
can be found in Pecina et al. (2012).

11 The decrease in speed is noticeable even for batch translation using a single system.

36

Tamchyna, Dušek, Rosa, Pecina MTMonkey: Scalable Infrastructure for MT (31–40)

4.2. Load Testing

To generate translation requests, we use two data sets, both created within the
Khresmoi project. The first set consists of sentences from the medical domain with
16.2 words per sentence on average. The second set consists of medical search queries
with an average length of 2.1 words per query.

In each of the tests, we run a number of clients simultaneously, either for one trans-
lation direction at a time, or for all six of them. Each of the clients sends 10 syn-
chronous translation requests to the application server and reports the time elapsed
for all of them to complete, which (divided by 10) gives the average response time.
To test the scalability of our solution, we also run some of the tests with a reduced
number of workers. The one-translation-direction tests were run separately for each
of the six translation directions.12 The tests were repeated 10 times with different
parts of the test data.13 The results were then averaged and the standard deviation
was computed.

The results are shown in Table 1. We average the results over all translation di-
rections since we observed that there are only little differences in performance with
respect to the translation direction (less than 15% of the average response time). We
can see that when moving from one client to 10 clients, the number of parallel re-
quests rises faster than the average time needed to complete them. This indicates
that the parallelization and load balancing function properly. However, the standard
deviation is relatively large, which indicates that the load balancing probably could
be improved. If we multiply the number of parallel requests by 10 one more time,
the average request time gets also approximately multiplied by 10, indicating that the
parallelization capacity has already been reached at that point.

The scalability tests revealed that with a large number of parallel requests, dou-
bling the number of workers reduces the response time to approximately a half. This
shows that the system scales well, with a possibility to reach low response times even
under high load (the minimum average response time being around 550ms for sen-
tence translations in our setup) provided that sufficient computational power is avail-
able.

In spite of the queries being more than seven times shorter than the sentences on
average, the query translation was observed to be only up to five times faster than
the sentence translation under low load, and becomes consistently only about twice
as fast with higher numbers of parallel requests. This indicates that the length of the
input texts is not as crucial for the system performance as other parameters.

12The 6-translation-directions tests were not run with 100 clients per direction since we are technically
unable to run 600 clients in parallel.

13Except for the 100-client test which uses all of the data and was therefore run only once.

37

PBML 100 OCTOBER 2013

Data Translation Clients per Workers per Response time [ms]
type directions direction direction avg std dev

sentences 1 1 1 539 132
sentences 1 1 2 510 134
sentences 1 1 4 554 151
sentences 1 10 1 2,178 506
sentences 1 10 2 897 259
sentences 1 10 4 567 171
sentences 1 100 1 14,941 2,171
sentences 1 100 2 10,189 1,588
sentences 1 100 4 5,560 794
sentences 6 1 1 620 137
sentences 6 1 2 571 143
sentences 6 1 4 592 196
sentences 6 10 1 4,792 857
sentences 6 10 2 2,103 408
sentences 6 10 4 1,029 280
queries 1 1 4 112 29
queries 1 10 4 247 149
queries 1 100 4 2,593 526
queries 6 1 4 174 110
queries 6 10 4 545 91

Table 1. Load testing results.

5. Conclusion

We described a successful implementation of a machine translation web service
that is sufficiently robust and fast enough to handle parallel translation requests in
several translation directions at once and can be easily scaled to increase performance.

Our future plan is to implement worker hot-plugging for an even more flexible
scalability, as currently adding or removing workers requires a restart of the applica-
tion server. We also intend to add the drafted advanced features of the API, such as
requesting and returning multiple translation options and their scores. We are also
planning to develop a simple confidence-estimation module to assess the quality of
produced translations.

We further plan to enrich the APIs with a method capable of retrieving diagnos-
tic and statistical information, such as the list of supported translation directions, the
number of workers for each translation direction, average response time or the num-
ber of requests served in the last hour. We would also like to add support for other
MT decoders besides Moses.

38

Tamchyna, Dušek, Rosa, Pecina MTMonkey: Scalable Infrastructure for MT (31–40)

Acknowledgements

The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n°
257528 (KHRESMOI) and the project DF12P01OVV022 of the Ministry of Culture of
the Czech Republic (NAKI – Amalach).

This work has been using language resources developed and/or stored and/or
distributed by the LINDAT-Clarin project of the Ministry of Education of the Czech
Republic (project LM2010013).

Bibliography

Arcan, Mihael, Susan Marie Thomas, Derek De Brandt, and Paul Buitelaar. Translating the FIN-
REP taxonomy using a domain-specific corpus. In Machine Translation Summit XIV, Nice,
France, 2013.

Aswani, Niraj, Thomas Beckers, Erich Birngruber, Célia Boyer, Andreas Burner, Jakub Bystroň,
Khalid Choukri, Sarah Cruchet, Hamish Cunningham, Jan Dědek, Ljiljana Dolamic, René
Donner, Sebastian Dungs, Ivan Eggel, Antonio Foncubierta-Rodríguez, Norbert Fuhr,
Adam Funk, Alba García Seco de Herrera, Arnaud Gaudinat, Georgi Georgiev, Julien
Gobeill, Lorraine Goeuriot, Paz Gómez, Mark Greenwood, Manfred Gschwandtner, Al-
lan Hanbury, Jan Hajič, Jaroslava Hlaváčová, Markus Holzer, Gareth Jones, Blanca Jordan,
Matthias Jordan, Klemens Kaderk, Franz Kainberger, Liadh Kelly, Sascha Kriewel, Marlene
Kritz, Georg Langs, Nolan Lawson, Dimitrios Markonis, Ivan Martinez, Vassil Momtchev,
Alexandre Masselot, Hélène Mazo, Henning Müller, Pavel Pecina, Konstantin Pentchev,
Deyan Peychev, Natalia Pletneva, Diana Pottecherc, Angus Roberts, Patrick Ruch, Matthias
Samwald, Priscille Schneller, Veronika Stefanov, Miguel A. Tinte, Zdeňka Urešová, Alejan-
dro Vargas, and Dina Vishnyakova. Khresmoi: Multimodal multilingual medical informa-
tion search. In Proceedings of the 24th International Conference of the European Federation for
Medical Informatics, 2012. URL http://publications.hevs.ch/index.php/attachments/
single/458.

Federmann, Christian and Andreas Eisele. MT Server Land: An open-source MT architecture.
Prague Bulletin of Mathematical Linguistics, 94:57–66, 2010.

Koehn, Philipp. Moses, statistical machine translation system, user manual and code guide,
July 2013. URL http://www.statmt.org/moses/manual/manual.pdf.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In ACL 2007, Proceedings of the 45th Annual Meeting of the Association for
Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages
177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/P/P07/P07-2045.

39

http://publications.hevs.ch/index.php/attachments/single/458
http://publications.hevs.ch/index.php/attachments/single/458
http://www.statmt.org/moses/manual/manual.pdf
http://www.aclweb.org/anthology/P/P07/P07-2045

PBML 100 OCTOBER 2013

Pecina, Pavel, Jakub Bystroň, Jan Hajič, Jaroslava Hlaváčová, and Zdeňka Urešová. Deliver-
able 4.3: Report on results of the WP4 first evaluation phase. Public deliverable, Khresmoi
project, 2012. URL http://www.khresmoi.eu/assets/Deliverables/WP4/KhresmoiD43.
pdf.

Address for correspondence:
Aleš Tamchyna
tamchyna@ufal.mff.cuni.cz
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics,
Charles University in Prague
Malostranské náměstí 25
118 00 Praha 1, Czech Republic

40

http://www.khresmoi.eu/assets/Deliverables/WP4/KhresmoiD43.pdf
http://www.khresmoi.eu/assets/Deliverables/WP4/KhresmoiD43.pdf

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 41–50

DIMwid — Decoder Inspection for Moses
(using Widgets)

Robin Kurtz, Nina Seemann, Fabienne Braune, Andreas Maletti
University of Stuttgart, Institute for Natural Language Processing

Pfaffenwaldring 5b, D-70569 Stuttgart, Germany

Abstract
The development of accurate machine translation systems requires detailed analyses of the
recurring translation mistakes. However, the manual inspection of the decoder log files is a
daunting task because of their sheer size and their uncomfortable format, in which the relevant
data is widely spread. For all major platforms, DIMwid offers a graphical user interface that
allows the quick inspection of the decoder stacks or chart cells for a given span in a uniform
way. Currently, DIMwid can process the decoder log files of the phrase-based stack decoder
and the syntax-based chart decoder inside the Moses framework.

1. Introduction

Statistical machine translation is the research area that concerns itself with the de-
velopment of automatic translation systems for natural language text using statistical
processes. The last decade saw significant progress in the translation quality due to
improved models and the availability of huge parallel text corpora. These corpora
are used to automatically obtain translation rules, which are then weighted according
to their usefulness. In this way, the translation model is obtained. In the decoding
step, this model is applied to an input sentence to produce a translation of it. Modern
statistical machine translation systems, such as G T, are widely used
nowadays and offer reasonable access to foreign languages. Naturally, the transla-
tions produced by those automatic systems are not perfect yet, but the gist can often
be understood.

© 2013 PBML. All rights reserved. Corresponding author: kurtzrn@ims.uni-stuttgart.de
Cite as: Robin Kurtz, Nina Seemann, Fabienne Braune, Andreas Maletti. DIMwid — Decoder Inspection for
Moses (using Widgets). The Prague Bulletin of Mathematical Linguistics No. 100, 2013, pp. 41–50.
doi: 10.2478/pralin-2013-0010.

PBML 100 OCTOBER 2013

Frameworks such as M (Koehn et al., 2007) allow the fast and simple devel-
opment of state-of-the-art statistical machine translation systems. The natural first
step towards improving such a system consists of a detailed analysis of the recurring
errors occurring in the baseline system. Once the problematic translations are iden-
tified, we would like to investigate how the translation was obtained from the rules.
Besides the rules that were used in the translation we would also like to identify the
competing rules and check whether a more suitable translation is possible in princi-
ple. Finally, we need to find out why the problematic translation was preferred over
better translations.

These analysis steps are fully supported by the M framework, but require a
manual inspection of the trace log of the decoder. The trace contains all the relevant
information in plain text and can easily be used by experienced M developers,
who know what to look out for. For novices the trace is not accessible at all because of
its cryptic format and its sheer size. Our open-source tool DIMwid addresses this
problem by providing a graphical user interface that displays the trace in a more
user-friendly manner. A chart displays all translation items grouped according to
the source span that they cover. DIMwid can display all standard traces of the M
decoders in this manner and we also added a new trace allowing us to better identify
used rule in the syntax-based chart decoder.

1.1. Design Choices

DIMwid should allow inexperienced M users to identify problematic translations,
inspect the decoder trace to find the problematic rules and even find the competing
rules that would potentially enable a better translation. To this end, DIMwid displays
the trace output, which consists of the decoder stack items or chart items, in a uni-
form chart-based format. Each item is associated to the source span that it covers.
This deviates from the grouping used in the standard stack decoder, but makes the
analysis simpler. In fact, our goal was to make the tool simple enough to be useful for
instructors in class. Naturally, each item typically comes with a variety of additional
information (such as partial scores) and we display this information in the detailed
view. Using this information and knowledge about the general decoding process, we
can reconstruct how the decoder processed the sentence and which alternatives were
considered. To streamline the inspection process, DIMwid can load the trace of multi-
ple input sentences and allows opening several detailed views of items, which allow
an easy comparison.

Besides the core functionality, we aimed to make the tool open-source and avail-
able on all major operating systems, which we achieved using the graphical frame-
work Q and the programming language P, which is one of the most commonly
used programming languages. In addition, P source-code is easily readable and
thus a popular choice for open-source projects. Finally, P also supports our last
goal, which was to build the architecture such that extensions and adjustments can

42

R. Kurtz et al. DIMwid — Decoder Inspection for Moses (41–50)

Minimal Version
Language/Framework L MOS W

P 2.7.3 2.7.3 2.7.5
Q 4.8.4 4.8.2 4.0

PQ 3.18.1 4.9.4 4.10.1

Table 1. List of required packages together with their minimal tested versions.

easily be made to support future decoders and to satisfy the specific analysis require-
ments of users.

1.2. Related Work

The statistical machine translation framework J (Li et al., 2009) already offers a
graphical tool (Weese and Callison-Burch, 2009) for analyzing the translations. J
uses a syntax-based translation model and the visualization shows the hypergraph of
the n-best candidate translations obtained during decoding. M is often used for
phrase-based machine translation and we decided to use a CYK-parsing like chart,
which scales better and should be similarly instructive to non-experts.

2. Installation

DIMwid requires the packages P, Q, and PQ. The minimal required (and
tested) versions of these packages are listed in Table 1. On L-based systems
(such as U, F, S), these packages can normally be installed via the
operating system’s package manager. The installation under W requires the
manual download and the execution of the package installers, but the installation is
straightforward. We note that recent W packages for PQ already contain the
Q framework, so W users only need to install P and PQ. The situation
is similar for MOS users. They only need to install a recent P and a binary
package for PQ. We recommend PQX, whose complete installation includes a
compatible version of Q.

DIMwid itself is available on GH at
https://github.com/RobinQrtz/DIMwid

under the  license, which allows DIMwid and its source code to be used freely for
all purposes. DIMwid does not need to be installed or prepared since it only consists
of three P source files. However, to successfully use it we need the trace files of
the decoders inside the M machine translation framework.

43

https://github.com/RobinQrtz/DIMwid

PBML 100 OCTOBER 2013

3. Usage

3.1. Obtaining the Input

DIMwid can process all major output formats that are produced by the decoders inside
the M framework and 2 new custom formats:

• the full decoder trace of the chart-based decoder (-T option) and
• the full decoder trace of the chart-based decoder of the multi bottom-up tree

transducer extension (Braune et al., 2013).
A recent version of the (master) M framework is required for the -T option
and the  branch of M is needed for the second custom format. We
refer the reader to the technical documentation for the use of DIMwid in conjunction
with the , but next we recall how to obtain the required trace files for the
standard decoders.

3.1.1. Standard Moses trace

DIMwid supports the standard M trace outputs for both the phrase-based stack
decoder (Koehn et al., 2003), via the “Phrase” format, and the syntax-based chart de-
coder (Chiang, 2007; Hoang et al., 2009) for hierarchical and tree-based models, via
the “Syntax” format. By default, these traces are obtained by calling the decoders
with the -t (phrase-based) and -T (syntax-based) flags as in:

cat input | moses -f moses.ini -t > out
cat input | moses_chart -f moses.ini -T trace.log > out

These traces only contain information about the best translation for each input sen-
tence and are thus reasonably small. They allow us to reconstruct how the reported
translations were obtained from the rules and the input sentences.

3.1.2. Full stack and chart trace

Sometimes the information about the reported best translations is not sufficient for
a successful analysis. The full stack or chart trace records much more information
about the decoding process. It contains all items that are present in the stacks (used
in phrase-based decoding) or the chart cells (used in syntax-based decoding). Conse-
quently, it allows us to effectively inspect which hypotheses were considered by the
decoder and to investigate the competing hypotheses. Not surprisingly, those traces
tend to be huge.

For phrase-based decoding, the stack trace is obtained by enabling level 3 verbosity
and logging the error output. This is typically achieved by:

cat input | moses -f moses.ini -v 3 2> trace.log > out
Unfortunately, running M with multiple worker threads (option -threads) ru-
ins the desired output, since the outputs are not synchronized. Consequently, the

44

R. Kurtz et al. DIMwid — Decoder Inspection for Moses (41–50)

Figure 1. DIMwid presenting the chart and several details of the syntax-based decoder
(display: KDE).

threads-option should not be present (neither in the call nor in the initialization file
moses.ini) or explicitly set to “-threads 1”. The obtained trace contains all transla-
tion options and recombination and stack information organized in a standard parse
chart based on the covered spans. Since the trace is typically huge, it may take DIMwid
a while to load it.

Alternatively, M also offers a flag named -output-search-graph, which out-
puts the entire search-space for the translation. This flag works for the phrase-based
stack decoder and the syntax-based chart decoder. Since the output formats are dif-
ferent, the user needs to select the correct input format:

• “Phrase Stack (search-graph)” for the stack decoder or
• “Syntax Cube (search-graph)” for the chart decoder

in DIMwid when importing these traces.
For the syntax-based chart decoder we are also interested in the source-side of the

used rules. This information is not provided in any of the existing formats, so we
added a new output trace to M, which delivers also this information. The new
flag is called -Tall and is used in the same way as the -T flag. A typical call (with
some advanced options) might be:

45

PBML 100 OCTOBER 2013

Figure 2. Display of the search-graph of a phrase-based decoder (display: Windows).

cat input | moses_chart -f moses.ini
-include-lhs-in-search-graph -n-best-list listfile 100
-T trace.log -Tall traceAll.log > out

The -Tall flag triggers the desired output, while the other flags -n-best-list and
-include-lhs-in-search-graph produce more translation options and include the
left-hand-sides of the rules. However, the output of the chart trace triggered by the
-T and -Tall flags can be surprising. Due to M’ internal decoding process the
source-side nonterminal gets projected onto the corresponding nonterminal of the
target-side. Thus, the reported source-side nonterminal might be different from the
actual source-side nonterminal in the used rule, which should be considered when
identifying the responsible rule. Nevertheless, the -Tall trace offers important infor-
mation and prints — in contrast to the search graph — the correct terminals of the
source-side.

3.2. Graphical User Interface

DIMwid is started by running DIMwid.py. The resulting main window behaves like
any other window of the operating system and can therefore be maximized, mini-
mized, moved around, etc. Keyboard commands are triggered by holding the key-
board’s “Alt” key plus the underlined letter of the button. Next, we show the general
steps needed to display a decoder trace:

46

R. Kurtz et al. DIMwid — Decoder Inspection for Moses (41–50)

1. First, we select the correct trace format by clicking on the “Format” button,
which will open a drop-down menu containing buttons labelled with the sup-
ported formats. Once a format is selected, it will be shown on the button (instead
of “Format”).

2. Optionally, we may want to limit the number of items per chart cell using the
text-field next to the “Cell Limit” label. Unless the complete stack or chart in-
formation is essential, a reasonable bound on the displayed items is generally
recommended because DIMwid tends to run slow when huge numbers of items
need to be displayed.

3. Next, we select the trace file by clicking on the “Path” button. The standard file
selection dialog of the operating system will open and will allow the selection
of the desired file. Currently, DIMwid does not auto-detect the trace format, so
if the file format does not correspond to the selection in Step 1, then an error
message is displayed.

4. Once DIMwid finishes loading the trace file, the chart display is available for each
input sentence. Automatically, the chart for the first input sentence, numbered 0,
is displayed. Other input sentences can be selected directly by entering their
number in the input box next to the “GoTo” button and pressing that button.
Alternatively, the “Prev” and “Next” buttons can be used to cycle through the
input sentences.

5. The content of each chart cell is explained in Section 3.3. It can be shown in two
ways: (a) A tool-tip window preview of the chart cell content is displayed when
moving the mouse cursor over the chart cell. (b) A double-click on the chart cell
opens a new window displaying the full cell content. Multiple windows allow
the comfortable comparison of the contents of several cells.

3.3. Chart Display

Once the trace is successfully loaded, a quadratic table is displayed with a blank lower
left triangle (see Figure 2). It has as many rows and columns as there are words in the
selected source sentence. Each chart cell corresponds to a span in the input sentence.
Its row marks the beginning of the span and its column marks the end of the span.
Correspondingly, the entry (m,n) contains the translations of the span [m+ 1, n+ 1]
of the source sentence, which starts at the (m+1)th word and ends at the (n+1)th word.
The diagonal (where m = n) contains the single word translations and the rightmost
cell at the top (the cell (0, 5) in Figure 2) contains the translations for the whole sen-
tence. Spans for which no items are available are marked with a dash “-”.

As a simple example, suppose that the decoder translated
Bob sends Alice a secret message

from English into the German sentence
Bob sendet Alice eine Geheimbotschaft

47

PBML 100 OCTOBER 2013

0 1 2 3 4 5
0 Bob - - - - -
1 sendet - - - -
2 Alice - - -
3 eine - -
4 geheime Geheimbotschaft
5 Nachricht

Table 2. A trivial example chart illustrating DIMwid’s chart display.

Table 2 shows a few (made-up) entries in the chart display for that translation. We
omitted items for clarity. In the actual display the full translation should occur in
cell (0, 5). However, Table 2 shows that “secret message”, the span [5, 6] of the source
sentence, can be translated to “Geheimbotschaft”. Therefore the cell (4, 5) of the chart
contains this translation. In addition, the decoder could also use the translation into
“geheime Nachricht” using the translations of cells (4, 4) and (5, 5).

The actual content of the items in a cell differs based on the trace format. For
example, the items contain the source side in the level 3 verbosity output for phrase-
based stack decoding. The M syntax-based chart decoder typically only outputs
the terminals and the nonterminals of the target-side of the rule. As a minimum,
the span of the source, which is translated, and its translation are always shown. The
additional information depends on the trace format and is very specific and confusing
to non-expert users of M. We decided to preserve this information for expert
users, but most users can probably ignore the additional information. As illustrated
in Section 4, it is very simple to adjust this behavior to accommodate any special needs.

4. Development

As mentioned earlier, we selected P and Q with straightforward adjustability
in mind. P code is usually easy to read, runs on all major operating systems,
and is very common in the programming community. The graphical framework Q
is also freely available for all major operating systems, very common, and has P
bindings, which allows us to exclusively use P for DIMwid.

4.1. Structure

DIMwid consists of three P source files. DIMwid.py creates the application us-
ing the interface designed in DIMterface.py, which sets up the classes related to the
graphical user interface. Finally, DIMputs.py contains all the classes that represent
the different input formats and provides functions for reading those formats.

48

R. Kurtz et al. DIMwid — Decoder Inspection for Moses (41–50)

4.2. Hacking

The simplicity of DIMwid allows for quick changes in the code. It can easily be ad-
justed to display any kind of output sorted into spans. No inside knowledge about
P or the Q framework is required. Let us illustrate this by showing the steps
needed to support a new input format. First, we add a class to DIMputs.py for the
text-format that we want to load. We can follow the example of the other classes
in DIMputs.py. In order to use our new class, the DataInput-class needs a function
which reads the new format and stores the contained information into an object of
the newly created class. At this point the basic functionality is present, but we still
need to enable the new format in the graphical user interface. This is achieved by the
following steps:

1. add a new format button to the Format-Buttons-Drop-Down-Menu,
2. create a new WidgetAction corresponding to this button,
3. connect the WidgetAction with the drop-down menu,
4. create a function that sets the MainWindow’s format to the new format,
5. connect the button to the format-setting function, and
6. add the new format to the setPath-function’s if-else-block.

Since these code blocks exist for the natively supported formats, even non-experts
should be able to perform these changes with the help of simple copy & paste actions.

5. Conclusion and Future Work

Our primary goal during the development of DIMwid was to make the analysis of
the translation process easier. Such an analysis is beneficial for translation engineers
that want to improve their system and to instructors that want to demonstrate the
workings of the decoders in class. The graphical user interface of DIMwid displays
the information of the typically huge and hardly readable trace files in an accessible
manner. Currently, DIMwid supports (all) the trace outputs of both the phrase-based
stack decoder and the syntax-based chart decoder of the M framework. The trace
is uniformly presented in a chart, so all reported information is associated to a chart
cell based on the covered span. Although DIMwid was developed for the traces of
the M framework, it can easily be extended to read outputs of other frameworks
(such as J).

At present, DIMwid shows all items in the order that they occur in the traces. In
future versions, we plan to combine the utility of the standard and full trace by high-
lighting the items that contribute to the best translation in the display of the full trace.
In addition, we plan to add a format auto-detection that would remove the need to
manually select a format. Ideally, we would also be able to graphically link items to
their constituting items (i.e., the subspan items that were combined to form the cur-
rent item). However, this feature has to be carefully implemented as it requires addi-

49

PBML 100 OCTOBER 2013

tional processing of the trace file and can thus potentially lead to major slow-down of
DIMwid.

Acknowledgements

All authors were financially supported by the German Research Foundation (DFG)
grant MA / 4959 / 1-1.

Bibliography

Braune, Fabienne, Andreas Maletti, Daniel Quernheim, and Nina Seemann. Shallow local multi
bottom-up tree transducers in statistical machine translation. In Proc. ACL, pages 811–821.
Association for Computational Linguistics, 2013.

Chiang, David. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228,
2007.

Hoang, Hieu, Philipp Koehn, and Adam Lopez. A uniform framework for phrase-based, hier-
archical and syntax-based machine translation. In Proc. IWSLT, pages 152–159, 2009.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In
Proc. NAACL, pages 48–54. Association for Computational Linguistics, 2003.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proc. ACL, pages 177–180. Association for Computational Linguis-
tics, 2007. Demonstration session.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren N. G. Thornton, Jonathan Weese, and Omar F. Zaidan. Joshua: an open
source toolkit for parsing-based machine translation. In Proc. WMT, pages 135–139. Asso-
ciation for Computational Linguistics, 2009.

Weese, Jonathan and Chris Callison-Burch. Visualizing data structures in parsing-based ma-
chine translation. The Prague Bulletin of Mathematical Linguistics, 93:127–136, 2009.

Address for correspondence:
Robin Kurtz
kurtzrn@ims.uni-stuttgart.de
Universität Stuttgart
Institut für Maschinelle Sprachverarbeitung
Pfaffenwaldring 5b, D-70569 Stuttgart, Germany

50

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 51–62

morphogen: Translation into Morphologically Rich Languages
with Synthetic Phrases

Eva Schlinger, Victor Chahuneau, Chris Dyer
Language Technologies Institute, Carnegie Mellon University

Abstract
We present morphogen, a tool for improving translation into morphologically rich languages

with synthetic phrases. We approach the problem of translating into morphologically rich lan-
guages in two phases. First, an inflection model is learned to predict target word inflections
from source side context. Then this model is used to create additional sentence specific trans-
lation phrases. These “synthetic phrases” augment the standard translation grammars and
decoding proceeds normally with a standard translation model. We present an open source
Python implementation of our method, as well as a method of obtaining an unsupervised mor-
phological analysis of the target language when no supervised analyzer is available.

1. Introduction

Machine translation into morphologically rich languages is challenging, due to lex-
ical sparsity on account of grammatical features being expressed with morphology.
In this paper, we present an open-source Python tool, morphogen, that leverages target
language morphological grammars (either hand-crafted or learned unsupervisedly)
to enable prediction of highly inflected word forms from rich, source language syn-
tactic information.1

Unlike previous approaches to translation into morphologically rich languages,
our tool constructs sentence-specific translation grammars (i.e., phrase tables) for each
sentence that is to be translated, but then uses a standard decoder to generate the final

1https://github.com/eschling/morphogen

© 2013 PBML. All rights reserved. Corresponding author: eva@cmu.edu
Cite as: Eva Schlinger, Victor Chahuneau, Chris Dyer. morphogen: Translation into Morphologically Rich
Languages with Synthetic Phrases. The Prague Bulletin of Mathematical Linguistics No. 100, 2013, pp. 51–
62. doi: 10.2478/pralin-2013-0011.

https://github.com/eschling/morphogen

PBML 100 OCTOBER 2013

translation with no post-processing. The advantages of our approach are: (i) newly
synthesized forms are highly targeted to a specific translation context; (ii) multiple
alternatives can be generated with the final choice among rules left to a standard
sentence-level translation model; (iii) our technique requires virtually no language-
specific engineering; and (iv) we can generate forms that were not observed in the
bilingual training data.

This paper is structured as follows. We first describe our “translate-and-inflect”
model that is used to synthesize the target side of lexical translations rule given its
source and its source context (§2). This model discriminates between inflectional op-
tions for predicted stems, and the set of inflectional possibilities is determined by a
morphological grammar. To obtain this morphological grammar, the user may either
provide a morphologically analyzed version of their target language training data, or
a simple unsupervised morphology learner can be used instead (§3). With the mor-
phologically analyzed parallel data, the parameters of the discriminative model are
trained from the complete parallel training data using an efficient optimization pro-
cedure that does not require a decoder.

At test time, our tool creates synthetic phrases representing likely inflections of
likely stem translations for each sentence (§4). We briefly present the results of our
system on English–Russian, –Hebrew, and –Swahili translation tasks (§5), and then
describe our open source implementation, and discuss how to use it with both user-
provided morphological analyses and those of our unsupervised morphological an-
alyzer2 (§6).

2. Translate-and-Inflect Model

The task of the translate-and-inflect model is illustrated in Figure 1 for an English–
Russian sentence pair. The input is a sentence e in the source language3 together with
any available linguistic analysis of e (e.g., its dependency parse). The output f con-
sists of (i) a sequence of stems, each denoted σ, and (ii) one morphological inflection
pattern for each stem, denoted µ.4 Throughout, we use Ωσ to denote the set of pos-
sible morphological inflection patterns for a given stem σ. Ωσ might be defined by

2Further documentation is available in the morphogen repository.
3In this paper, the source language is always English. We use e to denote the source language (rather

than the target language), to emphasize the fact that we are translating from a morphologically impover-
ished language to a morphologically rich one.

4When the information is available from the morphological analyzer, a stem σ is represented as a tuple
of a lemma and its inflectional class.

52

E. Schlinger, V. Chahuneau, C. Dyer morphogen (51–62)

она пыталась пересечь пути на ее велосипед

she had attempted to cross the road on her bike

PRP VBD VBN TO VB DT NN IN PRP$ NN

nsubj

aux

xcomp

σ:пытаться_V,+,μ:mis2sfm2e

C50 C473 C28 C8 C275 C37 C43 C82 C94 C331

root

-1 +1

Figure 1. The inflection model predicts a form for the target verb stem based on its
source attempted and the linear and syntactic source context. The inflection pattern
mis-sfm-e (main+indicative+past+singular+feminine+medial+perfective) is that of

a supervised analyzer.

a grammar; our models restrict Ωσ to be the set of inflections observed anywhere in
our monolingual or bilingual training data as a realization of σ.5

We define a probabilistic model over target words f. The model assumes inde-
pendence between each target word f conditioned on the source sentence e and its
aligned position i in this sentence.6 This assumption is further relaxed in §4 when
the model is integrated in the translation system. The probability of generating each
target word f is decomposed as follows:

p(f | e, i) =
∑

σ⋆µ=f

p(σ | ei)︸ ︷︷ ︸
gen. stem

×p(µ | σ,e, i)︸ ︷︷ ︸
gen. inflection

.

Here, each stem is generated independently from a single aligned source word ei, but
in practice we use a standard phrase-based model to generate sequences of stems and
only the inflection model operates word-by-word.

2.1. Modeling Inflection

In morphologically rich languages, each stem may be combined with one or more
inflectional morphemes to express different grammatical features (e.g., case, definite-
ness, etc.). Since the inflectional morphology of a word generally expresses multiple
features, we use a model that uses overlapping features in its representation of both

5This is a practical decision that prevents the model from generating words that would be difficult for a
closed-vocabulary language model to reliably score. When open-vocabulary language models are available,
this restriction can easily be relaxed.

6This is the same assumption that Brown et al. (1993) make in, for example, IBM Model 1.

53

PBML 100 OCTOBER 2013


source aligned word ei

parent word eπi
with its dependency πi → i

all children ej | πj = i with their dependency i → j

source words ei−1 and ei+1




token
part-of-speech tag

word cluster


– are ei, eπi

at the root of the dependency tree?
– number of children, siblings of ei

Table 1. Source features φ(e, i) extracted from e and its linguistic analysis. πi

denotes the parent of the token in position i in the dependency tree and πi → i the
typed dependency link.

the input (i.e., conditioning context) and output (i.e., the inflection pattern):

p(µ | σ,e, i) =
exp

[
φ(e, i)⊤Wψ(µ) +ψ(µ)⊤Vψ(µ)

]∑
µ ′∈Ωσ

exp [φ(e, i)⊤Wψ(µ ′) +ψ(µ ′)⊤Vψ(µ ′)]
. (1)

Here, φ is an m-dimensional source context feature vector function, ψ is an n-dimen-
sional morphology feature vector function,W is an m× n parameter matrix, and V is
an n× n parameter matrix. In our implementation,φ andψ return sparse vectors of
binary indicator features, but other features can easily be incorporated.

2.2. Source Contextual Features: φ(e, i)

In order to select the best inflection of a target-language word, given the source
word it translates from and the context of that source word, we seek to leverage numer-
ous features of the context to capture the diversity of possible grammatical relations
that might be encoded in the target language morphology. Consider the example
shown in Figure 1, where most of the inflection features of the Russian word (past
tense, singular number, and feminine gender) can be inferred from the context of the
source word it is aligned to. To access this information, our tool uses parsers and other
linguistic analyzers.

By default, we assume that English is the source language and provide wrappers
for external tools to generate the following linguistic analyses of each input sentence:

• Part-of-speech tagging with a CRF tagger trained on sections 02–21 of the Penn
Treebank,

• Dependency parsing with TurboParser (Martins et al., 2010), and
• Mapping of the tokens to one of 600 Brown clusters trained from 8B words of

English text.7

7The entire monolingual data available for the translation task of the 8th ACL Workshop on Statisti-
cal Machine Translation was used. These clusters are available at http://www.ark.cs.cmu.edu/cdyer/
en-c600.gz

54

http://www.ark.cs.cmu.edu/cdyer/en-c600.gz
http://www.ark.cs.cmu.edu/cdyer/en-c600.gz

E. Schlinger, V. Chahuneau, C. Dyer morphogen (51–62)

From these analyses we then extract features from e by considering the aligned source
word ei, its preceding and following words, and its dependency neighbors. These
are detailed in Table 1 and can be easily modified to include different features or for
different source languages.

3. Morphological Grammars and Features

The discriminative model in the previous section selects an inflectional pattern
for each candidate stem. In this section, we discuss where the inventory of possible
inflectional patterns it will consider come from.

3.1. Supervised Morphology

If a target language morphological analyzer is available that analyses each word
in the target of the bitext and monolingual training data into a stem and vector of
grammatical features, the inflectional vector may be used directly to define ψ(µ) by
defining a binary feature for each key-value pair (e.g., Tense=past) composing the tag.
Prior to running morphogen, the full monolingual and target side bilingual training
data should be analyzed.

3.2. Unsupervised Morphology

Supervised morphological analyzers that map between inflected word forms and
abstract grammatical feature representations (e.g., +) are not available for ev-
ery language into which we might seek to translate. We therefore provide an unsu-
pervised model of morphology that segments words into sequences of morphemes,
assuming a concatenative generation process and a single analysis per type. To do so,
we assume that each word can be decomposed into any number of prefixes, a stem,
and any number of suffixes. Formally, we let M represent the set of all possible mor-
phemes and define a regular grammar M∗MM∗ (i.e., zero or more prefixes, a stem,
and zero or more suffixes). We learn weights for this grammar by assuming that the
probability of each prefix, stem, and suffix is given by a draw from a Dirichlet distri-
bution over all morphemes and then inferring the most likely analysis.

Hyperparemeters. To run the unsupervised analyzer, it is necessary to specify the
Dirichlet hyperparameters (αp, αs, αt) which control the sparsity of the inferred pre-
fix, stem, and suffix lexicons, respectively. The learned morphological grammar is
(rather unfortunately) very sensitive to these settings, and some exploration is neces-
sary. As a rule of thumb, we observe that αp, αs ≪ αt ≪ 1 is necessary to recover
useful segmentations, as this encodes that there are many more possible stems than
inflectional affixes; however the absolute magnitude will depend on a variety of fac-
tors. Default values are αp = αs = 10−6, αt = 10−4; these may be adjusted by factors
of 10 (larger to increase sparsity; smaller to decrease it).

55

PBML 100 OCTOBER 2013

Unsupervised morphology features: ψ(µ) For the unsupervised analyzer, we do
not have a mapping from morphemes to grammatical features (e.g., +past); how-
ever, we can create features from the affix sequences obtained after morphological
segmentation. We produce binary features corresponding to the content of each po-
tential affixation position relative to the stem. For example, the unsupervised analysis
wa+ki+wa+ of the Swahili word wakiwapiga will produce the following features:

Prefix[-3][wa] Prefix[-2][ki] Prefix[-1][wa].

3.3. Inflection Model Parameter Estimation

From the analyzed parallel corpus (source side syntax and target side morpho-
logical analysis), morphogen sets the parameters W and V of the inflection predic-
tion model (Eq. 1) using stochastic gradient descent to maximize the conditional log-
likelihood of a training set consisting of pairs of source sentence contextual features
(φ) and target word inflectional features (ψ). The training instances are word align-
ment pairs from the full training corpus. When morphological category information
is available, an independent model may be trained for each open-class category (e.g.,
nouns, verbs); but, by default a single model is used for all words (excluding words
shorter than a minimum length).

It is important to note here that our richly parameterized model is trained on the
full parallel training corpus, not just on the small number of development sentences.
This is feasible because, in contrast to standard discriminative translation models
which seek to discriminate good complete translations from bad complete transla-
tions, morphogen’s model must only predict how good each possible inflection of an
independently generated stem is. All experiments reported in this paper used models
trained on a single processor using a Cython implementation of the SGD optimizer.8

4. Synthetic Phrases

How is morphogen used to improve translation? Rather than using the translate-
and-inflect model directly to perform translation, we use it just to augment the set of
rules available to a conventional hierarchical phrase-based translation model (Chiang,
2007; Dyer et al., 2010). We refer to the phrases it produces as synthetic phrases. The
aggregate grammar consists of both synthetic and “default” phrases and is used by
an unmodified decoder.

The process works as follows. We use the suffix-array grammar extractor of Lopez
(2007) to generate sentence-specific grammars from the fully inflected version of the
training data (the default grammar) and also from the stemmed variant of the training

8For our largest model, trained on 3.3M Russian words, n = 231K ∗ m = 336 feature were produced,
and 10 SGD iterations at a rate of 0.01 were performed in less than 16 hours.

56

E. Schlinger, V. Chahuneau, C. Dyer morphogen (51–62)

Russian supervised
Verb: 1st Person

child(nsubj)=I child(nsubj)=we
Verb: Future tense

child(aux)=MD child(aux)=will
Noun: Animate

source=animals/victims/...
Noun: Feminine gender

source=obama/economy/...
Noun: Dative case

parent(iobj)
Adjective: Genitive case

grandparent(poss)

Hebrew
Suffix ים (masculine plural)

parent=NNS after=NNS
Prefix א (first person sing. + future)

child(nsubj)=I child(aux)='ll
Prefix כ (preposition like/as)

child(prep)=IN parent=as
Suffix י (possesive mark)

before=my child(poss)=my
Suffix ה (feminine mark)

child(nsubj)=she before=she
Prefix כש (when)

before=when before=WRB

Swahili
Prefix li (past)

source=VBD source=VBN
Prefix nita (1st person sing. + future)

child(aux) child(nsubj)=I
Prefix ana (3rd person sing. + present)

source=VBZ
Prefix wa (3rd person plural)

before=they child(nsubj)=NNS
Suffix tu (1st person plural)

child(nsubj)=she before=she
Prefix ha (negative tense)

source=no after=not

Figure 2. Examples of highly weighted features learned by the inflection model. We selected a
few frequent morphological features and show their top corresponding source context features.

data (the stemmed grammar). We then extract a set of translation rules that only con-
tain terminal symbols (sometimes called “lexical rules”) from the stemmed grammar.
The (stemmed) target side of each such phrase is then re-inflected using the inflection
model described above (§2), conditioned on the source sentence and its context. Each
stem is given its most likely inflection. The resulting rules are added to the default
grammar for the sentence to produce the aggregate grammar.

The standard translation rule features present on the stemmed grammar rules are
preserved, and morphogen adds the following features to help the decoder select good
synthetic phrases: (i) a binary feature indicating that the phrase is synthetic; (ii) the log
probability of the inflected form according to the inflection model; and (iii) if available,
counts of the morphological categories inflected.

5. Experiments

We briefly report in this section on some experimental results obtained with our
tool. We ran experiments on a 150k sentence Russian–English task (WMT2013; news-
commentary), a 134k sentence English–Hebrew task (WIT3 TED talks corpus), and a
15k sentence English–Swahili Task. Space precludes a full discussion of the perfor-
mance of the classifier,9 but we can also inspect the weights learned by the model to
assess the effectiveness of the features in relating source-context structure with target-
side morphology. Such an analysis is presented in Figure 2.

9We present our approach and the results of both the intrinsic and extrinsic evaluations in much more
depth in Chahuneau et al. (in review)

57

PBML 100 OCTOBER 2013

→ → →
Baseline 14.7±0.1 15.8±0.3 18.3±0.1

+Class LM 15.7±0.1 16.8±0.4 18.7±0.2

+Synthetic
unsupervised 16.2±0.1 17.6±0.1 19.0±0.1

supervised 16.7±0.1 — —

Table 2. Translation quality (measured by bleu) averaged over 3 MIRA runs.

5.1. Translation

We evaluate our approach in the standard discriminative MT framework. We use
cdec (Dyer et al., 2010) as our decoder and perform MIRA training (Chiang, 2012) to
learn feature weights. We compare the following configurations:

• A baseline system, using a 4-gram language model trained on the entire mono-
lingual and bilingual data available.

• An enriched system with a class-based n-gram language model10 trained on the
monolingual data mapped to 600 Brown clusters. Class-based language mod-
eling is a strong baseline for scenarios with high out-of-vocabulary rates but in
which large amounts of monolingual target-language data are available.

• The enriched system further augmented with our inflected synthetic phrases.
We expect the class-based language model to be especially helpful here and cap-
ture some basic agreement patterns that can be learned more easily on dense
clusters than from plain word sequences.

We evaluate translation quality by translating and measuring BLEU on a held-out
evaluation corpus, averaging the results over 3 MIRA runs (Table 2). For all languages,
using class language models improves over the baseline. When synthetic phrases are
added, significant additional improvements are obtained. For the English–Russian
language pair, where both supervised and unsupervised analyses can be obtained,
we notice that expert-crafted morphological analyzers are more efficient at improving
translation quality.

6. Morphogen Implementation Discussion and User’s Guide

This section describes the open-source Python implementation of this work, mor-
phogen.11 Our decision to use Python means the code—from feature extraction to
grammar processing—is generally readable and simple to modify for research pur-
poses. For example, with few changes to the code, it is easy to expand the number of

10For Swahili and Hebrew, n = 6; for Russian, n = 7.
11https://github.com/eschling/morphogen

58

https://github.com/eschling/morphogen

E. Schlinger, V. Chahuneau, C. Dyer morphogen (51–62)

synthetic phrases created by generating k-best inflections (rather than just the most
probable inflection), or to restrict the phrases created based on some source side cri-
terion such as type frequency, POS type, or the like.

Since there are many processing steps that must be coordinated to run morphogen,
we provide reference workflows using ducttape12 for both supervised and unsuper-
vised morphological analyses (discussed below). While these workflows are set up to
be used with cdec, morphogen generates grammars that could be used with any de-
coder that supports per-sentence grammars. The source language processing, which
we do for English using TurboParser and TurboTagger, could be done with any tagger
and any parser that can produce basic Stanford dependencies. The source language
does not necessarily need to be English, although our approach depends on having
detailed source side contextual information.13

We now review the steps that must be taken to run morphogen with either an ex-
ternal (generally supervised) morphological analyzer or the unsupervised morpho-
logical analyzer we described above. These steps are implemented in the provided
ducttape workflows.

Running morphogenwith an external morphological analyzer. If a supervised mor-
phological analyzer is used, the parallel training data must be analyzed on the target
side, with each line containing four fields (source sentence, target sentence, target
stem sentence, target analysis sequence), where fields are separated with the triple
pipe (|||) symbol. Target language monolingual data must likewise be analyzed and
provided in a file where each line contains three fields (sentence, stem sentence, anal-
ysis sequence) and separated by triple pipes. For supervised morphological anal-
yses, the user must also provide a python configuration file that contains a func-
tion get_attributes,14 which parses the string representing the target morphological
analysis into a set of features that will be exposed to the model as the target morpho-
logical feature vector ψ(µ).

Running morphogen with the unsupervised morphological analyzer. To use unsu-
pervised morphological analysis, two additional steps (in addition to those required
for an external analyzer) are required:

12ducttape is an open-source workflow management system similar to make, but designed for research
environments. It is available from https://github.com/jhclark/ducttape.

13It is also unclear how effective our model would be when translating between two morphologically
rich languages, since we assume that the source language expresses syntactically many of the things which
the target language expresses with morphology. This is a topic for future research, and one that will be
facilitated by morphogen.

14See the morphogen documentation for more information on defining this function. The configuration
for the Russian positional tagset used for the “supervised” Russian experiments is provided as an example.

59

https://github.com/jhclark/ducttape

PBML 100 OCTOBER 2013

We#'ve#heard#that#empty#promise#before#.#|||

Но#мы#и#раньше#слышали#эти#пустые#обещания#.#|||

но#мы#и#раньше#слышать#этот#пустой#обещание#.#|||

C#PL1Lpnn#C#R#VmisLpLaLe#PLLLpaa#Afpmpaf#Ncnpan#.

Tokenized target (inflected):

Tokenized target (stemmed):

POS + inflectional features:

Tokenized source:

Figure 3. Example supervised input; arrows indicate that the text wraps around to the next line
just for ease of reading (there should be no newline character in the input).

• use fast_umorph15 to get unsupervised morphological analyses (see §3.2);
• use seg_tags.py with these segmentations to retrieve the lemmatized and tag-

ged version of the target text. Tags for unsupervised morphological segmenta-
tions are a simple representation of the learned segmentation. Words less than
four characters are tagged with an X and subsequently ignored.

Remaining training steps. Once the training data has been morphologically ana-
lyzed, the following steps are necessary:

• process the source side of the parallel data using TurboTagger, TurboParser, and
Brown clusters.

• use lex_align.py to extract parallel source and target stems with category infor-
mation. This lemmatized target side is used with cdec’s fast_align to produce
alignments.

• combine to get fully preprocessed parallel data, in the form (source sentence,
source POS sequence, source dependency tree, source class sequence, target
sentence, target stem sequence, target morphological tag sequence, word align-
ment), separated by the triple pipe.

• use rev_map.py to create a mapping from (stem, category) to sets of possible
inflected forms and their tags. Optionally, monolingual data can be added to
this mapping, to allow for the creation of inflected word forms that appear in
the monolingual data but not in the parallel training data. If a (stem, category)
pair maps to multiple inflections that have the same morphological analysis, the
most frequent form is used.16

• train structured inflection models with SGD using struct_train.py A separate
inflection model must be created for each word category that is to be inflected.
There is only a single category when unsupervised segmentation is used.

15https://github.com/vchahun/fast_umorph
16This is only possible when a supervised morphological analyzer is used, as our unsupervised tags are

just a representation of the segmentation (e.g. wa+ku+STEM).

60

https://github.com/vchahun/fast_umorph

E. Schlinger, V. Chahuneau, C. Dyer morphogen (51–62)

Using morphogen for tuning and testing. At tuning and testing time, the following
steps are run:

• extract two sets of per-sentence grammars, one with the original target side and
the other with the lemmatized target side

• use the extracted grammars, the trained inflection models, and the reverse in-
flection map with synthetic_grammar.py to create an augmented grammar that
consists of both the original grammar rules and any inflected synthetic rules
(§4). By default, only the single best inflection is used to create a synthetic rule,
but this can be modified easily.

• add target language model and optionally a target class based language model.
Proceed with decoding as normal (we tune with MIRA and then evaluate on
our test set)

Using the ducttape workflows. The provided ducttape workflows implement the
above pipelines, including downloading all of the necessary tool dependencies so as
to make the process as simple as possible. The user simply needs to replace the global
variables for the dev, test, and training sets with the correct information, point it at
their version of morphogen, and decide which options they would like to use. Sample
workflow paths are already created (e.g. path with/without Monolingual training
data, with/without class based target language model). These can be modified as
needed.

Analysis tools. We also provide the scripts predict.py and show_model.py. The
former is used to perform an intrinsic evaluation of the inflection model on held out
development data. The latter provides a detailed view of the top features for various
inflections, allowing for manual inspection of the model as in Figure 2. An example
workflow script for the intrinsic evaluation is also provided.

7. Conclusion

We have presented an efficient technique which exploits morphologically analyzed
corpora to produce new inflections possibly unseen in the bilingual training data and
described a simple, open source tool that implements it. Our method decomposes
into two simple independent steps involving well-understood discriminative models.

By relying on source-side context to generate additional local translation options
and by leaving the choice of the global sentence translation to the decoder, we sidestep
the issue of inflecting imperfect translations and we are able to exploit rich annota-
tions to select appropriate inflections without modifying the decoding process or even
requiring that a specific decoder or translation model type be used.

61

PBML 100 OCTOBER 2013

We also achieve language independence by exploiting unsupervised morpholog-
ical segmentations in the absence of linguistically informed morphological analyses,
making this tool appropriate for low-resource scenarios.

Acknowledgments

This work was supported by the U. S. Army Research Laboratory and the U. S. Army Re-
search Office under contract/grant number W911NF-10-1-0533. We would like to thank Kim
Spasaro for curating the Swahili development and test sets.

Bibliography

Brown, Peter F., Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. The
mathematics of statistical machine translation: parameter estimation. Computational Lin-
guistics, 19(2):263–311, 1993.

Chahuneau, Victor, Eva Schlinger, Chris Dyer, and Noah A. Smith. Translating into morpho-
logically rich languages with synthetic phrases, in review.

Chiang, David. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228,
2007.

Chiang, David. Hope and fear for discriminative training of statistical translation models. Jour-
nal of Machine Learning Research, 13:1159–1187, 2012.

Dyer, Chris, Adam Lopez, Juri Ganitkevitch, Johnathan Weese, Ferhan Ture, Phil Blunsom,
Hendra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec: A decoder, alignment, and
learning framework for finite-state and context-free translation models. In Proc. of ACL,
2010.

Lopez, Adam. Hierarchical phrase-based translation with suffix arrays. In Proc. of EMNLP,
2007.

Martins, André F.T., Noah A. Smith, Eric P. Xing, Pedro M.Q. Aguiar, and Mário A.T. Figuei-
redo. Turbo parsers: Dependency parsing by approximate variational inference. In Proc. of
EMNLP, 2010.

Address for correspondence:
Eva Schlinger
eva@cmu.edu
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA

62

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 63–72

RankEval: Open Tool for
Evaluation of Machine-Learned Ranking

Eleftherios Avramidis
Language Technology Lab

German Research Center for Artificial Intelligence (DFKI)

Abstract
Recent research and applications for evaluation and quality estimation of Machine Trans-

lation require statistical measures for comparing machine-predicted ranking against gold sets
annotated by humans. Additional to the existing practice of measuring segment-level correla-
tion with Kendall tau, we propose using ranking metrics from the research field of Information
Retrieval such as Mean Reciprocal Rank, Normalized Discounted Cumulative Gain and Ex-
pected Reciprocal Rank. These reward systems that predict correctly the highest ranked items
than the one of lower ones. We present an open source tool ”RE” providing imple-
mentation of these metrics. It can be either run independently as a script supporting common
formats or can be imported to any Python application.

1. Introduction

Research in Machine Translation (MT) has resulted into the development of var-
ious Machine Translation systems over the years. One of the most prominent ways
of assessing their performance is to do it comparatively, i.e. comparing them and
ordering them in terms of quality. This offers the possibility to be consistent with hu-
man quality judgements, without having to rely on underspecified “absolute” quality
numbers, which are often hard to define and derive objectively.

The result of ordering translations in terms of their quality has had a few appli-
cations focusing on a sentence level. One of these applications refers to assessing
the quality of automatic evaluation metrics. In particular, since quite a few years,
the Evaluation Shared Task of the Workshop on Machine Translation (Callison-Burch
et al., 2008) has used the so-called “segment-level” ranking, in order to compare rank-

© 2013 PBML. All rights reserved. Corresponding author: eleftherios.avramidis@dfki.de
Cite as: Eleftherios Avramidis. RankEval: Open Tool for Evaluation of Machine-Learned Ranking. The Prague
Bulletin of Mathematical Linguistics No. 100, 2013, pp. 63–72. doi: 10.2478/pralin-2013-0012.

PBML 100 OCTOBER 2013

ings produced by automatic evaluation metrics against the ones devised by human
annotators. In most cases, translation segments are defined by periods, roughly as
long as one sentence.

Additionally, the use of several Machine Translation (MT) systems within transla-
tion workflows pretty often requires automatic Quality Estimation systems that pre-
dict the ranking of the translation quality on a sentence level. The performance of
such Quality Estimation rankers can be assessed when sentence-level ranking lists
are compared with the ranking a human would do.

In both above tasks, predicted ranking is evaluated against the human ranking,
using calculations following the Kendall tau correlation coefficient. On top of that,
in this paper we present some existing measures that have been used in other fields,
but are suitable for tasks relative to Machine Translation, such as the ones described
above. The measures are wrapped in an open source tool called RE which is
described in detailed.

2. Previous Work

The simplest measure of its kind, tau, was introduced by Kendall (1938) with the
purpose to analyze experiments on psychology, where the order given by different
observers is compared. This measure has been analyzed and modified over the years
for several purposes (Knight, 1966; Agresti, 1996; Christensen, 2005) and has been
also applied to text technologies (Lapata, 2003; Cao et al., 2007). Since 2008 it appears
modified as an official segment-level measure for the evaluation metrics in the yearly
shared task for Machine Translation (Callison-Burch et al., 2008). This is the reason
we decided to re-implement Kendall tau with penalization of ties, although there is
already another open source version by SP (Oliphant, 2007), however with different
accounting of ties.

More metrics emerged for use with Information Retrieval. Directed Cumulated
Gain (Järvelin and Kekäläinen, 2002) was extended to the measures of Discounted
Cumulative Gain, Ideal Cumulative Gain and Normalized Cumulative Gain (Wang
et al., 2013). Mean Reciprocal Rank was introduced as an official evaluation metric of
TREC-8 Shared Task on Question Answering (Radev et al., 2002) and has also been
applied successfully for the purpose of evaluating MT n-best lists and transliteration
in the frame of the yearly Named Entities Workshop (Li et al., 2009). Additionally,
Expected Reciprocal Rank (Chapelle et al., 2009) was optimized for Search Engine re-
sults and used as a measure for a state-of-the-art Learning to Rank challenge (Chapelle
and Chang, 2011).

In the following sections we present shortly the evaluation measures and the way
they have been implemented to suit the evaluation needs of MT.

64

Eleftherios Avramidis RankEval for Machine-Learned Ranking (63–72)

3. Methods

In a ranking task, each translation is assigned an integer (further called a rank),
which indicates its quality as compared to the competing translations for the same
source sentence. E.g. given one source sentence and n translations for it, each of the
latter would get a rank in the range [1, n]. The aim of the methods below is to produce
a score that indicates the quality of an automatically predicted ranking against human
rankings.

3.1. Kendall’s Tau

3.1.1. Original calculation

Kendall’s tau (Kendall, 1938; Knight, 1966) measures the correlation between two
ranking lists on a segment level by counting concordant or discordant pairwise compar-
isons: For every sentence, the two rankings (machine-predicted and human) are first
decomposed into pairwise comparisons. Then, a concordant pair is counted when
each predicted pairwise comparison matches the respective pairwise comparison by
the human annotator; otherwise a discordant pair is counted. Consequently, tau is
computed by:

τ =
concordant − discordant
concordant + discordant (1)

with values ranging between minus one and one. The closer |τ| values get to one,
the better the ranking is. In particular, when values get close to minus one, the rank-
ing is also good, but the order of its element should be reversed. This is typical for
evaluation metrics which assign higher scores to better translations, whereas humans
evaluations usually assign lower ranks to the better ones. A value of zero indicates
no correlation.

3.1.2. Penalization of ties

A common issue in ranking related to MT is that the same rank may be assigned to
two or more translation candidates, if the translations are of similar quality (i.e. there
is no distinguishable difference between them). Such a case defines a tie between the
two translation candidates. A tie can exist in both the gold-standard ranking (as a
decision by an annotator based on his judgment) and the predicted ranking (as an
uncertain decision by the machine ranker).

As one can see in the fraction of equation 1, ties are not included in the original
calculation of tau, which may yield improportional results when a ranker produces a
huge amount of ties and only a few correct comparisons (as only the latter would be
included in the denominator). Previous work includes a few tau extensions to address
this issue (Degenne, 1972). We focus on the ties penalization of Callison-Burch et al.
(2008) which follows these steps:

65

PBML 100 OCTOBER 2013

• Pairwise ties in the human-annotated test set are excluded from the calculations,
as ties are considered to form uncertain samples that cannot be used for evalu-
ation.

• For each remaining pairwise comparison, where human annotation has not re-
sulted in a tie, every tie on the machine-predicted rankings is penalized by being
counted as a discordant pair.

τ =
concordant − (discordant + ties)
concordant + discordant + ties (2)

With these modifications, the values of the ratio are still between minus one and
one, but since a ties penalty has been added, values close to minus one can no longer
be considered as a good result and if needed, ranks must be reverted prior to the
calculation.

3.1.3. Segment-level correlation on a document level

As the above calculation is defined on a segment (sentence) level, we accumulate
tau on the data set level in two ways:

• Micro-averaged tau (τµ) where concordant and discordant counts from all seg-
ments (i.e., sentences) are gathered and the fraction is calculated with their
sums.1

• Macro-averaged tau (τm) where tau is calculated on a segment level and then
averaged over the number of sentences. This shows equal importance to each
sentence, irrelevant of the number of alternative translations.

3.1.4. P-value for Kendall tau

For an amount of n ranked items, we calculate the two-sided p-value for a hypoth-
esis test whose null hypothesis is an absence of association (Oliphant, 2007):

z =
τ√

4n+10
9n(n−1)

(3)

p = erfc

(
|z|√
2

)
(4)

where erfc is the complementary error function of the fraction.

3.2. First Answer Reciprocal Rank and Mean Reciprocal Rank

Kendall tau correlation sets the focus on the entire ranking list, giving an equal
weight to the correct prediction of all ranks. Another set of measures emphasizes only

1τµ is the tau calculation that appears in WMT results

66

Eleftherios Avramidis RankEval for Machine-Learned Ranking (63–72)

on the best item(s) (according to the humans) and how high they have been ranked by
the ranker, assuming that our interest for the worse items is less. The first measure of
this kind the First Answer Reciprocal Rank (FARR) which is the multiplicative inverse
of the rank of the first correct answer (Radev et al., 2002), having an index i:

FARR =
1

ranki

(5)

A common use of FARR is through the Mean Reciprocal Rank, which averages the
segment-level reciprocal ranks over all sentences:

MRR =
1

n

n∑
j=1

1

rankj,i

(6)

where n is the number of sentences, j the sentence index and rankj,i the rank of the
first correct answer for this sentence. As FARR is calculated over only one rank, ties
need only be considered only if they occur for this particular rank. In that case, we
only consider the ranker’s best prediction for it.

3.3. Cumulative Gain

This family of measures is based on Discounted Cumulative Gain (DCG), which
is a weighted sum of the degree of relevance of the ranked items. This introduces a
discount, which refers to the fact that the rank scores are weighted by a decreasing
function of the rank i of the item.

DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
(7)

In our case, we consider that relevance of each rank (reli) is inversely proportional to
its rank index.

The most acknowledged measure of this family is the Normalized Discounted Cu-
mulative Gain (NDCG), which divides the DCG by the Ideal Discounted Cumulative
Gain (IDCG), the maximum possible DCG until position p. Then, NDGC is defined
as:

NDCGp =
DCGp

IDCGp

. (8)

3.4. Expected Reciprocal Rank

The Expected Reciprocal Rank (ERR) has been suggested as an improvement of
NDCG in order to better model the fact that the likelihood a user examines the trans-
lation at rank i is dependent on how satisfied the user was with the translations ob-
served previously in the ranking list (Chapelle et al., 2009), introducing the so-called
user cascade model.

67

PBML 100 OCTOBER 2013

The probability of relevance is here given by

Ri =
2reli − 1

2relimax
(9)

and given that the user stops at position r, this forms the calculation of ERR as:

ERR =

n∑
r=1

1

r

r=1∏
i=1

(1− Ri)Rr. (10)

3.5. Simple Measures

Additionally to the above sophisticated measures, we also use simpler measures.
These are:

• Best predicted vs human (BPH): For each sentence, the item selected as best by
the machine ranker, may have been ranked lower by the humans. This measure
returns a vector of how many times the item predicted as best has fallen into
each of the human ranks.

• Average predicted: the average human rank of the item chosen by the machine
ranker as best.

3.6. Normalization of Ranking Lists

Normalization emerges as a need from the fact that in practice there are many dif-
ferent ways to order items within the range of the rank values. This becomes obvious
if one considers ties. Since there is no standard convention for ordering ties, the same
list may be represented as [1, 2, 2, 3, 4], [1, 2, 2, 4, 5], [1, 3, 3, 4, 5]
or even [1, 2.5, 2.5, 4, 5]. The alternative representations are even more when
more ties are involved.

All representations above are equivalent, since there is no absolute meaning of
quality in the values involved. Nevertheless, the rank value plays a role for the calcu-
lation of some of the metrics explained above. For this purpose, we consider several
different normalization options of such ranking lists:

• minimize: reserves only one rank position for all tied items of the same rank
(e.g.: [1, 2, 2, 3, 4]).

• floor: reserves all rank positions for all tied items of the same rank, but sets their
value to the minimum tied rank position (e.g: [1, 2, 2, 4, 5]).

• ceiling: reserves all rank positions for all tied items of the same rank, but sets
their value to the maximum tied rank position (e.g: [1, 3, 3, 4, 5]). This is
the default setting, inline to many previous experiments.

• middle: reserves all rank positions for all tied items of the same rank, but sets
their value to the middle of the tied rank positions (e.g: [1, 2.5, 2.5, 3, 4]).

68

Eleftherios Avramidis RankEval for Machine-Learned Ranking (63–72)

4. Implementation

4.1. Coding and Architecture

The code has been written in Python 2.7, taking advantage of the easier calculation
due to the dynamic assignment of items in the lists. Few functions from numpy and
scipy libraries are included, which therefore sets them as prerequisites for running
the tool. The code is available in an open git repository.2

The code includes one function for each ranking measure, with the exception of
NDGC and ERR which are merged into one loop for saving computational time. Each
function receives as parameters the predicted and the human (also referred to as orig-
inal) rankings. Depending on how many the results of each function are, they are
returned as single float values, tuples or dict structures, as explained in the docu-
mentation of each function. The code is organized in two Python modules, so that
the functions can be imported and used by other Python programs.

• ranking.segment, where the segment-level calculation takes place, and
• ranking.set, where the segment-level calculations are aggregated to provide

results for the entire data set. This mainly includes averaging (as explained
previously) but also the simple measures (Section 3.5). There is also a utility
function that executes all available functions and returns the results altogether.

The ranking lists are handled by the sentence.ranking.Ranking class, which includes
the functions for normalizing the included values.

4.2. Stand-Alone Execution

A stand-alone execution is also possible using the command line script ranke-
val.py which resides on the root of the package. This script is responsible for read-
ing command line parameters on the execution, opening and parsing the files with the
ranking lists, starting the evaluation and displaying the results. The script supports
reading two formats:

• a text-based format, similar to the one used for WMT Evaluation Shared Task
• an XML-based format, which includes the sentence-level ranking annotations

along with the source and translated text. This format has been used in several
quality estimation tasks

4.3. Linear Computation of ERR

Since the mathematical formula for the computation of the Expected Reciprocal
Rank is computed in exponential time, we use the simplified computation suggested
by Chapelle et al. (2009), which is outlined in Algorithm 1. The algorithm reduces the

2https://github.com/lefterav/rankeval

69

https://github.com/lefterav/rankeval

PBML 100 OCTOBER 2013

Algorithm 1: Linear computation of Expected Reciprocal Rank
foreach i in [0, n] do gi ← RelevanceGrade(i)
p← 1, ERR← 0.
for r← 1 to n do

R← RelevanceProb(gr)
ERR← ERR+ p× R/r

p← p× (1− R)

return ERR

computational perplexity by calculating the relevance grades gi only once for each
rank i. This is used during the loop for calculating the relevance probability Ri and
gradually augmenting the ERR value.

5. Discussion

It is hard to evaluate new metrics, as we examine a meta-evaluation level, where
there is no gold standard to compare with. Therefore, we leave this kind of evaluation
to further work, as we hope that the tool will make it possible to apply the measures
on different types of data.

As an indication of the correlation between the measures in a range of experiments
we present a graphical representation (Figure 1) of all measure values, given for 78
quality estimation experiments on ranking. These experiments were done with vari-
ous machine learning parametrizations (Avramidis, 2012) over the basic set-up of the
Sentence Ranking Shared Task on Quality estimation (WMT13 – Bojar et al., 2013).
The experiments are ordered based on their descending MRR score, which appears
as a straight line, whereas the scores given by the other measures for the respective
experiments are plotted with the rest of the lines.

Each measure has a different range of values, which means that the position on the
Y axis, or the inclination are of no interest for the comparison. The interesting point
are the fluctuations of each measure scores as compared to the others. As expected,
we see that the measures of the same family seem to correlate with each other.

70

Eleftherios Avramidis RankEval for Machine-Learned Ranking (63–72)

Figure 1. Plotting the values of the various measures (Y axis) for 78 quality estimation
experiments ordered by descending MRR (X axis)

Acknowledgments

This work has been developed within the TaraXŰ project, financed by TSB Tech-
nologiestiftung Berlin – Zukunftsfonds Berlin, co-financed by the European Union –
European fund for regional development. Many thanks to Prof. Hans Uszkoreit for
the supervision, Dr. Aljoscha Burchardt, Dr. Maja Popović and Dr. David Vilar for
their useful feedback.

Bibliography

Agresti, Alan. An introduction to categorical data analysis, volume 135. Wiley New York, 1996.
Avramidis, Eleftherios. Comparative quality estimation: Automatic sentence-level ranking of

multiple machine translation outputs. In Proceedings of 24th International Conference on Com-
putational Linguistics, pages 115–132, Mumbai, India, Dec. 2012. The COLING 2012 Orga-
nizing Committee.

Bojar, Ondřej, Christian Buck, Chris Callison-Burch, Christian Federmann, Barry Haddow,
Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia Specia. Findings of
the 2013 workshop on statistical machine translation. In 8th Workshop on Statistical Machine
Translation, Sofia, Bulgaria, 2013. Association for Computational Linguistics.

Callison-Burch, Chris, Cameron Fordyce, Philipp Koehn, Christof Monz, and Josh Schroeder.
Further meta-evaluation of machine translation. In Proceedings of the Third Workshop on Sta-
tistical Machine Translation, pages 70–106, Columbus, Ohio, June 2008. Association for Com-
putational Linguistics.

71

PBML 100 OCTOBER 2013

Cao, Zhe, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine
learning, pages 129–136. ACM, 2007.

Chapelle, Olivier and Yi Chang. Yahoo! learning to rank challenge overview. Journal of Machine
Learning Research-Proceedings Track, 14:1–24, 2011.

Chapelle, Olivier, Donald Metlzer, Ya Zhang, and Pierre Grinspan. Expected reciprocal rank
for graded relevance. In Proceedings of the 18th ACM conference on Information and knowledge
management - CIKM ’09, page 621, New York, New York, USA, Nov. 2009. ACM Press. ISBN
9781605585123. doi: 10.1145/1645953.1646033.

Christensen, David. Fast algorithms for the calculation of Kendall’s τ. Computational Statistics,
20(1):51–62, 2005.

Degenne, Alain. Techniques ordinales en analyse des donn{é}es statistique. Classiques Hachette,
1972.

Järvelin, Kalervo and Jaana Kekäläinen. Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems, 20(4):422–446, Oct. 2002. ISSN 10468188. doi:
10.1145/582415.582418.

Kendall, Maurice G. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938. doi:
10.1093/biomet/30.1-2.81.

Knight, William R. A computer method for calculating kendalls tau with ungrouped data.
Journal of the American Statistical Association, 61(314):436–439, 1966.

Lapata, Mirella. Probabilistic text structuring: Experiments with sentence ordering. In Annual
Meeting of the Association for Computational Linguistics, pages 545–552, 2003.

Li, Haizhou, A Kumaran, Vladimir Pervouchine, and Min Zhang. Report of NEWS 2009 ma-
chine transliteration shared task. In Proceedings of the 2009 Named Entities Workshop: Shared
Task on Transliteration (NEWS 2009), pages 1–18, Suntec, Singapore, Aug. 2009. Association
for Computational Linguistics.

Oliphant, Travis E. SciPy: Open source scientific tools for Python. Computing in Science and
Engineering, 9(3):10–20, 2007. URL http://www.scipy.org.

Radev, Dragomir, Hong Qi, Harris Wu, and Weiguo Fan. Evaluating web-based question an-
swering systems. In Proceedings of the Third International Conference on Language Resources
and Evaluation, volume 1001, Las Palmas, Spain, 2002. European Language Resources Asso-
ciation (ELRA).

Wang, Yining, Wang Liwei, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. A theoretical anal-
ysis of NDCG ranking measures. In 26th Annual Conference on Learning Theory, 2013.

Address for correspondence:
Eleftherios Avramidis
eleftherios.avramidis@dfki.de
Language Technology Lab
German Research Center for Artificial Intelligence (DFKI)
Alt Moabit 91c, Berlin, Germany

72

http://www.scipy.org

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 73–82

XenC: An Open-Source Tool for Data Selection
in Natural Language Processing

Anthony Rousseau
Laboratoire d’Informatique de l’Université du Maine (LIUM)

Abstract
In this paper we describe XenC, an open-source tool for data selection aimed at Natural

Language Processing (NLP) in general and Statistical Machine Translation (SMT) or Automatic
Speech Recognition (ASR) in particular. Usually, when building a SMT or ASR system, the
considered task is related to a specific domain of application, like news articles or scientific talks
for instance. The goal of XenC is to allow selection of relevant data regarding the considered task,
which will be used to build the statistical models for such a system. It is done by computing
the difference between cross-entropy scores of sentences from a large out-of-domain corpus
and sentences from a corpus considered as in-domain for the task. Written in C++, this tool
can operate on monolingual or bilingual data and is language-independent. XenC, now part of
the LIUM toolchain for SMT, is actively developed since December 2011 and used in many MT
projects.

1. Introduction

In Natural Language Processing, in general, and in Statistical Machine Translation
or Automatic Speech Recognition, in particular, a system and its models are often con-
sidered as dynamic, always-evolving entities. These statistical models are not usually
set in stone since they can be adapted to a target task or re-estimated with new or ad-
ditional data. Also, their performance can be enhanced by various techniques, which
can occur before, during or after the actual system processing. Among these, one of
the most efficient pre-processing technique is data selection, i.e. the fact to carefully
choose which data will be injected into the system we are going to build.

In this paper, while focusing on the Statistical Machine Translation field, we de-
scribe an open-source tool named XenC, which can be used to easily perform a data

© 2013 PBML. All rights reserved. Corresponding author: anthony.rousseau@lium.univ-lemans.fr
Cite as: Anthony Rousseau. XenC: An Open-Source Tool for Data Selection in Natural Language Processing.
The Prague Bulletin of Mathematical Linguistics No. 100, 2013, pp. 73–82. doi: 10.2478/pralin-2013-0013.

PBML 100 OCTOBER 2013

selection for both monolingual data, aimed at Language Models (LM), and bilingual
data, aimed at Translation Models (TM). This tool is freely available for both com-
mercial and non-commercial use and is released under the GNU General Public Li-
cense version 3.1 Its most recent source code is accessible at: https://github.com/
rousseau-lium/XenC.

The paper is organized as follows: in Section 2, we expose the motivations of our
work on this tool. Section 3 describes the tool and the way it works. In Section 4, we
present the requirements for the usage of the tool. Section 5 is dedicated to usage in-
structions, i.e. how to run XenC efficiently. In Section 6 we present some experimental
results to illustrate the interest of such a tool. Then, Section 7 concludes this paper
and expose some future plans for XenC.

2. Motivations

Most of the time, a translation system is built to fit a given task or a specific do-
main of application, like medical reports or court session transcriptions. This implies
to dispose of a suitable corpus, which can be viewed as in-domain, reasonably large
to produce an efficient system. Unfortunately, this is rarely the case, as most of the
corpora sets usually available in SMT are quite generic and large quantities of relevant
data for a desired task or domain are generally difficult to find. These corpora, not
adapted for a particular task, can be viewed as out-of-domain. Moreover, another is-
sue arising from using such generic corpora is that they can contain useless, or worse,
harmful data for the models we want to estimate, thus lowering the translation qual-
ity.

With this in mind, the main idea behind XenC is to allow the extraction of relevant
sentences (regarding the target translation task or domain) from an out-of-domain cor-
pus by comparing them to the sentences of an in-domain corpus. Based on previous
theoretical work by Moore and Lewis (2010) for monolingual selection and Axelrod
et al. (2011) for bilingual selection, XenC uses cross-entropy (the average negative log
of a sentence LM probabilities) as a metric to evaluate and sort those sentences.

Another motivation for our work on XenC is that a typical trend in SMT is to use
as much data as possible to build statistical models, as long as this growing amount
of data will provide a better BLEU score or any other translation quality automatic
measure. However, the drawback of this trend is that the size of the models increases
very quickly and become much more resource-demanding. So, in order to build ei-
ther easily deployable systems or to estimate models on limited physical resources, it
seems essential to consider resource usage like memory and computation time, both
for models estimation and decoding process. Obviously, building a small system with
very few data to attain this objective is quite trivial, but it often leads to important
translation quality losses, so the goal of XenC is to provide a mean to extract small

1http://www.gnu.org/licenses/gpl.html

74

https://github.com/rousseau-lium/XenC
https://github.com/rousseau-lium/XenC
http://www.gnu.org/licenses/gpl.html

A. Rousseau XenC (73–82)

amounts of data, carefully selected to match the desired translation task. This way,
small but efficient systems can be built. Most of the time, performance of such sys-
tems will be better than a system built from all available but generic data, in terms of
translation quality, memory usage and computation time.

3. Tool Description

XenC is a tool written in C++, which possesses four filtering modes. The com-
mon framework of all these modes is, from an in-domain corpus and one or several
out-of-domain corpora, to first estimate two language models. Currently, all the LM
estimations are handled by calls to the SRILM toolkit (Stolcke, 2002) libraries. These
two models will then be used to compute two scores for each sentence of the out-of-
domain corpus so the difference between these scores will provide an estimation of
the closeness of each sentence regarding the considered task. In the remainder of this
section, we will describe the modes and other functionalities proposed by XenC.

3.1. Processing Modes

The first mode is a filtering process based on a simple perplexity computation, as
described in Gao et al. (2002). This is the simplest filtering mode proposed by XenC.
Although it can provide interesting results and is less resource-demanding than the
other modes, it is also less efficient.

The second mode is based on the monolingual cross-entropy difference as pro-
posed by Moore and Lewis (2010). The cross-entropy is mathematically defined as:

H(PLM) = −
1

n

n∑
i=1

logPLM(wi|w1, · · · , wi−1) (1)

where PLM is the probability of a LM for the word sequence W and w1, · · · , wk−1

represents the history of the word wi. In this mode, the first LM is estimated from
the whole in-domain corpus. The second LM is estimated from a random subset of the
out-of-domain corpus, with a number of tokens similar to the in-domain one. Formally,
let I be our in-domain corpus and N our out-of-domain one. HI(s) will be the cross-
entropy of a sentence s of N given by the LM estimated from I, while HN(s) will be
the cross-entropy of sentence s of N given by the LM estimated from the subset of N.
The sentences s1, · · · , sN from the out-of-domain corpus N will then be evaluated by
HI(s) − HN(s) and sorted by their score. Although this is a monolingual selection,
this mode can be used efficiently on both monolingual and bilingual data.

The third mode is based on the bilingual cross-entropy difference as described in
Axelrod et al. (2011). Unlike the second mode, we now take into account the two lan-
guages in our computations. Formally, let IS and IT be our in-domain corpus in source
S and target T languages, and NS and NT our out-of-domain corpus with the same

75

PBML 100 OCTOBER 2013

language pair. For each language, we first compute the monolingual cross-entropy
difference as described in the preceding paragraph. The final score will the be com-
puted by the sum between the two cross-entropy differences, as shown in the follow-
ing equation:

[HIS(sS) −HNS
(sS)] + [HIT (sT) −HNT

(sT)] (2)
where sS is a word sequence from the out-of-domain corpus in source language and sT
is the corresponding word sequence from the out-of-domain corpus in target language.

The last mode operates similarly to the third one, but uses two phrase tables from
the Moses toolkit (Koehn et al., 2007) as an input. Its goal is to adapt a phrase table
considered as out-of-domain with another smaller phrase table considered as in-domain.
First, source and target phrases are extracted from the phrase tables. Then, just like
the third mode, LMs are estimated and used to score each out-of-domain phrase in
each language. Finally, the scores are inserted in the original phrase table as a sixth
feature. Another option is to compute local scores, relative to each unique source
phrase. The redundant source phrases are merged into one structure containing their
related target phrases, then the scores are computed locally and can be inserted in
the original phrase table as a seventh feature. These two new features can then be
added to the Moses configuration file for the out-of-domain translation system, and
their weights tuned along with the other weights. Please note that this fourth mode
is currently experimental and is barely tested.

3.2. Other Functionalities

Since the beginning of the XenC development right after the IWSLT 2011 evaluation
campaign, back in December 2011, three main functionalities have been developed
around the filtering modes to enhance them.

The first functionality added to XenC comes from an observation we made concern-
ing the strong relation between the selected sentences and the random subset from the
out-of-domain corpus. Indeed, the scores can vary significantly from one sample to an-
other, impacting the resulting selection. Thus, we implemented a way to reduce this
impact by optionally allowing to extract three random subsets instead of one for LM
estimation. With this option, for each sentence to score, a cross-entropy measure is
computed from each of the three language models. The three scores are then inter-
polated and used to compute the usual cross-entropy difference as described before.
Our experiments shown that this option most of the time leads to a better selection
than with only one random subset. It can be used within both the monolingual and
bilingual cross-entropy filtering modes.

Our second added functionality is an option to perform the whole (monolingual
or bilingual) filtering process on stemmed in-domain and out-of-domain corpora corre-
sponding to the textual ones. These stemmed corpora must be created with an ex-
ternal tool. For this task, we recommend the TreeTagger tool (Schmid, 1995) which
is efficient and language-independent. In order to ease the process of stemming the

76

A. Rousseau XenC (73–82)

corpora, a wrapper script exists within the Moses toolkit. Once the stemmed corpora
are generated, distinct LMs and scores will be computed, then these scores will be
merged with the ones from the original text corpora. Although this option is still ex-
perimental at the time of writing and has been barely tested, our initial experiments
showed that an improvement can be achieved, and that integrating stems into the pro-
cess can lead to a more heterogeneous selection, thus preventing the risk of increasing
the number of out-of-vocabulary tokens (OOVs) in the resulting translation system.
Again, this option is available for both the monolingual and bilingual filtering modes.

The third and last functionality implemented into XenC is the computation of co-
sine similarity measures in addition to the usual cross-entropy scores. In Information
Retrieval, this measure is used for document clustering where each document is rep-
resented by a vector and vectors are compared by computing the cosine of the angle
between them. By first determining a common vector of words, then considering the
in-domain corpus as one document and each out-of-domain sentence as documents too,
it is possible to obtain similarity scores for each sentence of the said corpus. Currently,
XenC proposes two options regarding this similarity measure. It is possible to either
combine this score with the cross-entropy one or to use it as a stand-alone selection
criterion. Since this option has been added very recently, it is still highly experimental
and needs extensive testing. To this date, no real improvements have been observed.
Also, please note that this option is only available within the monolingual filtering
mode.

Some other scoring options are available to fit different scoring needs. For instance,
you can provide XenC a file containing weights for each sentence of the out-of-domain
corpus. These weights can optionally be used as log values. Also, you can require
a descending sorting order for you final scored file, which can prove useful when
you need XenC to adapt to some existing scripts. Finally, by default, XenC proposes
calibrated scores ranging from 0 (the best score) to 1 (the worst one). You can require
our tool to invert those scores and have 1 being the best score and 0 the worst one.

4. Installation Requirements

In order in compile and install XenC from the source code right out-of-the-box,
you will need a Linux (i386 or x86_64), Mac OSX (Darwin) or SunOS (Sparc or i386)
operating system. Other platforms may work, but are totally untested. Also, you will
need to dispose of the following third-party software:

• gcc version 4.2.1 or higher (older versions might work, but are untested),
• GNU make,
• gzip, to read/write compressed files,

77

PBML 100 OCTOBER 2013

• Boost2 version 1.52.0 or higher (although it may work with lower versions, but is
untested). XenC relies on the following multithreaded (“-mt” versions) libraries:
filesystem, iostreams, program_options, regex, system and thread,

• SRILM3 version 1.7.0 or higher (older versions won’t work for sure, since they are
not thread-safe). XenC relies on the following libraries: libdstruct, libmisc and
liboolm.

Once all third-party software is installed, you can simply compile XenC by issuing
the following command: make, or make debug if you want to keep the debug symbols.
You can also specify custom paths for Boost or SRILM, by adding the BOOST= or SRILM=
parameters.

5. Usage Instructions

By default, in order to run XenC, you need to provide at least:
• a source (and optionally target) language,
• an in-domain monolingual or parallel corpus,
• an out-of-domain monolingual or parallel corpus,
• a filtering mode.
The tool will then compute the out-of-domain sentences scores, generating all the

needed vocabularies and language models when appropriate, and will output an as-
cending order sorted file (compressed with gzip), containing the scores in the first
field and the sentences in the second (and third in case of parallel corpora) field(s). It
is mandatory that the original corpora files do not contain tabulations. Empty lines
are not an issue, since XenC will automatically skip them and also remove the corre-
sponding sentences in the case of a parallel corpus. Automatic generation of needed
files works as follows:

• for vocabularies, the words contained in the in-domain corpus will be used,
• for language models, estimation will be done using an order of four, a modi-

fied Kneser-Ney discounting and no cut-offs. LMs will be outputted in SRILM
binary format.

You can of course provide your own vocabularies and LMs, and you can optionally
change the order and the output format of the estimated LMs.

Concerning the evaluation process, it is based on perplexity computation of lan-
guage models estimated from parts of various sizes of the sorted output file. Con-
cretely, XenC will extract cumulative parts based on a fixed step size (usually ten per-
cent), estimate language models on them, and then compute their perplexity against
a development corpus. Our tool also propose a best point computation, which, from
the evaluation mode perplexity distribution, will try to find the best percentage of the
out-of-domain corpus to keep, based on a dichotomic search.

2http://www.boost.org
3http://www.speech.sri.com/projects/srilm/download.html

78

http://www.boost.org
http://www.speech.sri.com/projects/srilm/download.html

A. Rousseau XenC (73–82)

Regarding the performance, some parts of our tool are threaded, like the perplexity
and cross-entropy computation (since the sentence order does not matter) as well as
the language models estimation when evaluating. By default, XenC makes use of two
threads, and we have successfully ran it with up to ten threads. But due to some
memory leaks in the SRILM toolkit, the memory usage can become very important
during the evaluation process. It is possible to limit this memory usage by requiring
less threads, or by launching XenC twice, once for the selection process and once for
the evaluation, instead of once for the whole procedure.

5.1. Usage Examples

The simplest command line which can be issued could be the following:
XenC -s fr -i indomain.fr -o outofdomain.fr -m 2 --mono
where -s indicates the source language, -i the in-domain corpus, -o the out-of-domain
corpus, -m the filtering mode and --mono forces monolingual mode.

The following line:
XenC -s fr -i indomain.fr -o outofdomain.fr -m 2 --mono -e -d dev.fr
adds the evaluation mode (the -e switch) and -d provides the development corpus.
To require best point computation, just replace the -e switch with the -b one.

The last example computes a bilingual filtering with a best point computation and
eight threads:
XenC -s en -t fr -i indomain.en -o outofdomain.en -d dev.en \
--in-ttext indomain.fr --out-ttext outofdomain.fr -m 3 -b --threads 8
Please note that for now, the evaluation or best point can only be done on source
language.

6. Experiments

We have performed a series of experiments based on the system we proposed for
the IWSLT 2011 evaluation campaign, which achieved the first place in the speech
translation task (Rousseau et al., 2011). This system was already based on a very basic
perplexity data selection, which explain the fact that size reductions are not reported
for the translation tables. We will present our results on selection for language mod-
eling and translation modeling. For these selections, we consider the TED corpus as
our in-domain one and all the other allowed corpora as our out-of-domain ones. The
development and test corpora are the official sets proposed during the IWSLT 2010
campaign. Source language is English while target language is French. More detailed
experiments can be found in Chapter 6 of Rousseau (2012).

6.1. Data Selection for Language Modeling

The original LM that we used for the evaluation campaign was estimated on all the
available data, using a linear interpolation. To study the impact of the monolingual

79

PBML 100 OCTOBER 2013

Systems dev2010 tst2010 LM size
BLEU BLEU On disk In memory

IWSLT11 original 23.97 25.01 7.9G 22.1G
IWSLT11 XenC_LM 24.01 25.35 1.7G 5.2G

Table 1. BLEU scores and LM sizes with both original and reduced LMs.

Systems dev2010 tst2010
IWSLT11 original 23.97 25.01
IWSLT11 XenC_monoEN 24.11 25.12
IWSLT11 XenC_monoFR 24.01 24.87
IWSLT11 XenC_biENFR 24.10 25.13

Table 2. BLEU scores for bilingual selection for translation models.

data selection, we performed it on each of the out-of-domain corpora and interpolated
the resulting LMs linearly to create a new reduced LM. We ended up keeping only
11.3% of the original data according to the best point computation of XenC. Table 1
presents the BLEU scores obtained by our system for both the original LM and the
reduced one, as well as the sizes of the two language models on disk and in memory.
As we can observe, our reduced language model achieves better results that the orig-
inal one, while requiring much less memory and disk space, thus also optimizing the
decoding time and memory usage.

6.2. Data Selection for Translation Modeling

We also studied the impact of bilingual selection on all the out-of-domain corpora
used for the translation model estimation. We made three different selections to com-
pare the efficiency of bilingual selection to monolingual selection on both source and
target sides. Table 2 shows the results obtained for each of these selections. As we can
see, monolingual source selection and bilingual selection also achieve better results
than the original system, while monolingual target selection reduce the translation
quality and is therefore not suitable for translation models estimation.

6.3. Data Selection for the Whole System

After studying the individual impact of both monolingual and bilingual data se-
lection, we combined the reduced models to observe if it is possible to achieve even
better results than individual selections. Table 3 details the results obtained by the
global systems for both monolingual source and bilingual selection. We can observe

80

A. Rousseau XenC (73–82)

Systems dev2010 tst2010
IWSLT11 original 23.97 25.01
IWSLT11 XenC monoEN + LM 24.12 25.18
IWSLT11 XenC biENFR + LM 24.18 25.40

Table 3. BLEU scores for the complete experimental systems.

that although source monolingual and bilingual data selection results for the trans-
lation model were very similar when performed individually, we can achieve much
better results with bilingual selection when the reduced language model is added
to the system. In the end, we can report on this particular task a gain of 0.21 BLEU
point on the development set and 0.39 BLEU point on the test set, which represents
respectively a relative gain of 0.87% and 1.54%.

7. Conclusion and Perspectives

In this paper, we described XenC, an open-source tool for data selection in Natural
Language Processing. While focusing our experiments on Statistical Machine Trans-
lation, we showed that with the help of our tool, carefully selecting the data injected
in the building process of translation and language models dedicated to a specific task
might lead to smaller models, reduced decoding time and better translation quality.

In the future, we plan to keep the tool development active, as we already have
some improvements in mind:

• integrating other language model toolkits and particularly KenLM (Heafield,
2011) for speed and memory usage,

• proposing an option to use the full vocabulary of the two corpora, as it might
lead to a reduced OOVs rate,

• extensively testing and enhancing the experimental functionalities,
• proposing an option to evaluate on the target language when doing bilingual

selection.

Bibliography

Axelrod, Amittai, Xiaodong He, and Jianfeng Gao. Domain adaptation via pseudo in-domain
data selection. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 355–362, July 2011.

Gao, Jianfeng, Joshua T. Goodman, Mingjing Li, and Kai-Fu Lee. Toward a unified approach
to statistical language modeling for Chinese. In ACM Transactions on Asian Language Infor-
mation Processing (TALIP), volume 1, pages 3–33, March 2002.

Heafield, Kenneth. KenLM: faster and smaller language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation, pages 187–197, July 2011.

81

PBML 100 OCTOBER 2013

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Meeting of the Association for Computational Linguistics, pages 177–
180, 2007.

Moore, Robert C. and William Lewis. Intelligent selection of language model training data. In
Proceedings of the ACL Conference Short Papers, pages 220–224, July 2010.

Rousseau, Anthony. La Traduction Automatique De La Parole. PhD thesis, Université du Maine,
December 2012.

Rousseau, Anthony, Fethi Bougares, Paul Deléglise, Holger Schwenk, and Yannick Estève.
LIUM’s systems for the IWSLT 2011 speech translation tasks. In Proceedings of International
Workshop on Spoken Language Translation, pages 79–85, December 2011.

Schmid, Helmut. Improvements in part-of-speech tagging with an application to German. In
Proceedings of the ACL SIGDAT-Workshop, pages 47–50, 1995.

Stolcke, Andreas. SRILM – an extensible language modeling toolkit. In Proceedings of Inter-
speech, pages 901–904, September 2002.

Address for correspondence:
Anthony Rousseau
anthony.rousseau@lium.univ-lemans.fr
Laboratoire d’Informatique de l’Université du Maine (LIUM)
Avenue Laënnec
72085 LE MANS CEDEX 9, France

82

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 83–89

COSTA MT Evaluation Tool:
An Open Toolkit for Human Machine Translation Evaluation

Konstantinos Chatzitheodoroua, Stamatis Chatzistamatisb
a Aristotle University of Thessaloniki

b Hellenic Open University

Abstract
A hotly debated topic in machine translation is human evaluation. On the one hand, it is ex-

tremely costly and time consuming; on the other, it is an important and unfortunately inevitable
part of any system. This paper describes COSTA MT Evaluation Tool, an open stand-alone tool
for human machine translation evaluation. It is a Java program that can be used to manually
evaluate the quality of the machine translation output. It is simple in use, designed to allow
machine translation potential users and developers to analyze their systems using a friendly
environment. It enables the ranking of the quality of machine translation output segment-by-
segment for a particular language pair. The benefits of this tool are multiple. Firstly, it is a
rich repository of commonly used industry criteria (fluency, adequacy and translation error
classification). Secondly, it is freely available to anyone and provides results that can be further
analyzed. Thirdly, it estimates the time needed for each evaluated sentence. Finally, it gives
suggestions about the fuzzy matching of the candidate translations.

1. Introduction

Machine translation (MT) refers to the use of a machine for performing translation
tasks which convert a text from a source language into a target language. Given that
there may exist more than one correct translation of any given sentence manual eval-
uation of MT output is difficult and persistent problem. On the one hand, it is “holy
grail” in MT community; on the other, it is becoming impractical because it is a time-
consuming, costly and, sometimes, a subjective process. Answering questions about
the accuracy and fluency, and categorizing translation errors are just as important as

© 2013 PBML. All rights reserved. Corresponding author: chatzik@itl.auth.gr
Cite as: Konstantinos Chatzitheodorou, Stamatis Chatzistamatis. COSTA MT Evaluation Tool: An Open Toolkit
for Human Machine Translation Evaluation. The Prague Bulletin of Mathematical Linguistics No. 100, 2013,
pp. 83–89. doi: 10.2478/pralin-2013-0014.

PBML 100 OCTOBER 2013

the MT itself. Moreover, human evaluation results give the opportunity to compare
system performance and rate its progress. At the same time, researchers suffer from
the lack of suitable, consistent, and easy-to-use evaluation tools.

During the DARPA GALE evaluations (Olive et al., 2011), a similar tool was de-
signed but it was only made available to participants in the GALE program. Ap-
praise is an other open-source tool for manual evaluation of MT output. It allows to
collect human judgments on translation output, implementing annotation tasks such
as translation quality checking, ranking of translations, error classification, and man-
ual post-editing. It is used in the ACL WMT evaluation campaign (Federmann, 2012).
Last but not least, PET is a stand-alone tool that has two main purposes: facilitate the
post-editing of translations from any MT system so that they reach publishable quality
and collect sentence-level information from the post-editing process, e.g.: post-editing
time and detailed keystroke statistics (Aziz et al., 2012).

We implemented a simple stand-alone tool which facilitate MT evaluation as much
as possible and to give easy access to collected evaluation data for further analysis.
The typical requirements of such a tool in the framework of machine translation (MT)
research are discussed in this section. Section 2 discusses usage and the correspond-
ing graphical user interface of the tool as well the analysis of the results. Section 3
describes the evaluation criteria used and, finally, Section 4 concludes and gives an
outlook on future work.

2. The Tool

COSTA MT Evaluation Tool helps users to manually evaluate the quality of the MT
output. The tool uses standard Java libraries; hence it works on any platform running
a Java Virtual Machine. There is no special installation; the tool runs by just double
clicking the file into any target directory.

2.1. Usage

Each evaluation task in COSTA MT Evaluation Tool is called a “project”. Each
project requires the user to provide three parallel text files (UTF-8). Every line of
these files should contain one sentence.

1. Source file contains the source sentences.
2. MT file contains the candidate translations.
3. Reference file contains the reference translations.

COSTA MT Evaluation Tool gives the opportunity to the user to choose the number
of sentences and interrupt or restart the project at any time. Moreover, users can have
many projects on hold. The main window of the tool is divided into 4 parts: i) the part
of the source text, ii) the part of the machine translation, iii) the part of the reference
translation, and iv) the part of the translation error classification as shown in Figure 1.

84

K. Chatzitheodorou, S. Chatzistamatis COSTA MT Evaluation Tool (83–89)

Figure 1. Main screen

By pressing NEXT, a new sentence comes for evaluation if the current sentence is
already evaluated. Annotators can stop the evaluation process by pressing Stop &
Get at any time. In that case, the results for all the already evaluated sentences will
be counted.

2.2. Getting Results

COSTA MT Evaluation Tool presents the users with automated reports on the re-
sults of evaluations as it is shown in Figure 3. Once evaluation is completed, the Tool
will create a text file (UTF-8) in the target directory. The base filename consists of <the
system’s name> + <the annotator’s name> + <the source> and <target> languages,
followed by _results.txt. For instance, a typical name for a Moses English into Greek
MT system with annotator Mr. Smith will be:

Moses_Smith_EN_GR_results.txt

This file can easily be imported into Excel, SPSS, MATLAB, and most other statis-
tical software suites for further analysis and significance testing. In addition, it can be
read by other tools or machine learning algorithms in order to estimate the quality of
future MT outputs. The header of the file contains all the information for the system
as well as the average fluency and adequacy scores and the count of the errors. More-
over, each line of the rest of this file contains the analytical results for each evaluated
sentence.

85

PBML 100 OCTOBER 2013

Figure 2. Evaluation environment

Figure 3. Evaluation results

86

K. Chatzitheodorou, S. Chatzistamatis COSTA MT Evaluation Tool (83–89)

3. Evaluation Metrics

COSTA MT Evaluation Tool enables users to evaluate the MT performance using
the two main criteria:

1. Fluency and adequacy
2. Translation error classification

3.1. Fluency and Adequacy

The objective of the fluency evaluation is to determine how “fluent” a translation
appears to be, without taking into account the correctness of the information. The
evaluation does this segment-by-segment on a 1–5 scale without referring to any ref-
erence text. The objective of the adequacy evaluation is to determine the extent to
which all of the content of a text is conveyed, regardless of the quality of the lan-
guage in the candidate translation. The evaluation does this segment-by-segment on
a 1–5 scale. The annotator is given the following definitions of adequacy and fluency
(Koehn, 2007):

Fluency Adequacy
5. Flawless language 5. All meaning
4. Good language 4. Most meaning
3. Non-native language 3. Much meaning
2. Disfluent language 2. Little meaning
1. Incomprehensible 1. None

Since, recent evaluation campaigns have shown that judgments of fluency and ad-
equacy are closely related, COSTA MT Evaluation Tool firstly asks annotators to eval-
uate the fluency without referring to any reference text and secondly the adequacy
with reference to the reference text (White, 1995). The evaluation of translation error
classification is optional.

3.2. Translation Error Classification

During the evaluation of fluency and adequacy, COSTA MT Evaluation Tool offers
users the option to count and categorize errors. This type of evaluation can provide a
descriptive framework that reveals relationships between errors. Furthermore, it can
also help the evaluator to map the extent of the effect in chains of errors, allowing
comparison among MT systems. At the same time, we propose these criteria as a new
methodology of human translation error classification.

In total, there are three main categories each with seven subclasses. These cat-
egories were identified by observing the most frequent error types in MT outputs
among Moses-based (Koehn et al., 2007) and free MT systems such as Google Trans-
late and Bing Translator.

87

PBML 100 OCTOBER 2013

The first category concerns the grammatical and the linguistic accuracy of the ma-
chine translated texts. The second category concerns the use of the vocabulary and
the third the format and style of the produced texts. Analytically, translation error
classification works to the following criteria:

Linguistic
Verb inflection Incorrectly formed verb, or wrong tense.
Noun inflection Incorrectly formed noun (e.g. as nominative nouns in

apposition).
Other inflection Incorrectly formed adjective or adverb.
Wrong category Category error (e.g. noun vs. verb).
Article Absent or unneeded article.

(e.g. The London vs. London)
Preposition Incorrect, absent or unneeded preposition.
Agreement Incorrect agreement between subject-verb,

noun-adjective, past participle agreement with
preceding direct object, etc.

Words
Single words Sentence elements ordered incorrectly.
Multi-word units Incorrect translation of multi-word expressions and

idioms (e.g. to pay a visit).
Terminology Incorrect terminology.
Untranslated words Word not in dictionary.
Ambiguous translation Ambiguous target language.
Literal translation Word-for-word translation.
Conjunctions Failure to reconstruct parallel constituents after

conjunction, or failure to identify boundaries
of conjoined units.

Style
Acronyms – Abbreviations Incorrect abbreviations, acronyms and symbols.
Extra words Extra words in target language.
Country standards Incorrect format of dates, addresses, currency etc.
Spelling errors Misspelled words.
Accent Incorrect accents.
Capitalization Incorrect upper or lower case.
Punctuation Punctuation is incorrect, absent or unneeded.

There are also three additional boxes to the bottom of the main screen, one for each
translation error category, and where the evaluator could add comments.

88

K. Chatzitheodorou, S. Chatzistamatis COSTA MT Evaluation Tool (83–89)

4. Conclusion and Future Work

We have presented a simple tool for manual evaluation of MT. It is simple in use,
designed to allow potential MT users and developers to analyze their systems using a
friendly environment. It enables the ranking of the quality of MT output segment-by-
segment for a particular language pair. At the same time, we propose these criteria
as a new methodology of human translation error classification. Our future work
includes:

1. Multiple MT systems evaluation
2. Multiple Reference evaluation
3. Extraction of feature that can be analyzed by machine learning algorithms for

the estimation of the MT quality without reference translation.
The tool is available for download at:
https://code.google.com/p/costa-mt-evaluation-tool/

Bibliography

Aziz, Wilker, Sheila Castilho Monteiro de Sousa, and Lucia Specia. PET: a tool for post-editing
and assessing machine translation. In Proceedings of the Eight International Conference on Lan-
guage Resources and Evaluation (LREC’12), Istanbul, Turkey, may 2012. European Language
Resources Association (ELRA). ISBN 978-2-9517408-7-7.

Federmann, Christian. Appraise: An open-source toolkit for manual evaluation of machine
translation output. The Prague Bulletin of Mathematical Linguistics, 98:25–35, September 2012.

Koehn, Philipp. Statistical Machine Translation. Cambridge University Press, 2007.
Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola

Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proceedings of the 45th Annual Meeting of the Association for Computa-
tional Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages 177–180,
Prague, Czech Republic, June 2007. Association for Computational Linguistics.

Olive, Joseph, Caitlin Christianson, and John McCary. Handbook of natural language process-
ing and machine translation: DARPA global autonomous language exploitation. In Pro-
ceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12).
Springer, 2011.

White, John S. Approaches to black box MT evaluation. In MT Summit V Proceedings, July 1995.

Address for correspondence:
Konstantinos Chatzitheodorou
chatzik@itl.auth.gr
Aristotle University of Thessaloniki
University Campus, GR-54124 Thessaloniki, Greece

89

https://code.google.com/p/costa-mt-evaluation-tool/

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 91–100

Open Machine Translation Core:
An Open API for Machine Translation Systems

Ian Johnson
Capita Translation and Interpreting

Abstract
Open Machine Translation Core (OMTC) is a proposed open API that defines an applica-

tion programming interface (API) for machine translation (MT) systems. The API defined is a
service interface which can be used to underpin any type of MT application. It consists of com-
ponents which allow programmers, with little effort, to integrate different MT back-ends into
their applications since an OMTC compliant MT system presents a consistent interface. OMTC
attempts to standardise the following aspects of an MT system: resources – the abstract repre-
sentation of assets used e.g. documents and translation memories, sessions – a period of time
in which a user interacts with the system, session negotiation – agreement on which services
are to be provided, authorisation – integration with third party authorisation systems to pre-
vent users performing unauthorised actions, scheduling – the management of long running
MT tasks, machine translation engines – a representation of an entity capable of providing
only MT, and translators – a conglomeration of, at least one of the following, an MT engine, a
collection of translation memories, and a collection of glossaries.

1. Introduction

Open Machine Translation Core (OMTC) is a proposed and open API for the con-
struction of machine translation (MT) systems (Johnson, 2013). The central idea of
OMTC is to be able to easily integrate disparate back-end MT systems together into
an application such that the back-ends “look” consistent no matter the flavour of MT.

To identify the aspects and concerns that would be common to MT systems a use
case analysis was carried out. Once the actors and use cases were catalogued then
use cases which any MT system would require were identified. This reduced set was
expanded into UML class diagrams to define the abstract OMTC specification. How-

© 2013 PBML. All rights reserved. Corresponding author: ian.johnson@capita-ti.com
Cite as: Ian Johnson. Open Machine Translation Core: An Open API for Machine Translation Systems. The
Prague Bulletin of Mathematical Linguistics No. 100, 2013, pp. 91–100. doi: 10.2478/pralin-2013-0015.

PBML 100 OCTOBER 2013

ever, OMTC does define concrete classes where necessary. This paper gives a fairly
high level description of the OMTC specification with a view that the reader study
the full specification for details. OMTC attempts to standardise:

• Resources: the abstract representation of assets used by users in an MT system,
e.g. documents and translation memories,

• Sessions: a period of time in which a user interacts with the system, e.g the time
between login and logout,

• Session Negotiation: agreement on which services are to be provided,
• Authorisation: integration with third party authorisation systems to prevent

users performing unauthorised actions,
• Scheduling: the management of long running and computationally expensive

MT tasks,
• Machine Translation Engines: a representation of an entity capable of provid-

ing only MT, and
• Translators: a conglomeration of, at least one of the following, an MT engine, a

collection of translation memories, and a collection of glossaries.
Figure 1 shows an example of how OMTC could be implemented. The figure

shows two example applications: a client-server and a command line application.
OMTC sits low down in the stack. OMTC’s position gives the application program-
mer much more flexibility and freedom to use technologies and networking protocols
that are available to them. For example, TAUS published their open MT system API
which is designed to work as a RESTful web-service over HTTP (TAUS, 2012). Imple-
menters of this API are tied to using HTTP. Using HTTP may not be desirable in some
customer deployments, for example messages queues may have to be used. OMTC,
on the other hand, is not tied to any technology and is reusable since it concentrates
on one aspect of an MT system: machine translation. Moreover, the TAUS API specifies
which methods are available to consumers of their service. If methods or arguments
are required to be augmented the implemented MT system becomes non-compliant.
OMTC allows the implementer to specify the methods and arguments required for
their MT system.

Below OMTC sit the translation providers. Figure 1 shows the following disparate
MT systems:

• SmartMATE: a self-serve SMT system allows API calls, via its RESTful web-
interface, to build translation engines and start translations (Way et al., 2011).

• Moses: an open-source suite of tools for SMT engine development and transla-
tion. Integrating to an OMTC system would probably take the form of wrapping
the existing command-line tools (Koehn et al., 2007).

• SYSTRAN: A rule-base MT system with an API available in their Enterprise
Server product (SYSTRAN , 2008).

• SDL Trados: A computer-aided translation suite which presents an API called
SDL OpenExchange (http://www.sdl.com/products/sdl-trados-studio/).

92

http://www.sdl.com/products/sdl-trados-studio/

Ian Johnson Open Machine Translation Core (91–100)

Figure 1. Example OMTC compliant applications

OMTC attempts to make these proprietary APIs homogeneous by defining an abstract
interface for machine translation tasks and maintenance.

Further to the abstract specification, a reference implementation has been con-
structed using Java v1.7. It is released under a LGPL v3 license and is available by
cloning the GitHub repository https://github.com/ianj-als/omtc.git. This im-
plementation was written to provide an implementation that could be immediately
used by developers to write OMTC compliant applications. The OMTC reference im-
plementation is being used, at Capita Translation and Interpreting, to re-factor the
SmartMATE application.

There follows a brief description of the common actors that would use an MT sys-
tem. These actors were the central basis on which OMTC was designed.

2. Actors

An actor specifies a role played by a “user” that interacts with a system, but is not
a part of that system. Actors are external to the system and can represent a human,
external software, or an external system etc. (Obj, 2007).

There are three principal actors in an MT system:

93

https://github.com/ianj-als/omtc.git

PBML 100 OCTOBER 2013

• Translator: This actor’s role is to perform translations and is the main end-user
of an MT service. All other actors provide means to provide resources so that
the translator may schedule translation tasks. Since this actor is expected to be
widespread it attracts the fewest number of possible actions in the MT service
and those actions are primarily read-only. Therefore, the scope to which this
actor can intentionally harm the MT service is kept to a minimum. Moreover,
this actor requires very little knowledge of MT in order to complete translation
tasks.

• Engine Manager: This actor is able to mutate MT engines. The primary role
of this actor is to maintain MT engines, e.g., train, re-train, compose or destroy
MT engines. This actor should have a reasonable understanding of MT and the
kinds of MT that the implementation is supporting. For example, if the imple-
mentation supports SMT then this actor would have an understanding of how
to take a tabula rasa system and build an engine for use by the translator actor.
Moreover, this actor is responsible for determining who is able to use the en-
gines which the actor constructs. The use cases available to the engine manager
actor is the union of those use cases for this and the translator actor.

• Administrator: The administrator actor is permitted to manage users for a par-
ticular customer. Customers may have many users which are translators or en-
gine managers. Managing which use cases a customer’s users are permitted to
perform is the administrator actor’s remit. This actor would be authorised to
choose the payment plan, if one is required, and make payments for the use of
the MT service. The administrator actor is permitted to invoke the use cases
available to engine manager and translator actors.

Considering each of these actors, a number of concerns have been arrived at that
are believed to be common to many MT systems. The concerns are collections of use
cases and are described below.

3. Resource Management

A resource is an object that is provided or constructed by a user action for use in an
MT system. A non-exhaustive list of examples is: document files, translation memo-
ries, glossaries, or MT engines. Resource management is a collection of use cases that
allow all actors to load, construct, catalogue, and remove resources from an MT sys-
tem. For example, if the MT system were a web-service then making a translation
memory available to the MT system would probably be an upload action.

Resources may need some kind of ownership. If an MT system is a standalone
command line driven application this may not be necessary, or the file-system can
provide this feature: read or write permissions on files being used by the running
process will be determined by the user running the process. However, if an MT system
is a multi-user service then ownership of resources would become necessary. Users

94

Ian Johnson Open Machine Translation Core (91–100)

from different customers should not be permitted to access any resource constructed
or made available to the system by other customer users.

OMTC defines two kinds of resource:
1. Primary resources: any resource that has been constructed externally and made

available, in some way, for use in an MT system. Examples of these resources
are: a document, a translation memory (TM), a glossary etc. If these resources
are required for future use it is recommended that these resources be persisted.
Primary resources are immutable, i.e. if a resource’s content is to be altered it is
a distinct resource.

2. Derived resources: these resources are constructed using their primary coun-
terparts either as a conglomeration or a separate entity is created, e.g. creating a
SMT engine using a translation memory (a primary resource) to create a derived
resource: the engine itself.

4. Sessions, Negotiation and Authorisation

In order for users to be able to use an MT service the API needs an idea of a ses-
sion. A session is the period in which a user will interact with an MT service. An
MT application may need to acquire the identity of users, whilst other implemen-
tations may not. Therefore, the OMTC API needs to support both user identity and
anonymity. Moreover, clients to an MT service will support certain exchange formats,
and expect certain features from the application. A session negotiation is defined in the
API in order that both client and server can ascertain if, once the session is set up,
their expectations of each other is correct. If a user’s identity is to be determined then
the application can restrict the actions a user can perform based on their role(s), i.e.
authorisation. OMTC models these aspects.

4.1. Sessions

A session is a period in which a user interacts with an MT system. OMTC places no
restrictions an application’s definition on a session other than this. Sessions could be
defined by the time between login and logout, the lifetime of a console application, or
persisted over many login/logouts. Sessions can be associated with a user where user
identity is necessary, for example in a pay-as-you-go web-application. In applications
where user identity is not required an OMTC session supports not being associated
with a user. An example of this type of application would be a console command line
application where the user is explicit: the user running the program. All actions in
an OMTC application are done on behave of a session.

4.2. Session Negotiation

An optional part of the OMTC specification is session negotiation. Session negotia-
tion is a protocol which allows the provider and consumer of an MT service to come

95

PBML 100 OCTOBER 2013

to some agreement on what can be expected from the provider. If session negotiation
is implemented clients, including other MT systems, can discover which features are
supported, and which requirements are necessary. The features and requirements
are modelled as capabilities. Capabilities come in four flavours:

• API: This capability, today, only specifies the version of the API being used.
• Resources: These capabilities describe the file types that the service can sup-

port. Supporting means that the service will store and use the resource in an
appropriate way.

• Features: The actions that can be expected from an MT service, but may not be
available in every MT service.

• Prerequisites: The prerequisites that client shall ensure are true before some or
all of the MT service’s features become unavailable to a client, e.g. payment.

During negotiation the unsupported capabilities are returned to the consumer. If
provider has determined that the consumer cannot have a meaningful conversation
then the session is closed. However, the consumer can close the session if it receives
unsupported capabilities on which it depends. Session negotiation must be com-
pleted before the consumer completes session initialisation.

4.3. Authorisation

OMTC does not specify any security features. It is the application’s responsibility
to integrate with authentication systems. However, if authorisation is required in an
MT system then some integration with the external authentication provider is nec-
essary to provide user identity, and authorisations. The specification provides two
interfaces to interlock an external authentication provider.

5. Scheduling

Machine translation consists of a number of operations which are computationally
expensive. Constructing an MT service with many users requires that the computa-
tional resources are shared fairly between the demands of the users. The implementer
of an MT service needs to define:

• Which computational resource or resources will be used to execute the compu-
tationally expensive operations,

• The latency of an operation before it is executed, and
• A policy to determine how users’ operations will be scheduled, i.e. priority.
The scheduling API, defined by OMTC, needs to support different kinds of com-

putation resource management: from native threading to distributed resource man-
agement products. The pattern used in the scheduling API is detached execution with
notification on completion, whether successful or not.

96

Ian Johnson Open Machine Translation Core (91–100)

5.1. Tickets

The scheduling API issues tickets when an operation is submitted to the underlying
detached execution implementation. A ticket is a receipt for, and uniquely identifies
an operation. When the operation is submitted an observer will be provided which
observes the progress of the computation. On completion, the observer is invoked
with the appropriate ticket to identify which operation has completed. This is the
observer design pattern (see Gamma et al., 1994). The observer is application defined
and is used to update any data that relies on the computation.

Operation priorities are defined using the scheduling API. This allows an applica-
tion defined priority to be used to prioritise operations into the particular detached
execution environment. For example, a priority could, say, for a paid-for MT service
prioritise operations, invoked by users, which are on a higher tariff. So, say, a user on
a Freemium tariff would have their operations prioritised lower than a user who pays
for the service. Depending on the detached execution environment a priority might
determine, not only, the latency of an operation, but also how much processor time a
certain operation can expect when being execute.

6. Machine Translation Engines

A machine translation engine is defined as an entity that will solely perform ma-
chine translation. This may be a decoding pipeline in an SMT system or software that
implements a rule based system. MT engines are built using primary resources and
generally use computationally expensive operations to produce translations. Engines
shall have operations available that, depending on their nature, shall read or mutate
engine state, e.g.

• Evaluating an engine,
• Composing engines,
• Testing engines, and
• Training SMT engines.
Mixin interfaces are used to add optional functionality to an MT engine. This al-

lows the application programmer to choose mixins useful to the kind of MT engine
being implemented. Using mixins in this way prevents the application programmer
from being tied to this API; it does not mandate that any class inheritance is used. This
is particularly useful when using languages that do not support multiple inheritance
and can be used alongside existing frameworks and class hierarchies.

The mixins provided define the following operations:
• Composition: compose one MT engine with another,
• Evaluation: score an MT engine,
• Update parameters: mutate runtime options/parameters,
• Querying: invoking translations one sentence at a time,

97

PBML 100 OCTOBER 2013

• Training and retraining: specifically for SMT engines to build appropriate mod-
els,

• Testing: provide resources to test a constructed MT engine, and
• Updating: mutation of an existing engine to adapt to new data or rules.
The operations, in the mixins, that could represent computationally expensive op-

erations and use an asynchronous invocation pattern. In order to track the operation
the caller of these methods receives a ticket. The ticket is used to represent an “in
flight” operation and, once complete, will be used in a notification. Notifications are
used to inform the application of the state of a completed operation: submitted, start-
ing, or completed successfully or failed.

7. Translators

Translators are a conglomeration of an MT engine, translation memories and glos-
saries. A translator will specify at least one of these resources. This allows translators
to support translations using any combination of MT, TM or glossaries. It is the re-
sponsibility of application programmers to handle these resources in an appropriate
way for the flavour of translation required.

Translations are typically computationally expensive and can take a considerable
amount of time to complete. In an MT system that is multi-user computation re-
sources should be shared fairly between the demands of the submitted translations.
As with MT engine operations, translations shall be ticketed and a ticket observer is
required to receive notifications of the progress of a translation task.

There are two methods of performing a translation:
• Primary Resource Translation: A primary resource made available to an MT

system can be translated. It is application defined as to which kind of primary
resources are supported for translation. If supported, it is implementation de-
fined as to whether any pre- or port-processing is required, e.g. file filtering.

• Sentence-by-sentence Translation: Translations can be supported that consist
of a single sentence. MT engines can be queried sentence-by-sentence to per-
form a translation using only the engine. However here, TM and glossaries can
be mixed into a richer translation that uses any translation pipeline that may be
implemented.

8. Language Bindings

The OMTC specification is documented using UML which is a language-agnostic
representation. It is expected that any modern computing language is capable of im-
plementing the OMTC specification. OMTC defines some generalised classes. Gener-
alised classes are classes which require types arguments to construct the class. Con-
crete implementations of this is are Java and C# generics, and C++ templates. Many, if
not all, of the extant non-object oriented computing languages are not capable of im-

98

Ian Johnson Open Machine Translation Core (91–100)

plementing these classes. However, the solution is to design an OMTC implementa-
tion that builds concrete representations of the OMTC generalised classes. Functional
programming languages are also candidates for use in implementations. Haskell’s
typeclass language feature would be particularly suited to an OMTC implementation.

The OMTC specification comes with a Java v1.7 reference implementation. This
implementation was constructed to allow people to view the specification in code to
gain deeper understanding, and, if they wish, to build their own OMTC compliant
MT system with Java.

Implementations in other languages are encouraged. With the popularity of web-
frameworks, such as Spring MVC (Yates et al., 2013), Rails (Hart, 2012) and Django
(Alchin, 2013), Ruby and Python implementations are welcome since they’ll provide
an easy way to build web-hosted MT services.

9. Summary

A proposed open API for MT systems, called Open Machine Translation Core, has
been presented. It attempts to standardise common aspects and concerns to all MT
systems. It is believed that this abstract interface will underpin and ease the develop-
ment of any MT system being developed. Whilst this is only a high level view of the
proposed API it is recommended that the reader view the full and entire specification.
The full specification and a Java reference implementation is freely available, under a
LGPL v3 license, from GitHub by cloning https://github.com/ianj-als/omtc.git.

Acknowledgements

This work was done as part of the MosesCore project sponsored by the European
Commission’s Seventh Framework Programme (Grant Number 288487).

Bibliography

Alchin, Marty. Pro Django. Apress, 2nd edition, 2013.
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley, 1st edition, 1994.
Hart, Michael. Ruby on Rails Tutorial: Learn Web Development with Rails. Addison Wesley, 2nd

edition, 2012.
Johnson, Ian. OMTC: Open Machine Translation Core, Version 0.6.1-DRAFT edition,

2013. URL https://github.com/ianj-als/omtc/blob/master/documentation/omtc.v0.
6.1-DRAFT.pdf.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical

99

https://github.com/ianj-als/omtc.git
https://github.com/ianj-als/omtc/blob/master/documentation/omtc.v0.6.1-DRAFT.pdf
https://github.com/ianj-als/omtc/blob/master/documentation/omtc.v0.6.1-DRAFT.pdf

PBML 100 OCTOBER 2013

machine translation. In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster
and Demonstration Sessions, ACL ’07, pages 177–180, Stroudsburg, PA, USA, 2007. Associa-
tion for Computational Linguistics.

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2. Object Management
Group, Inc., 2007. URL http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF.

SYSTRAN (2008). SYSTRAN Enterprise Server 6: API Reference Guide. SYSTRAN,
2008. URL http://www.systransoft.com/download/user-guides/SYSTRAN.
ses6-api-reference-guide.pdf.

TAUS(2012). A Common Translation Services API. TAUS, September 2012. URL https://labs.
taus.net/interoperability/taus-translation-api.

Way, Andy, Kenny Holden, Lee Ball, and Gavin Wheeldon. SmartMATE: Online self-serve
access to state-of-the-art SMT. In Proceedings of the Third Joint EM+/CNGL Workshop “Bringing
MT to the User: Research Meets Translators”, pages 43–52, 2011.

Yates, Colin, Seth Ladd, Marten Deinum, Koen Serneels, and Christophe Vanfleteren. Pro
Spring MVC: With Web Flow. Apress, 2nd edition, 2013.

Address for correspondence:
Ian Johnson
ian.johnson@capita-ti.com
Capita Translation and Interpreting
Riverside Court, Huddersfield Road
Delph, Lancashire
OL3 5FZ, United Kingdom

100

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://www.systransoft.com/download/user-guides/SYSTRAN.ses6-api-reference-guide.pdf
http://www.systransoft.com/download/user-guides/SYSTRAN.ses6-api-reference-guide.pdf
https://labs.taus.net/interoperability/taus-translation-api
https://labs.taus.net/interoperability/taus-translation-api

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 101–112

CASMACAT: An Open Source Workbench
for Advanced Computer Aided Translation

Vicent Alabaua, Ragnar Bonkb, Christian Buckc, Michael Carlb,
Francisco Casacubertaa, Mercedes García-Martínezb, Jesús Gonzáleza,

Philipp Koehnc, Luis Leivaa, Bartolomé Mesa-Laob, Daniel Ortiza,
Herve Saint-Amandc, Germán Sanchisa, Chara Tsoukalac

a Institut Tecnològic d’Informàtica, Universitat Politècnica de València, Spain
b Copenhagen Business School, Department of International Business Communication, Denmark

c School of Informatics, University of Edinburgh, Scotland

Abstract
We describe an open source workbench that offers advanced computer aided translation

(CAT) functionality: post-editing machine translation (MT), interactive translation prediction
(ITP), visualization of word alignment, extensive logging with replay mode, integration with
eye trackers and e-pen.

1. Introduction

The use of machine translation technology among professional human translators
is taking hold rapidly, but there is only very limited research on this man-machine
collaboration, especially compared to the vast current research push on core machine
translation technology. We believe that big part of this reason is that there are no
sufficient open source platforms that lower the barrier to entry.

© 2013 PBML. All rights reserved. Corresponding author: pkoehn@inf.ed.ac.uk
Cite as: Vicent Alabau, Ragnar Bonk, Christian Buck, Michael Carl, Francisco Casacuberta, Mercedes García-
Martínez, Jesús González, Philipp Koehn, Luis Leiva, Bartolomé Mesa-Lao, Daniel Ortiz, Herve Saint-Amand,
Germán Sanchis, Chara Tsoukala. CASMACAT: An Open Source Workbench for Advanced Computer Aided
Translation. The Prague Bulletin of Mathematical Linguistics No. 100, 2013, pp. 101–112.
doi: 10.2478/pralin-2013-0016.

PBML 100 OCTOBER 2013

To resolve this, two EU-funded research projects, 1and ,2are com-
mitted to develop an open source workbench targeted both at researchers to investi-
gate novel and enhanced types of assistance and at professional translators for actual
use. Through this combined effort, we hope to kick-start broader research into com-
puter aided translation methods, facilitating diverse translation process studies, and
reach volunteer and professional translators without advanced technical skills. At the
mid-point of the 3-year projects, we release this tool as open source software. In this
paper, we focus on ’s contributions and give instructions for installation and
use of the workbench.

2. Related Work

A number of academic studies have shown that post-editing machine translation
can be more efficient than translation from scratch (Plitt and Masselot, 2010; Skadiņš
et al., 2011; Pouliquen et al., 2011; Federico et al., 2012), as is also evident from recent
trends in industry adoption. But post-editing machine translation is not the only ap-
proach. The idea of so-called interactive machine translation was pioneered by the
TT project (Langlais et al., 2000) and has been further developed in the fol-
lowing decade (Barrachina et al., 2009; Koehn, 2010).

We are not aware of any fully featured open source tool for computer aided trans-
lation research. A related open source project is OT, an editor with translation
memory system, written in Java, targeted at freelance translators. We will explore in-
tegration of the functionalities of the  workbench into this tool in the future.

3. Usage

The  UI consists of views designated for different tasks. The translate
view is its central view, where the user can translate a document and post-editing
assistance and logging takes place. Other views offer a way to upload new documents
or to manage the documents that are already in the system. Also, a replay mode
has been implemented. The different views will now be shown and described in the
sequence they are typically used.

3.1. Upload

If the user opens the default URL without giving any special parameters, she is
taken to the upload view. This is currently the entry point of the application. At
this point a user can specify one or several documents to upload and to translate. The
documents uploaded must be in XLIFF format. The language pair can either be chosen

1http://www.casmacat.eu/
2http://www.matecat.com/

102

http://www.casmacat.eu/
http://www.matecat.com/

V. Alabau et al. CASMACAT (101–112)

Figure 1. Translate view with post-editing configuration

manually or auto-detected from the XLIFF file. If several documents are uploaded at
once, they are bundled into one job and are translated in a sequence. If the user clicks
on the Start Translating button she is taken to the translate view and can start working.

3.2. Editing

In the translate view, the user can now translate the document (see Figure 1). The
document is presented in segments, while the currently active segment is highlighted
and assistance is provided for this segment. If using the post-editing configuration
without ITP up to three MT or TM suggestions are provided, from which the user
can choose. The user can use shortcuts, for instance, to go to the next segment or to
copy the source text to the target. The user can assign different states to a segment, for
instance, translated for finished ones or draft for segments, where she is not yet sure
about the translation and she wants to review later. When finished, the Download
Project button may be used to download the translated document, again in the XLIFF
format.

103

PBML 100 OCTOBER 2013

Figure 2. Interactive Translation Prediction

4. Features

In this section we present a short description of the main advanced CAT features
that we implemented in the workbench. The common goal of these features is to boost
translator productivity.

4.1. Post-Editing Machine Translation

The default mode of the workbench is post-editing of either machine translation
output or of matches from translation memory systems. This mode of operation is
the minimal deviation from traditional work practice of professional translators, and
hence the most conservative type of assistance offered.

4.2. Intelligent Autocompletion

The main alternative is interactive translation prediction, where new machine trans-
lation predictions are generated every time a keystroke is detected by the system (Bar-
rachina et al., 2009). In such event, the system produces a prediction for the rest of
the sentence according to the text that the user has already entered. This prediction
is placed at the right of the text cursor.

Providing the user with a new prediction whenever a key is pressed has been
proved to be cognitively demanding (Alabau et al., 2012). Therefore, we decided to
limit the number of predicted words that are shown to the user by only predicting up
to the first erroneous word according to confidence measures.

In our implementation, pressing the Tab key allows the user to ask the system for
the next set of predicted words. See Figure 2 for a screenshot.

4.3. Confidence Measures

Confidence measures inform the user about which part of the translation is more
likely to be wrong than others (González-Rubio et al., 2010). We use confidence mea-
sures under two different criteria. On the one hand, we highlight in red color those
translated words that are likely to be incorrect. We use a threshold that favors pre-
cision in detecting incorrect words. On the other hand, we highlight in orange color
those translated words that are dubious for the system. In this case, we use a thresh-
old that favors recall.

104

V. Alabau et al. CASMACAT (101–112)

4.4. Search and Replace

Most of the computer-assisted translation tools provide the user with intelligent
search and replace functions for fast text revision. Our workbench features a straight-
forward function to run search and replacement rules on the fly. Whenever a new
replacement rule is created, it is automatically populated to the forthcoming predic-
tions made by the system, so that the user only needs to specify them once.

4.5. Word Alignment Information

Alignment of source and target words is an important part of the translation pro-
cess (Brown et al., 1993). In order to display the correspondences between both the
source and target words, this feature was implemented in a way that every time the
user places the mouse (yellow) or the text cursor (cyan) on a word, the alignments
made by the system are highlighted.

4.6. E-Pen Interaction

E-pen interaction should be regarded as a complementary input rather than a com-
plete replacement of the keyboard. The user can interact with the system by writing
on a special area of the user interface. We decided to use MG (Leiva et al.,
2013), a highly accurate, high-performance gestures for interactive text editing.

Although in principle it would be interesting to allow the user to introduce arbi-
trary strings and gestures, in this approach we have decided to focus on usability. We
believe that a fast response and a good accuracy are critical for user acceptance.

4.7. Logging and Replay

The workbench implements detailed logging of user activity, which enables both
automatic analysis of translator behavior by aggregating statistics and enabling replay
of a user session. Replay takes place in the translate view of the UI, it shows the screen
at any time exactly the way the user encountered it when she interacted with the tool.

4.8. Eye-Tracking

One of the core goals of the  project is the study of translator behavior. To
better observe the activities of translators, we use eye tracking. This allows us to detect
and record the exact screen position of the current focus of attention. Alongside the
other logged information such as key logging, enables translation process study., i.e.,
the analysis of the behavior of the translator, opposed to just translation product study,
i.e., the analysis of the final translation.

Eye tracking is integrated into the  workbench using a special plugin
for the browser. With this plugin, the eye tracking information is accessible to the

105

PBML 100 OCTOBER 2013

GUI web
server

CAT
server

MT
server

Javascript PHP

 Python

 Python

web socket
HTTP

HTTP

Figure 3. Modular design of the workbench: Web-based components (GUI and web
server), CAT server and MT server are independent and can be swapped out

Javascript GUI and can be sent to the web server to be stored for later analysis. The
eye tracking information is also visualized in the replay mode.

5. Implementation
The tool is developed as a web-based platform using HTML5 and Javascript in the

Browser and PHP in the backend, supported by a CAT and MT server that run as
independent process (both implemented in Python but integrating tools written in
various other programming languages).

The overall design of the  workbench is very modular. There are three
independent components (see also Figure 3): the GUI/web server, the CAT server
and the MT server. We modularize these components by clearly specified API calls,
so that alternative implementations can be used as well.

5.1. Computer Aided Translation Server

The computer aided translation (CAT) server is implemented in Python with the
Tornadio library. It uses socket.io to keep a web socket connection with the Javascript
GUI. Keep in mind that especially interactive translation prediction requires very
quick responses from the server. Establishing an HTTP connection through an Ajax
call every time the user presses a key would cause significant overhead.

A typical session with interactive translation prediction takes place as follows:
• The user moves to a new segment in the GUI.
• The GUI sends a startSession request to the CAT tool, passing along the input

sentence.
• The GUI and CAT server establish a web socket connection.

106

V. Alabau et al. CASMACAT (101–112)

• The CAT server requests and receives from the MT server the sentence transla-
tion and the search graph.

• The CAT server sends back the translation to the GUI and keeps the search graph
in memory.

• The user starts typing (approving some of the translation or making correc-
tions).

• At each key stroke, the GUI sends a request to the CAT server, for instance re-
questing a new sentence completion prediction (setPrefix).

• The CAT server uses the stored search graph to compute a new prediction and
passed it back to the GUI (setPrefixResult).

• The GUI displays the new prediction to the user.
• Eventually, the user leaves the segment.
• The GUI sends a endSession request to the CAT tool.
• The CAT server discards all temporary data structures.
• The GUI and CAT server disconnect the web socket connection.

5.2. Machine Translation Server

For many of the CAT server’s functions, information from the Machine Translation
(MT) server is required. This includes not only the translation of the input sentence,
but also n-best lists, search graphs, word alignments, etc.

The main call to the server is a request for a translation. The request includes the
source sentence, source and target language, and optionally a key identifying the user.
The server responds to requests with a JSON object, for instance:

{"data":
{"translations":

[{"sourceText": "test",
"translatedText": "testo",
"tokenization": {"src": [[0, 3]],

"tgt": [[0, 4]]}
}]

}
}

Note that this is based on the API of Google Translate. Our server implementation
extends this API in various ways, such as the provision of aforementioned additional
information, requests for tokenization and detokenization, etc.

107

PBML 100 OCTOBER 2013

6. Installation

Instructions are available online on the  web site3 how to install the work-
bench on a consumer-grade computer running Linux.

The  workbench uses a standard set of tools: the Apache web server, the
programming language PHP, and the MySQL database. All these tools are part of
a standard Linux distribution but may need to be installed on demand. The most
computationally demanding process will be training a machine translation system on
large amounts of data.

6.1. Web Server

The main server component is the  web server that runs under Apache
and provides the user interface over any internet browser.

Download the Source Code First find a suitable directory for the  code.
If you install it as a user, you can place it in your home directory. If you install it as
administrator, you may choose something like /opt/casmacat

In that directory, type:

git clone git://git.assembla.com/matecat_source.git web-server
cd web-server
git checkout casmacat

You will find additional installation instructions in the file INSTALL.txt. It may be
more up-to-date and contain more information than the instructions below.

Create a Database The files lib/model/matecat.sql and lib/model/casmacat.sql
contain the configuration for the database. You may want to edit these files to change
the name of the database, which by default is matecat_sandbox. If you do so, please
change both files. You will also need to set up a user for the database. There may be a
GUI in your Linux distribution to make this easy, otherwise you can call MySQL from
the command line:

mysql -u root -p
mysql> connect mysql;
mysql> create user johndoe@localhost identified by 'secretpw';
mysql> create database matecat_sandbox;
mysql> grant usage on *.* to johndoe@localhost;
mysql> grant all privileges on matecat_sandbox.* to johndoe@localhost;

3http://www.casmacat.eu/index.php?n=Workbench.Workbench

108

http://www.casmacat.eu/index.php?n=Workbench.Workbench

V. Alabau et al. CASMACAT (101–112)

With user account in place and (possibly edited) configuration files, you can now
set up the database:

mysql -u johndoe -p < lib/model/matecat.sql
mysql -u johndoe -p < lib/model/casmacat.sql

To complete the setup of the database, you have to create a copy of the web server
configuration file and edit it to point to your database installation.

Set Up the Web Server First, you need to create a user account (such as catuser)
and add it to the www-data group (as root). Apache needs to be configured to ac-
cess your  web server installation. This is done with a configuration file in
/etc/apache2/sites-available, linked to from /etc/apache2/sites-enabled. This
configuration file follows a template provided in the source directory. With all this,
you may now restart Apache with apache2ctl restart. If you now point your web
browser to your site, you should see the  home page.

Test the Installation To use the tool, you will have to set up a CAT server. We de-
scribe in the next section how to do this. If you want to test your current setup, you
can also use a demo CAT server at the University of Edinburgh. The installation web
page shows provides the configuration files and a test document that can be used for
translation.

6.2. CAT Server

The computer aided translation (CAT) server communicates with the machine
translation server to provide services to the CASMACAT Workbench.

Install The CAT server is available at the following Git repository:

cd /opt/casmacat
git clone git://github.com/hsamand/casmacat-cat-server.git cat-server

Configure Currently, the CAT server is set up to only serve one language pair (and
system). It calls the MT server with a HTTP request.

The configuration of the URL of the machine translation server is currently hard-
coded in lines 103–106 of cat-server.py:

port = 8644
if isinstance (text, unicode):

text = text.encode ('UTF-8')
url = 'http://127.0.0.1:%d/%s?%s' % (

109

PBML 100 OCTOBER 2013

Please change these lines if you machine translation server does not reside on the
same machine (127.0.0.1) or responds to a different port (8644).

Run After setting the port of the machine translation server, you can run the CAT
server by specifying the port it itself is listening to ./cat-server.py 9997 .

6.3. MT Server

The  workbench may interact with any machine translation system that
responds to the API according to the specifications. In the following, we describe
how to set up a machine translation server using the open source Moses system. The
installation requires two parts: (1) the core Moses system, from which we will use
the mosesserver process, and (2) a Python Server Wrapper that calls mosesserver,
alongside other pre-processing and post-processing steps, and provides additional
services.

Install the Moses Server Wrapper You can download the server script (written in
Python) from its Git repository:

cd /opt/casmacat
git clone git://github.com/christianbuck/matecat_util.git mt-server

The server (in python_server/server.py) requires cherrypy to run, so you may
have to install that as well.

Install Moses Installing Moses may be a longer process, please refer to the Moses
web site for installation instructions. You will need bin/mosesserver and various
scripts in the scripts directory to handle pre- and post-processing.

Set Up a Toy Model You can download a toy French-English system from the -
 web site. The system consists of a model (toy-fr-en) directory and a number
of support scripts (in the scripts directory). The system comes with the shell script
TOY.fr-en that starts up mosesserver and the Python Moses server wrapper.

This script starts mosesserver to listen to port 9998 and the Python server wrapper
to listen to port 9999. While mosesserver carries out the core translation task, the
Python server wrapper deals with additional pre- and post-processing.

Connect the MT Server to the  Workbench To point your CAT server to
your machine translation server, you have to edit in cat-server.py the following
lines:

110

V. Alabau et al. CASMACAT (101–112)

port = 9999
if isinstance (text, unicode):

text = text.encode ('UTF-8')
url = 'http://127.0.0.1:%d/%s?%s' % (

Now restart your CAT server with ./cat-server.py 9997. You have completed
the installation of the  Workbench.

7. Outlook

This public release of the workbench occurs at the mid-point of the project and
offers basic functionality of the main components of the system. For the remainder
of the project, a number of extensions will be integrated, such as the visualization
of translation options, a bilingual concordancer, paraphrasing on demand. We also
expect that several of the capabilities will be refined and their quality improved.

In collaboration with the  project we also expect the implementation of
functionality targeted at professional users, such as better user administration and
document management.

Acknowledgements

The research leading to these results has received funding from the European Uni-
on Seventh Framework Programme (FP7/2007-2013) under grant agreement 287576
(). The workbench was developed in close collaboration with the 
project.

Bibliography

Alabau, Vicent, Luis A. Leiva, Daniel Ortiz-Martínez, and Francisco Casacuberta. User evalu-
ation of interactive machine translation systems. In Proc. EAMT, pages 20–23, 2012.

Barrachina, Sergio, Oliver Bender, Francisco Casacuberta, Jorge Civera, Elsa Cubel, Shahram
Khadivi, Antonio Lagarda, Hermann Ney, Jesús Tomás, Enrique Vidal, and Juan-Miguel
Vilar. Statistical approaches to computer-assisted translation. Computational Linguistics, 35
(1):3–28, 2009.

Brown, Peter F, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L Mercer. The math-
ematics of statistical machine translation: Parameter estimation. Computational linguistics,
19(2):263–311, 1993.

Federico, Marcello, Alessandro Cattelan, and Marco Trombetti. Measuring user productivity
in machine translation enhanced computer assisted translation. In Proceedings of the Tenth
Conference of the Association for Machine Translation in the Americas (AMTA), 2012. URL http:
//www.mt-archive.info/AMTA-2012-Federico.pdf.

111

http://www.mt-archive.info/AMTA-2012-Federico.pdf
http://www.mt-archive.info/AMTA-2012-Federico.pdf

PBML 100 OCTOBER 2013

González-Rubio, Jesús, Daniel Ortiz-Martínez, and Francisco Casacuberta. On the use of con-
fidence measures within an interactive-predictive machine translation system. In Proc.
EAMT, 2010.

Koehn, Philipp. Enabling monolingual translators: post-editing vs. options. In Proc. NAACL,
pages 537–545, 2010.

Langlais, Philippe, George Foster, and Guy Lapalme. TransType: a computer-aided translation
typing system. In NAACL Workshop: EmbedMT, pages 46–51, 2000.

Leiva, Luis A., Vicent Alabau, and Enrique Vidal. Error-proof, high-performance, and context-
aware gestures for interactive text edition. In Proceedings of the 2013 annual conference extended
abstracts on Human factors in computing systems (CHI EA), pages 1227–1232, 2013.

Plitt, Mirko and Francois Masselot. A productivity test of statistical machine translation post-
editing in a typical localisation context. Prague Bulletin of Mathematical Linguistics, 93:7–16,
2010. URL http://ufal.mff.cuni.cz/pbml/93/art-plitt-masselot.pdf.

Pouliquen, Bruno, Christophe Mazenc, and Aldo Iorio. Tapta: A user-driven translation system
for patent documents based on domain-aware statistical machine translation. In Forcada,
Mikel L., Heidi Depraetere, and Vincent Vandeghinste, editors, Proceedings of th 15th Inter-
national Conference of the European Association for Machine Translation (EAMT), pages 5–12,
2011.

Skadiņš, Raivis, Maris Puriņš, Inguna Skadiņa, and Andrejs Vasiļjevs. Evaluation of SMT in
localization to under-resourced inflected language. In Forcada, Mikel L., Heidi Depraetere,
and Vincent Vandeghinste, editors, Proceedings of the 15th International Conference of the Eu-
ropean Association for Machine Translation (EAMT), pages 35–40, 2011.

Address for correspondence:
Philipp Koehn
pkoehn@inf.ed.ac.uk
Informatics Forum 4.19
10 Crichton Street, Edinburgh
EH8 9AB, United Kingdom

112

http://ufal.mff.cuni.cz/pbml/93/art-plitt-masselot.pdf

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 113–131

Sequence Segmentation by Enumeration: An Exploration

Steffen Eger
Goethe University

Frankfurt am Main/Germany

Abstract
We investigate exhaustive enumeration and subsequent language model evaluation (E&E ap-

proach) as an alternative to solving the sequence segmentation problem. We show that, un-
der certain conditions (on string lengths and regarding a possibility to accurately estimate the
number of segments), which are satisfied for important NLP applications, such as phonologi-
cal segmentation, syllabification, and morphological segmentation, the E&E approach is feasi-
ble and promises superior results than the standard sequence labeling approach to sequence
segmentation.

1. Introduction

By sequence segmentation, we mean the splitting of a sequence x = x1 . . . xn consist-
ing of n characters, each from an alphabet Σ, into non-overlapping segments, or parts,
such that the concatenation of the segments, in the ‘original’ order, precisely yields
x. Usually, in applications, we do not seek an arbitrary segmentation of x but the
‘most suitable’, where suitability may be defined, particularly in a supervised setting
as we consider, with respect to a given distribution of data. In NLP, segmentations
of sequences may occur in a variety of contexts such as morphological segmentation,
the breaking of words into morphemes, syllabification, the breaking of words into syl-
lables, phonological segmentation, the breaking of words into ‘phonological units’, or
word segmentation (cf. Goldwater et al., 2009), the breaking of sentences into words.
For example, the sequence x = phoenix may admit suitable segmentations as in

ph-oe-n-i-x phoe-nix phoenix
for phonological segmentation, syllabification, and morphological segmentation, re-
spectively, and where we delineate segments in an intuitive manner.

© 2013 PBML. All rights reserved. Corresponding author: eger.steffen@gmail.com
Cite as: Steffen Eger. Sequence Segmentation by Enumeration: An Exploration. The Prague Bulletin of
Mathematical Linguistics No. 100, 2013, pp. 113–131. doi: 10.2478/pralin-2013-0017.

PBML 100 OCTOBER 2013

In a supervised learning context, sequence segmentation may be considered a se-
quence labeling problem where the labels indicate whether or not a split occurs at a
given character position. For instance, the above segmentations of x = phoenix may
be encoded as

p h o e n i x p h o e n i x p h o e n i x
0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

where a ‘1’ indicates a split.
Alternatively, we may view sequence segmentation as an ‘evaluation’ problem, in

an apparently intuitive manner. Namely, given a test string x, enumerate all possi-
ble segmentations of x and evaluate, or score, each of them using a language model
trained on the training data. Such an approach is potentially superior because it al-
lows to take a ‘word’ (rather than ‘character’) perspective on the data. Moreover and
most importantly, exhaustive search for evaluation is an exact paradigm for arbitrary
evaluation models, whereas sequence labeling models typically make crucial, e.g.,
independence assumptions on scoring functions (see our discussion in Section 5.4).

The problem with the ‘evaluation viewpoint’, and the exhaustive search it naïvely
relies upon, is that there are 2n−1 possible segmentations of a sequence x of length n,
i.e., the search space is exponential in the number of characters of x, which makes the
approach apparently impractical for all but very short sequences. In the current work,
we challenge this claim. We present a simple model for sequence segmentation that
rests on the evaluation viewpoint outlined above and on exhaustive enumeration, and
that works well, as we demonstrate, under the following two conditions,

• for a given test string x, the number of segments of an optimal segmentation of
x is known (or known to be in a ‘small’ interval) or can easily and accurately be
predicted,

• for a given test string x, the length n of x is not ‘too large’ (e.g., is certainly less
than 50) and/or the possible lengths of segments are not ‘too large’ (e.g., are less
than 10 or so).

As we show in the next sections, when these assumptions are satisfied, exhaustive
enumeration is in fact cheap and can easily be implemented. Consequently, in this
situation, it is unproblematic to apply the evaluation viewpoint to sequence segmen-
tation, which, as we show via experiments, may yield superior results for the se-
quence segmentation problem; we indicate error rate decreases between 5 and 42%
over state-of-the-art sequence labeling approaches across different data sets. In the
current work, we demonstrate, moreover, that our two criteria outlined above appar-
ently hold for a number of ‘string related’ sequence segmentation problems in NLP
such as morphological segmentation, syllabification, and phonological segmentation
(they certainly do not apply to, e.g., word segmentation). In this respect, hence, our
methodology is apparently well suited to a class of important NLP applications.

This work is structured as follows. In Section 2, we more thoroughly investigate the
search space for (naïve) sequence segmentation. We do so by referring to results on
restricted integer compositions, a field in mathematical combinatorics that has recently

114

S. Eger Segmentation by Enumeration (113–131)

gained increasing interest (Heubach and Mansour, 2004; Bender and Canfield, 2005;
Shapcott, 2012; Eger, 2013). In Section 3, we illustrate our approach in more detail,
before describing our data in Section 4. Then, in Section 5, we detail our experiments
on sequence segmentation. Since our approach may be prone to misinterpretation,
we discuss and summarize the intentions of our approach and the lessons that can be
learned from it in Section 5.4. In Section 6, we discuss related work and in Section 7,
we conclude.

2. Search Space for Sequence Segmentation

We first define integer compositions and then show their relationship to sequence
segmentations.

Let n, k ∈ N = {0, 1, 2 . . . }. An integer composition of n with k parts is a k-tuple
(π1, . . . , πk) ∈ Nk such that π1 + · · ·+ πk = n. Denote by C(n, k) the set of all integer
compositions of n with k parts. Obviously, there exists a ‘natural’ bijection between
segmentations of a sequence x = x1 . . . xn of length n with k segments and integer
compositions of n with k parts in which the sizes of parts correspond to the lengths
of the respective segments as in

ph oe n i x
7 = 2 + 2 + 1 + 1 + 1

Thus, the number of sequence segmentations of x = x1 . . . xn with k segments equals
the number of integer compositions of n with k parts, |C(n, k)| = |S(n, k)|, where
S(n, k) denotes the set of all segmentations of x1 . . . xn with k segments. There are
several well-known combinatorial results regarding the number of integer composi-
tions of n with k parts. For example,

|C(n, k)| =
(
n− 1

k− 1

)
,

where
(
n
k

)
denotes the respective binomial coefficient. Moreover, less well-known,

the number of restricted integer compositions, that is, where each part is restricted to lie
within an interval A = {ξmin, ξmin + 1, . . . , ξmax}, ξmin, ξmax ∈ N, with ξmin ≤ ξmax, is
given by the extended binomial coefficient (Fahssi, 2012; Eger, 2013)1

|CA(n, k)| =
(

k

n− ξmink

)
ξmax−ξmin+1

, (1)

where
(
k
n

)
l+1

arises as the coefficient of Xn of the polynomial (1+X+X2 + . . .+Xl)k

and where we denote by CA(n, k) the set of all compositions of n with k parts, each

1Extended binomial coefficients share many interesting properties with ordinary binomial coefficients;
see the discussions in the cited works.

115

PBML 100 OCTOBER 2013

within the interval A. As above, it obviously holds that |CA(n, k)| = |SA(n, k)|, where
SA(n, k) is the set of all segmentations of a sequence of length n with k segments
where segment lengths are restricted to lie within A. Restrictions on segment lengths
may be useful and justified in NLP applications; for instance, in phonological seg-
mentation, we would hardly expect a segment to exceed, say, length 4,2 and in syl-
labification, syllables that exceed, say, length 9 or 10, are presumably very rare across
different languages.

As concerns the total number of sequence segmentations of a sequence of length
n, we have

|S(n)| = |C(n)| =
∑
k≥1

(
n− 1

k− 1

)
= 2n−1,

where we use analogous notation as above. For restricted sequence segmentations,
closed form formulas are more difficult to obtain. For A = {1, . . . , b}, |SA(n)| is a
generalized Fibonacci number satisfying the recurrence

∣∣S{1,...,b}(n)
∣∣ = b∑

i=1

∣∣S{1,...,b}(n− i)
∣∣ .

Asymptotic formulas are given, e.g., by Malandro (2011) as

∣∣S{1,...,b}(n)
∣∣ ∼ ϕn+1

G ′(1/ϕ)
, (2)

where ϕ is the unique positive real solution to
∑b

i=1 X
−i = 1 and where G(X) =∑b

i=1 X
i and G ′ denotes its first derivative. For instance, there are 5 restricted seg-

mentations of x = x1x2x3x4 where A = {1, 2} — namely, x1x2 − x3x4; x1x2 − x3 − x4;
x1−x2x3−x4; x1−x2−x3x4; and x1−x2−x3−x4 — while the approximation formula
gives the (very close) value 4.96 for

∣∣S{1,2}(4)
∣∣, since ϕ = (1+

√
5)/2 in this case. For-

mula (2) also indicates that the number of segmentations of a sequence x asymptoti-
cally grows exponentially in the length n of x, even under restrictions on segment sizes,
although, for any given n, there might be much fewer restricted segmentations than
in the unrestricted case. For example,

∣∣S{1,2}(15)
∣∣ = 987, while |S(15)| = 214 = 16384.

Efficient algorithms for generating restricted integer compositions have recently
been suggested in Opdyke (2010); Page (2012) and a Matlab implementation of the
algorithm designed in Opdyke (2010) is available from http://www.mathworks.com/
matlabcentral/fileexchange/27110-restricted-integer-composition.

2See Table 1 for examples.

116

http://www.mathworks.com/matlabcentral/fileexchange/27110-restricted-integer-composition
http://www.mathworks.com/matlabcentral/fileexchange/27110-restricted-integer-composition

S. Eger Segmentation by Enumeration (113–131)

3. Method

As we have indicated, our approach for (supervised) sequence segmentation is as
follows. Given labeled data (i.e., with ‘gold standard’ segmentations), at training time,
we simply train a language model LM on the training data set. At test time, we predict
the segmentation of a test string x by exhaustively enumerating all possible segmen-
tations of x and evaluating each of them via LM. The best scoring segmentation is then
our prediction for x. We refer to this approach as E&E (for ‘enumerate and evaluate’).
As mentioned, since enumerating (really) all possible segmentations of x is generally
impracticable (even for restricted segmentations), we crucially rely on a ‘number of
parts’ prediction model PM; predicting the number of parts of the correct segmenta-
tion of x is a simpler problem than actually providing the correct segmentation. We
outline a possible strategy for specifying PM below.

We consider both a word level, LM-W, and a character level, LM-C, language model for
our E&E approach. The character level model views (training) strings as a sequence
of ‘characters’ as in ph-oe-n-ix (including the split information) while the word level
model views the same strings as a sequence of ‘words’ as in ph oe n i x (which also
includes the split information). Intuitively, we would expect both models to perform
differently in different situations. For example, in syllabification, segmentations cru-
cially depend on character information (e.g., whether or not the current character is a
vowel or a consonant) while in word segmentation or morphological segmentation, a
word level view may be a ‘superior’ perspective.

4. Data and Its Statistical Properties

We use CELEX (Baayen et al., 1996) as our lexical database. CELEX provides
information on orthographical (syllabification) and morphological segmentation for
German, English, and Dutch. Moreover, it provides phonological transcriptions for
the three languages. To generate phonological segmentations from these, we first
align words with their phonological representations via a monotone many-to-many
aligner (cf. Eger, 2012) and then retrieve the phonologically segmented words. For the
phonology data, we use random subsets of data from the Pascal challenge (Van den
Bosch et al., 2006), which, in the case of German and Dutch, is directly based on
CELEX but already provides a filtering; here, we also include data on French from
the Pascal challenge, which is based on the Brulex database (Content et al., 1990). In
the case of orthographical and morphological segmentation, we remove all duplicates
and multi-word entries from CELEX and focus on random subsets of given sizes, as
indicated in Table 2. In Table 1, we give examples of gold standard segmented data,
across the different languages and segmentation domains.

Table 2 summarizes statistical properties of our data sets. The first three columns
refer to the minimum, maximum, and average number of parts of segmentations in
the various gold standard alignments. The next three columns refer to the minimum,

117

PBML 100 OCTOBER 2013

G-P b-e-r-ei-t, sch-uh, sch-n-ee-m-a-tsch, s-ä-tt-i-g-u-ng
E-P ear-th-en, th-r-ough, o-ff-sh-oo-t, a-gg-r-e-ss-i-ve
D-P sj-o-tt-en, w-ij-n-h-ui-s, i-mm-uu-n, p-r-ui-s-i-sch
F-P s-aint, e-rr-an-ce, r-a-b-a-tt-eu-r, b-u-r-eau-c-r-a-te
G-S a-so-zi-a-le-re, e-be-ne, schnee-sturms, schnupft
E-S bo-liv-i-a, id-i-ot, ring-side, scrunched
D-S i-ni-ti-a-le, maan-zie-ke-re, kerst-staaf, traagst
G-M er-barm-ung-s-los-ig-keit, titel-schrift, kinkerlitzchen
E-M un-profess-ion-al-ly, im-patient-ly, un-do, quincentenary

Table 1. Examples of gold standard segmentations from different data sets. In the first
column, G,E,F, and D stand for German, English, French, and Dutch, respectively. P, S,

and M stand for phonology, syllabification, and morphology data, respectively.

maximum, and average sizes of the parts and the subsequent three columns to the
minimum, maximum, and average string lengths. The last three columns give num-
bers relating to the size of the search space for full enumeration, which we determine
via relationship (1). As concerns the size of the search space, i.e., the number of possi-
ble segmentations of strings x under these parameter values, we find that the number
SA([n̄], [k̄]), which gives the number of segmentations of the average string with an
average number of parts, is usually quite small, ranging from 7 to 120 across the differ-
ent data sets. Also, the 95 percent quantiles show that 95 percent of all strings, across
the different datasets, admit at most a few hundred or a few thousand segmentations.
The expected values are also moderate in size but the large standard deviations indi-
cate that the distributions of the number of segmentations per string is very skewed,
where a few strings allow very many segmentations. For example, the German noun
wahrscheinlichkeitsrechnung, with length n = 27, admits 2, 653, 292 segmentations with
k∗ = 18 parts, each between ξmin = 1 and ξmax = 4.

5. Experiments

For our experiments, we use as language model LM standard Ngram models, with
modified Kneser-Ney smoothing, as implemented in the kylm language modeling
toolkit.3 We emphasize that we choose (discrete) Ngram models as language models
merely for the sake of convenience and because Ngram models have a very strong
tradition in NLP; other language models such as log-linear language models (Berger
et al., 1996) or neural network language models (Bengio et al., 2001) might have been
equally good (or better) alternatives. To contrast our methodology with the sequence
labeling approach to sequence segmentation, we use conditional random fields (CRFs)

3Available at http://www.phontron.com/kylm/.

118

http://www.phontron.com/kylm/

S. Eger Segmentation by Enumeration (113–131)

kmin kmax k̄ ξmin ξmax ξ̄ nmin nmax n̄

G-P-25K 1 27 8.66± 2.7 1 4 1.15± 0.4 1 31 9.97± 3.1

E-P-25K 1 20 7.18± 2.3 1 4 1.17± 0.4 1 22 8.37± 2.5

D-P-25K 1 25 9.09± 3.1 1 4 1.16± 0.4 1 29 10.53± 3.5

F-P-25K 1 18 6.69± 2.3 1 4 1.27± 0.5 1 20 8.50± 2.6

G-S-55K 1 10 3.62± 1.2 1 10 3.08± 1.1 1 31 11.15± 3.2

E-S-15K 1 7 2.43± 1.1 1 9 3.20± 1.3 1 19 7.80± 2.5

D-S-55K 1 11 3.51± 1.3 1 9 3.07± 1.0 1 30 10.78± 3.3

G-M-36K 1 9 2.40± 0.9 1 21 4.17± 2.1 1 31 10.01± 3.2

E-M-22K 1 5 1.68± 0.7 1 16 4.60± 2.1 1 21 7.73± 2.6∣∣SA([n̄], [k̄])∣∣ Q0.95
|SA(n,k)| E [|SA(n, k)|]

G-P-25K 9 364 465.52± 28, 058.0

E-P-25K 7 105 27.55± 98.7

D-P-25K 45 364 238.06± 4, 853.2

F-P-25K 28 286 78.08± 504.8

G-S-55K 120 2, 710 1, 547.04± 56, 553.2

E-S-15K 7 210 59.99± 318.2

D-S-55K 120 2, 430 2, 848.16± 75, 541.1

G-M-36K 9 364 365.17± 31, 063.1

E-M-22K 7 45 10.43± 30.6

Table 2. Data sets (rows) and statistical properties. The set A is
{ξmin, ξmin + 1, . . . , ξmax}. Description in text.

(Lafferty et al., 2001) as a sequence labeling model SL, as implemented in the CRF++
toolkit.4 Again, alternatives such as structured SVMs (Tsochantaridis et al., 2004)
might have been equally well (or better) suited but we choose CRFs because of their
reputation as yielding state-of-the art results on structured prediction problems in
NLP. For all subsequent experiments, we use linear-chain conditional random fields
with window size w (we include as features all character Ngrams that fit inside a
window of ±w around the current character).

In our sequence labeling approach, we additionally consider another encoding
scheme as the one indicated in Section 1. Namely, we also experiment on encoding
the length of the segment directly in the labeling. For example, for the syllabic seg-
mentation of phoenix as given in Section 1, this labeling would read as 0102030410102
to represent the segmentation phoen-ix. Bartlett et al. (2008) have claimed that this
numbered encoding scheme leads to better performance for the syllabification problem

4Available at http://crfpp.googlecode.com/svn/trunk/doc/index.html

119

http://crfpp.googlecode.com/svn/trunk/doc/index.html

PBML 100 OCTOBER 2013

because it biases the model to favor shorter segments. We refer to this labeling scheme
as SL-NUM and to the (unnumbered) labeling scheme outlined in Section 1 as, simply,
SL.

Generally, for all subsequent experiments, when indicating a dataset of size M, we
perform ten-fold cross-validation to assess performance results, that is, our training
data has size 0.9M for each of the ten folds. Throughout, as a performance measure,
we use word error rate, the fraction of wrongly segmented sequences.

5.1. Phonological Segmentation

For phonological segmentation, we generate random samples of size M = 25, 000

for German, English, Dutch, and French in the manner indicated in Section 4. We first
assess, in Table 3, how well our SL modeling performs as a part prediction model PM.
We see that k∗, the true number of parts of a given sequence, on average coincides
with k̂, the predicted number of parts, in about 97% of the cases for German, Dutch,
and French, and in about 91% of the cases for English. Thus, if we used our LMmodels
with k̂, we would have error rates of at least 3% for German, Dutch, and French, and at
least 9% for English. Higher upper bounds on performance can be reached by instead
considering the intervals B1(k̂) =

{
k̂− 1, k̂, k̂+ 1

}
wherein to search for k∗. In fact,

as shown in the table, the probability that k∗ is in B1(k̂) is considerably above 99% for
all four datasets. These findings encourage us to use our sequence labeling models SL as
prediction models PM.

PSL[k
∗ = k̂] PSL

[
k∗ ∈

{
k̂− 1, k̂, k̂+ 1

}]
German-25K 97.5± 0.25 99.8± 0.13

English-25K 90.9± 0.44 99.3± 0.27

Dutch-25K 96.5± 0.29 99.9± 0.08

French-25K 97.1± 0.26 99.9± 0.08

Table 3. Probability that k∗ is identical to k̂ as predicted by SL model or is in B1(k̂)
in %. Phonology data.

Next, in Figure 1, we plot error rates in terms of N (for the LM Ngram models; we
use k̂ from the SL models). We see that for the LM-C models, performance levels off at
about N = 10 or N = 11, while for the LM-W models, performance levels off already at
N = 6 or N = 7. This is understandable as the word level models operate on entities
of a larger size, namely, segments. We also usually see a convergence of both error
rates as N gets larger. We omit similar graphs for window sizes w in the SL models,

120

S. Eger Segmentation by Enumeration (113–131)

2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

N − Character model

E
rr

o
r

German

English

French

Dutch

2 4 6 8 10 12

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

N − Word model

E
rr

o
r

German

English

French

Dutch

2 4 6 8 10 12

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

N

E
rr
o
r

Character

Word

Figure 1. Performance of LM-C (top left) and LM-W (top right) as a function of N in the
Ngrams. Bottom: Character and word model in a single plot, exemplarily shown for

German. Phonology data.

but remark that a leveling off of performance occurs usually at w = 4 (note that this
means that a context of 2w+ 1 = 9 characters is considered) or w = 5.

Now, based on these insights, we fix N at 10 for the LM-W models and at 11 for
the LM-C models and use w = 5 for the SL models. We report results in Table 4.
Throughout, we see that on our four datasets, the models SL-NUM and SL have no sta-
tistically significant different error rates, that is, on this data and for our CRF learning
models, we cannot confirm that using the numbered coding scheme implies better
performance results. Moreover, the two LM models have no statistically significant
better performance than the SL models, too, when using as prediction for the num-
ber of parts the variables k̂ from the SL models. In contrast, when enumerating all

121

PBML 100 OCTOBER 2013

German-25K French-25K Dutch-25K English-25K

SL-NUMw=5 2.65± 0.27 3.64± 0.31 3.91± 0.32 10.10± 0.45

SLw=5 2.68± 0.26 3.56± 0.27 3.86± 0.29 10.07± 0.45

LM-Ck=k̂
N=11 2.73± 0.28 3.55± 0.27 3.87± 0.30 10.05± 0.49

LM-Wk=k̂
N=10 2.74± 0.31 3.56± 0.25 3.88± 0.29 10.06± 0.40

LM-C
k∈{k̂−1,k̂,k̂+1}
N=11 2.41± 0.32 4.09± 0.26 3.42± 0.32 9.78± 0.35

LM-C
k∈{k̂−1,k̂,k̂+1},β=1.1

N=11 2.29± 0.27 3.39± 0.24 3.34± 0.31 9.15± 0.41

LM-W
k∈{k̂−1,k̂,k̂+1}
N=10 2.06± 0.37 4.83± 0.33 3.74± 0.30 9.70± 0.48

LM-W
k∈{k̂−1,k̂,k̂+1},β=1.1

N=10 2.09± 0.26 3.65± 0.31 3.44± 0.34 9.03± 0.49

LM-Ck=k∗

N=11 0.63± 0.25 1.22± 0.21 1.21± 0.09 3.01± 0.39

LM-Wk=k∗

N=10 0.60± 0.21 1.22± 0.19 1.23± 0.16 3.04± 0.35

Table 4. Error rates in % across different data sets and model specifications. Sub- and
superscripts denote various parameterizations. Phonology data.

segmentations with number of parts k in B1(k̂) and selecting the highest scoring as
predicted segmentation, performance results are, except for the French Brulex data,
significantly better. For example, for the German, English and Dutch data, we find,
for LM-C, error rate improvements of about 10%, 3%, and 11%, with regard to the SL
models. Still larger improvements can be achieved by putting a prior on k. Note that,
since the SL models are quite accurate PM models, it is more likely that k̂ is correct
than either k̂− 1 or k̂+ 1. We experiment with a very simple heuristic that discounts
the language model likelihood of segmentations with k̂± 1 parts by a factor β. While
selecting β by optimizing on a development set might lead to best results, we simply
let β = 1.1 for all our data sets. This implies error rate improvements of about, for our
best LM-C or LM-W models, 22%, 10%, 13%, and 5% for German, English, Dutch, and
French, respectively, with respect to the SLmodels, where all improvements are statis-
tically significant (paired two-tailed t-test, 5% significance level). Finally, as a kind of
‘oracle model’, we give performance results of our LM models under the assumption
that the true number of parts k∗ were known, for each given string to segment. We
see, in this case, very large error rate improvements, of about 77%, 68%, 69%, and 65%
for German, English, Dutch, and French, respectively, with respect to the SL models.

To say a word on the difference between the LM-C and LM-W models, we find that,
a bit surprisingly, both models apparently perform, more or less, equally well (we
would have expected the word level models to outdo the character level models, at

122

S. Eger Segmentation by Enumeration (113–131)

least on the phonological segmentation task). In our case, the word level models per-
form better for German and slightly better for English, while this ordering is reversed
for French and Dutch.

As concerns running times, on a 3.1 GHz processor, it takes around 18 min, over all
10 folds, for the CRFs to train, both for English (smallest string lengths, on average)
and Dutch (largest string lengths, on average). Testing (decoding) takes about 2.39s
for English and 3.69s for Dutch. In contrast, training the LM models takes around
42s for English and around 52s for Dutch. Generating all segmentations and evalu-
ating them takes around 22s + 2min for English and 14min + 25min for Dutch when
choosing B1(k̂) as search space. Thus, all in all, running times are quite moderate;
also note that our segmentation and evaluation module are in Matlab (resp. Python)
and Java, whereas the CRF is in C++. We also find that we search about 0.77% of
the full search space (2n−1 segmentations per string of length n) and that if we ex-
plored the full search space, running times would be inflated by a factor of about 130
(hence, segmenting and evaluating 25, 000 strings would take about 3 1/2 days for
the Dutch data), with no (or almost no) increase in accuracy because B1(k̂) contains
all (or almost all) correct segmentations (in fact, switching to, e.g., B2(k̂) implies no
statistically distinguishable performance results, as we find).

We are not aware of any other study that would evaluate phonological sequence
segmentation (but see also the related work section) and thus cannot compare our
results here with those of others.

5.2. Syllabification

For syllabification, we use data set sizes as reported in Bartlett et al. (2008). In
Table 5, we see that our SL model performs better here in predicting the correct num-
ber of parts of segmentations than in the phonological segmentation task, where the
probability that the true k∗ is inB1(k̂) is very close to 100% across the three languages.

PSL[k
∗ = k̂] PSL

[
k∗ ∈

{
k̂− 1, k̂, k̂+ 1

}]
German-55K 99.6± 0.09 100.0± 0.00

English-15K 96.7± 0.52 99.9± 0.03

Dutch-55K 99.4± 0.07 99.9± 0.01

Table 5. Probability that k∗ is identical to k̂ as predicted by SL model or is in B1(k̂)
in %. Syllabification data.

While we omit an investigation of varying N in the Ngram models because of sim-
ilarity of graphics with those previously shown, we mention that increasing N above

123

PBML 100 OCTOBER 2013

2 or 3 has no impact in the LM-W models since the average number of parts is much
smaller here than in the phonological segmentation case (see Table 2); the same holds
true for the morphological segmentation task below.

Thus, we fix N at 3 in the LM-W models and at 11, as before, in the LM-C models,
giving results in Table 6. Again, we see performance increases of about, for German,
English, and Dutch, respectively, 30%, 7%, and 42% for the best performing LM mod-
els over the SL models. Knowing the true k∗ would, as before, yield still considerably
better results. We report on an evaluation of the word level model only in the situa-
tion of a closed language model where the vocabulary stems from the training data
(this excludes on the order of 5–10% of all test strings because some of their syllable
parts never occurred in the training data, no matter the possible segmentation); in
fact, the open vocabulary situation is uninformative since the LM-W model has huge
error rates here, as our language model reserves so much probability mass for unseen
words that segmentations with segments that do not occur in the training data are
favored over those whose segment parts do occur there.5 As we have expected, under
the same conditions, the character level model still performs significantly better than
the word level model in the case of syllabification. We omit an investigation of the
numbered coding scheme, except for the English data, because of the huge increase
in training time and since we find that this model actually never performs better than
its unnumbered alternative.

Our results compare favorably with those reported by Bartlett et al. (2008), who
claim to improve on competitors by a wide margin. Using an SL approach with a
structured SVM as a labeling model, they obtain error rates of 1.19%, 10.55% (they give
a result of 15.03% for SbA (Marchand et al., 2007)), and 1.80% for German, English,
and Dutch, while we obtain 1.07%, 11.24%, and 1.49% here, with our best models.
Thus, except for the English data, our results appear better, using the same training
set sizes.6 Concerning other results, Bartlett et al. (2008) cite error rates of Bouma
(2003), using finite state techniques, of 3.50% for Dutch on 50K training instances, as
we use, and 1.80% on 250K. For German, Demberg (2006)’s HMM approach achieves
2.13% on the whole of CELEX, which is double of our error rate. To our knowledge,
our results are the best reported on the syllabification task for German and Dutch on
the CELEX data and for our training set size of 50K.

5.3. Morphological Segmentation

Performance results for morphological segmentation are listed in Tables 7 and 8
(the Dutch data was unfortunately not available to us here). Again, our best perform-

5The same does not hold true for phonological segmentation, where parts are shorter and strings have
more segments such that more reliable statistics can be computed.

6 The better performance of Bartlett et al. (2008) on English may be due to the advantage of SVMs over
standard Ngrams (and CRFs) at the small training set size for English; see He and Wang (2012) and our
discussion below.

124

S. Eger Segmentation by Enumeration (113–131)

German-55K English-15K Dutch-55K

SL-NUMw=5 na 12.88± 0.70 na
SLw=5 1.54± 0.21 12.14± 0.59 2.57± 0.16

LM-Ck=k̂
N=11 1.20± 0.17 11.73± 0.69 1.63± 0.14

LM-Wk=k̂
N=3 na na na

LM-C
k∈{k̂−1,k̂,k̂+1}
N=11 1.41± 0.17 12.21± 0.72 1.77± 0.12

LM-C
k∈{k̂−1,k̂,k̂+1},β=1.1

N=11 1.07± 0.15 11.24± 0.62 1.49± 0.06

LM-Ck=k∗

N=11 0.82± 0.11 9.40± 0.58 1.14± 0.08

LM-Cvocab,k=k̂
N=11 1.49± 0.13 14.95± 0.92 1.71± 0.16

LM-Wvocab,k=k̂
N=3 3.53± 0.22 18.82± 1.59 3.49± 0.23

Table 6. Error rates in % across different data sets and model specifications. Sub- and
superscripts denote various parametrizations. Syllabification data.

German-36K English-22K

SL-NUMw=5 na 13.45± 0.31

SLw=5 16.34± 0.43 11.68± 0.50

LM-Ck=k̂
N=11 15.15± 0.60 11.18± 0.47

LM-Wk=k̂
N=3 na na

LM-C
k∈{k̂−1,k̂,k̂+1}
N=11 11.08± 0.49 9.50± 0.72

LM-C
k∈{k̂−1,k̂,k̂+1},β=1.1

N=11 11.86± 0.60 9.31± 0.69

LM-Ck=k∗

N=11 2.31± 0.34 0.98± 0.13

LM-Cvocab,k=k̂
N=11 6.85± 0.68 3.60± 0.38

LM-Wvocab,k=k̂
N=3 6.88± 0.70 3.62± 0.40

Table 7. Error rates in % across different data sets and model specifications. Sub- and
superscripts denote various parametrizations. Morphology data.

ing LM models are about 32% and 20% better, for German and English, respectively,
than the SL approach. Concerning error rates, we omit a comparison with other work

125

PBML 100 OCTOBER 2013

because most approaches in morphological segmentation are unsupervised, and we
in fact are not aware of supervised performance results for the data we consider.

PSL[k
∗ = k̂] PSL

[
k∗ ∈

{
k̂− 1, k̂, k̂+ 1

}]
German-36K 85.6± 0.44 98.9± 0.17

English-22K 89.1± 0.49 99.7± 0.05

Table 8. Probability that k∗ is identical to k̂ as predicted by SL model or is in B1(k̂)
in %. Morphology data.

5.4. Discussion

To say a word on exhaustive enumeration as a solution technique to optimization
problems, beginner’s courses to combinatorial optimization usually emphasize that
exhaustive search is the simplest and most straightforward approach to any optimization
problem that admits only finitely many possible solution candidates; and that it is, if
feasible at all (i.e., from a complexity perspective), also guaranteed to lead to optimal
solutions (Nievergelt, 2000). Hence, if the segmentation problem in NLP was framed
as the problem of finding the segmentation sn of sequence x = x1 . . . xn that solves

arg max
sn∈S(n)

fθ(sn),

i.e., for model fθ and model parameter vector θ given (if one wants so, this is the decod-
ing problem for sequence segmentation), then our approach to sequence segmentation
would surely be optimal, provided that our search space restrictions are not criti-
cal. The problem in natural language processing (NLP) is, of course, that we neither
know the most appropriate (or ‘true’) model fθ for our task nor, in statistical NLP,
do we know the true parameter vector θ. The scope of this work is neither model
selection nor feature engineering (determination of a good model fθ), however, nor
is it the estimation of the parameter vector θ. What we intend to show, instead, is
that, for our problem tasks, efficient enumeration is generally feasible such that, for fθ
given, our approach is optimal. Thus, to summarize, if a technique performed better
than the approach sketched in this work, it must be due to a superior model fθ (e.g.,
than our standard Ngrams),7 and not due to search, as we focus on. Here, we content
ourselves, however, with the fact that standard Ngrams in conjunction with (almost)
exact search can, as shown, outperform state-of-the-art approaches to sequence seg-
mentation (this includes, at least on two out of the three data sets on the syllabifica-
tion task, structured SVMs, which appear to be the primus inter pares among current

7Or due to ‘better’ estimation of θ.

126

S. Eger Segmentation by Enumeration (113–131)

sequence labeling methods; see the discussion below), rendering the investigation of
better models fθ momentarily superfluous.

To contrast our approach with other methods, many sequence labeling algorithms,
for example, rely on crucial restrictions with regard to allowable scoring functions fθ, as
mentioned. For example, most graphical models assume Markov-type independence
assumptions for the label sequences. In contrast, with our approach, fθ may be arbi-
trary, and arbitrarily complex. To make this feasible, we instead restrict search space, as
outlined. Moreover, as Tables 3, 5, and 8 demonstrate, the search space we prune away
has very little probability of actually containing the correct segmentations (we could
easily lower this probability to zero by, e.g., considering the search spaces B2(k̂)) such
that our restrictions may not affect accuracy at all, while pruning model complexity
may be more expected to yield sub-optimal performance. Our approach may also be
seen in the context of coarse-to-fine decoding procedures: first, we use a sub-optimal
model f1θ to restrict search space, and then use any arbitrary, ‘superior’ models f2θ in
conjunction with full enumeration on the restricted search space to improve on f1θ; we
have shown how and that such a procedure can be made effective within the field of
sequence segmentation for selected NLP applications.

We also note that for specific fθ, e.g., when fθ is decomposable (Terzi, 2006), full
enumeration may not be necessary because efficient dynamic programming (DP) so-
lutions apply. For example, for word level Ngrams, a simple DP solution whose run-
ning time is quadratic in n, sequence length, can be given when N = 1. In contrast,
our approach works for any fθ, not only for decomposable models.

6. Related Work

Phonological segmentation may be a crucial step in, e.g., grapheme-to-phoneme
conversion (G2P) models based on many-to-many alignment approaches (Jiampo-
jamarn et al., 2007, 2008; Bisani and Ney, 2008; Eger, 2012), where, for decoding,
grapheme strings need to be segmented. Jiampojamarn et al. (2007) employ instance-
based learning for this ‘letter chunking task’, without, however, evaluating their mo-
del’s performance (they solely evaluate G2P performance); the same holds true for the
three other papers cited. Of course, sequence segmentation similar to phonological
segmentation may play a key role in string transduction problems, including lemma-
tization, stemming, etc., in general (Dreyer et al., 2008). As concerns syllabification,
besides ‘rule-based approaches’ (see the discussion and references in Marchand et al.,
2007), in the statistical context, we are aware of Bartlett et al. (2008)’s sequence label-
ing approach and a lazy learning segmentation-by-analogy framework due to Marc-
hand et al. (2007); older approaches include neural network backpropagation learn-
ing (Daelemans and van den Bosch, 1992) or finite-state techniques (Bouma, 2003).
Intriguingly, syllabification may prove beneficial for solving the G2P task, as Bartlett
et al. (2008) demonstrate; its most obvious application is, of course, to provide can-
didates for hyphenation. There is a huge literature on morphological segmentation,

127

PBML 100 OCTOBER 2013

e.g., Creutz and Lagus (2007); Poon et al. (2009), but most approaches are unsuper-
vised here. As concerns applications of morphological segmentation, besides serving
for quantitative analyses such as morpheme counts in texts, it may serve as a prepro-
cessing step for phonological segmentation and/or syllabification.

The literature on CRFs, as we have used as a SL model, is vastly expanding, too;
among the most interesting developments in our context are probably semi-Markov
CRFs (Sarawagi and Cohen, 2004), which explicitly segment the input sequence. An
analysis within our context would be scope for future research. Stoyanov and Eisner
(2012) discuss approximate inference and decoding for higher-treewidth graphical
models underlying CRFs. A recent comparison of state-of-the-art sequence labeling
approaches is given in He and Wang (2012) where it is shown that structured SVMs
outperform competitors on tagging and OCR; performance differences decrease, how-
ever, in data set size.

7. Concluding Remarks

Our contribution to the mathematics of linguistics is to relate the sequence segmen-
tation problem to restricted integer compositions, which have attracted increasing in-
terest in mathematical combinatorics recently — not the least because of their rela-
tionship to extended binomial coefficients. Our contribution to computational linguistics
is to show that exhaustive enumeration of sequence segmentations is, for an array
of interesting segmentation problems in NLP, cheap, given adequate restriction of
search space, such that exact search for the optimal segmentations can easily be con-
ducted, for arbitrary evaluation models fθ. We also show that for the simple choice
of fθ as standard Ngram models, performance results on par or better than current
state-of-the-art sequence labeling approaches can be achieved.

In future work, different language models fθ, possibly including global features, are
worthwhile investigating, among other things, as well as interpolating of character
and word level language models.

Bibliography

Baayen, R. Harald, Richard Piepenbrock, and Leon Gulikers. The CELEX2 lexical database,
1996.

Bartlett, Susan, Grzegorz Kondrak, and Colin Cherry. Automatic syllabification with struc-
tured SVMs for letter-to-phoneme conversion. In Proceedings of ACL-08: HLT, pages 568–
576. Association for Computational Linguistics, June 2008.

Bender, Edward A. and E. Rodney Canfield. Locally restricted compositions, I. Restricted ad-
jacent differences. The Electronic Journal of Combinatorics, 12, 2005.

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic
language model. In NIPS 13, pages 933–938, 2001.

128

S. Eger Segmentation by Enumeration (113–131)

Berger, Adam L., Vincent J. Della Pietra, and Stephen A. Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–71, Mar. 1996.
ISSN 0891-2017.

Bisani, Maximilian and Hermann Ney. Joint-sequence models for grapheme-to-phoneme con-
version. Speech Commun., 50(5):434–451, May 2008. ISSN 0167-6393. doi: 10.1016/j.specom.
2008.01.002.

Bouma, Gosse. Finite state methods for hyphenation. Nat. Lang. Eng., 9(1):5–20, Mar. 2003.
ISSN 1351-3249. doi: 10.1017/S1351324903003073.

Content, Alain, Philippe Mousty, and Monique Radeau. Brulex. Une base de données lexicales
informatisée pour le français écrit et parlé. L’année psychologique, 90(4):551–566, 1990. ISSN
0003-5033. doi: 10.3406/psy.1990.29428.

Creutz, Mathias and Krista Lagus. Unsupervised models for morpheme segmentation and
morphology learning. ACM Trans. Speech Lang. Process., 4(1):3:1–3:34, Feb. 2007. ISSN 1550-
4875. doi: 10.1145/1187415.1187418.

Daelemans, Walter and Antal van den Bosch. Generalization performance of backpropaga-
tion learning on a syllabification task. In Proceedings of the 3rd Twente Workshop on Language
Technology, pages 27–38, 1992.

Demberg, Vera. Letter-to-phoneme conversion for a german text-to-speech system, 2006.
Dreyer, Markus, Jason R. Smith, and Jason Eisner. Latent-variable modeling of string trans-

ductions with finite-state methods. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), EMNLP ’08, pages 1080–1089, Stroudsburg, PA, USA,
2008. Association for Computational Linguistics. URL http://dl.acm.org/citation.cfm?
id=1613715.1613856.

Eger, Steffen. S-restricted monotone alignments: Algorithm, search space, and applications. In
Proceedings of Coling, 2012.

Eger, Steffen. Restricted weighted integer compositions and extended binomial coefficients.
Journal of Integer Sequences, 2013.

Fahssi, Nour-Eddine. A systematic study of polynomial triangles. The Electronic Journal of Com-
binatorics, 2012.

Goldwater, Sharon, Thomas L. Griffiths, and Mark Johnson. A Bayesian framework for word
segmentation: Exploring the effects of context. Cognition, 112(1):21–54, July 2009. ISSN
00100277. doi: 10.1016/j.cognition.2009.03.008.

He, Zhengyan and Houfeng Wang. A comparison and improvement of online learning algo-
rithms for sequence labeling. In Proceedings of Coling, 2012.

Heubach, Silvia and Toufik Mansour. Compositions of n with parts in a set. Congressus Nu-
merantium, 164:127–143, 2004.

Jiampojamarn, Sittichai, Grzegorz Kondrak, and Tarek Sherif. Applying many-to-many align-
ments and Hidden Markov Models to letter-to-phoneme conversion. In Proceedings of
the Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL-HLT 2007), pages 372–379, Rochester, New York, Apr. 2007. Association for Com-
putational Linguistics.

129

http://dl.acm.org/citation.cfm?id=1613715.1613856
http://dl.acm.org/citation.cfm?id=1613715.1613856

PBML 100 OCTOBER 2013

Jiampojamarn, Sittichai, Colin Cherry, and Grzegorz Kondrak. Joint processing and discrimi-
native training for letter-to-phoneme conversion. In Proceedings of the 46th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies (ACL-08: HLT),
pages 905–913, June 2008.

Lafferty, John D., Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proc. 18th International
Conf. on Machine Learning, pages 282–289, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc. ISBN 1-55860-778-1.

Malandro, Martin E. Integer compositions with part sizes not exceeding k, 2011. Preprint
available at http://arxiv.org/pdf/1108.0337.pdf.

Marchand, Yannick, Connie Adsett, and Robert Damper. Evaluation of automatic syllabifi-
cation algorithms for English. In Proceedings of the 6th international speech communication
association (ISCA), 2007.

Nievergelt, Jürg. Exhaustive search, combinatorial optimization and enumeration: Exploring
the potential of raw computing power. In Proc. Conf. on Current Trends in Theory and Practice
of Informatics, pages 18–35, 2000.

Opdyke, John Douglas. A unified approach to algorithms generating unrestricted and re-
stricted integer compositions and integer partitions. Journal of Mathematical Modelling and
Algorithms, 9(1):53–97, 2010.

Page, Daniel R. Generalized algorithm for restricted weak composition generation. Journal
of Mathematical Modelling and Algorithms (JMMA), pages 1–28, 2012. ISSN 1570-1166. doi:
10.1007/s10852-012-9194-4. Published online July 20.

Poon, Hoifung, Colin Cherry, and Kristina Toutanova. Unsupervised morphological segmen-
tation with log-linear models. In Proceedings of Human Language Technologies: The 2009 An-
nual Conference of the North American Chapter of the Association for Computational Linguistics,
NAACL-2009, pages 209–217, Stroudsburg, PA, USA, 2009. Association for Computational
Linguistics. ISBN 978-1-932432-41-1.

Sarawagi, Sunita and William W. Cohen. Semi-Markov conditional random fields for informa-
tion extraction. In Proceedings of NIPS, 2004.

Shapcott, Caroline. C-color compositions and palindromes. Fibonacci Quarterly, 50:297–303,
2012.

Stoyanov, Veselin and Jason Eisner. Minimum-risk training of approximate CRF-based NLP
systems. In Proceedings of the 2012 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL HLT ’12, pages 120–
130, Stroudsburg, PA, USA, 2012. Association for Computational Linguistics. ISBN 978-1-
937284-20-6.

Terzi, Evimaria. Problems and Algorithms for Sequence Segmentation. PhD thesis, University of
Helsinki, 2006.

Tsochantaridis, Ioannis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structured output spaces. In Proceedings of
the 21st international conference on Machine Learning (ICML), pages 823–830, New York, NY,
USA, 2004. ACM. ISBN 1-58113-838-5. doi: 10.1145/1015330.1015341.

130

http://arxiv.org/pdf/1108.0337.pdf

S. Eger Segmentation by Enumeration (113–131)

Van den Bosch, Antal, Stanley Chen, Walter Daelemans, Bob Damper, Kjell Gustafson, Yannick
Marchand, and Francois Yvon. Pascal letter-to-phoneme conversion challenge, 2006. URL
http://www.pascalnetwork.org/Challenges/PRONALSYL.

Address for correspondence:
Steffen Eger
eger.steffen@gmail.com
Goethe University
Grüneburgplatz 1
60323 Frankfurt am Main, Germany

131

http://www.pascalnetwork.org/Challenges/PRONALSYL

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013

INSTRUCTIONS FOR AUTHORS

Manuscripts are welcome provided that they have not yet been published else-
where and that they bring some interesting and new insights contributing to the broad
field of computational linguistics in any of its aspects, or of linguistic theory. The sub-
mitted articles may be:

• long articles with completed, wide-impact research results both theoretical and
practical, and/or new formalisms for linguistic analysis and their implementa-
tion and application on linguistic data sets, or

• short or long articles that are abstracts or extracts of Master’s and PhD thesis,
with the most interesting and/or promising results described. Also

• short or long articles looking forward that base their views on proper and deep
analysis of the current situation in various subjects within the field are invited,
as well as

• short articles about current advanced research of both theoretical and applied
nature, with very specific (and perhaps narrow, but well-defined) target goal in
all areas of language and speech processing, to give the opportunity to junior
researchers to publish as soon as possible;

• short articles that contain contraversing, polemic or otherwise unusual views,
supported by some experimental evidence but not necessarily evaluated in the
usual sense are also welcome.

The recommended length of long article is 12–30 pages and of short paper is 6-15
pages.

The copyright of papers accepted for publication remains with the author. The
editors reserve the right to make editorial revisions but these revisions and changes
have to be approved by the author(s). Book reviews and short book notices are also
appreciated.

The manuscripts are reviewed by 2 independent reviewers, at least one of them
being a member of the international Editorial Board.

Authors receive two copies of the relevant issue of the PBML together with the
original pdf files.

The guidelines for the technical shape of the contributions are found on the web
site http:// ufal.mff.cuni.cz/pbml.html. If there are any technical problems, please
contact the editorial staff at pbml@ufal.mff.cuni.cz.

