Machine Translation Marathon 2024 Talks

Speech Translation: From Basics to Recent Advances

Tsz Kin Lam

School of Informatics University of Edinburgh

Tsz Kin Lam (UEDIN)

Speech Translation (ST)

6th Sep 2024

1 Introduction: What to expect

2 I: How is the translation of speech different from its text?

3 II: Existing approaches

4 Summary and the future works

Introduction: What to expect

What to expect:

- data and modelling aspects of ST for MT researchers who are interested in the translation of speech
- a recent development of ST in the field, e.g., integrating speech into LLM

What to expect:

- data and modelling aspects of ST for MT researchers who are interested in the translation of speech
- a recent development of ST in the field, e.g., integrating speech into LLM

What is not included:

- not much about speech-to-speech translation
- specific applications, e.g., simultaneous ST, subtitling and dubbing

What to expect:

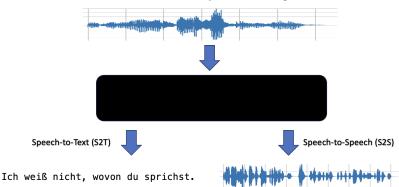
- data and modelling aspects of ST for MT researchers who are interested in the translation of speech
- a recent development of ST in the field, e.g., integrating speech into LLM

What is not included:

- not much about speech-to-speech translation
- specific applications, e.g., simultaneous ST, subtitling and dubbing
- (linguistic) analysis of the ST errors
- the mathematical details, e.g., Fast-Fourier Transform (FFT) and Connectionist Temporal Classification (CTC)

I: How is the translation of speech different from its text?

Speech translation is cross-lingual and cross-modal



(I don't know what you're talking about)

• Speech signal is sparse, i.e., low information content per unit time (An audio file of 2.2 seconds in 16kHz has ≈ 35 K time steps).

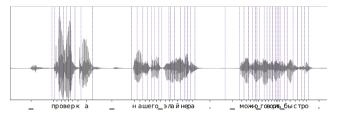


Figure: Speech-to-text alignment [Barrault et al. 2023]

• Speech signal is sparse, i.e., low information content per unit time (An audio file of 2.2 seconds in 16kHz has ≈ 35 K time steps).

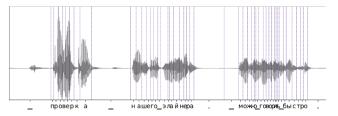


Figure: Speech-to-text alignment [Barrault et al. 2023]

• The file format matters, e.g., the sampling rate and the bit depth.

• Speech signal is sparse, i.e., low information content per unit time (An audio file of 2.2 seconds in 16kHz has ≈ 35 K time steps).

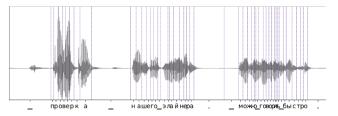
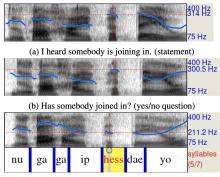


Figure: Speech-to-text alignment [Barrault et al. 2023]

- The file format matters, e.g., the sampling rate and the bit depth.
- Background noises may appear in the speech.

• Paralinguistic signals, such as prosody and accents, matter



(c) Who joined in? (wh-question)

Figure: Prosody is crucial in the translation of Korean speech [Zhou et al. 2024]

• Speech is often disfluent, esp. in spontaneous speech:

Hesitation	eh, eh, eh, um, yo pienso que es así.		
	uh, uh, uh, um, i think it's like that.		
Repetition	Y, y no cree que, que, que,		
	And, and I don't believe that, that, that		
Correction	no, no puede, no puedo irme para		
	no, it cannot, I cannot go there		
False start	porque qué va, mja ya te acuerda que		
	because what is, mhm do you recall now that		

Figure: Types and examples of disfluency [Salesky et al. 2018]

ST is low-resource

Data	X-Y	#utterances	#words (src+tgt)
MuST-C	En-Fr	280K	10.6M
	En-De	234K	8.3M
CoVoST2	Fr-En	207K	$4\mathrm{M}$
000012	De-En	127K	2M
(MT) Wiki-Matrix	De-En	6.2M	196M

Table: Training data statistics of two common S2TT data and a MT data

- \bullet Based on CommonVoice (v4) \implies read speech
- The sentence structure is simple (De-En: 127K sentences with only 2M words (src+tgt):
 - "I am going to shower now."
 - 2 "I am happy when i can make others happy."

- Based on CommonVoice (v4) \implies read speech
- The sentence structure is simple (De-En: 127K sentences with only 2M words (src+tgt):
 - "I am going to shower now."
 - 2 "I am happy when i can make others happy."
 - Punishments of this kind are a means of targeted terror, if they are carried out in such a way as to have an effect on the public."
 - The plans of the head of the municipal planning and building control office Erich Heinicke will be defining for the townscape of the post-war era."

ST is low-resource: MuST-C

• Based on English TED talks \implies more realistic

ST is low-resource: MuST-C

- Based on English TED talks \implies more realistic
- Inconsistent annotations, existence of non-verbal symbols, segmentation error...:

[En] we are 12 billion lightyears from the edge [De] ${\tt J}$ Wir sind 12 Milliarden Lichtjahre entfernt vom Rand ${\tt J}$

[En] J everyones out in merry manhattan in January [De] J Ganz Manhattan ist draußen und wunderbar - im Januar. J

[En] and the second one thats a violin [De] Und nun den zweiten. (♪ Violine) Das ist eine Geige.

```
[En] kb thank you
[De] SJ: Oh! (Applaus) KB: Danke.
```

Can we translate the entire recorded lecture (audio) in one forward-pass?

- It is an audio sequence of >60 minutes
- **2** In training, the sequence length rarely exceed 30^1 seconds.

 $^1\mathrm{It}$ is about 3K time steps if log Mel spectrogram features are used

Tsz Kin Lam (UEDIN)

Can we translate the entire recorded lecture (audio) in one forward-pass?

- 0 It is an audio sequence of >60 minutes
- 0 In training, the sequence length rarely exceed 30^1 seconds.
- We need to segment the audio sequence into smaller chunks!

 $^1\mathrm{It}$ is about 3K time steps if log Mel spectrogram features are used

• Length-based, e.g., for every 3s.

- Length-based, e.g., for every 3s.
- Content-based, e.g, pause that is detected by voice activity detection.

- Length-based, e.g., for every 3s.
- <u>Content-based</u>, e.g, <u>pause</u> that is detected by voice activity detection.
- <u>Hybrid</u> approach that is based on both length-based and content-based.

- Length-based, e.g., for every 3s.
- <u>Content-based</u>, e.g, <u>pause</u> that is detected by voice activity detection.
- <u>Hybrid</u> approach that is based on both length-based and content-based.
- <u>Neural-network-based</u>: <u>Supervised Hybrid Audio Segmentation</u> (SHAS) [Tsiamas et al. 2022]

- Each ST model has their own speech segmentation method, so each model could generate different number of outputs.
- For sentence-level evaluation at IWSLT, we need to re-segment the outputs to match the number of references.

Tsz Kin Lam (UEDIN)

 $^{^{1}}$ [Matusov et al. 2005]

- Each ST model has their own speech segmentation method, so each model could generate different number of outputs.
- For sentence-level evaluation at IWSLT, we need to re-segment the outputs to match the number of references.
- The re-segmentation is done by a minimum $WER^1 \implies$ re-segmentation error.

Tsz Kin Lam (UEDIN)

 $^{^{1}}$ [Matusov et al. 2005]

In S2T translation, the automatic metrics are the same as MT:

- n-gram matching: BLEU and chrF
- neural metrics: COMET
 - ▶ might require ASR/BT to get the transcripts
 - punctuation insertion or not to the transcripts

In S2T translation, the automatic metrics are the same as MT:

- n-gram matching: BLEU and chrF
- neural metrics: COMET
 - ▶ might require ASR/BT to get the transcripts
 - punctuation insertion or not to the transcripts

In S2S translation,

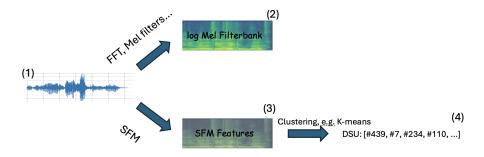
- transcribe and MT-evaluate: ASR-BLEU and ASR-chrF
- neural metrics: BLASER¹

Tsz Kin Lam (UEDIN)

- Data scarcity
- Modality gap between speech and text signal

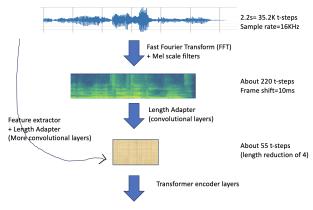
II: Existing approaches

Feeding speech into Transformer: Speech input formats



Feeding speech into Transformer: Length adapter

Recap: Speech is sparse and long.



(I don't know what you're talking about)

Tsz Kin Lam (UEDIN)

Cascaded model (I)

Recap: ST is a cross-lingual and probably a cross-modal problem.Can we decompose ST into simpler related sub-tasks?

Recap: ST is a cross-lingual and probably a cross-modal problem.

• Can we decompose ST into simpler related sub-tasks?

Cascaded ST: It converts ST into a task of running ASR and MT tasks sequentially (Text-To-Speech is required in S2S).

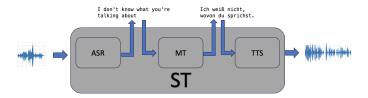


Figure: An illustration of the cascaded ST model.

Advantage:

- The training is easier since the cross-lingual and -modal parts are learnt independently.
 - There are more training data for the sub-tasks.

Advantage:

- The training is easier since the cross-lingual and -modal parts are learnt independently.
 - There are more training data for the sub-tasks.
- Output correction and Human-in-the-loop become simpler by inspecting the intermediate transcripts(/translations).

Advantage:

- The training is easier since the cross-lingual and -modal parts are learnt independently.
 - There are more training data for the sub-tasks.
- Output correction and Human-in-the-loop become simpler by inspecting the intermediate transcripts(/translations).
- It can leverage foundation models easily.

Disadvantage:

- The translation pipeline is lengthy. This might cause
 - higher inference cost
 - error propagation from the ASR(/MT) model(s).
 - ▶ <u>loss of speech information</u>, e.g., prosody in the ASR step.
- Cascaded model is not very parameter efficient.

Direct end-to-end (E2E) model (I)

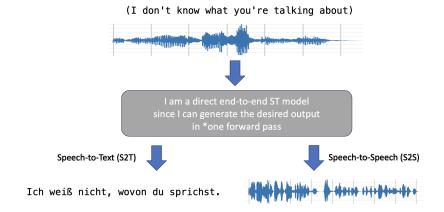


Figure: An illustration of the direct end-to-end (E2E) ST model.

Tsz Kin Lam (UEDIN)

Speech Translation (ST)

Direct E2E model (II)

Advantage:

- Translation is done in <u>one forward-pass</u>. This helps to
 - ▶ give lower latency in translation, e.g., (very important) in real-time speech translation.
 - avoid error propagation.
 - ▶ preserve speech information for translation.
- End-to-end ST is more parameter efficient.

Disadvantage:

- The amount of paired ST data is limited.
- End-to-end ST model is harder to optimise.

Disadvantage:

- The amount of paired ST data is limited.
- End-to-end ST model is harder to optimise.

Regardless, E2E model is the main publication research direction now!

Improving E2E ST: data augmentation (DA)

We can generate more data via related task's model(s) and paired data:

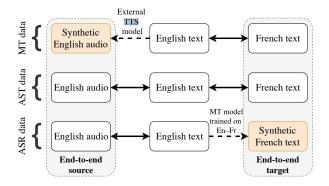


Figure: Pseudo ST data generation [Pino et al. 2019]

Alignment helps, even in data augmentation

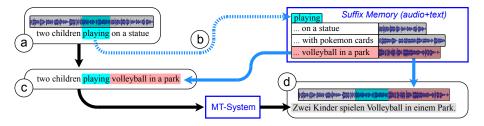
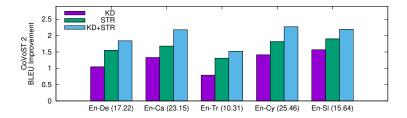


Figure: Acoustic alignment for data augmentation [Lam et al. 2022]

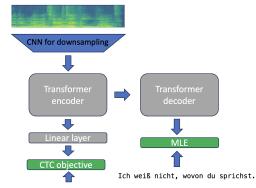
Seq-KD also helps: Results on the CoVoST 2 dataset



- KD: baseline \cup KD-training data
- STR: baseline \cup STR-training data
- KD+STR: baseline \cup KD \cup STR

Improving E2E ST: multi-task learning

Training ST with other sub-tasks in parallel instead of using them sequentially, e.g., CTC^1 loss on ASR task



I don't know what you're talking about

¹Connectionist Temporal Classification [Graves et al. 2006]

Tsz Kin Lam (UEDIN)

Speech Translation (ST)

Improving E2E ST: using pre-trained models

We can use pre-trained models to initialise the ST model, e.g.,

- wav2vec 2.0^1 for initialising the <u>acoustic encoder</u>
- mBART for initialising the <u>translation decoder</u>

Pretrained Modules		wav2vec 2.	0	mBART		
Finetune LayerNorm and Attention						
	Length Adaptor		LayerNorm			
N x	Layer	Norm	Laye	erNorm	${\bf x} N$	
		N	Encode	r Attention		
()	Layer	Norm	LayerNorm			
	Self Att	ention			=	
	Enco	der	De	coder		

Figure: ST model initialisation via pre-trained SSL models [Li et al. 2020]

1 Baevski et al. 2020			
Tsz Kin Lam (UEDIN)	Speech Translation (ST)	6th Sep 2024	30 / 59

Improving E2E ST: bridging the modality gap (I)

Mixed modality training

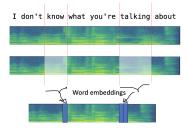


Figure: a sequence of alternating speech and text embeddings.

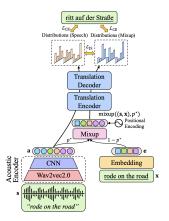
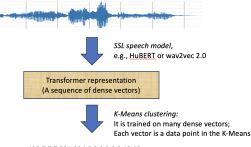


Figure: [Fang et al. 2022]

Improving E2E ST: bridging the modality gap (II)

Speech quantisation [Lakhotia et al. 2021]

(I don't know what you're talking about)

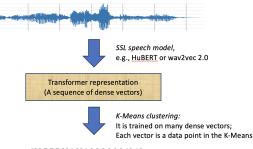


439 7 7 7 234 234 0 0 0 0 0 0 12 12 ...

Improving E2E ST: bridging the modality gap (II)

Speech quantisation [Lakhotia et al. 2021]

(I don't know what you're talking about)



439 7 7 7 234 234 0 0 0 0 0 0 12 12 ...

DSU are the centroid indexes of the SFM model's dense representations.

Heuristics for length reduction in Discrete Speech Units (DSU):

- Merging sequential repetitions, e.g.,
 "439 7 7 7 234 234 0 0 0 12 12" ⇒ "439 7 234 0 12"
- ❷ Byte pair encoding, e.g.,
 "439 7 234 0 12" ⇒ "4397234 012"

Advantages

• Data storage and transmission becomes easier, e.g., can feed more instances to the GPUs

Advantages

- Data storage and transmission becomes easier, e.g., can feed more instances to the GPUs
- Speech generation becomes more feasible
 - ▶ e.g., speech-to-unit, unit-based LM and a unit-based vocoder
 - ▶ no text data is required for speech-to-speech translation

Disadvantages

- The translation pipeline gets lengthy (quantisation and clustering)
- The information lost in quantisation is quite unclear

Disadvantages

- The translation pipeline gets lengthy (quantisation and clustering)
- The information lost in quantisation is quite unclear
- There are more hyper-parameters to tune, e.g.,
 - The hyper-parameters in the K-Means model:
 - $\star\,$ Its training data size and clustering size.
 - $\star\,$ It also require storing the high-dimensional features.
 - The representation layer of the SSL model/SFM to be used for quantisation

Improving E2E ST: putting all together

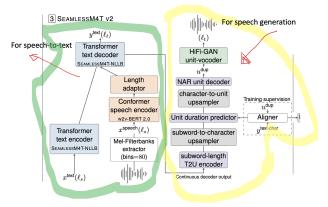


Figure: Seamless-M4T v2 model [Barrault et al. 2023]

Tsz Kin Lam (UEDIN)

Speech Translation (ST)

6th Sep 2024

II: Existing approaches

Integrating Speech into LLM: Discrete Units or Dense Features?

Quantise the speech inputs (choose your DSU symbols wisely),

- Update the tokenizer, e.g., BPE on the DSU
- **②** Expand the vocabulary size of your LLM
- **③** Train the model on the DSU (might need training in multi-stages)

Quantise the speech inputs (choose your DSU symbols wisely),

- Update the tokenizer, e.g., BPE on the DSU
- **②** Expand the vocabulary size of your LLM
- Train the model on the DSU (might need training in multi-stages)
 - ▶ 1st-stage: next-token prediction on the DSU only
 - ▶ 2nd-stage: instruction-like tuning on the DSU-text data which the DSU are the part of the prompts.

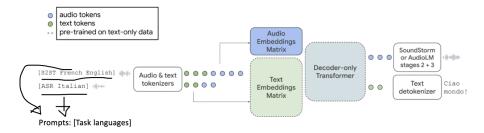
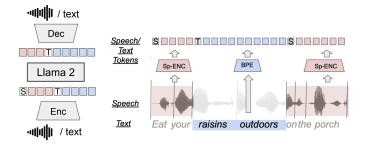
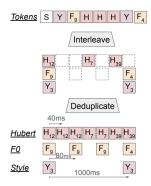


Figure: Illustration of the AudioPaLM model [Rubenstein et al. 2023]



- HiFi GAN unit-vocoder (decoder) is used to support TTS
- Interleaved speech-text sequences are helpful in DS



- HuBERT token for linguistic signals
- Pitch token extracted from VQ-VAE on F0 of speeches
- Style token from SONAR expressive

• Find an acoustic encoder, e.g, mHuBERT and Whisper-encoder.

- Find an acoustic encoder, e.g, mHuBERT and Whisper-encoder.
- Convert the dimension of the speech embedding to suit the embedding dimension of the LLM, e.g., via a linear layer

- Find an acoustic encoder, e.g, mHuBERT and Whisper-encoder.
- Convert the dimension of the speech embedding to suit the embedding dimension of the LLM, e.g., via a linear layer
- Prepend the dense (speech) embeddings to the word embeddings.

- Find an acoustic encoder, e.g, mHuBERT and Whisper-encoder.
- Convert the dimension of the speech embedding to suit the embedding dimension of the LLM, e.g., via a linear layer
- **③** Prepend the dense (speech) embeddings to the word embeddings.
- Train the model, typically via LoRA or its variations.
 - ▶ Unlike DSU, we don't compute the losses on the audio representations.

Speech \rightarrow LLM: Dense Features (II)

Prompting in dense feature integration

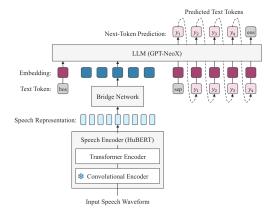


Figure: Hono et. al 2024

Tsz Kin Lam (UEDIN)

Speech Translation (ST)

Speech \rightarrow LLM: Dense Features (III)

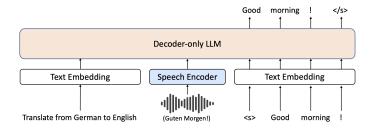


Figure: Huang et. al 2024

Speech \rightarrow LLM: WavLLM

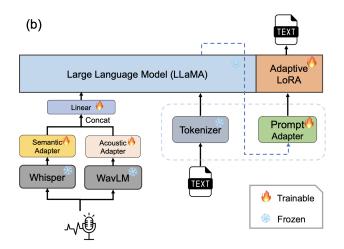


Figure: Hu et. al 2024

Tsz Kin Lam (UEDIN)

Speech Translation (ST)

Speech \rightarrow LLM: Hints From The Tech Giants?

and many more ...

Tsz Kin Lam (UEDIN)

Speech Translation (ST)

6th Sep 2024

Speech \rightarrow LLM: Discrete or Dense features?

Including speech into LLM is a hot topic, but most works lack comparability [Gaido et al. 2024], e.g.,

- The SFM and the LLM, e.g.,
 - AudioPaLM used Universal Speech Model (USM)¹ as its SFM, but USM is not openly accessible.

Speech \rightarrow LLM: Discrete or Dense features?

Including speech into LLM is a hot topic, but most works lack comparability [Gaido et al. 2024], e.g.,

- The SFM and the LLM, e.g.,
 - AudioPaLM used Universal Speech Model (USM)¹ as its SFM, but USM is not openly accessible.
 - ▶ the speech quantisation hyper-parameters are different.

Including speech into LLM is a hot topic, but most works lack comparability [Gaido et al. 2024], e.g.,

- The SFM and the LLM, e.g.,
 - AudioPaLM used Universal Speech Model (USM)¹ as its SFM, but USM is not openly accessible.
 - ▶ the speech quantisation hyper-parameters are different.
 - ▶ There are no direct empirical comparison between these discrete and dense methods

Including speech into LLM is a hot topic, but most works lack comparability [Gaido et al. 2024], e.g.,

- The SFM and the LLM, e.g.,
 - AudioPaLM used Universal Speech Model (USM)¹ as its SFM, but USM is not openly accessible.
 - ▶ the speech quantisation hyper-parameters are different.
 - ▶ There are no direct empirical comparison between these discrete and dense methods
- The training and evaluation data, e.g.,
 - ▶ the amount, the language directions and the number of tasks.
 - the instruction data used in training and inference.

Tsz Kin Lam (UEDIN)

 $^{^{1}}$ [Zhang et al. 2023]

The winning systems at IWSLT¹ (Offline track) S2T (En-De) in the last 5 years:

Year	2020	2021	2022	2023	2024
Winner	End-to-end	End-to-end	Cascaded	Cascaded	*Only Cascaded

¹The International Conference on Speech Language Translation

MBR Decoding: automatic evaluation

System	D	Joint		TED 2024		ITV		Peloton		Accent	
		COMET	BLEU	COMET	BLEU	COMET	BLEU	COMET	BLEU	COMET	BLEU
CMU	U	0.743	18.3	0.862	25.7	0.735	17.3	0.670	11.5	0.705	18.5
HW-TSC	C+	0.731	19.3	0.851	27.4	0.728	17.2	0.652	11.9	0.691	20.7
HW-TSC	U	0.727	19.1	0.849	27.1	0.723	17.3	0.646	11.0	0.690	20.8
HW-TSC	C	0.717	18.5	0.841	26.6	0.712	16.7	0.637	10.4	0.678	20.2
NYA	U	0.695	19.5	0.837	28.1	0.648	15.8	0.616	12.2	0.677	21.7
KIT	C+	0.677	17.5	0.832	27.5	0.618	13.2	0.600	10.2	0.656	19.1

Figure: Official results of the automatic evaluation for the Offline ST Task, English to German.

MBR Decoding: human (src) direct assessment

A flip in ranking for the CMU team in the DA results

	All		TED		ITV		Accent		Peloton	
System	Rank	DA	Rank	DA	Rank	DA	Rank	DA	Rank	DA
HWTSC-LLM	1	84.8	1-2	94.9	1-2	84.7	1-4	76.1	1-4	82.6
HWTSC	2-3	84.2	3-5	92.8	1-3	84.0	1-4	76.8	1-4	81.6
CMU	2-4	83.3	3-5	92.5	2-3	83.1	1-4	75.4	1-4	81.2
NYA	3-4	81.0	1-2	94.7	4	73.9	1-4	77.9	1-4	80.2
KIT	5	76.7	3-5	91.8	5	69.3	5	72.8	5	74.6

Figure: Official DA results for the Offline ST Task, English to German.

MBR Decoding: human (src) direct assessment

A flip in ranking for the CMU team in the DA results

	All		TED		ITV		Accent		Peloton	
System	Rank	DA	Rank	DA	Rank	DA	Rank	DA	Rank	DA
HWTSC-LLM	1	84.8	1-2	94.9	1-2	84.7	1-4	76.1	1-4	82.6
HWTSC	2-3	84.2	3-5	92.8	1-3	84.0	1-4	76.8	1-4	81.6
CMU	2-4	83.3	3-5	92.5	2-3	83.1	1-4	75.4	1-4	81.2
NYA	3-4	81.0	1-2	94.7	4	73.9	1-4	77.9	1-4	80.2
KIT	5	76.7	3-5	91.8	5	69.3	5	72.8	5	74.6

Figure: Official DA results for the Offline ST Task, English to German.

The submitted ST models

- performs well on the TED dataset
- struggle on speeches which are spontaneous, accent-heavy and mixed with background noises

Summary and the future works

- I: How is the translation of speech different from its text?
 - Speech is sparse with acoustic variations \implies modality gap
 - Existing publicly available datasets are small, noisy or rather unrealistic ⇒ data scarcity

II: Existing solutions

• Using data augmentation, multi-task learning, large pretrained models, mixed modality training help to improve E2E ST

II: Existing solutions

- Using data augmentation, multi-task learning, large pretrained models, mixed modality training help to improve E2E ST
- In the case of LLM, speech can be integrated via quantisation or dense feature prepending

II: Existing solutions

- Using data augmentation, multi-task learning, large pretrained models, mixed modality training help to improve E2E ST
- In the case of LLM, speech can be integrated via quantisation or dense feature prepending
- There are more interesting research directions in E2E model, but cascaded model still remains competitive

Many...

- LLM for simultaneous ST
 - ByteDance AI: Towards Achieving Human Parity on End-to-end Simultaneous Speech Translation via LLM Agent

Many...

- LLM for simultaneous ST
 - ByteDance AI: Towards Achieving Human Parity on End-to-end Simultaneous Speech Translation via LLM Agent
- Linguistics or phonetic analysis on ST errors, e.g., Homophones
 - ▶ ACL 2024: Speech Sense Disambiguation: Tackling Homophone Ambiguity in End-to-End Speech Translation

Many...

- LLM for simultaneous ST
 - ByteDance AI: Towards Achieving Human Parity on End-to-end Simultaneous Speech Translation via LLM Agent
- Linguistics or phonetic analysis on ST errors, e.g., Homophones
 - ▶ ACL 2024: Speech Sense Disambiguation: Tackling Homophone Ambiguity in End-to-End Speech Translation
- From the modelling POV, it might not be ST specific, e.g., effect of prosody to Q&A task
 - ACL 2024: Advancing Large Language Models to Capture Varied Speaking Styles and Respond Properly in Spoken Conversations

Bibliography I

- Baevski, Alexei et al. (2020). "wav2vec 2.0: A framework for self-supervised learning of speech representations". In: <u>Advances in neural information processing systems</u> 33, pp. 12449–12460.
- Barrault, Loïc et al. (2023). "Seamless: Multilingual Expressive and Streaming Speech Translation". In: arXiv preprint arXiv:2312.05187.
- Chen, Mingda et al. (July 2023). "BLASER: A Text-Free Speech-to-Speech Translation Evaluation Metric". In: Proceedings of the 61st Annual Meeting of the Association for Compu-Ed. by Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki. Toronto, Canada: Association for Computational Linguistics, pp. 9064–9079. DOI: 10.18653/v1/2023.acl-long.504. URL: https://aclanthology.org/2023.acl-long.504.

Bibliography II

- Fang, Qingkai et al. (2022). "Stemm: Self-learning with speech-text manifold mixup for speech translation". In: arXiv preprint arXiv:2203.10426.
- Gaido, Marco et al. (2024). "Speech Translation with Speech Foundation Models and Large Language Models: What is There and What is Missing?" In: <u>arXiv preprint arXiv:2402.12025</u>.
- Graves, Alex et al. (2006). "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks". In:

Proceedings of the 23rd international conference on Machine learning, pp. 369–376.

Lakhotia et al. (2021). "On generative spoken language modeling from raw audio". In:

Transactions of the Association for Computational Linguistics 9, pp. 1336–1354.

Lam, Tsz Kin, Shigehiko Schamoni, and Stefan Riezler (May 2022). "Sample, Translate, Recombine: Leveraging Audio Alignments for Data Augmentation in End-to-end Speech Translation". In: Proceedings of the 60th Annual Meeting of the Association for Compu Ed. by Smaranda Muresan, Preslav Nakov, and Aline Villavicencio. Dublin, Ireland: Association for Computational Linguistics, pp. 245-254. DOI: 10.18653/v1/2022.acl-short.27. URL: https://aclanthology.org/2022.acl-short.27. Li, Xian et al. (2020). "Multilingual speech translation with efficient finetuning of pretrained models". In: arXiv preprint arXiv:2010.12829.

Bibliography IV

Matusov, Evgeny et al. (2005). "Evaluating Machine Translation Output with Automatic Sentence Segmentation". In: Proceedings of the Second International Workshop on Spoken Language Pittsburgh, Pennsylvania, USA. URL: https://aclanthology.org/2005.iwslt-1.19. Pino, Juan et al. (2019). "Harnessing indirect training data for end-to-end automatic speech translation: Tricks of the trade". In: arXiv preprint arXiv:1909.06515. Rubenstein, Paul K et al. (2023). "Audiopalm: A large language model that can speak and listen". In: arXiv preprint arXiv:2306.12925. Salesky, Elizabeth et al. (2018). "Towards fluent translations from disfluent speech". In: 2018 IEEE Spoken Language Technology Workshop (SLT). IEEE, pp. 921–926.

- Tsiamas, Ioannis et al. (2022). "Shas: Approaching optimal segmentation for end-to-end speech translation". In: arXiv preprint arXiv:2202.04774.
- Zhang, Yu et al. (2023). "Google usm: Scaling automatic speech recognition beyond 100 languages". In: arXiv preprint arXiv:2303.01037.
- Zhou, Giulio et al. (2024). "Prosody in Cascade and Direct Speech-to-Text Translation: a case study on Korean Wh-Phrases". In: <u>arXiv preprint arXiv:2402.00632</u>.