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Introduction: What to expect

What to expect:

e data and modelling aspects of ST for MT researchers who are
interested in the translation of speech

e a recent development of ST in the field, e.g., integrating speech
into LLM
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Introduction: What to expect

What to expect:

e data and modelling aspects of ST for MT researchers who are
interested in the translation of speech

e a recent development of ST in the field, e.g., integrating speech
into LLM

What is not included:

@ not much about speech-to-speech translation

e specific applications, e.g., simultaneous ST, subtitling and dubbing
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Introduction: What to expect

What to expect:

e data and modelling aspects of ST for MT researchers who are
interested in the translation of speech

e a recent development of ST in the field, e.g., integrating speech
into LLM

What is not included:

@ not much about speech-to-speech translation

e specific applications, e.g., simultaneous ST, subtitling and dubbing

(linguistic) analysis of the ST errors

e the mathematical details, e.g., Fast-Fourier Transform (FFT) and
Connectionist Temporal Classification (CTC)
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I: How is the translation of speech different
from its text?




Speech translation is cross-lingual and cross-modal

(I don't know what you're talking about)

Speech-to-Text (S2T) ‘ ‘ Speech-to-Speech (S2S)
Ich weiR nicht, wovon du sprichst. WWWW
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Unique properties of speech signals

@ Speech signal is sparse, i.e., low information content per unit time
(An audio file of 2.2 seconds in 16kHz has ~ 35K time steps ).

1

npoBepk a _ H allero_3/m i Hepa , _ MOXHD_roeopk 6bICTPO

Figure: Speech-to-text alignment [Barrault et al. 2023]
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Unique properties of speech signals

@ Speech signal is sparse, i.e., low information content per unit time
(An audio file of 2.2 seconds in 16kHz has ~ 35K time steps ).

1

_ npoBepk a _ H allero_3/m i Hepa , _ MOXHD_roeopk 6bICTPO

Figure: Speech-to-text alignment [Barrault et al. 2023]

o The file format matters, e.g., the sampling rate and the bit depth.
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Unique properties of speech signals

@ Speech signal is sparse, i.e., low information content per unit time
(An audio file of 2.2 seconds in 16kHz has ~ 35K time steps ).

1

npoBepk a _ H allero_3/m i Hepa , _ MOXHD_roeopk 6bICTPO

Figure: Speech-to-text alignment [Barrault et al. 2023]

o The file format matters, e.g., the sampling rate and the bit depth.

o Background noises may appear in the speech.
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Unique properties of speech signals

e Paralinguistic signals, such as prosody and accents, matter

syllables
(5/7)

(c) Who joined in? (wh-question)

Figure: Prosody is crucial in the translation of Korean speech [Zhou et al. 2024]
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Unique properties of speech signals

@ Speech is often disfluent, esp. in spontaneous speech:

Hesitation eh, eh, eh, um, yo pienso que es asi.
uh, uh, uh, um, i think it’s like that.
Repetition Y, y no cree que, que, que,
And, and I don’t believe that, that, that
Correction no, no puede, no puedo irme para ...
no, it cannot, I cannot go there ...
False start  porque qué va, mja ya te acuerda que ...
because what is, mhm do you recall now that ...

Figure: Types and examples of disfluency [Salesky et al. 2018]
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ST is low-resource

Data ‘ ‘ #utterances ‘ #words (src+tgt)
En-Fr 280K 10.6M
MuST-C En-De | 234K 8.3M
Fr-En 207K 4M
CoVosT2 De-En | 127K 2M
(MT) Wiki-Matrix | De-En | 6.2M | 196M

Table: Training data statistics of two common S2TT data and a MT data

Tsz Kin Lam (UEDIN) Speech Translation (ST) 6th Sep 2024 9/59



ST is low-resource: CoVoST-2

e Based on CommonVoice (v4) = read speech

e The sentence structure is simple (De-En: 127K sentences with
only 2M words (src+tgt):

@ “I am going to shower now.”

@ “I am happy when i can make others happy.”
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ST is low-resource: CoVoST-2

e Based on CommonVoice (v4) = read speech

e The sentence structure is simple (De-En: 127K sentences with
only 2M words (src+tgt):

@ “I am going to shower now.”

@ “I am happy when i can make others happy.”

© “Punishments of this kind are a means of targeted terror, if they are
carried out in such a way as to have an effect on the public.”

@ “The plans of the head of the municipal planning and building
control office Erich Heinicke will be defining for the townscape of
the post-war era.”
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ST is low-resource: MuST-C

e Based on English TED talks = more realistic
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ST is low-resource: MuST-C

e Based on English TED talks = more realistic

e Inconsistent annotations, existence of non-verbal symbols,
segmentation error...:

[En] we are 12 billion lightyears from the edge
[De]l A Wir sind 12 Milliarden Lichtjahre entfernt vom Rand 1

[En] I everyones out in merry manhattan in January
[De]l 7 Ganz Manhattan ist draufen und wunderbar - im Januar. I

[En] and the second one thats a violin
[De]l Und nun den zweiten. ()} Violine) Das ist eine Geige.

[En] kb thank you
[De] SJ: 0h! (Applaus) KB: Danke.
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Inference: audio segmentation (I)

Can we translate the entire recorded lecture (audio) in one
forward-pass?

@ It is an audio sequence of >60 minutes

@ In training, the sequence length rarely exceed 30! seconds.

Tt is about 3K time steps if log Mel spectrogram features are used
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Inference: audio segmentation (I)

Can we translate the entire recorded lecture (audio) in one
forward-pass?

@ It is an audio sequence of >60 minutes
@ In training, the sequence length rarely exceed 30! seconds.

© We need to segment the audio sequence into smaller chunks!

Tt is about 3K time steps if log Mel spectrogram features are used
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Inference: audio segmentation (I)

Some common segmentation methods are:

o Length-based, e.g., for every 3s.
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Inference: audio segmentation (I)

Some common segmentation methods are:

o Length-based, e.g., for every 3s.

o Content-based, e.g, pause that is detected by voice activity
detection.
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Inference: audio segmentation (I)

Some common segmentation methods are:

o Length-based, e.g., for every 3s.

o Content-based, e.g, pause that is detected by voice activity
detection.

e Hybrid approach that is based on both length-based and
content-based.

e Neural-network-based: Supervised Hybrid Audio Segmentation
(SHAS) [Tsiamas et al. 2022]
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Sentence-level evaluation for S2TT

e Each ST model has their own speech segmentation method, so
each model could generate different number of outputs.

e For sentence-level evaluation at IWSLT, we need to re-segment the
outputs to match the number of references.

' [Matusov et al. 2005]
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Sentence-level evaluation for S2TT

e Each ST model has their own speech segmentation method, so
each model could generate different number of outputs.

e For sentence-level evaluation at IWSLT, we need to re-segment the
outputs to match the number of references.

o The re-segmentation is done by a minimum WER! —
re-segmentation error.

! [Matusov et al. 2005]
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Automatic evaluation metrics

In S2T translation, the automatic metrics are the same as MT:
e n-gram matching: BLEU and chrF

@ neural metrics: COMET

» might require ASR/BT to get the transcripts
» punctuation insertion or not to the transcripts

'[Chen et al. 2023

Tsz Kin Lam (UEDIN) Speech Translation (ST) 6th Sep 2024

15 /59



Automatic evaluation metrics

In S2T translation, the automatic metrics are the same as MT:

e n-gram matching: BLEU and chrF
@ neural metrics: COMET

» might require ASR/BT to get the transcripts
» punctuation insertion or not to the transcripts

In S2S translation,
e transcribe and MT-evaluate: ASR-BLEU and ASR-chrF

@ neural metrics: BLASER!

'[Chen et al. 2023
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Two major issues

e Data scarcity

e Modality gap between speech and text signal
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II: Existing approaches




Feeding speech into Transformer: Speech input formats

(2)

Clustering, e.g. K-means (4)
DSU: [#439, #7, #234, #110, ...]
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Feeding speech into Transformer: Length adapter

Recap: Speech is sparse and long.

(I don't know what you're talking about)

2.25= 35.2K t-steps
Sample rate=16KHz
Fast Fourier Transform (FFT)
+ Mel scale filters

Length Adapter
Feature extractor (convolutional layers)

About 220 t-steps
Frame shift=10ms

About 55 t-steps
(length reduction of 4)

‘ Transformer encoder layers
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Cascaded model (1)

Recap: ST is a cross-lingual and probably a cross-modal problem.

o Can we decompose ST into simpler related sub-tasks?
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Cascaded model (I)

Recap: ST is a cross-lingual and probably a cross-modal problem.

o Can we decompose ST into simpler related sub-tasks?

Cascaded ST: It converts ST into a task of running ASR and MT
tasks sequentially (Text-To-Speech is required in S2S).

I don't know what you're Ich weiB nicht,
talking about wovon du sprichst.

= W

Figure: An illustration of the cascaded ST model.
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Cascaded model (II)

Advantage:

e The training is easier since the cross-lingual and -modal parts are
learnt independently.

» There are more training data for the sub-tasks.
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Cascaded model (II)

Advantage:

e The training is easier since the cross-lingual and -modal parts are

learnt independently.
» There are more training data for the sub-tasks.

e Output correction and Human-in-the-loop become simpler by
inspecting the intermediate transcripts(/translations).
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Cascaded model (II)

Advantage:

e The training is easier since the cross-lingual and -modal parts are

learnt independently.
» There are more training data for the sub-tasks.

e Output correction and Human-in-the-loop become simpler by
inspecting the intermediate transcripts(/translations).

o It can leverage foundation models easily.
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Cascaded model (II1)

Disadvantage:
e The translation pipeline is lengthy. This might cause
» higher inference cost

» error propagation from the ASR(/MT) model(s).

» loss of speech information, e.g., prosody in the ASR step.

o Cascaded model is not very parameter efficient.
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Direct end-to-end (E2E) model (I)

(I don't know what you're talking about)

4

I am a direct end-to-end ST model

since | can generate the desired output
in *one forward pass

Speech-to-Text (S2T) ‘ ‘ Speech-to-Speech (S2S)
|
Ich weiB nicht, wovon du sprichst. W%Wp

Figure: An illustration of the direct end-to-end (E2E) ST model.
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Direct E2E model (II)

Advantage:
e Translation is done in one forward-pass. This helps to

> give lower latency in translation, e.g., (very important) in real-time
speech translation.

» avoid error propagation.

» preserve speech information for translation.

e End-to-end ST is more parameter efficient.
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Direct E2E model (II1)

Disadvantage:

@ The amount of paired ST data is limited.

e End-to-end ST model is harder to optimise.
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Direct E2E model (II1)

Disadvantage:

@ The amount of paired ST data is limited.

e End-to-end ST model is harder to optimise.

Regardless, E2E model is the main publieation research direction now!
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Improving E2E ST: data augmentation (DA)

We can generate more data via related task’s model(s) and paired data:

External
R, -, ITS

Synthetic ; mOdel :
{ English audio‘? English text :
{ English audio English text < ; French text

MT model?

———————trained on:
3 R . EnFr .| Synthetic
{ English audio i English text ) French text

End-to-end End-to-end

French text

A
Y-

MT data

A
Y

AST data

data

A
A

Figure: Pseudo ST data generation [Pino et al. 2019]
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Alignment helps, even in data augmentation

Suffix Memory (audio+text)

‘\‘.......................im

two children playing on a statue on' a statue i udad
= ... with pokemon cards
... volleyball in a park

‘i,

a %
L L LT
two children playing volleyball in a park d
A N )
> MT-System Zwei Kinder spielen Volleyball in einem Park. )
Figure: Acoustic alignment for data augmentation [Lam et al. 2022]
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Speech Translation (ST) 6th Sep 2024

Tsz Kin Lam (UEDIN



Seq-KD also helps: Results on the CoVoST 2 dataset

CoVoST 2
BLEU Improvement

En-De (17.22) En-Ca(23.15) En-Tr(10.31) En-Cy (25.46) En-Sl (15.64)

o KD: baseline U KD-training data
o STR: baseline U STR-training data
e KD+STR: baseline U KD U STR
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Improving E2E ST: multi-task learning

Training ST with other sub-tasks in parallel instead of using them
sequentially, e.g., CTC! loss on ASR task

L 4

Transformer -
encoder

¥
t*

Transformer
decoder

Y

Ich weiB nicht, wovon du sprichst.

I don't know what you're talking about

! Connectionist Temporal Classification [Graves et al. 2006]
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Improving E2E ST: using pre-trained models

We can use pre-trained models to initialise the ST model, e.g.,

o wav2vec 2.0! for initialising the acoustic encoder

e mBART for initialising the translation decoder

Pretrained wav2vec 2.0 mBART
Modules

Finetune LayerNorm and Attention

Length

Pty LayerNorm
Nx LayerNorm LayerNorm xN
Encoder Attention
LayerNorm LayerNorm
4 )) Self Attention @
Encoder Decoder

Figure: ST model initialisation via pre-trained SSL models [Li et al. 2020]

1Baevski et al. 2020
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Tsz Kin Lam (UEDIN

Improving E2E ST: bridging the modality gap (I)

Mixed modality training

I don't|know what you're talking| about

Figure: a sequence of alternating
speech and text embeddings.

Speech Translation (ST)

ritt auf der StraBe

L, Lee
Distributions (Speech) Distributions (Mixup)

mixup((s, x),p*)
@ Positional

T oN H Embedding
Wav2vec2.0 \ ! rode on the road |x

Acoustic
Encoder

Figure: [Fang et al. 2022]
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Improving E2E ST: bridging the modality gap (II)

Speech quantisation |[Lakhotia et al. 2021]

(I don't know what you're talking about)
SSL speech model,
e.g., HUBERT or wav2vec 2.0

Transformer representation
(A sequence of dense vectors)

K-Means clustering:
Itis trained on many dense vectors;

Each vector is a data point in the K-Means

4397772342340000001212...

Tsz Kin Lam (UEDIN) Speech Translation (ST) 6th Sep 2024 32/59



Improving E2E ST: bridging the modality gap (II)

Speech quantisation |[Lakhotia et al. 2021]

(I don't know what you're talking about)
SSL speech model,
e.g., HUBERT or wav2vec 2.0

Transformer representation
(A sequence of dense vectors)

K-Means clustering:
Itis trained on many dense vectors;

Each vector is a data point in the K-Means

4397772342340000001212...

DSU are the centroid indexes of the SFM model’s dense
representations.
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Improving E2E ST: bridging the modality gap (II)

Heuristics for length reduction in Discrete Speech Units (DSU):
@ Merging sequential repetitions, e.g.,
“439 77723423400012 127 = “439 7 234 0 127

@ Byte pair encoding, e.g.,
“439 7234 0127 = “4397234 012"
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Improving E2E ST: speech quantisation

Advantages

e Data storage and transmission becomes easier, e.g., can feed more
instances to the GPUs
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Improving E2E ST: speech quantisation

Advantages

e Data storage and transmission becomes easier, e.g., can feed more
instances to the GPUs

@ Speech generation becomes more feasible
> e.g., speech-to-unit, unit-based LM and a unit-based vocoder

» no text data is required for speech-to-speech translation
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Improving E2E ST: speech quantisation

Disadvantages

e The translation pipeline gets lengthy (quantisation and clustering)

@ The information lost in quantisation is quite unclear
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Improving E2E ST: speech quantisation

Disadvantages

e The translation pipeline gets lengthy (quantisation and clustering)

@ The information lost in quantisation is quite unclear

o There are more hyper-parameters to tune, e.g.,
@ The hyper-parameters in the K-Means model:

* Its training data size and clustering size.

* It also require storing the high-dimensional features.

@ The representation layer of the SSL model/SFM to be used for
quantisation
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Improving E2E ST: putting all together

[3] SEAMLESSMAT v2 ‘MH'”“””, For speech generation
Yo (L) @)
For speech-to-text [ Transformer | 1

< text decoder RiOAN ]
SEAMLESSM4T-NLLB w

udup

Length NAR unit decoder)

adaptor P .
to-unit

Training supervision
P i

Aligner ]3—‘

Conformer
speech encoder
Ww2v-BERT 2.0

upsampler

|Unit duration predictor

=

I
[

Transformer e (L,) subword-to-character] |__ ¥ ‘
text encoder ["Mel-Filterbanks upsampler
SEAMLESSM4T-NLLB extractor
(bins=80) subword-length
‘ T2U encoder
2o(g,) \H\ H\"“”"' " Gontinuous decoder output

Figure: Seamless-M4T v2 model [Barrault et al. 2023]
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IT: Existing approaches
Integrating Speech into LLM: Discrete Units or Dense Features? J




Speech — LLM: Discrete (Speech) Units

Quantise the speech inputs (choose your DSU symbols wisely),
@ Update the tokenizer, e.g., BPE on the DSU

@ Expand the vocabulary size of your LLM

@ Train the model on the DSU (might need training in multi-stages)
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Speech — LLM: Discrete (Speech) Units

Quantise the speech inputs (choose your DSU symbols wisely),
@ Update the tokenizer, e.g., BPE on the DSU

@ Expand the vocabulary size of your LLM

@ Train the model on the DSU (might need training in multi-stages)
» 1st-stage: next-token prediction on the DSU only

» 2nd-stage: instruction-like tuning on the DSU-text data which the
DSU are the part of the prompts.
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Speech — LLM: AudioPaLM

audio tokens
text tokens
pre-trained on text-only data

100

1 SoundStorm
{© © O| orAudiolM
] stages 2 +3

Decoder-only

[S2ST French English] Transformer
—_—

H Text
i Embeddings
Matrix

Ciao
mondo!

[ASR Italian]

Prompts: [Task languages]

Figure: Ilustration of the AudioPaLM model [Rubenstein et al. 2023]
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Speech — LLM: Spirit-LM

--|||I||||| / text

Dec
Speech/ DDDDDDDDDDDDDDDDDDDD

I Text

Tokens o
SODDTEDDD ‘4 H H <‘
Enc *”
Text Eat your raisins outdoors onthe porch
e HiFi GAN unit-vocoder (decoder) is used to support TTS

o Interleaved speech-text sequences are helpful in DS

Speech

il / text
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Speech — LLM: Spirit-LM 11

Tokens [ [V][Fo[HIRTHIVIF] o HuBERT token for
linguistic signals

@:’
e Pitch token extracted
’ from VQ-VAE on FO of
40ms speeches
Hubert
Eo  [R [F e Style token from
Style 1000ms SONAR expressive
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Speech — LLM: Dense Features (I)

Apart from the DSU integration, we can directly prepend the dense
(acoustic) features:

@ Find an acoustic encoder, e.g, mHuBERT and Whisper-encoder.
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Speech — LLM: Dense Features (I)

Apart from the DSU integration, we can directly prepend the dense
(acoustic) features:

@ Find an acoustic encoder, e.g, mHuBERT and Whisper-encoder.

@ Convert the dimension of the speech embedding to suit the
embedding dimension of the LLM, e.g., via a linear layer
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Speech — LLM: Dense Features (I)

Apart from the DSU integration, we can directly prepend the dense
(acoustic) features:

@ Find an acoustic encoder, e.g, mHuBERT and Whisper-encoder.

@ Convert the dimension of the speech embedding to suit the
embedding dimension of the LLM, e.g., via a linear layer

@ Prepend the dense (speech) embeddings to the word embeddings.
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Speech — LLM: Dense Features (I)

Apart from the DSU integration, we can directly prepend the dense
(acoustic) features:

@ Find an acoustic encoder, e.g, mHuBERT and Whisper-encoder.

@ Convert the dimension of the speech embedding to suit the
embedding dimension of the LLM, e.g., via a linear layer

@ Prepend the dense (speech) embeddings to the word embeddings.

@ Train the model, typically via LoRA or its variations.

» Unlike DSU, we don’t compute the losses on the audio
representations.
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Speech — LLM: Dense Features (II)

Prompting in dense feature integration

Predlcted Text Tokens

Next-Token Prediction: ?, @. ?. 93 ’

LLM (GPT-NeoX)

Embedding: = [ N | [ N |

Text Token:

Bridge Network

speseh represensaion: [ ] ] 000000
Speech Encoder (HuBERT)

Transformer Encoder

# Convolutional Encoder

Input Speech Waveform
Figure: Hono et. al 2024

Tsz Kin Lam (UEDIN Speech Translation (ST) 6th Sep 2024 43 /59



Speech — LLM: Dense Features (I1I)

Good morning ! </s>
I N I
‘ Decoder-only LLM
I I I I I I
[ Text Embedding ] [ Speech Encoder ] [ Text Embedding
I
| e A
Translate from German to English (Guten Morgen!) <s> Good morning !

Figure: Huang et. al 2024
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Speech — LLM: WavLLM

(N
(b) TEXT
P . C J
\ i t 7
] -
. Adaptive
1
Large Language Model (LLaMA) : LoRA
i
1
| -
[ Tokenizer } X E i;(;rr:;;t@}
[ Semantic’} } [ Acoustic % ] ! Ap
Adapter Adapter O !
t t
Whisper WavLM @
(l, Trainable

? Frozen

Figure: Hu et. al 2024
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Speech — LLM: Hints From The Tech Giants?

Amazon -

SpeechVerse ll Microsoft 2023 -
Viola

= ByteDance (ASR/ST)
Google 2023 -
AudioPalm
[ Dense Features BER Google 2023 - SLM | Discrete Units g
Google 2024 -
Gemini
Meta 2023 (ASR)
Meta 2024 -
Microsoft 2024 - SpiRit-LM

WavLLM

and many more ...
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Speech — LLM: Discrete or Dense features?

Including speech into LLM is a hot topic, but most works lack
comparability [Gaido et al. 2024], e.g.,

@ The SFM and the LLM, e.g.,

» AudioPal.M used Universal Speech Model (USM)! as its SFM, but
USM is not openly accessible.

'[Zhang et al. 2023
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Speech — LLM: Discrete or Dense features?

Including speech into LLM is a hot topic, but most works lack
comparability [Gaido et al. 2024], e.g.,

@ The SFM and the LLM, e.g.,

» AudioPal.M used Universal Speech Model (USM)! as its SFM, but
USM is not openly accessible.

» the speech quantisation hyper-parameters are different.
» There are no direct empirical comparison between these discrete

and dense methods

o The training and evaluation data, e.g.,
» the amount, the language directions and the number of tasks.

» the instruction data used in training and inference.

'[Zhang et al. 2023

Tsz Kin Lam (UEDIN) Speech Translation (ST) 6th Sep 2024 47 /59



Cascade or E2E: Which one is better?

The winning systems at IWSLT! (Offline track) S2T (En-De) in the
last 5 years:

Year 2020 2021 2022 2023 2024
Winner End-to-end End-to-end  Cascaded Cascaded *Only
Cascaded

!The International Conference on Speech Language Translation
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MBR Decoding: automatic evaluation

System | D Joint TED 2024 ITV Peloton Accent

COMET | BLEU | COMET | BLEU | COMET | BLEU | COMET | BLEU | COMET | BLEU
I. CMU U 0.743 183 0.862 25.7 0.735 17.3 0.670 11.5 0.705 185 1]
HW-TSC | C* 0.731 19.3 0.851 274 0.728 172 0.652 11.9 0.691 20.7

HW-TSC | U 0.727 19.1 0.849 271 0.723 173 0.646 11.0 0.690 20.8
HW-TSC | C 0.717 18.5 0.841 26.6 0.712 16.7 0.637 10.4 0.678 20.2
NYA 8] 0.695 195 0.837 28.1 0.648 15.8 0.616 122 0.677 21.7
KIT C* | 0677 17.5 0.832 275 0.618 132 0.600 10.2 0.656 19.1

Figure: Official results of the automatic evaluation for the Offline ST Task,
English to German.
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MBR Decoding: human (src) direct assessment

A flip in ranking for the CMU team in the DA results

All TED ITV Accent Peloton
System Rank DA Rank DA Rank DA Rank DA Rank DA
HWTSC-LLM 1 848 12 949 12 847 14 761 14 826
HWTSC 2-3 842 3-5 928 13 840 14 768 1-4 816
[cvo 24 833 35 925 23 831 14 754 14 812
NYA 34 810 12 947 4 39 14 719 14 802
KIT 5 767 35 918 5 69.3 5 728 5 74.6

Figure: Official DA results for the Offline ST Task, English to German.
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MBR Decoding: human (src) direct assessment

A flip in ranking for the CMU team in the DA results

All TED ITV Accent Peloton
System Rank DA Rank DA Rank DA Rank DA Rank DA
HWTSC-LLM 1 848 12 949 12 847 14 761 14 826
HWTSC 2-3 842 3-5 928 13 840 14 768 1-4 816
[cvo 24 833 35 925 23 831 14 754 14 812
NYA 34 810 12 947 4 39 14 719 14 802
KIT 5 767 35 918 5 69.3 5 728 5 74.6

Figure: Official DA results for the Offline ST Task, English to German.

The submitted ST models
e performs well on the TED dataset

@ struggle on speeches which are spontaneous, accent-heavy and
mixed with background noises
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Summary and the future works




Summary [

I: How is the translation of speech different from its text?

@ Speech is sparse with acoustic variations = modality gap

e Existing publicly available datasets are small, noisy or rather
unrealistic = data scarcity
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Summary II

IT: Existing solutions

o Using data augmentation, multi-task learning, large pretrained
models, mixed modality training help to improve E2E ST
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Summary II

IT: Existing solutions

o Using data augmentation, multi-task learning, large pretrained
models, mixed modality training help to improve E2E ST

o In the case of LLM, speech can be integrated via quantisation or
dense feature prepending

@ There are more interesting research directions in E2E model, but
cascaded model still remains competitive
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Future works

Many...
o LLM for simultaneous ST

> ByteDance AI: Towards Achieving Human Parity on End-to-end Simultaneous
Speech Translation via LLM Agent
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Future works

Many...
o LLM for simultaneous ST

> ByteDance AI: Towards Achieving Human Parity on End-to-end Simultaneous
Speech Translation via LLM Agent

e Linguistics or phonetic analysis on ST errors, e.g., Homophones

> ACL 2024: Speech Sense Disambiguation: Tackling Homophone Ambiguity in
End-to-End Speech Translation

e From the modelling POV, it might not be ST specific, e.g., effect
of prosody to Q&A task

> ACL 2024: Advancing Large Language Models to Capture Varied Speaking
Styles and Respond Properly in Spoken Conversations

Tsz Kin Lam (UEDIN) Speech Translation (ST) 6th Sep 2024 54 /59



Bibliography I

[ Baevski, Alexei et al. (2020). “wav2vec 2.0: A framework for
self-supervised learning of speech representations”. In:
Advances in neural information processing systems 33,
pp. 12449-12460.

[ Barrault, Loic et al. (2023). “Seamless: Multilingual Expressive and
Streaming Speech Translation”. In:
arXiv preprint arXiv:2312.05187.

[ Chen, Mingda et al. (July 2023). “BLASER: A Text-Free
Speech-to-Speech Translation Evaluation Metric”. In:
Proceedings of the 61st Annual Meeting of the Association for Compu
Ed. by Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki.
Toronto, Canada: Association for Computational Linguistics,
pp- 9064-9079. por: 10.18653/v1/2023.acl-1long.504. URL:
https://aclanthology.org/2023.acl-long.504.

Tsz Kin Lam (UEDIN Speech Translation (ST) 6th Sep 2024 55 /59


https://doi.org/10.18653/v1/2023.acl-long.504
https://aclanthology.org/2023.acl-long.504

Bibliography II

[ Fang, Qingkai et al. (2022). “Stemm: Self-learning with speech-text
manifold mixup for speech translation”. In:
arXiv preprint arXiv:2203.10426.

[d Gaido, Marco et al. (2024). “Speech Translation with Speech
Foundation Models and Large Language Models: What is There
and What is Missing?” In: arXiv preprint arXiv:2402.12025.

[4 Graves, Alex et al. (2006). “Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural
networks”. In:

Proceedings of the 23rd international conference on Machine learning,
pp. 369-376.

[d Lakhotia et al. (2021). “On generative spoken language modeling
from raw audio”. In:

Transactions of the Association for Computational Linguistics 9,
pp- 1336-1354.

Tsz Kin Lam (UEDIN Speech Translation (ST) 6th Sep 2024 56 / 59



Bibliography III

[§ Lam, Tsz Kin, Shigehiko Schamoni, and Stefan Riezler (May 2022).
“Sample, Translate, Recombine: Leveraging Audio Align-
ments for Data Augmentation in End-to-end Speech Translation”. In:
Proceedings of the 60th Annual Meeting of the Association for Compt
Ed. by Smaranda Muresan, Preslav Nakov, and Aline Villavicencio.
Dublin, Ireland: Association for Computational Linguistics,
pp- 245-254. DOI: 10.18653/v1/2022.acl-short.27. URL:
https://aclanthology.org/2022.acl-short.27.

[3 Li, Xian et al. (2020). “Multilingual speech translation with
efficient finetuning of pretrained models”. In:
arXiv preprint arXiv:2010.12829.

Tsz Kin Lam (UEDIN Speech Translation (ST) 6th Sep 2024 57 /59


https://doi.org/10.18653/v1/2022.acl-short.27
https://aclanthology.org/2022.acl-short.27

Bibliography IV

[d Matusov, Evgeny et al. (2005). “Evaluating Machine Translation
Output with Automatic Sentence Segmentation”. In:

Proceedings of the Second International Workshop on Spoken Langua;
Pittsburgh, Pennsylvania, USA. URL:
https://aclanthology.org/2005.iwslt-1.19.

[4 Pino, Juan et al. (2019). “Harnessing indirect training data for
end-to-end automatic speech translation: Tricks of the trade”. In:
arXiv preprint arXiv:1909.06515.

[ Rubenstein, Paul K et al. (2023). “Audiopalm: A large language
model that can speak and listen”. In:
arXiv preprint arXiv:2306.12925.

[4 Salesky, Elizabeth et al. (2018). “Towards fluent translations from
disfluent speech”. In:

2018 IEEE Spoken Language Technology Workshop (SLT). IEEE,
pp- 921-926.

Tsz Kin Lam (UEDIN Speech Translation (ST) 6th Sep 2024 58 /59


https://aclanthology.org/2005.iwslt-1.19

Bibliography V

[4 Tsiamas, Toannis et al. (2022). “Shas: Approaching optimal
segmentation for end-to-end speech translation”. In:
arXiv preprint arXiv:2202.04774.

[d Zhang, Yu et al. (2023). “Google usm: Scaling automatic speech
recognition beyond 100 languages”. In:
arXiv preprint arXiv:2303.01037.

[4 Zhou, Giulio et al. (2024). “Prosody in Cascade and Direct
Speech-to-Text Translation: a case study on Korean Wh-Phrases”.
In: arXiv preprint arXiv:2402.00632.

Tsz Kin Lam (UEDIN) Speech Translation (ST) 6th Sep 2024 59 / 59



	Introduction: What to expect
	I: How is the translation of speech different from its text?
	II: Existing approaches
	Summary and the future works
	References

