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What This Presentation Is About and Is Not About

● Goal: Provide an overview of the key knowledge distillation methods for 
Machine Translation

● What this is not: Exhaustive

It’s impossible to cover all related papers in one presentation

● What we cover: 
Knowledge distillation explicitly applied on Autoregressive NMT models
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Papers Trend: NMT   , KD    , KD for NMT🥴
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Theoretical Framework: Survey
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● We have conducted a survey of Knowledge Distillation for Machine Translation (KD4MT)
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This talk

I. Introduction
II. Methods

III. Applications
IV. KD4MT @ Helsinki-NLP



Introduction
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Introduction

Rapid Advances in NLP and MT: The 
Trend Toward Larger Models

● Increasing model size:
○ Better translation quality 
○ Greater multilingual capabilities
○ Increased robustness 
○ Best results with: Ensemble Models, 

Mixture of Experts, or Large Networks
● Example: NLLB can translate 

across 202 languages

7

Lu et. al (July 2024)

https://arxiv.org/abs/2407.05975


Introduction

● Example: NLLB can translate across 202 
languages but raises significant concerns 

● Challenges of Large-Scale Models:
○ Accessibility Issues:

■ Limited computational resources to train 
and run these models

■ Difficulty deploying on edge devices
○ Environmental Impact:

■ Higher energy consumption
■ Higher carbon footprint

● How can we reduce the size of models 
while maintaining their high level of 
performance

8

Wu et al. (June 2024)

https://arxiv.org/pdf/2401.06468
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Balancing Model Size and Performance

How can we reduce the size of models 
without major drop in performance?
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LARGE MODEL

What is Knowledge Distillation?

● Transferring the knowledge from a (set of) 
large model(s) to a smaller model w/o 
significant loss in performance.

● The small model is a student that learns from 
the large teacher model by imitating the 
teacher predictions. 

● Advantages of having a student model: 
○ reduced computational demands
○ maintaining performance in resource-constrained 

environments.

13
SMALL 
MODEL

Knowledge
Distillation



How is KD performed for NMT models?
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How is KD performed for NMT models?

Two families of methods

● Response-Based Methods
○ Focus on the final predictions of the 

teacher model
○ Examples: Word-Level KD, 

Sequence-Level KD
● Feature-Based Methods

○ Transfer knowledge from intermediate 
layers of the teacher model to the 
student model

○ Examples: Layer-wise supervision, 
weight distillation
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Response-based Methods
Word-level KD
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● Objective:
○ The student model is trained to output a similar distribution as the teacher model for every token.

● Method:
○ The loss between the student model and the teacher probability distribution is minimized, instead of using the observed data directly.

Auto-regressive Negative Log-Likelihood (NLL) Loss:

Having access to a teacher distribution

● Final Loss: 

● Practical Implementation: At each time step, Word-KD computes the predictions from both the student and the teacher, 
and then calculates the relevant losses.
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Variants of Word-KD

Problem: Word-KD performance result in a 
performance drop between teacher and student

Why so?
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Variants of Word-KD

Problem: Word-KD performance result in a 
performance drop between teacher and student

Why so?

Capacity Gap Problem
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Teacher Student

● when the size gap between 
the teacher and student 
increases, training the 
student using KD becomes 
more difficult

● size gap → performance gap



Variants of Word-KD
Problem: Word-KD performance result in a 
performance drop between teacher and student
Objective: Refine the process of knowledge transfer
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Variants of Word-KD
Problem: Word-KD performance result in a 
performance drop between teacher and student
Objective: Refine the process of knowledge transfer

Key Methods:
1. Annealing Distillation (Jafari et al., 2021)

ion in BLEU scores

3030

Teacher Student

○ Incrementally introduce soft targets from the 
teacher to the student at varying 
temperatures using MSE loss

○ Smooths the knowledge transfer process, 
bridging the capacity gap



Variants of Word-KD
Problem: Word-KD performance result in a 
performance drop between teacher and student
Objective: Refine the process of knowledge transfer

Key Methods:
2. Selective Distillation (Wang et al., 2021)
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Teacher Student

○ Distilling knowledge from all samples is not 
always optimal

○ Word CE measures how the student model 
agrees with the golden label

○ Words with large CE are more difficult to learn 
and get extra supervision signal from teacher 
(i.e., distillation)
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Variants of Word-KD
Problem: Word-KD performance result in a 
performance drop between teacher and student
Objective: Refine the process of knowledge transfer

Key Methods:
3. Top Information Enhanced-KD (Zhang et al., 2023a)

Prioritizes learning the highest probability predictions from the 
teacher (top-1 information)

○ Outperforms selective and annealing distillation in 
BLEU scores

3333

Teacher Student

○ The knowledge transferred during KD actually comes from 
the top-1 predictions of the teacher

○ Word-level KD lacks specialized learning of that information 
○ TIEKD enforces the student model to learn the top-1 

information from the teacher by ranking the teacher’s top-1 
predictions as its own top-1 predictions



Variants of Word-KD
Problem: Word-KD performance result in a 
performance drop between teacher and student
Objective: Refine the process of knowledge transfer
Key Methods:

● Annealing Distillation (Jafari et al., 2021)
● Selective Distillation (Wang et al., 2021)
● Top Information Enhanced-KD (Zhang et al., 2023a)
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Response-based Methods
Sequence-level KD
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● Objective: The student model is trained to mimic the behavior of the teacher model 
at the sentence level.

● Method:
○ Instead of minimizing word-level CE, minimize CE between sequence distributions
○ This involves matching the predicted sequence of the student to the one-hot distribution of 

the teacher sequence.
● Practical Implementation:  Seq-KD reduces to a two-step procedure
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● Objective: The student model is trained to mimic the behavior of the teacher model 
at the sentence level.

● Method:
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39

Sequence-level KD
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Variants of Seq-KD
Problem: Can we optimize the construction of the Distillation Set?

Objective: Enhance the quality of the distillation set by selecting or 
modifying the data used for training the student model.

Key Methods:

● Sequence-Level Interpolation (Kim and Rush, 2016):
○ Uses beam search to generate multiple candidate translations.
○ Selects the best candidate based on similarity to the training 

target sequence using sentence-level BLEU.
● Noise Filtering and Replacement (Zhang et al., 2018):

○ Filters and replaces noisy translations in the distillation set based 
on word embedding similarity to the source sentence.

● MT-PATCHER (Li et al., 2024):
○ Utilizes LLMs to identify student errors and design corrective 

training samples.

4040
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Variants of Seq-KD
Problem: Can we optimize the construction of the Distillation Set?

Objective: Enhance the quality of the distillation set by selecting or 
modifying the data used for training the student model.

Key Methods:

● Sequence-Level Interpolation (Kim and Rush, 2016):
○ Uses beam search to generate multiple candidate translations.
○ Selects the best candidate based on similarity to the training 

target sequence using sentence-level BLEU.
● Noise Filtering and Replacement (Zhang et al., 2018):

○ Filters and replaces noisy translations in the distillation set. 
○ Noisy translations are considered as the ones that are not similar 

to their source sentences, detected using  (Pham et al., 2018)

● MT-PATCHER (Li et al., 2024):
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Variants of Seq-KD
Problem: Can we optimize the construction of the Distillation Set?

Objective: Enhance the quality of the distillation set by selecting or 
modifying the data used for training the student model.

Key Methods:
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● MT-PATCHER (Li et al., 2024):

○ Utilizes LLMs to identify student errors and design corrective 
training samples.
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How to choose the appropriate method for distillation?
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How to choose the appropriate method for distillation?
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(Wei et al., 2023)



How to choose the appropriate method for distillation?
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Consider variants for even 
more improvement, 

depending on the data



Applications
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Applications
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Multilingual MT
Massively Multilingual MT

Low-resource MT



Multilingual MT
What  a single MT model to translate from or into multiple languages (Dabre et al. 2020).
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Multilingual MT
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Teacher

StudentTeacher

TeacherKey Studies

[1] Tan et al. (2019)

- Selective KD: distill only when teacher surpasses student
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Multilingual MT
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Multilingual MT
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Teacher

StudentTeacher

TeacherKey Studies

[1] Tan et al. (2019)

- Selective KD: distill only when teacher surpasses student
- Top-k KD:  load the top-K probabilities of the distribution into memory → Top-8
- Back-distillation: use the distilled model as a teacher

en - cs
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en - fi

en - lv

en - ro
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�� 🏫
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Word-KD



Multilingual MT
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Teacher

StudentTeacher

TeacherKey Studies

Problem: Top-K KD: the distributions
do not always include the ground truth.



Multilingual MT
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Teacher

StudentTeacher

TeacherKey Studies

[2] Do and Lee (2023)

- Target-oriented KD: penalty for samples that lack the ground truth in their top-K.



Multilingual MT
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Teacher

StudentTeacher

TeacherKey Studies

[2] Do and Lee (2023)

- Target-oriented KD: penalty for samples that lack the ground truth in their top-K.
- Family-based KD

(Sun et al., 2020) 



Multilingual MT
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Takeaways

- Word-KD and its enhanced variants

- Best-performing KD methods not applied

- English-centric

- Multi-teacher distillation

- Comparison with other distillation strategies

- Same architecture for teacher and student → 

Can we improve performance via KD?



Massively Multilingual MT
What  a single MT model to translate from many into many languages (Aharoni et al., 2019).
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Multilingual MT
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Key Studies

[1] Mohammadshahi et al. (2022)

- Teacher: M2M-100 (1.2B)
- Student: Deep encoder / shallow decoder (330M)
- Strategy: Word-KD + Uniform sub-sampling

Teacher Student



Multilingual MT

62

Key Studies

[1] Mohammadshahi et al. (2022)

- Teacher: M2M-100 (1.2B)
- Student: Deep encoder / shallow decoder (330M)
- Strategy: Word-KD + Uniform sub-sampling

[2] Bapna et al. (2022)

- Teacher: 6B
- Student:  Shallow encoder (330M)

Deep encoder (850M)
- Strategy: Seq-KD, Forward translation + Back-translation, Data filtering

Teacher Student



Multilingual MT
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Key Studies

[3] NLLB Team et al. (2022)

Wikipedia experiment:

- Teacher: 1.3B
- Student: 500M
- Strategy: Seq-KD / Word-KD

Teacher Student



Multilingual MT
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Key Studies

[3] NLLB Team et al. (2022)

MoE experiment:

- Teacher: MoE 54B
- Student: 1.3B / 615M
- Strategy: Word-KD

Teacher Student



Multilingual MT

65

Key Studies

[3] NLLB Team et al. (2022)

MoE experiment:

- Teacher: MoE 54B
- Student: 1.3B / 615
- Strategy: Word-KD

Teacher Student



Massively Multilingual MT
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Takeaways

- Seq-KD gives better results but is more expensive
- Many-to-many
- Single teacher distillation
- Deep encoders
- Comparison with teacher performance
- On average 26 times smaller students → How to best compress knowledge?



Low-resource MT
What  MT that involves languages with limited amount of training data (Haddow et al. 2022).
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MT system

Input Output

es

arg

ast

arn

Language Resource Distribution
Joshi et al. (2020)



Low-resource MT
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Key studies - Can we improve performance via KD?

[1] No teacher available

1. Use of monolingual data
○ Word Similarity Distillation (Zhang et al., 2020)
○ Use an LM to regularize MT outputs (Baziotis et al., 2020)

2. Pivot-based distillation (Chen et al., 2017; He et al., 2019; Ahmed et al., 2024)

Teacher StudentX



Low-resource MT
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Key studies - Can we improve performance via KD?

[2] Multi-teacher distillation (building on top of Tan et al., 2019)

1. Adaptive Word-KD (Saleh et al., 2020)

Access to HRL MT + LRL data

1. Fine-tune HRL MT with LRL data to train several bilingual teachers
2. Use the teachers with adaptive KD to train a multilingual student
3. Dynamically adjust the contribution weight of each teacher

Teacher

StudentTeacher

Teacher



Low-resource MT
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Key studies - Can we improve performance via KD?

[2] Multi-teacher distillation (building on top of Tan et al., 2019)

1. Adaptive Word-KD (Saleh et al., 2020)

Teacher

StudentTeacher

Teacher



Low-resource MT
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Key studies - Can we improve performance via KD?

[2] Multi-teacher distillation (building on top of Tan et al., 2019)

1. Adaptive Word-KD (Saleh et al., 2020)
2. Hierarchical Word-KD (Saleh et al., 2021)

Negative transfer might occur when using multiple teachers

Teacher Student

Teacher

Teacher
Teacher

Teacher



Low-resource MT
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Key studies - Can we improve performance via KD?

[2] Multi-teacher distillation (building on top of Tan et al., 2019)

1. Adaptive Word-KD (Saleh et al., 2020)
2. Hierarchical Word-KD (Saleh et al., 2021)

Negative transfer might occur when using multiple teachers.

1. Train individual teachers
2. Cluster languages into teacher-assistant models
3. Train super multilingual student

Teacher Student

Teacher

Teacher
Teacher

Teacher



Low-resource MT
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Key studies - Can we improve performance via KD?

[2] Multi-teacher distillation (building on top of Tan et al., 2019)

1. Adaptive Word-KD (Saleh et al., 2020)
2. Hierarchical Word-KD (Saleh et al., 2021)

Teacher Student

Teacher

Teacher
Teacher

Teacher



74

Key studies - Can we improve performance via KD?

[3] Pre-trained models and Seq-KD

1. mBART50 (Galiano-Jimémez et al., 2023)
2. NLLB (Song et al., 2023)

Low-resource MT
Teacher Student



Low-resource MT
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Key studies - How to best compress knowledge?

[1] Model compression

1. Transfer Learning + Seq-KD (Dabre and Fujita., 2020)
2. Priors of Seq-KD vs Quantization (Diddee et al., 2022)
3. Seq-KD Compression of MNMT (Gumma et al., 2023)



Low-resource MT
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Key studies - How to best compress knowledge?

[1] Model compression

1. Transfer Learning + Seq-KD (Dabre and Fujita., 2020)
- TL: train a model with a HRL and a LRL
- KD: use the model to create a distilled dataset

2. Priors of Seq-KD vs Quantization (Diddee et al., 2022)
- Priors: amount of data, student architecture, hyper-parameters
- Seq-KD gives better results
- Quantization is more stable

3. Seq-KD Compression of MNMT (Gumma et al., 2023)



Low-resource MT
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Key studies - How to best compress knowledge?

[1] Model compression

3. Seq-KD Compression 
of MNMT (Gumma et al., 2023)

- Seq-KD works!

Selective Distillation
(Wang et al., 2021)



Low-resource MT
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Takeaways

- Studies with different goals
- English-centric translation
- Promising avenues:

- Seq-KD
- Pre-trained models
- LLMs? (Enis and Hopkins, 2024)



KD4MT @ Helsinki-NLP
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Tools: OpusDistillery
● OpusDistillery is an end-to-end pipeline

systematic 

multilingual

distillation of

OPUS-MT

Models

● Built on top of open-source tools from the
Bergamot project

80

https://github.com/Helsinki-NLP/OpusDistillery 

�� 🏫

�� 🎓

https://github.com/Helsinki-NLP/OpusDistillery
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Tools: OpusDistillery
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Low-resource MT

83

1. Americas NLP 2023 Shared Task on Machine Translation into Indigenous Languages 
● Spanish > 11 indigenous languages of the Americas
● We use Seq-KD to reduce the size of a large model (NLLB)

and enable efficient fine-tuning

SourceES HypothesisENNLLB

Distilled
Model + Transfer

Learning

Seq-KD

https://turing.iimas.unam.mx/americasnlp/2023_st.html

https://turing.iimas.unam.mx/americasnlp/2023_st.html


Low-resource MT
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2. WMT24 Translation into Low-Resource Languages of Spain Shared Task
● Spanish > Aragonese, Asturian, Occitan (Gascon Variant)
● We use Seq-KD to benefit from both the RBMT and the NMT systems

RBMT

NMT

Source

HypothesisRBMT

HypothesisNMT

We compare with 
Reference and 
select the most 

similar

HypothesisRBMT

Seq-KD

Distilled 
Dataset

https://www2.statmt.org/wmt24/romance-task.html

https://www2.statmt.org/wmt24/romance-task.html


Low-resource MT
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2. WMT24 Translation into Low-Resource Languages of Spain Shared Task
● Spanish > Aragonese, Asturian, Occitan (Gascon Variant)
● We use Seq-KD to benefit from both the RBMT and the NMT systems
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https://www2.statmt.org/wmt24/romance-task.html
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2. WMT24 Translation into Low-Resource Languages of Spain Shared Task
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Unexpected Bonus: MT at Wikipedia!



Machine  Translation at 
Wikipedia
● Apertium - 34 languages

● MinT - 236 languages

● Elia - 6 languages

● Google Translate - 135 languages

● LingoCloud - 5 languages

● Yandex - 99 languages



Open Machine Translation at Wikipedia

● Apertium - 34 languages

● MinT - 236 languages

● Elia - 6 languages

● Google Translate - 135 languages

● LingoCloud - 5 languages

● Yandex - 99 languages



● MinT

○ self hosted Neural Machine Translation service by Wikipedia

○ more than 70 languages not supported by other services!

○ several open-source initiatives

○ NLLB

○ SoftCatala

○ IndicTrans2

○ OpusMT

○ MADLAD-400

Open Machine Translation at Wikipedia



● Wikimedia does not run any proprietary software 

● MinT translation services uses quantized models

● Two issues:

○ Cost

○ Propietary drivers

Open Machine Translation at Wikipedia

Laxström, N., & Thottingal, S. (2023). Machine Translation at Wikipedia. Workshop on Open 
Community-Driven Machine Translation, EAMT 2023, Tampere.

Open fast MT models on CPU



Future of KD4MT
What are the research gaps?
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● What exactly happens during KD? Gender bias, Uncertainty, Robustness…
● What is the optimal teacher?

○ Capacity gap
■ if we gradually increase the size of the teacher, the performance of the student 

improves for a while and then it starts to drop (Mirzadeh et al., 2019)
■ Increasing the size of the teacher usually boosts its performance, but does not 

necessarily lead to a better teacher for the student 
● What is the optimal student architecture?
● Do the current KD methods generalize in multilingual setups?
● What about non english-centric setups?
● Can we integrate LLMs in the distillation process for MT?
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Thanks for listening!
Questions?
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