

Language Model Decoding Beyond Beam Search:

Recent decoding methods and why you should use them

Julius Cheng

Department of Computer Science and Technology, University of Cambridge, UK

4 September 2024

Goals of this talk

- 1. To cover recent methods for MT decoding.
- 2. To help practitioners navigate the vast & varied literature on decoding to find the right tools for their use case.
- 3. To provide interested researchers with insight into why these methods work, and where they can be improved upon.

Scope of this talk

- \triangleright Assume autoregressive LMs trained in the usual ways.
- \triangleright No LM training-time methods (RL, fine-tuning).

Language model (LM) decoding

- ► LMs for NMT model $p(y_t|x, y_{t-1})$, which induces sequence distribution $p(y|x)$.
- Output sequence y or sequences y which optimize some criterion.
- \blacktriangleright Criteria:
	- \triangleright Output y with the highest human-rated translation quality ("prediction").
	- \triangleright Output y which maximizes a combination of human-rated quality and lexical diversity ("diverse decoding").

Baseline methods for prediction

\blacktriangleright Beam search

- At time t, keep k candidates c_t of length t.
- \triangleright To get c_{t+1} , take the k highest-probability continuations of c_t of length $t + 1$.
- Greedy search is beam search with $k = 1$.

<https://www.baeldung.com/cs/beam-search>

Baseline methods for diverse decoding

\blacktriangleright Ancestral sampling

- ▶ Draw next-token y_{t+1} from $p(y_{t+1}|x, y_t)$, stop when EOS is reached.
- \triangleright Optional: mitigate low quality samples by warping the next token distribution.
	- **F** Temperature scaling: rescale logits z to z/τ before softmax
	- \triangleright Truncation methods: set certain token probabilities to 0, then renormalize, e.g. top-k, nucleus sampling.

The goal of prediction is return y which minimizes loss (error). Loss can be with measured with respect to the source x , reference y^* , or both.

- ► $\mathcal{L}(y, y^*)$ most automatic metrics, e.g. BLEU, ROGUE, METEOR, chrF++, BLEURT
- \triangleright $\mathcal{L}(x, y)$ "quality estimation", e.g. OpenKiwi, referenceless COMET
- ► $\mathcal{L}(x, y, y^*)$ e.g. reference-based COMET

But these are only proxies to the true loss: human ratings.

Why is beam search suboptimal?

Beam search curse:

 \triangleright Maximizing probability hurts beyond a point ("inadequacy of the mode")

[Yang et al., 2018](https://aclanthology.org/D18-1342/)

Why is beam search suboptimal?

Beam search curse:

 \triangleright The true distribution mode is the empty sequence in as much as 50% of translations [\(Stahlberg and Byrne, 2019\)](https://aclanthology.org/D19-1331/)

Why is beam search suboptimal?

Beam search curse:

- \triangleright The true distribution mode is the empty sequence in as much as 50% of translations [\(Stahlberg and Byrne, 2019\)](https://aclanthology.org/D19-1331/)
- \triangleright Relationship between *intrinsic uncertainty* of a task and the adequacy of the mode - no beam search curse for grammatical error correction (GEC). [\(Stahlberg and Byrne, 2022\)](https://aclanthology.org/2022.acl-long.591/).

Figure 2: Relative beam search improvements over greedy search. MT quality degrades with large beam sizes, but GEC saturates after a beam size of 10.

Reranking

If sequence probability is flawed, rerank with better-aligned criterion.

- \blacktriangleright *n*-best reranking
	- 1. Obtain candidates y (e.g. with beam top- k , sampling)
	- 2. Obtain reranked scores $s(y), y \in y$, for some scoring function s.
	- 3. Return $\argmax_{y \in \mathbf{y}} s(y)$.

Quality-based reranking

- \triangleright Set s to a referenceless quality estimator.
- \triangleright The better quality estimators rely on human annotations. What if you don't have them?

Discriminative rerankers

Discriminative Reranking for NMT [\(Lee et al., 2021\)](https://aclanthology.org/2021.acl-long.563/)

- \blacktriangleright Train a bidirectional encoder to output $s(x, y)$.
- \triangleright The reranked probability of a candidate is $p_{M}({\textnormal{y}}|{\textnormal{x}}) = \frac{\exp({\textnormal{s}}({\textnormal{y}},{\textnormal{x}}))}{\sum_{{\textnormal{v}}' \in {\textnormal{v}}}\exp({\textnormal{s}}({\textnormal{y}}')}$ $\frac{exp(s(y, x))}{y' \in y}$ given an *n*-best list y.
- **F** Trained to match the distribution $p_T(y|x) = \frac{\exp(\mu(y,r))/\tau}{\sum_{y'\in y} \exp(\mu(y',r))}$ $_{\rm y'\in y}$ exp $(\mu({\rm y'} ,r))/\tau$
	- \blacktriangleright μ : the desired metric (BLEU)
	- \blacktriangleright r: the true reference
	- \blacktriangleright τ : temperature

Energy-Based Reranking [\(Bhattacharyya et al., 2021\)](https://aclanthology.org/2021.acl-long.349/)

- \triangleright Same joint-encoder architecture as previous, except energy E is defined as the average of per-token scalar values.
- **F** Trained with a **margin**-based loss.
- \triangleright Margin violation: negative difference in energy between two candidates must be at least as large as their difference in BLEU.
- \blacktriangleright Interpolate LM and reranker scores: $p(y|x) \propto p_{\theta}(y|x) \exp(-E(y, x)/\tau)$

Discriminative rerankers

Discriminative reranking & energy-based reranking

- \triangleright Both use a joint-encoder transformer
- \triangleright Both use BLEU scores of random samples against a gold reference
- \triangleright Mainly differ in a KL vs. margin objective

Noisy channel decoding [\(Yee et al., 2019\)](https://aclanthology.org/D19-1571/)

- ► Using Bayes rule, $p(y|x) \propto p(x|y)p(y)$.
- \blacktriangleright In practice, actually use a mixture $\log p(y|x) + \lambda(\log p(x|y) + \log p(y))$ for mixture weight λ .
- \blacktriangleright Why?
	- \blacktriangleright Modeling $p(y_t | x, y_1, ..., y_t)$ directly can fail with highly predictive prefixes $y_1, ..., y_t$, causing detachment from source (hallucination).
	- \triangleright "Ensembles" models with different advantages (bidirectional source encoder, unidirectional target decoder).
	- \blacktriangleright Language model $p(y)$ can be trained on large monolingual corpora.

Noisy channel decoding

Two algorithms presented:

- **Incremental decoding**: Beam search-like algorithm which rescores with the noisy channel mixture.
	- \triangleright This requires using the reverse model on partial targets, e.g. $p(x|y_1, ..., y_t)$ (which it isn't trained on!), but works okay.

Noisy channel decoding

Two algorithms presented:

► *n*-best list reranking

Table 2: Re-ranking BLEU with different n-best list sizes on news2016 of WMT De-En. We compare to decoding with a direct model only (DIR) and decoding with an ensemble of direct models (DIR ENS). Table 5 in the appendix shows standard deviations.

Minimum Bayes risk decoding (MBR)

Alternative decoding objective:

$$
y^{MBR} = \arg\max_{y} \mathbb{E}_{\hat{y} \sim p_{\theta}(\cdot | x)} - \mathcal{L}(y, \hat{y})
$$

Since $-\mathcal{L}^1$ is a measure of similarity, MBR returns the candidate with the highest expected similarity to the model distribution.

¹Usually called **utility** in the context of MBR

Semantic representation

Semantic representation

Semantic representation

Mode-seeking is a special case of MBR with a 1-0 exact match loss.

$$
\mathcal{L}(y, y') = \begin{cases} 1, & \text{if } y = y' \\ 0, & \text{otherwise} \end{cases}
$$

$$
y^{MBR} = \underset{y}{\arg \max} \mathbb{E}_{\hat{y} \sim p_{\theta}(\cdot | x)} - \mathcal{L}(y, \hat{y})
$$

$$
= \underset{y}{\arg \max} p(y | x)
$$

If MBR is similarity-sensitive decoding, then mode-seeking is similarity-insensitive decoding.

I flip a coin 8 times.

You have to guess what sequence comes up.

Should you guess TTTTTTTT or THTHHTH?

Minimum Bayes risk decoding (MBR)

I flip a coin 8 times. ← **language model**

You have to guess what sequence comes up. ← **decision rule**

Should you guess **TTTTTTT** or **THTHHTH?**

If you only win for being right - doesn't matter. If you get partial credit for features, e.g. number of occurences of TH, HH, then guess the latter.

NMT rewards you partial credit, so predict based on **likely features**, not probability!

Similarity-sensitive entropy [\(Cheng and Vlachos, 2024\)](https://aclanthology.org/2024.eacl-long.129)

 \triangleright Common information-theoretic measures for model uncertainty: surprisal/entropy, e.g. average token surprisal (neg. logprob), average entropy: $\sum_{y_t \in \mathcal{V}} p(y_t) \log p(y_t)$.

Similarity-sensitive entropy [\(Cheng and Vlachos, 2024\)](https://aclanthology.org/2024.eacl-long.129)

- \triangleright Common information-theoretic measures for model uncertainty: surprisal/entropy, e.g. average token surprisal (neg. logprob), average entropy: $\sum_{y_t \in \mathcal{V}} p(y_t) \log p(y_t)$.
- ▶ We use **similarity-sensitive Shannon entropy** (S3E) to measure semantic uncertainty of a distribution:

$$
\sum_{y_t \in \mathcal{V}} p(y) \log \mathbb{E}_{y' \sim p(\cdot | x)} \mathcal{S}(y, y')
$$

Similarity-sensitive entropy [\(Cheng and Vlachos, 2024\)](https://aclanthology.org/2024.eacl-long.129)

- \triangleright Common information-theoretic measures for model uncertainty: surprisal/entropy, e.g. average token surprisal (neg. logprob), average entropy: $\sum_{y_t \in \mathcal{V}} p(y_t) \log p(y_t)$.
- ▶ We use **similarity-sensitive Shannon entropy** (S3E) to measure semantic uncertainty of a distribution:

$$
\sum_{y_t \in \mathcal{V}} p(y) \log \mathbb{E}_{y' \sim p(\cdot | x)} \mathcal{S}(y, y')
$$

▶ Similarity-sensitive surprisal (SSS) of y is the corresponding inner term: $\log \mathbb{E}_{y' \sim p(\cdot | x)} \mathcal{S}(y, y').$

- **F** Standard entropy may indicate **successful generalization**.
- \triangleright Standard entropy measures lexical variation, S3E measures semantic variation, is more predictive of quality in NMT.

- \triangleright Bonus: choose similarity function S to capture variation over phenonemon of interest.
- \triangleright Our experiment in named entity token translation standard methods aren't designed for the task.

Mode-seeking search \rightarrow MBR Shannon surprisal \rightarrow Similarity-sensitive surprisal Shannon entropy \rightarrow Similarity-sensitive entropy

Generate candidates H.

pooooo \mathcal{H}

Algorithm from [Eikema and Aziz, 2020](https://arxiv.org/abs/2005.10283)

Generate pseudo-references R.

 $\mathcal H$ C
C R

Compute similarities. Average for each $y \in \mathcal{H}$. Take argmax.

- **Problem**: this is slow requires $\mathcal{O}(|\mathcal{H}||\mathcal{R}|)$ calls to \mathcal{L} .
- **Solution**: confidence-based pruning [\(Cheng and Vlachos, 2023\)](https://aclanthology.org/2023.emnlp-main.767/)

Start with hypothesis set \mathcal{H}_1 and initial pseudo-references \mathcal{R}_1 . Compute utilities for all pairs $y \in \mathcal{H}_1, \hat{y} \in \mathcal{R}_1$.

Apply a *pruning function* that returns $H_2 \subseteq H_1$.

Construct \mathcal{R}_2 by appending new samples to \mathcal{R}_1 . Compute utilities.

Repeat until one hypothesis left or maximum time step reached. Return the hypothesis with the highest estimated utility.

Pruning criterion: prune $y \in \mathcal{H}$ if $p(y)$ has less than $1 - \alpha$ chance of being the "true best".

> $p(y)$ is the true best) \approx *p*(*y* is the best in a bootstrap sample) $\leq p(y)$ is better than $y' \in \mathcal{H}$ in a bootstrap sample)

where y' is set to be a candidate with highest utility in \mathcal{R}_t

Last step upper bound is because prob. of y winning is small when H is large. This removes the effect of set size.

- Experiments on de-en, en-et, tr-en.
- \triangleright Returns to same result as full MBR 85% of the time with no quality drop.
- \triangleright Single parameter confidence threshold controls quality/speed tradeoff
- Uses 12-15% as many calls to chrF++ and 3-5% for COMET.

Minimum Bayes risk decoding (MBR)

Why does MBR work?

- **EXECUTE:** Returns sequences with probable **features**, not just high probability.
- ^I MBR is **reference-based reranking** with **pseudo-references**. Want to score candidates $y \in y$ with reference-based loss $\mathcal{L}(y, y^*)$ or $\mathcal{L}(y, y^*, x)$, but we don't have y^* .

Reranking methods: summary

Discriminative reranking Requires no extra data

Noisy channel reranking Can exploit monolingual data Quality-based reranking Needs human annotation for best results Minimum Bayes risk Needs human annotation for best results, slow

No cross-comparisons seem to exist...

The candidate list need not be fixed...

- ▶ Monte Carlo tree search [\(Leblond et al., 2021\)](https://arxiv.org/abs/2104.05336)
- Genetic algorithm [\(Jon et al., 2023\)](https://aclanthology.org/2023.wmt-1.8/)
- \blacktriangleright Hypothesis recombination [\(Vernikos and Popescu-Belis, 2024\)](https://arxiv.org/abs/2401.06688)

Decoding for diversity

Methods which optimize quality and diversity. Evaluated on a quality-diversity tradeoff curve.

[Language GANs Falling Short, Caccia et al., 2018.](https://arxiv.org/abs/1811.02549)

Decoding for diversity

\blacktriangleright Sampling methods

- \blacktriangleright Probability-warping methods
- \blacktriangleright Without-replacement sampling
- \blacktriangleright Sample-then-select methods

Almost always, the main problem with ancestral sampling is low probability, low-quality generations.

Probability-warping methods besides temperature scaling, nucleus sampling, top-k? [\(Hewitt et al., 2022.\)](https://aclanthology.org/2022.findings-emnlp.249.pdf)

- \triangleright ϵ -sampling: set all tokens with less than ϵ prob. to 0 prob.
- \triangleright η -sampling: combined with ϵ -sampling to also exclude tokens with $p(y_t) < \alpha \exp(\mathcal{H})$ prob., where H is the entropy of $p(y_t)$.

Stochastic beam search [\(Kool et al., 2019\)](https://arxiv.org/abs/1903.06059).

► Use the **Gumbel top-**k **trick** to select the next beam continuations: add Gumbel noise z^i to the logprob of each next-token y^{i} .

> $x^i =$ Uniform $(0, 1)$ $z^i = -\log(-\log(x_i))$

- \triangleright Run the standard beam search algorithm, except the perturbed logprobs are propagated in subsequent steps.
- \triangleright Results in unbiased sequence sampling without replacement!

Get initial candidates y . Select the subset y' which maximizes quality and diversity:

$$
\arg\max_{\mathbf{y}\in\mathbf{y}'}\big(\sum_{\mathbf{y}\in\mathbf{y}'}\mathcal{Q}(\mathbf{y})\big)+d(\mathbf{y}')
$$

where Q, d are quality and diversity functions, respectively.

This is a non-monotonic submodular function - NP-hard!

Sample-then-select methods

- \triangleright Diverse beam search [\(Vijayakumar et al., 2016\)](https://arxiv.org/abs/1610.02424): Augments beam search with a dissimilarity objective.
- \triangleright Determinantal beam search [\(Meister et al., 2021\)](https://arxiv.org/abs/2106.07400): Treat beam search next-token selection as a subdeterminant maximization problem which maximizes quality and diversity.
- \triangleright Diverse MBR [\(Jinnai et al, 2024\)](https://arxiv.org/abs/2401.05054): Use MBR utility as the quality function.

Which generation method is right for you?

- \triangleright For reranking or MBR candidate generation: prioritize quality if n is small. Prioritize diversity as *n* grows.
- \triangleright For MBR pseudo-reference generation: objective requires a (possibly warped) unbiased estimate. ϵ -sampling with 0.02 is weirdly good [\(Freitag et al., 2023\)](https://arxiv.org/abs/2305.09860).
- \triangleright Need diversity? Sample or use diverse decoding.

Conclusion

- \triangleright When choosing a decoding method, consider:
	- ▶ What data you have
	- ▶ What **evaluation metrics** you have
	- ▶ Your compute budget
- \triangleright LMs aren't perfect, but we can still get more out of them with good decoding!

Thanks!

jncc3@cam.ac.uk

