

Language Model Decoding Beyond Beam Search:

Recent decoding methods and why you should use them

Julius Cheng

Department of Computer Science and Technology, University of Cambridge, UK

4 September 2024

Goals of this talk

- 1. To cover recent methods for MT decoding.
- 2. To help practitioners navigate the vast & varied literature on decoding to find the right tools for their use case.
- 3. To provide interested researchers with insight into why these methods work, and where they can be improved upon.

Scope of this talk

- Assume autoregressive LMs trained in the usual ways.
- ► No LM training-time methods (RL, fine-tuning).

Language model (LM) decoding

- ► LMs for NMT model p(y_t|x, y_{t-1}), which induces sequence distribution p(y|x).
- Output sequence y or sequences y which optimize some criterion.
- Criteria:
 - Output y with the highest human-rated translation quality ("prediction").
 - Output y which maximizes a combination of human-rated quality and lexical diversity ("diverse decoding").

Baseline methods for prediction

Beam search

- At time *t*, keep *k* candidates \mathbf{c}_t of length *t*.
- ► To get c_{t+1}, take the k highest-probability continuations of c_t of length t + 1.
- Greedy search is beam search with k = 1.

https://www.baeldung.com/cs/beam-search

Baseline methods for diverse decoding

Ancestral sampling

- ▶ Draw next-token y_{t+1} from p(y_{t+1}|x, y_t), stop when EOS is reached.
- Optional: mitigate low quality samples by warping the next token distribution.
 - Temperature scaling: rescale logits z to z/τ before softmax
 - Truncation methods: set certain token probabilities to 0, then renormalize, e.g. top-k, nucleus sampling.

The goal of prediction is return y which minimizes loss (error). Loss can be with measured with respect to the source x, reference y^* , or both.

- ► L(y, y*) most automatic metrics, e.g. BLEU, ROGUE, METEOR, chrF++, BLEURT
- ► L(x, y) "quality estimation", e.g. OpenKiwi, referenceless COMET
- $\mathcal{L}(x, y, y^*)$ e.g. reference-based COMET

But these are only proxies to the true loss: human ratings.

Why is beam search suboptimal?

Beam search curse:

 Maximizing probability hurts beyond a point ("inadequacy of the mode")

Yang et al., 2018

Why is beam search suboptimal?

Beam search curse:

 The true distribution mode is the empty sequence in as much as 50% of translations (Stahlberg and Byrne, 2019)

Why is beam search suboptimal?

Beam search curse:

- The true distribution mode is the empty sequence in as much as 50% of translations (Stahlberg and Byrne, 2019)
- Relationship between *intrinsic uncertainty* of a task and the adequacy of the mode - no beam search curse for grammatical error correction (GEC). (Stahlberg and Byrne, 2022).

Figure 2: Relative beam search improvements over greedy search. MT quality degrades with large beam sizes, but GEC saturates after a beam size of 10.

Reranking

If sequence probability is flawed, rerank with better-aligned criterion.

- *n*-best reranking
 - 1. Obtain candidates y (e.g. with beam top-k, sampling)
 - 2. Obtain reranked scores $s(y), y \in y$, for some scoring function s.
 - 3. Return $\arg \max_{y \in y} s(y)$.

Quality-based reranking

- ▶ Set *s* to a referenceless quality estimator.
- The better quality estimators rely on human annotations. What if you don't have them?

Discriminative rerankers

Discriminative Reranking for NMT (Lee et al., 2021)

- Train a bidirectional encoder to output s(x, y).
- ► Trained to match the distribution $p_T(y|x) = \frac{\exp(\mu(y,r))/\tau}{\sum_{y' \in \mathbf{v}} \exp(\mu(y',r))/\tau}$
 - μ : the desired metric (BLEU)
 - ► *r*: the true reference
 - τ : temperature

Energy-Based Reranking (Bhattacharyya et al., 2021)

- Same joint-encoder architecture as previous, except energy E is defined as the average of per-token scalar values.
- ► Trained with a margin-based loss.
- Margin violation: negative difference in energy between two candidates must be at least as large as their difference in BLEU.
- ► Interpolate LM and reranker scores: $p(y|x) \propto p_{\theta}(y|x) \exp(-E(y,x)/\tau)$

Discriminative rerankers

Discriminative reranking & energy-based reranking

- Both use a joint-encoder transformer
- ► Both use BLEU scores of random samples against a gold reference
- Mainly differ in a KL vs. margin objective

Noisy channel decoding (Yee et al., 2019)

- Using Bayes rule, $p(y|x) \propto p(x|y)p(y)$.
- In practice, actually use a mixture log p(y|x) + λ(log p(x|y) + log p(y)) for mixture weight λ.
- ► Why?
 - ► Modeling p(y_t|x, y₁, ..., y_t) directly can fail with highly predictive prefixes y₁, ..., y_t, causing detachment from source (hallucination).
 - "Ensembles" models with different advantages (bidirectional source encoder, unidirectional target decoder).
 - Language model p(y) can be trained on large monolingual corpora.

Noisy channel decoding

Two algorithms presented:

- Incremental decoding: Beam search-like algorithm which rescores with the noisy channel mixture.
 - ► This requires using the reverse model on partial targets, e.g. p(x|y₁,...,y_t) (which it isn't trained on!), but works okay.

Noisy channel decoding

Two algorithms presented:

n-best list reranking

	5	10	50	100
DIR	39.1	39.2	39.3	39.2
DIR ENS	40.1	40.2	40.3	40.3
DIR+LM	40.0	40.2	40.6	40.7
DIR+RL	39.7	40.1	40.8	40.8
DIR+RL+LM	40.4	40.9	41.6	41.8
CH+DIR	39.7	40.0	40.5	40.5
CH+DIR+LM	40.8	41.5	42.8	43.2

Table 2: Re-ranking BLEU with different n-best list sizes on news2016 of WMT De-En. We compare to decoding with a direct model only (DIR) and decoding with an ensemble of direct models (DIR ENS). Table 5 in the appendix shows standard deviations.

Minimum Bayes risk decoding (MBR)

Alternative decoding objective:

$$y^{MBR} = \operatorname*{arg\,max}_{y} \mathbb{E}_{\hat{y} \sim p_{\theta}(\cdot | x)} - \mathcal{L}(y, \hat{y})$$

Since $-\mathcal{L}^1$ is a measure of similarity, MBR returns the candidate with the highest *expected similarity* to the model distribution.

¹Usually called **utility** in the context of MBR

Semantic representation

Semantic representation

Semantic representation

Mode-seeking is a special case of MBR with a 1-0 exact match loss.

$$\begin{aligned} \mathcal{L}(y, y') &= \begin{cases} 1, & \text{if } y = y' \\ 0, & \text{otherwise} \end{cases} \\ y^{MBR} &= \operatorname*{arg\,max}_{y} \mathbb{E}_{\hat{y} \sim p_{\theta}(\cdot | x)} - \mathcal{L}(y, \hat{y}) \\ &= \operatorname*{arg\,max}_{y} p(y | x) \end{aligned}$$

If MBR is *similarity-sensitive* decoding, then mode-seeking is similarity-*insensitive* decoding.

I flip a coin 8 times.

You have to guess what sequence comes up.

Should you guess TTTTTTT or THTHHTH?

Minimum Bayes risk decoding (MBR)

I flip a coin 8 times. \leftarrow language model

You have to guess what sequence comes up. $\leftarrow\,$ decision rule

Should you guess TTTTTTT or THTHHTH?

If you only win for being right - doesn't matter. If you get partial credit for features, e.g. number of occurences of TH, HH, then guess the latter.

NMT rewards you partial credit, so predict based on **likely features**, not probability!

Similarity-sensitive entropy (Cheng and Vlachos, 2024)

Common information-theoretic measures for model uncertainty: surprisal/entropy, e.g. average token surprisal (neg. logprob), average entropy: ∑_{yt∈V} p(y_t) log p(y_t).

Similarity-sensitive entropy (Cheng and Vlachos, 2024)

- Common information-theoretic measures for model uncertainty: surprisal/entropy, e.g. average token surprisal (neg. logprob), average entropy: ∑_{yt∈V} p(yt) log p(yt).
- We use similarity-sensitive Shannon entropy (S3E) to measure semantic uncertainty of a distribution:

$$\sum_{y_t \in \mathcal{V}} p(y) \log \mathbb{E}_{y' \sim p(\cdot|x)} \mathcal{S}(y, y')$$

Similarity-sensitive entropy (Cheng and Vlachos, 2024)

- Common information-theoretic measures for model uncertainty: surprisal/entropy, e.g. average token surprisal (neg. logprob), average entropy: ∑_{yt∈V} p(y_t) log p(y_t).
- ► We use **similarity-sensitive Shannon entropy** (S3E) to measure *semantic uncertainty* of a distribution:

$$\sum_{y_t \in \mathcal{V}} p(y) \log \mathbb{E}_{y' \sim p(\cdot|x)} \mathcal{S}(y, y')$$

► Similarity-sensitive surprisal (SSS) of y is the corresponding inner term: log E_{y'~p(·|x)} S(y, y').

- Standard entropy may indicate **successful generalization**.
- Standard entropy measures lexical variation, S3E measures semantic variation, is more predictive of quality in NMT.

	en-de		et-en		ne-en	
	ρ	r	ρ	r	ρ	r
Prediction-based						
Total token surprisal	0.370	0.205	0.261	0.150	0.402	0.339
Avg. token surprisal	0.352	0.282	0.356	0.333	0.333	0.357
Total token SE	0.218	0.089	0.180	0.078	0.326	0.250
Avg. token SE	0.244	0.251	0.248	0.196	0.242	0.211
SSS, BERT, $\alpha = 0$	0.369	0.344	0.591	0.606	0.573	0.510
SSS, BERT, best α	(5) 0.436	(4) 0.406	(3) 0.648	(4) 0.649	(6) 0.623	(5) 0.547
Distribution-based						
Sequence SE	0.371	0.232	0.369	0.258	0.567	0.484
Avg. token surprisal	0.315	0.319	0.539	0.542	0.530	0.489
Avg. token SE	0.265	0.280	0.535	0.543	0.545	0.510
S3E, chrF++, $\alpha = 0$	0.138	0.176	0.399	0.417	0.440	0.473
S3E, chrF++, best α	(4) 0.390	(3) 0.332	(3) 0.523	(3) 0.493	(4) 0.591	(4) 0.556
S3E, BERT, $\alpha = 0$	0.304	0.303	0.543	0.568	0.562	0.569
S3E, BERT, best α	(6) 0.487	(6) 0.424	(5) 0.655	(4) 0.647	(6) 0.676	(5) 0.659

- ▶ Bonus: choose similarity function S to capture variation over phenonemon of interest.
- Our experiment in named entity token translation standard methods aren't designed for the task.

	et-	en	ne-en		
	ρ	r	ρ	r	
Shannon entropy	0.006	0.028	0.158	0.134	
Avg. token entropy	0.023	0.019	0.175	0.209	
S3E, chrF++, $\alpha = 0$	0.172		0.153	0.177	
S3E, chrF++, best α	(2) 0.193	(0) 0.243	(3) 0.159	(1) 0.180	
S3E, BERT, $\alpha = 0$	0.205	0.287	0.228	0.253	
S3E, BERT, best α	(5) 0.239	(2) 0.296	(5) 0.256	(3) 0.274	
S3E, NETR, $\alpha = 0$	0.485	0.441		0.346	
S3E, NETR, best α	(1) 0.500	(1) 0.459	(0) 0.467	(1) 0.375	

Mode-seeking search \rightarrow MBR Shannon surprisal \rightarrow Similarity-sensitive surprisal Shannon entropy \rightarrow Similarity-sensitive entropy

Generate candidates \mathcal{H} .

 $\mathcal{H} \bigcirc \mathcal{O} \bigcirc \mathcal{O} \bigcirc \mathcal{O}$

Algorithm from Eikema and Aziz, 2020

Generate pseudo-references \mathcal{R} .

 \mathcal{H} C \mathcal{R}

Compute similarities. Average for each $y \in \mathcal{H}$. Take argmax.

- **Problem**: this is slow requires $\mathcal{O}(|\mathcal{H}||\mathcal{R}|)$ calls to \mathcal{L} .
- ► Solution: confidence-based pruning (Cheng and Vlachos, 2023)

Start with hypothesis set \mathcal{H}_1 and initial pseudo-references \mathcal{R}_1 . Compute utilities for all pairs $y \in \mathcal{H}_1, \hat{y} \in \mathcal{R}_1$.

Apply a *pruning function* that returns $\mathcal{H}_2 \subseteq \mathcal{H}_1$.

Construct \mathcal{R}_2 by appending new samples to \mathcal{R}_1 . Compute utilities.

Repeat until one hypothesis left or maximum time step reached. Return the hypothesis with the highest estimated utility.

Pruning criterion: prune $y \in \mathcal{H}$ if p(y) has less than $1 - \alpha$ chance of being the "true best".

p(y is the true best) $\approx p(y \text{ is the best in a bootstrap sample})$ $\leq p(y \text{ is better than } y' \in \mathcal{H} \text{ in a bootstrap sample})$

where y' is set to be a candidate with highest utility in \mathcal{R}_t

Last step upper bound is because prob. of y winning is small when \mathcal{H} is large. This removes the effect of set size.

- Experiments on de-en, en-et, tr-en.
- Returns to same result as full MBR 85% of the time with no quality drop.
- Single parameter confidence threshold controls quality/speed tradeoff
- ▶ Uses 12-15% as many calls to chrF++ and 3-5% for COMET.

Minimum Bayes risk decoding (MBR)

Why does MBR work?

- Returns sequences with probable features, not just high probability.
- ► MBR is reference-based reranking with pseudo-references. Want to score candidates y ∈ y with reference-based loss L(y, y*) or L(y, y*, x), but we don't have y*.

Reranking methods: summary

Discriminative reranking Noisy channel reranking Quality-based reranking Minimum Bayes risk

Requires no extra data Can exploit monolingual data Needs human annotation for best results Needs human annotation for best results, slow

No cross-comparisons seem to exist...

The candidate list need not be fixed...

- ▶ Monte Carlo tree search (Leblond et al., 2021)
- ► Genetic algorithm (Jon et al., 2023)
- ► Hypothesis recombination (Vernikos and Popescu-Belis, 2024)

Methods which optimize quality and diversity. Evaluated on a *quality-diversity tradeoff curve*.

Language GANs Falling Short, Caccia et al., 2018.

Decoding for diversity

Sampling methods

- Probability-warping methods
- Without-replacement sampling
- Sample-then-select methods

Almost always, the main problem with ancestral sampling is low probability, low-quality generations.

Probability-warping methods besides temperature scaling, nucleus sampling, top-k? (Hewitt et al., 2022.)

- ϵ -sampling: set all tokens with less than ϵ prob. to 0 prob.
- ► η -sampling: combined with ϵ -sampling to also exclude tokens with $p(y_t) < \alpha \exp(\mathcal{H})$ prob., where \mathcal{H} is the entropy of $p(y_t)$.

Stochastic beam search (Kool et al., 2019).

► Use the Gumbel top-k trick to select the next beam continuations: add Gumbel noise zⁱ to the logprob of each next-token yⁱ.

 $x^{i} = \text{Uniform}(0, 1)$ $z^{i} = -\log(-\log(x_{i}))$

- Run the standard beam search algorithm, except the perturbed logprobs are propagated in subsequent steps.
- Results in unbiased sequence sampling without replacement!

Get initial candidates \mathbf{y} . Select the subset \mathbf{y}' which maximizes quality and diversity:

$$\operatorname*{arg\,max}_{\mathbf{y} \subset \mathbf{y}'} \big(\sum_{y \in \mathbf{y}'} \mathcal{Q}(y) \big) + d(\mathbf{y}')$$

where Q, d are quality and diversity functions, respectively.

This is a non-monotonic submodular function - NP-hard!

- Diverse beam search (Vijayakumar et al., 2016): Augments beam search with a dissimilarity objective.
- Determinantal beam search (Meister et al., 2021): Treat beam search next-token selection as a subdeterminant maximization problem which maximizes quality and diversity.
- Diverse MBR (Jinnai et al, 2024): Use MBR utility as the quality function.

Which generation method is right for you?

- For reranking or MBR candidate generation: prioritize quality if n is small. Prioritize diversity as n grows.
- For MBR pseudo-reference generation: objective requires a (possibly warped) unbiased estimate. ε-sampling with 0.02 is weirdly good (Freitag et al., 2023).
- ► Need diversity? Sample or use diverse decoding.

Conclusion

- ► When choosing a decoding method, consider:
 - What data you have
 - What evaluation metrics you have
 - Your compute budget
- LMs aren't perfect, but we can still get more out of them with good decoding!

Thanks!

jncc3@cam.ac.uk

