Translation and Language Modeling with Pixels

Elizabeth Salesky

Sep 3, 2024

Outline

Introduction and motivation

Introducing visual representations of text

Salesky et al. 2021

Cross-lingual transfer with PIXEL

Rust et al. 2023

Multilingual modeling with visual representations

Salesky et al. 2023

Introduction

End

What does it mean to be *open-vocabulary*?

And why care about tokenization?

Open-vocabulary modeling

- Ideally our models should be able to represent **all** words in a given language
 - Not just avoid a placeholder token for unknown words, but appropriately model unseen input
 - Whether observed in training or not
- Typical techniques:
 - Characters
 - Learned _sub words
 - o Bytes

Unobserved components can (hopefully) be broken into observed components

Optimal vocabulary and size varies by task

fertility across learned tokenizations

vocabulary overlap across domains

Compute bottleneck limits vocabulary sizes

6

Finite vocabularies limit language coverage

• Language support is limited by *finite model vocabularies*

- Larger vocab = Softmax and data sparsity problems
- Smaller vocab = Sequence length or coverage problems
- We'll call this the *vocabulary bottleneck*

Finite vocabularies limit language coverage

दुनिया

ప్రపంచం

3 visual tokens 2 visual tokens 3 visual tokens

World

ప్రశ్ర సంచి క

दुनि या

Hindi Devanagari script

3 characters	दु			या				या										
6 codepoints		द			ુ			न			ি			य			ा	
18 bytes	e0	a4	a6	e0	a5	81	e0	a4	a8	e0	a4	bf	e0	a4	bf	e0	a4	be
11 BPE tokens	119	976	99	242	231	223	119	976	101	119	976	123	119	976	107		48077	

3 characters Ś పం చం 7 codepoints 5 ప б à Oo చ 00 21 bytes eO b0 aa e0 b1 8d e0 b0 b0 e0 b0 aa e0 b0 82 e0 b0 9a e0 b0 82 21 BPE tokens 156 108 103 156 109 235 156 108 108 156 108 103 156 108 156 108 103 156 108 224

Telugu

Telugu-Kannada script

visualization may display the bytes in each token in a non-standard way.

s peak

speak

or

Phenomena	Word	BPE		
Diacritization	كتاب <mark>ا</mark> لكِتابُّ	كتاب مُ اب . ت . رِ . الك	(1) (5)	
Misspelling	lang <mark>ua</mark> ge lang <mark>au</mark> ge	language la ∙ ng ∙ au ∙ ge	(1) (4)	
Visually Similar Characters	rea <mark>ll</mark> y rea <mark>11</mark> y	really re · a · 1 · 1 · y	(1) (5)	
Shared Character Components	확인 <mark>한</mark> 다 확인했다	확인 한 다 확인 했다	(3) (2)	

Significant differences in sequences lengths and often disjoint embeddings

Examples of common behavior which cause divergent representations for subword models

Phenomena	Word	BPE		
Diacritization	كتاب	كتاب	(1)	
	<mark>ا</mark> لكِتابُ	ُ اب . تِ . الك	(5)	
Misspelling	lang <mark>ua</mark> ge	language	(1)	
	lang <mark>au</mark> ge	la · ng · au · ge	(4)	
Visually Similar	really	really	(1)	
Characters	rea <mark>11</mark> y	re · a · 1 · 1 · y	(5)	
Shared Character	확인 <mark>한</mark> 다	확인 · 한 · 다	(3)	
Components	확인 <mark>했</mark> 다	확인 · 했다	(2)	

Examples of common behavior which cause divergent representations for subword models

Phenomena	Word	BPE		
Diacritization	كتاب	كتاب	(1)	
	[ل≥تابً	ُ اب . ت الك	(5)	
Misspelling	lang <mark>ua</mark> ge	language	(1)	
	lang <mark>au</mark> ge	la•ng•au•ge	(4)	
Visually Similar	rea <mark>ll</mark> y	really	(1)	
Characters	rea <mark>11</mark> y	re · a · 1 · 1 · y	(5)	
Shared Character	확인 <mark>한</mark> 다	확인 · 한 · 다	(3)	
Components	확인 <mark>했</mark> 다	확인 · 했다	(2)	

Examples of common behavior which cause divergent representations for subword models

Glyph	Codepoint	depoint	
U+06D5	ک U+064A	U+06 ي U+06 د	
U+0647	U +0649	0+06 ک	
\$ U+0647, U+0654, U+200C U+06D5, U+0654	U+1583, U+1585, U+17	₊₁₅ در	744
U+0647, U+0654	U+1583, U+1585, U+06	_{U+15} در	54/

Different underlying unicode codepoints render visually similarly

Open-vocabulary modeling

- Ideally our models should be able to represent **all** words in a given language
 - Not just avoid a placeholder token for unknown words, but appropriately model unseen input
 - Whether observed in training or not
- Typical techniques:
 - Characters
 - Learned _sub words
 - Bytes

Unobserved components can (hopefully) be broken into observed components

Potential issues

How to construct an optimal finite vocabulary? 26 Latin characters, >10k Chinese characters In-vocabulary does not guarantee good results Long-tail vocabulary, unicode noise, emojis, ...

No, not really!

Andrej Karpathy 🤣 @karpathy

We will see that a lot of weird behaviors and problems of LLMs actually trace back to tokenization. We'll go through a number of these issues, discuss why tokenization is at fault, and why someone out there ideally finds a way to delete this stage entirely.

Tokenization is at the heart of much weirdness of LLMs. Do not brush it off.

- Why can't LLM spell words? Tokenization.
- Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.
- Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.
- Why is LLM bad at simple arithmetic? Tokenization.
- Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
- Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
- What is this weird warning I get about a "trailing whitespace"? Tokenization.
- Why the LLM break if I ask it about "SolidGoldMagikarp"? Tokenization.
- Why should I prefer to use YAML over JSON with LLMs? Tokenization.
- Why is LLM not actually end-to-end language modeling? Tokenization.
- What is the real root of suffering? Tokenization.

Introducing visual representations of text

Underlying units

Café:

	UTF-8 Bytes	43	61	66	65	СС	81
Unicod	de codepoints	U+0043	U+0061	U+0066	U+0065	U+0	301
	Characters	С	а	f	е	ं	
	Graphemes	С	а	f	é		

Robustness

а	a	α	а	α	a
0061 LATIN SMALL LETTER A	0251 LATIN SMALL LETTER ALPHA	03B1 GREEK SMALL LETTER ALPHA	0430 CYRILLIC SMALL LETTER A	237A APL FUNCTIONAL SYMBOL ALPHA	1D41A MATHEMATICAL BOLD SMALL A
а	а	a	a	a	ඩ
1D44E MATHEMATICAL ITALIC SMALL A	1D482 MATHEMATICAL BOLD ITALIC SMALL A	1D4B6 MATHEMATICAL SCRIPT SMALL A	1D4EA MATHEMATICAL BOLD SCRIPT SMALL A	1D51E MATHEMATICAL FRAKTUR SMALLA	1D552 MATHEMATICAL DOUBLE-STRUCK SMALLA
a	а	а	а	а	а
1D586 MATHEMATICAL BOLD FRAKTUR SMALL A	1D5BA MATHEMATICAL SANS-SERIF SMALLA	1D5EE MATHEMATICAL SANS-SERIF BOLD SMALL A	1D622 MATHEMATICAL SANS-SERIF ITALIC SMALL A	1D656 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL A	1D68A MATHEMATICAL MONOSPACE SMALL A
α	α	α	a	a	а
1D6C2 MATHEMATICAL BOLD SMALL ALPHA	1D6FC MATHEMATICAL ITALIC SMALL ALPHA	1D736 MATHEMATICAL BOLD ITALIC SMALL ALPHA	1D770 MATHEMATICAL SANS-SERIF BOLD SMALL ALPHA	1D7AA MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL ALPHA	FF41 FULLWIDTH LATIN SMALL LETTER A

Rendering text

Rendering text

Bitmap font

0	0	0	1	1	0	0
0	0	1	0	0	1	0
0	1	0	0	0	0	1
0	1	1	1	1	1	1
0	1	0	0	0	0	1
0	1	0	0	0	0	1
0	1	0	0	0	0	1

A

Vector font

255	255	255	41	213	255	255
255	255	211	71	129	255	255
255	255	126	196	70	255	255
255	255	65	253	102	216	255
255	212	29	71	51	131	255
255	127	189	255	249	63	255
255	63	255	255	255	93	218

Tokenizing rendered text

input

output

padding

Machine translation with visual representations

Initial experiments: machine translation

German

Japanese Korean

Russian

Arabic Chinese French

- Language pairs (7)
 - Source, multiple scripts: , , 中文, Français, Deutsch, 日本語, 한국어, русский
 - Target language: English
- Datasets (2)
 - "Small" MTTT (TED) ar zh fr de ja ko ru
 - "Larger" WMT (filtered) zh de
- Visual architecture
 - Significant hyperparameters unknown at the offset new approach!
 - Convolutional blocks $\{0,1,7\}$ $0 \approx Vision Transformer; 7 \approx OCR$

Clean translation results

• Results are on par with heavily tuned subword models at "smaller" and "larger" data scales for multiple language pairs with different scripts

Standardized MTTT test set c = num. convolution blocks

WMT'20 newstest sets c = num. convolution blocks

Robustness

а	α	α	а	α	а
0061 LATIN SMALL LETTER A	0251 LATIN SMALL LETTER ALPHA	03B1 GREEK SMALL LETTER ALPHA	0430 CYRILLIC SMALL LETTER A	237A APL FUNCTIONAL SYMBOL ALPHA	1D41A MATHEMATICAL BOLD SMALL A
а	a	a	a	a	ඩ
1D44E MATHEMATICAL ITALIC SMALLA	1D482 MATHEMATICAL BOLD ITALIC SMALL A	1D4B6 MATHEMATICAL SCRIPT SMALL A	1D4EA MATHEMATICAL BOLD SCRIPT SMALL A	1D51E MATHEMATICAL FRAKTUR SMALLA	1D552 MATHEMATICAL DOUBLE-STRUCK SMALLA
a	а	а	а	а	а
1D586 MATHEMATICAL BOLD FRAKTUR SMALL A	1D5BA MATHEMATICAL SANS-SERIF SMALLA	1D5EE MATHEMATICAL SANS-SERIF BOLD SMALL A	1D622 MATHEMATICAL SANS-SERIF ITALIC SMALL A	1D656 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL A	1D68A MATHEMATICAL MONOSPACE SMALL A
α	α	α	α	a	а
1D6C2 MATHEMATICAL BOLD SMALL ALPHA	1D6FC MATHEMATICAL ITALIC SMALL ALPHA	1D736 MATHEMATICAL BOLD ITALIC SMALL ALPHA	1D770 MATHEMATICAL SANS-SERIF BOLD SMALLALPHA	1D7AA MATHEMATICAL SANS-SERIF BOLD ITALIC SMALLALPHA	FF41 FULLWIDTH LATIN SMALL LETTER A

diacritics & unicode

Robustness

ar-en

- أنا كندية، وأنا أصغر أخواني السبعة STC
- أَنا كَنَدِيَّةٍ ، وَأَنا أَصْغَرِ إِخْوانِي السَبْعَةِ noised
 - **ref** I'm Canadian, and I'm the youngest of seven kids.

visrep

zero-shot

الناكم اكتم كندية لدينة إلى ، وأا وأنا أنا أما صفر هو إ داخ الخوا نواني أني إي الم السا لسبنة تبعنة I'm a Canadian, and I'm the youngest of my seven sisters.

. _ أَان كَان دَارِي مَّة _ , _ وَ _ أَان _ أَص نْغَ رَ _ إِرْخ أَو نَ مِي سِلاً بَ نُع َ _ قَ BPE We grew up as a teacher, and we gave me a hug.

diacritics & unicode

Robustness

• Large changes to unicode sequences; visually, changes to only 0-5% pixels

zero-shot

WIPO

• Unsurprising our method does so well!

The invention belongs to the field of biotechnology, pharmaceutics and medicine, it could be applied for the production of drugs and for the realization of medicinal technologies, particularly for the immunotherapy of oncological diseases.

Cyrillic Latin

diacritics

Robustness

zero-shot

character permutations

Robustness

de-en

zero-shot

- **src** Aber Sie müssen zuerst zwei Dinge über mich wissen.
- noised Abre Sie müssen zuerts wzei Dnige über mcih wisse.n
 - **ref** But first you need to know two things about me.

visrep Abl bre re e Sl Sie lie e m mü hüs iss sel en in z zu zue ler erts tsv swz wze zei ei C Dr Dni hig ige le ü ül übe ber er r f ... But you have to know two things about me first.

BPE _____Ab re __Sie __müssen __zu ert s __w z ei __D n ige __über __m ci h __ wiss e . n But you've got to get into a little about you.

Robustness

- Significant improvements for all pairs, even if slight performance gap on clean text
 - Highlighting German–English:

zero-shot

• At swap p=1.0, the visrep model is usable (25.9 BLEU) while the text model is not (1.9 BLEU)

cmabrigde

Robustness

Why does this work?

zero-shot

Probing representations for compositionality

Probing representations for compositionality

chrF on character compositionality probing tasks for German, Korean, and Chinese

		Visual Text			Subwords			
	Probing task	German	Korean	Chinese	German	Korean	Chinese	
CONTROL	Embeddings (updatable)	68.7	67.7	42.3	38.3	59.2	36.6	
PROBE	Embeddings (frozen)	62.2	61.6	30.8	36.7	48.0	27.2	
CONTROL CONTROL	Random (updatable) Random (frozen)	60.6 26.4	54.4 39.1	39.1 29.8	32.4 21.9	44.0 29.1	33.3 25.0	

Recover composition 12-43% better using visual text representations

Probing representations for compositionality

chrF on character compositionality probing tasks for German, Korean, and Chinese

		V	Visual Text			Subwords			
	Probing task	German	Korean	Chinese	German	Korean	Chinese		
CONTROL	Embeddings (updatable)	68.7	67.7	42.3	38.3	59.2	36.6		
PROBE	Embeddings (frozen)	62.2	61.6	30.8	36.7	48.0	27.2		
CONTROL CONTROL	Random (updatable) Random (frozen)	60.6 26.4	54.4 39.1	39.1 29.8	32.4 21.9	44.0 29.1	33.3 25.0		

Possible to learn these tasks with these representations, but not a necessary part of the translation task

Leading questions

All in extra slides, if someone is curious at the end!

- What about computational efficiency?
- Can't I just run text normalization and proceed as normal?
- Would something like subword regularization or BPE-dropout do better?
- If these representations are compositional, what about morphology?
- Ablations:
 - Sliding window segmentation without visual text representations?
 - Visual text representations without sliding window segmentation (aligned to subwords)?
 - Can you combine BPE embeddings and visual text representations?

Cross-lingual transfer with PIXEL
- Model vocabularies are predetermined and do not include all scripts
 - Can require adapters or vocabulary expansion for cross-lingual transfer
 - Visual representations may transfer across scripts, as-is!
- Pixel representations remove the source embedding matrix
 - Can we design a fully vocabulary-free model?

- Model vocabularies are predetermined and do not include all scripts
 - Can require adapters or vocabulary expansion for cross-lingual transfer
 - Visual representations may transfer across scripts, as-is!
- Pixel representations remove the source embedding matrix
 - Can we design a fully vocabulary-free model?
- Enter PIXEL: a *vocabulary-free* encoder (PIXEL: a <u>pixel-based</u> encoder of <u>language</u>)
 - Potentially supports all written languages
 - PIXEL has no embedding matrix, no finite or predetermined vocabulary
 - Easily extensible to unseen text (and scripts), as we'll see shortly

PIXEL building blocks

 Robust Open Vocabulary Translation from Visual Text Representations (Salesky et al. EMNLP 2021)

Figure 1: Visual text architecture combines network components from OCR and NMT, trained end-to-end.

input + encoder + decoder + target

 Masked Autoencoders are Scalable Visual Learners (He et al. 2021)

PIXEL architecture

Finetuning PIXEL

PIXEL abstract reconstructions

Language m**odels** are d**efine**d over **a large s**et of inputs, wh ch creates a **voc**ab**ula**ry bottl**eneet w**hen we at**temp**t to scale the number of supported languages. Beesing this bottlene ck results in a trade-off between what can be represented in the embedding matrix and computational issues in the out put layer. This pape**r intr**oduces **PI**XEL, the Pi**xel-base**d Encod er of Language, which suffers from neither of these issues. PIXEL is a pretrained language model that reduces textals nages, making it possible to transfer inepresentations across languages based on orthographic similarity or the co-activati on of pixels. PIXEL also used to reconstruct the pixels of mas ked patches, instead of predicting a distribution over tokens We pretrain the 86m-parameter PIXEL model on the same English data as BERT and evaluate on syntactic and semanti tasks in typologically diverse languages, including various no n-Latin scripts. We find that PIXEL substantially outperforms BERT on syntactic and semantic processing tasks on scripts t hat are not found in the pretraining data, but PIXEL is slightly weaker than BERT when working with Latin scripts. Further more, we find that PIXEL is more redest to note text inputs than BERT, further confirming the benefits of modelsing land uage with pixels.

Language models **are d**efined **over a** finite set of inputs, wi ch creates a very prove bottleneck when we attempt to scal e the **precises of** supported languages. Tackling this bottlene ck results in a trade-off between what can be represented in n the **em**bedding matrix and comp**atison tal is**sues in the out put layer. This paper introduc**es PI**XEL, the Pi**xel Firme** Encod ler of Language, which suffers from neither of these issues PIXEL is a pretrained language model that renders text of in hages, making it possible to transfer representations across nquages based on orthographic similarity or the co-activat n of levels. PIXEL is trained to reconstruct the levels of mas ked patches, instead of predicting a distribution over token e pretrain the 80M parameter PIXEL model on the same English data as BERT and evaluate on syntactic and semantic tasks of scologically diverse languages, including various no n-Latin scripts. We find that PIXEL substancially outperforms BERT on syntactic and semantic processing tasks on scripts hat are not found in the pretraining held, that PIXEL is slightly **y wea**ker than BERT when **wo**rking with Latin sc**rip**ts. Furthe more, we find that PIXEL is more puncist to noisy text inputs than BERT, further confirming the benefits of modelling lan guage with pixels.

Language models are defined ove**r a large s**et of inputs, v ch creates a temporary bottleneck when we attempt to scal e the number of supported languages. Tackling this bottlene ck results in a tradetion between what can be represented i n the embedding matrix and computational issues in the out put layer. This paper introduces PIXEL, the Pixel Econo Deco er of Language, which suffers from neither of these issues IXEE is a pretrained language model that renders text bro minds, making it possible to transfer representations across languages based on orthographic similarity or the co-activati on of pixels. PIXEL is trained to reconstruct the pixels of mas ked patches, instead of providing a distribution over token s. We pretrain the 86M parameter **in the mo**del on the same English data as BERT and evaluate on syntactic and semantic tasks in typologically permed languages, including various no in-Latin crripts. We find that PIXEL substantially outperforms BERT on syntactic and semantic processing tasks on scripts t hat are not found in the pretraining data, but PIXEL is slight weaker than BERT when working with Latin scripts. Further more, we find that PIXEL is more robust to noisy text inputs than BERT, further confirming the benefits of modelling land guage with pixels.

Gradio demo:

https://huggingface.co/spaces/Team-PIXEL/PIXEL

Pretraining PIXEL

• **Dataset**: English Wikipedia and Books Corpus

approx. BERT training corpus

- Masking: 25% Span Masking
- **Patch size**: 16x16 pixels

monolingual

- Maximum sequence length: 529 patches (368x368 pixels)
- **Compute**: 8 x A100 GPUs for ~8 days
- Parameters: 86M encoder + 26M decoder

There is ~0.05% non-English text in the pretraining data (estimated by Blevins and Zettlemoyer 2022)

Syntax: Part-of-Speech Tagging Results

Universal Dependencies

BERT **PIXEL**

100 75 50 25 0 ENG ARA COP HIN JPN KOR TAM VIE ZHO

PIXEL outperforms BERT by a large margin on unseen scripts

PIXEL finetuned per language and task

POS: more local dependencies 45

Syntax: Dependency Parsing Results

Universal Dependencies

■ BERT ■ PIXEL 100 75 50 μ 25 0 VIE ENG ARA COP HIN JPN KOR TAM ZHO

PIXEL outperforms BERT by a large margin on unseen scripts

PIXEL finetuned per language and task

DP: more global dependencies 46

Named Entity Recognition in African Languages

MasakhaNER

■ BERT ■ CANINE ■ PIXEL

BERT outperforms PIXEL on Latin scripts PIXEL nearly always outperforms CANINE-C

PIXEL finetuned per language and task

Multilingual modeling with visual representations

48

Section III

- Original vocabulary covers English and a fraction of languages with Latin, Cyrillic scripts
- Significant increase in parameters in order to increase language coverage (+30%)
 - Larger vocabulary increases MLM training time
 - Minimal parameter sharing across scripts

As we add languages to our models... vocabulary capacity per language is reduced

matrix of predetermined, fixed size

embeddings are disjoint by script

embedding matrix allocation

As we add languages to our models... vocabulary capacity per language is reduced

As we add languages to our models... vocabulary capacity per language is reduced

matrix of predetermined, fixed size

embeddings are disjoint by script

embedding matrix allocation

Pixels are shared between scripts in rendered text

Our research questions

What is the impact of multilingual training with pixels?

Are architectural changes needed given the larger input space in a multilingual context?

A closer look at cross-lingual transfer: are pixels more data-efficient than subwords?

Experimental setup

TED-7

- 7 source languages, 6 scripts (data from previous section)
- 1.2M training examples
- Balanced data across langs

TED-59

- 58 source languages, 17 scripts
- 5.1M training examples
- Imbalanced data across langs

Indic

- 11 source languages,
 9 scripts
- 50M training examples
- Imbalanced data across
 langs

All many-to-one machine translation (into English) All models vary only by source representations

Multilingual translation performance

Average improvement of +12% across 3 evaluation metrics

Many-to-one multilingual models

overall

Multilingual translation performance

Consistent improvements across all but 2 language pairs

> At least 5k examples required to visually learn a new script

per language

What is behind the improvements with pixels?

- Greater positive transfer across shared scripts
 - Complete parameter sharing gives stronger co-training benefits even without shared scripts

Largest improvements for languages with shared scripts

Low-resource languages with high-resource scripts benefit most from pixels

		Sco	res in BL	EU		
		PIXEL	BPE	Δ	Sents per Language	Sents per Script
	Belarusian (be)	28.5	19.2	+9.3	4.5k	669k
Best	Esperanto (eo)	32.9	24.8	+8.1	6.5k	2.7M
	Albanian (sq)	40.0	31.9	+8.1	44.5k	2.7M
Worst	Tamil (ta)	7.6	7.7	-0.1	6.2k	6.2k
	Bengali (bn)	12.7	13.9	-1.2	4.6k	4.6k

Model capacity and parametrization

pixel encoder

60M

model params

26

25

24

20

19

18

20M

40M

avg. BLEU 33. 55 57 51

Model capacity and parametrization

- Re-allocate parameters from the embedding matrix elsewhere for optimal performance
 - Required shift to deep-encoder + shallow-decoder for multilingual setting

Model capacity and parametrization

• Re-allocate parameters from the embedding matrix elsewhere for optimal performance

- Required shift to deep-encoder + shallow-decoder for multilingual setting
- Greater stability continuing to increase model capacity compared to baseline

Indic case study

Language	ISO	Script	Unicode Range	Sample
English	eng	Latin	(000-007F) 0900-097F 0580-09FF 0A0D-0A7F 0A80-0AFF 0800-087F 0800-08FF 0C00-AC7F 0CN0-ACFF 0D00-0D7F	Universal Declaration of Human Rights
Assamese	asm	Bengali–Assamese	1000-007F 090-077F (080-0FFF) DAID-UN/F DASH-DAFF UBD-0B7F UBB-DBFF OCD-4C7F OCB-OCFF ODDI-1D7F	মানৱ অধিকাৰৰ সাৰ্বজনীন ঘোষণা
Bengali	ben	Bengali–Assamese	0000-007F 0900-097F (050-09FF) 0.400-0.47F 0.850-0.8FF 0800-087F 0880-08FF 0C00-0C7F 0C80-0CFF 0D00-007F	মানবাধিকারের সর্বজনীন ঘোষণা
Gujarati	guj	Gujarati	0000-007F	માનવ અધિકારોની સાર્વત્રિક ઘોષણા
Hindi	hin	Devanagari	0000-007F (900-097F) 0980-09FF 0A00-0A7F 0AS0-0AFF 0B00-0B7F 0B80-0BFF 0C00-0C7F 0C80-0CFF 0D00-0D7F	मानव अधिकारों का सार्वजनिक घोषणापत्र
Kannada	kan	Kannada	0000-007F 0900-097F 0980-09FF 0A00-0A7F 0A80-0AFF 0B00-0B7F 0B00-0BFF 0C00-0C7F (CCN-0CFF) 0D00-0D7F	ಮಾನವ ಹಕ್ಕುಗಳ ಸಾರ್ವತ್ರಿಕ ಘೋಷಣೆ
Malayalam	mal	Malayalam	0000-007F 0900-097F 0800-09FF 0A00-0A7F 0A80-0AFF 0B00-0B7F 0B00-0BFF 0C00-0C7F 0C80-0CFF (DD00-0D7F)	മനുഷ്യാവകാശങ്ങളുടെ സാർവത്രിക പ്രഖ്യാപനം
Marathi	mar	Devanagari	0000-007F (000-07F) 0980-09FF 0A00-0A7F 0AS0-0AFF 0B00-0B7F 0B80-0BFF 0C00-0C7F 0C80-0CFF 0D00-0D7F	मानवी हक्कांची सार्वत्रिक घोषणा
Odia (Oriya)	ory	Odia	0000-007F 0900-097F 0880-09FF 0.000-0.07F 0.880-0.8FF 0800-087F 0880-08FF 0C00-0.C7F 0C80-0CFF 0D00-0D7F	ମାନବିକ ଅଧିକାରର ସର୍ବଭାରତୀୟ ଘୋଷଣା
Punjabi	pan	Gurmukhī	0000-007F 0900-097F (0900-09FF (0A00-0A7FF) 0AS0-0AFF 0B00-0B7F 0B00-0BFF 0C00-0C7F 0C00-0CFF 0D00-0D7F	ਮਨੁੱਖੀ ਅਧਿਕਾਰਾਂ ਦਾ ਵਿਸ਼ਵਵਿਆਪੀ ਐਲਾਨਨਾਮਾ
Tamil	tam	Tamil	0000-007F 0900-097F 0980-09FF 0.000-0.07F 0.880-0.8FF 0800-087F (0880-08FF) 0C00-0C7F 0C80-0CFF 0D00-007F	மனித உரிமைகளின் உலகளாவிய பிரகடனம்
Telugu	tel	Telugu	0000-007F 0900-097F 0880-09FF 0.400-0.47F 0.480-0.4FF 0800-08FF (CCO4-CCF) 0.C80-0.CFF 0.D00-0.D7F	మానవ హక్కుల సార్వత్రిక ప్రకటన

Samanantar corpus

Visually-similar scripts

Matched performance across 3 evaluation metrics

Indic

overall

Many-to-one multilingual models

Indic case study

What about alternative representations?

ప్రపంచం

दुनिया		Hindi Devanagari script																	
3 characters	दु						या							या					
6 codepoints	द			਼			न			ি			य			ा			
18 bytes	e0	a4	a6	e0	a5	81	e0	a4	a8	e0	a4	bf	e0	a4	bf	e0	a4	be	
11 BPE tokens	119	976	99	242	231	223	119	976	101	11976		123	11976 10		107	48077			

Telugu Telugu-Kannada script

3 characters	ప							పం						చం							
7 codepoints	ప		্র			ŏ		ప		ം			చ			ം					
21 bytes	e0	b0	aa	e0	b1	8d	e0	b0	b0	e0	b0	aa	e0	b0	82	e0	b0	9a	e0	b0	82
21 BPE tokens	156	108	103	156	109	235	156	108	108	156	108	103	156	108	224	156	108	103	156	108	224

What about alternative representations?

Recent work: Ahia et al (2023) Limisiewicz et al (2023)

Another look at cross-lingual transfer

Section III

To adapt a pretrained multilingual model to a new language and script, we could...

- Simply finetune with the same vocabulary
 - With new scripts, we likely have a significant number of out-of-vocabulary tokens!
- Extend the model vocabulary (similarly to how we did this in the Section I)
 - With a strategic embedding initialization

Visual representations of text are 'vocabulary-free' — we can finetune on new languages and scripts without model extensions!

We adapt our TED-7 multilingual models, which do not include all TED languages

- Finetune on 5 new language pairs with varying degrees of vocabulary coverage
- Though most scripts are 'in-vocabulary' there are unseen diacritics and character combinations

Language IS	SO	Script seen?	Unigram Coverage	Bigram Coverage	Trigram Coverage
Romanian Polish J Farsi S Vietnamese Hohroux	ro pl fa vi	~ ~ ~ ~ ~	96% 95% 99% 86%	91% 88% 79% 66%	84% 73% 66% 41%

English

More data-efficient transfer with pixels than extended-vocabulary BPE model

	BPE	PIXEL	Δ	Script seen in training?	Trigram coverage
Romanian	38.5	38.7	+0.2	1	84%
Polish	26.4	27.4	+1.0	1	73%
Vietnamese	25.8	27.2	+1.4	1	66%
Farsi	23.9	26.0	+2.1	<i>✓</i>	41%
Hebrew	0.7	38.4	+37.7	x	1%

Other analysis

Ask at the end if interested!

Clustering by language family and script

Conclusions

End
Conclusions

- This line of work renders text as images instead of tokenization, avoiding a fixed, finite vocabulary and the vocabulary bottleneck
- Pixel representations...
 - Are excellent on *robustness* tasks
 - Lead to more effective and efficient *cross-lingual transfer*, particularly across scripts
 - Increase positive transfer in *multilingual modeling*

(or unicode!)

• Not the end of tokenization but perhaps a path towards more robust multilingual models for more languages

Collaborators

Questions?

Feel free to email!

elizabeth.salesky@gmail.com

Salesky et al. (2021/2023)

Rust et al. (2023)

EXTRA SLIDES

visrep monolingual

Unicode (UTF-8)

Codepoint	Byte 1	Byte 2	Byte 3	Byte 4
U+00 <mark>00</mark> 00 7 F	0xxxxxxx			
U+008007FF	110xxxxx	10xxxxxx		
U+0800FFFF	1110xxxx	10xxxxxx	10xxxxxx	
U+10000010FFFF	11110 <mark>xxx</mark>	10xxxxxx	10xxxxxx	10xxxxxx

UTF-8 encodes codepoints in one to four bytes, determined by codepoint value.

Real-world data

"Language ID in the Wild" LREC 2020

Pred. Language	Mined "Sentence" purporting to be in this language	Noise class
Manipuri		General noise
Twi (Akan)	me: why you lyggin, why you always lyggin	General noise
Varhadi	Òyáèè êè, áódà- éydeydy làeèê îelí Élacóá loyeeli dyiy- yayá-ydélíû eey áó íyñe []	Misrendered PDF
Aymara	Orilyzewuhubys ukagupixog axiqyh asozasuh uxilutidobyq osoqalelohan []	Non-Unicode font
Balinese	As of now ဆိုလျှေးဂူမာအားဂုမာပ်မို is verified profile on Instagram.	Boilerplate
Cherokee	"ALL my Inor∧s grew back as flowers " · · · Sweet babies n dugs	Creative use of Unicode
Oromo	My geology ${\bf essa} {\bf y}$ introduction ${\bf essa} {\bf y}$ on men authoring crosswords	Unlucky frequent n-gram
Pular	MEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	Repeated n-grams
Chechen	Жирновский Жирновскийрайонный Фестиваль ТОСов	ANTSPEAK
Kashmiri	सा.	Short/ambiguous
Nigerian Pidgin	This new model features a stronger strap for a secure fit and increased comfort.	High-resource cousin
Uyghur	نۇرسۇلتان نازاربايەق قىتايدىڭ قازاقسىتانداعى ماشىسىمەن	Out-of-model cousin
Dimli	The S <b class="b2">urina <b class="b1">m toa <b class="b3">d is []	Deliberately Obfuscated

"Quality at a Glance" TACL 2022

	Error Codes							
X: Incorrect translation, but both correct languages								
en A map of the arrondissements of Paris kg Paris kele mbanza ya kimfumu ya Fwalansa.								
en Ask a question	tr Soru sor Kullanıma göre seçim							
WL: Source OR target wrong language, but both still linguistic content								
en The ISO3 language code is zho	zza Táim eadra bracach mar bhionns na frogannaidhe.							
en Der Werwolf-sprach der gute Mann,	de des Weswolfs, Genitiv sodann,							
NL: Not a language: at least one of source and target are not linguistic content								
en EntryScan 4 _ tn TSA PM704 _								
en organic peanut butter	ckb \diamond \diamond \diamond \diamond \diamond \diamond \diamond							

Computational efficiency

• Rendering and tokenization

- Rendering with PangoCairo lies between Python and Rust BPE implementations
- Time is ~1.2x time to learn and apply subword tokenization, though the Rust implementation can be scaled with batching

• Training time

- Dependent on sequence lengths, model operations, vocab & softmax sizes
- Training time is ~1.4x of equivalent subword models

• Inference time

No significant differences at inference time

• Disk storage

- Raw and binarized images take significantly more disk space to store (400x)
- Rendering on the fly preferable, toolkit allowing

Tokenizing rendered text

sentence-level image

tokenization

Wha	t's ir	n a wo	ord?
I			

Why do we render the whole sentence?

As opposed to by character or word

Pixel representations: considerations

- Why do we render the whole sentence?
 - As opposed to say, rendering each character or word

أنا كَنَدِيَةٍ، وَأَنا أَصْغَرَ إِخْوَانِي السَبَعَةِ أَنَا كَنَدِيَّةٍ، وَأَنا أَصْغَرِ إِخْوَانِي السَبْعَةِ

- Two reasons: 1) rendering correctness and 2) tokenization-free modeling
 - ① Many scripts have contextual forms and require context to render correctly
 - For example, Arabic characters may appear differently in isolation than in context
 - Rendering diacritics individually would result in strange visual forms!
 - ② Avoids predetermining a discrete segmentation
 - What is the 'correct' segmentation for English newstext? For twitter? For Chinese or non-whitespace marking languages? For a morphologically rich language like Kinyarwanda?

Convolutional filter visualization

- Visual representations have direct access to token components
 - Similar representations for word forms with and without diacritics
 - If a visual text model sees a partial match in training, both will be updated by backprop

Normalization

- What about normalization as preprocessing?
 - It helps text models, but selectively!
- While spell-checking helps, it:
 - is language-specific
 - is best suited to observed noise
 - relies on context to disambiguate:
 - noisy context hurts!

		Ar	abic	Fr	ench	Ger	rman	Ko	rean	Ru	ssian
		BPE	visrep	BPE	visrep	BPE	visrep	BPE	visrep	BPE	visrep
	no noise	32.1	31.6	36.7	36.2	<u>33.6</u>	35.1	17.0	16.6	25.4	25.0
swap	induced noise	2.3	9.3	2.4	22.0	1.9	25.9	5. <mark>4</mark>	8.9	5.4	18.8
	+ spellcheck	7.9	11.9	23.8	29.1	1.9	14.1	5.1	6.9	10.8	18.2
cambridge	induced noise	7.8	13.2	6.9	18.3	6.5	16.9	12.6	14.1	4.5	11.1
	+ spellcheck	10.9	12.6	16.4	21.1	10.0	14.9	10.3	11.8	5.9	11.1
133tspeak	induced noise	_	_	0.3	0.7	0.7	1.2	_		_	_
	+ spellcheck	—		0.3	0.7	0.7	1.2	—	—	—	
diacritics	induced noise	1.7	25.2	_	_	—	-	—	-		_
	+ spellcheck	2.1	25.3	—		—		—		—	
unicode	induced noise	_	-	_	-	_	-	_	-	1.6	22.0
	+ spellcheck	—		—		_		_	-	2.1	20.4

Table 11: Translation performance on five types of induced noise with spellchecking as preprocessing; all test sets have noise induced with p = 1.0. Both traditional text models *(BPE)* and visual text models *(visrep)* are shown. We bold the best model for each condition.

Appendix C

Normalization

Noise, with and without spellcheck

Not a perfect fix!

• What do we see?

- Spellcheck generally helps BPE models...
 - but also visrep models!
- Spellcheck doesn't help all languages equally
 - See: German BPE vs French BPE, swap
- Spellcheck doesn't help all noise equally
 - See: I33tspeak
- Spellcheck can also *create* errors

		Ar	abic	Fr	ench	Gei	rman	Ko	rean	Ru	ssian
		BPE	visrep								
	no noise	32.1	31.6	36.7	36.2	33.6	35.1	17.0	16.6	25.4	25.0
swap	induced noise	2.3	9.3	2.4	22.0	1.9	25.9	5.4	8.9	5.4	18.8
	+ spellcheck	7.9	11.9	23.8	29.1	1.9	14.1	5.1	6.9	10.8	18.2
cambridge	induced noise	7.8	13.2	6.9	18.3	6.5	16.9	12.6	14.1	4.5	11.1
	+ spellcheck	10.9	12.6	16.4	21.1	10.0	14.9	10.3	11.8	5.9	11.1
133tspeak	induced noise		_	0.3	0.7	0.7	1.2	_	_	_	
	+ spellcheck	-	_	0.3	0.7	0.7	1.2	—	-	—	—
diacritics	induced noise	1.7	25.2	_	_	—		_	_	_	_
	+ spellcheck	2.1	25.3		_	—	—	—	_	—	_
unicode	induced noise		-	_	-	—	_	_	-	1.6	22.0
	+ spellcheck		_	_	_		_	_		2.1	20.4

Table 11: Translation performance on five types of induced noise with spellchecking as preprocessing; all test sets have noise induced with p = 1.0. Both traditional text models *(BPE)* and visual text models *(visrep)* are shown. We bold the best model for each condition.

Appendix C

- Subword regularization techniques often improve performance and robustness
 - Are the improvements similar to with visual text representations?
- Recall BPE:

BPE-dropout:

 $u-n-\underline{r-e}$ -l-a-t-e-d u-n re-l-at-e-d u-n re-l-at-ed un re-l-at-ed un re-l-ated un <u>re-l</u>-ated un <u>rel-ated</u> un-relatedunrelated

Different subword set with the same (overall) number of merges

• BPE-Dropout (Provilkov et al. 2020):

- Subword segmentation using BPE algorithm
- 'Drop' candidate merges with some probability, and train with different segmentations each epoch
 - NOTE: small number of resulting subwords will not be in the MT model's vocabulary

• Subword Regularization (Kudo, 2018):

- Subword segmentation using unigram LM probabilities
- Can draw a stack of *l* candidates, and use different candidate segmentations each epoch
 - {_hell o, _h ello, _he llo, _h e l l o, _h el l o }

Improvement over standard BPE model

Improvement over stronger BPE dropout baseline, compared to over standard BPE model (background)

Hyperparameters

AR-EN		С	= 1,	font	= 10p	bt		DE-EN		C	c = 1,	font	= 10p	t			FR-EN		C	c = 1,	font	= 10p	ot	
$s{\downarrow}/w{\rightarrow}$	10	15	20	25	30	35	40	$s{\downarrow}/w{\rightarrow}$	10	15	20	25	30	35	40		$s{\downarrow}/w{\rightarrow}$	10	15	20	25	30	35	40
5	30.8	30.0	30.6	31.3	30.4	30.5	29.6	5	0.7	32.6	35.1	0.5	33.1	33.9	32.5		5	35.4	35.7	35.7	35.5	0.7	0.6	0.8
10	30.3	28.5	31.0	31.6	31.4	31.4	30.4	10	0.6	34.6	<u>34.8</u>	32.8	32.9	34.4	33.5		10	35.6	36.2	36.1	36.1	34.7	34.7	35.0
15		25.2	30.2	30.3	30.6	29.4	29.3	15		32.8	33.9	32.0	31.4	33.7	33.9		15		35.7	35.8	35.6	34.4	34.3	34.6
JA-EN		С	= 1,	font	= 10p	bt		KO-EN		0	c = 1,	font	= 10p	bt			RU-EN		C	c = 1,	font	= 10p	bt	
$s{\downarrow}/w{\rightarrow}$	10	15	20	25	30	35	40	$s{\downarrow}/w{\rightarrow}$	10	15	20	25	30	35	40		$s{\downarrow}/w{\rightarrow}$	10	15	20	25	30	35	40
5	12.4	11.5	12.3	13.1	12.4	12.4	12.3	5	15.8	15.7	15.3	16.2	15.6	16.0	16.1		5	0.6	22.7	23.8	0.5	23.6	23.0	0.5
10	11.8	11.8	12.4	12.5	11.5	12.4	12.3	10	14.7	15.9	15.5	16.5	1 <mark>4</mark> .7	15.9	16.4		10	2.0	23.2	25.0	23.2	23.2	23.9	23.2
15		9.4	12.1	12.7	12.2	12.4	12.1	15		14.3	15.2	15.4	15.7	16.2	15.6		15		21.1	24.4	23.7	24.5	24.2	22.0
ZH-EN		С	= 1,	font	= 10p	ot				τ	7	1 .		1	1		. (.11		1		1. 4)
$s{\downarrow}/w{\rightarrow}$	10	15	20	25	30	35	<mark>40</mark>				/arie	ea co	onv.	Ker	ners	S1Z	e (note	e: 2.	3=Tu	III W	ind	ow r	ieig	nt).
5	16.7	0.4	16.7	17.3	17.4	17.0	0.4				$h \times$	w	3 :	× 3	3 >	< 1	$1 \times$	3 1	$13 \times$	3	23 :	$\times 3$	5 >	× 5
10	15.8	17.1	16.8	17.1	16.3	17.0	0.4										1.6	-	1.0	_		-		
15		16.0	16.0	16.3	16.4	16.3	0.5				ZH-	-EN	1	1.4	17	$^{\prime}.1$	16.	9	16.	7	0	.6	16	0.6

w = window size, s = stride, c = number of convolutional blocks

Ablations: visrep without changing segmentation

subword-aligned tokenization

Ablations: visrep without changing segmentation

CLEAN:			ar	de	fr	ja	ko	ru	zh
Visual text + <i>subword-ali</i>			31.6 25.2	35.1 28.6	36.2 29.6	13.1 6.5	16.6 11.5	25.0 19.9	17.6 7.8
Text, subwords			32.1	33.6	36.7	14.4	17.0	25.4	18.3
NOISED:									
Visual text	visual	p=0.5	28.4	5.2	6.1	1 <u></u>		23.2	
+ subword-ali	visual	p=0.5	16.7	5.1	5.3	_	_	16.6	_
Text, subwords	visual	p=0.5	16.5	2.7	2.5			4.9	—
Visual text	perm	p=0.5	21.7	29.4	28.4	_	11.5	18.3	
+ subword-ali	perm	p=0.5	13.9	15.2	15.3		8.2	12.6	—
Text, subwords	perm	p=0.5	12.4	13.1	13.3	—	10.8	11.1	_

Ablations: sliding segmentation without visrep

Character trigrams contain approximately the same amount of text as a visrep sliding window

Here, we compare character n-grams to BPE and visrep, as approx. the same segmentation as visrep, but without a visual component

MODEL:	ar	de	fr	ja	ko	ru	zh
Visual text w/o visren (char n-grams)	31.6	35.1 34.6	36.2 36.4	13.1	16.6	25.0 24.6	17.6
Text, BPE	32.1	33.6	36.7	14.4	17.0	25.4	18.3
NOISED:							
Visual text; swap p=0.5	21.7	29.4	28.4		11.5	18.3	
<i>w/o visrep</i> ; swap p=0.5	11.2	10.8	11.9		1.1	9.5	
Text, BPE; swap p=0.5	12.4	13.1	13.3		10.8	11.1	

Ablations: sliding segmentation without visrep

Figure 4-15. The rank-frequency distribution compared between sliding window segmentation (\approx character *n*-grams) and BPE.

Hybrid representations: BPE & visrep

subword-aligned tokenization

Hybrid representations: BPE & visrep

	Individual Aligned			Multimodal				
Languages	Subword Vistext		Vistext _{pretrained}	ADD	AVG	CONCAT		
de-en	33.6	35.1	33.3	33.6	34.7	34.3		
fr-en	36.7	36.2	35.3	36.1	36.7	36.4		
ja-en	14.4	13.1	10.8	15.0	15.2	14.7		
ko-en	17.0	16.6	15.8	17.8	18.0	17.0		
zh-en	18.3	17.4	17.5	18.1	18.6	18.2		

Table D-I. Comparing individual subword or visual text representations to multimodal inputs which combine both subword and visual text with various operations. Translation performance shown in BLEU on the TED dataset.

Subword regularization for visual text

window regularization

Subword regularization for visual text

			Clean	text _{TED}		Noisy text _{MTNT}				
Method	Lang	30	25	20	15	30	25	20	15	
default	de	34.0	34.8	35.1	34.6	20.5	20.0	21.1	20.9	
	ja	12.4	13.1	12.4	11.8	4.6	5.2	4.7	3.5	
resizing	de	34.1				21.2				
	ja	12.6				5.1	8.			
padding	de	31.8				16.6	×	_	_	
	ja	0.4				0.1				

Morphological generalization

Test suite for morphological phenomena in MT (Amrhein and Sennrich, 2021)

Compounding	Circumfixation	Infixation	Vowel Harmony	Reduplication
(German)	(Chicasaw)	(Bontoc)	(Turkish)	(Itza')
Schild , Kröte	lakna	fikas	<mark>üzüldü</mark> n	tz'eek
'shield' , 'toad'	'it is yellow'	'strong'	'you are sad'	'few'
Schild <mark>kröte</mark>	<mark>ik</mark> lakn <mark>o</mark>	f <mark>um</mark> ikas	m <mark>utlusu</mark> n	tz'eek- <mark>tz'eek</mark>
'turtle'	'it isn't yellow'	'to be strong'	'you are happy'	'very few'

Morphological generalization

word-level accuracy

Phenomena		Freq.	BPE 32K	BPE _{drop} 32K	BPE _{drop} 500	CHAR	VISREP
Compounding #9		27	0	0	0	0	0
1 0	#7	67	46.1	0	83.8	0	0
	#5	238	98.1	97.6	96.2	97.0	97.3
	#3	522	98.9	98.4	97.3	96.5	98.7
	#1	1,095	96.2	97.8	97.3	97.0	98.1
Circumfixation	#4	11,718	97.9	97.9	97.9	95.9	99.0
	#2	26,007	100.0	98.0	98.0	99.2	99.2
Infixation	#4	3,796	98.9	98.9	96.7	100.0	99.7
	#3	15,540	98.5	96.4	99.3	97.1	98.7
Vowel Harmony	#3	8,636	98.9	99.4	97.7	98.3	98.9
Reduplication	Triple	106	0	0	0	0	0
-	Partial	34,783	94.2	95.0	95.9	95.0	97.1

Tokenization / Representation

10 1

visrep multilingual

Vocabulary and script coverage

Let's take a closer look at what it means for a script to be 'covered' by a model...

• Though most scripts are 'in-vocabulary' there are unseen diacritics and character combinations

Language	ISO	Script seen?	Unigram Coverage	Bigram Coverage	Trigram Coverage
Romanian Polish Farsi Vietnamese Hebrew	ro pl fa vi be	✓ ✓ ✓ ✓	96% 95% 99% 86% 23%	91% 88% 79% 66% 5%	84% 73% 66% 41% 1%

Arabic Chinese French German Japanese Korean Russian

, 中文, Français, Deutsch, 日本語, 한국어, русский

English

TED-7

Data-efficient cross-lingual transfer

• We see increased improvements compared to BPE the more distant the language and/or script is to those observed in training

Language	ISO	Script seen?	Unigram Coverage	Bigram Coverage	Trigram Coverage	$\frac{\Delta}{\text{BPE}_{extend}}$	Δ BPE
Romanian	ro	1	96%	91%	84%	+11%	+11%
Polish	pl	1	95%	88%	73%	+13%	+14%
Farsi	fa	1	99%	79%	66%	+18%	+20%
Vietnamese	vi	1	86%	66%	41%	+22%	+21%
Hebrew	he	×	23%	5%	1%	+30%	+4700%

Data-efficient cross-lingual transfer

- We see increased improvements compared to BPE the more distant the language and/or script is to those observed in training
- Better transfer performance with limited examples fine-tuning to new languages & scripts

			Language						
	# Samples	ro	pl	fa	vi	he			
	0	0.3	0.1	0.2	0.4	0.1			
EL	10k	5.5	3.9	3.7	3.9	4.8			
PIX	50k	16.6	11.7	11.1	11.7	14.4			
	150k	38.7	27.4	26.0	27.2	38.4			
	0	0.2	0.1	0.2	0.2	0.1			
xtend	10k	2.9	2.7	2.5	2.3	1.0			
PE	50k	12.3	9.7	8.5	8.6	8.1			
B	150k	38.5	26.4	23.9	25.8	30.9			
	0	0.2	0.1	0.2	0.2	0.0			
臣	10k	2.9	2.7	2.4	1.9	0.2			
BP	50k	12.1	9.1	7.7	7.5	0.3			
	150k	38.3	26.3	23.7	24.1	0.7			

Data-efficient cross-lingual transfer

- We see increased improvements compared to BPE the more distant the language and/or script is to those observed in training
- Better transfer performance with limited examples fine-tuning to new languages & scripts

				Language		
	# Samples	ro	pl	fa	vi	he
	0	0.3	0.1	0.2	0.4	0.1
EL	10k	5.5	3.9	3.7	3.9	4.8
PIX	50k	16.6	11.7	11.1	11.7	14.4
	150k	38.7	27.4	26.0	27.2	38.4
	0	0.2	0.1	0.2	0.2	0.1
xtend	10k	2.9	2.7	2.5	2.3	1.0
${}^{3}{ m PE}_{e}$	50k	12.3	9.7	8.5	8.6	8.1
щ	150k	38.5	26.4	23.9	25.8	30.9
	0	0.2	0.1	0.2	0.2	0.0
BPE	10k	2.9	2.7	2.4	1.9	0.2
	50k	12.1	9.1	7.7	7.5	0.3
	150k	38.3	26.3	23.7	24.1	0.7

Reduced interference across languages

- Comparing multilingual models to models for each language pair...
 - No degradation for any language pairs compared to bilingual models with pixels
 - Have not run the equivalent for TED-59, Indic

"Curse of multilinguality"?

Comparison to prior work

	Language	ISO	Script	# Sents	Aharoni.	BPE	PIXEL	Δ
LOW-RESOURCE	Azerbaijani Belarusian Galician Slovak	az be gl sk	Latin Cyrillic Latin Latin	5,946 4,509 10,017 61,470 <i>Avg:</i>	11.2 18.3 28.6 26.8 21.2	12.5 19.2 29.7 27.4 22.2	16.6 28.5 36.5 33.7 28.8	+5.4 +10.2 +7.9 +6.9 +7.6
HIGH-RESOURCE	Arabic German Hebrew Italian	ar de he it	Arabic Latin Hebrew Latin	214,111 167,888 211,819 204,503 <i>Avg</i> :	25.9 28.9 30.2 32.4 29.4	26.1 30.0 30.7 32.3 29.8	29.8 36.1 35.3 38.5 34.9	+3.9 +7.2 +5.1 +6.1 +5.6

Results in BLEU for 4 high-resource and 4 low-resource language pairs reported in prior work

Clustering by script

(a) PIXEL REPRESENTATIONS, clustered by script

(b) SUBWORD EMBEDDINGS, clustered by script

TED-59
Clustering by language family

(c) PIXEL REPRESENTATIONS, clustered by family

(d) SUBWORD EMBEDDINGS, clustered by family

Families Afro-Asiatic Turkic Indo-European Constructed Uralic Basque Austronesian Japonic Caucasian Koreanic Mongolic Sino-Tibetan Dravidian Tai-Kadai

.

Austroasiatic

TED-59

Frequency effects

BPE

TED-7

Layer-wise script and language information

(a) Indic

Convolutional filter visualization

Flexible rendering

• Emojis and mixed font ranges:

My cat 🦮 loves pancakes 🥯 and my duck 🦆 loves grapes 🍓. 🗌

• Left-to-right, right-to-left, and logosyllabic writing systems:

ى في الليل. 👘 他们常在晚間活動,但並不表示他們是夜行性動物。

تنشط القطط في الخلاء ليلا ونهارا على الرغم من أنها تميل إلى أن تكون أكثر نشاطا بقليل في الليل.

• Word-level rendering

:	
---	--

PangoCairo renderer: can mix fonts within a sequence, rendering speed comparable to HuggingFace BPE implementations

Rendering speed

Processor	Batched	Throughp	ut [ex / s]
		ENG	ZHO
Renderer (Grayscale)	X	3944.1	6309.0
Renderer (RGB)	×	3615.1	6849.5
Tokonizor (Dust)	1	19128.9	18550.5
Tokemizer (Kust)	×	4782.9	5684.4
Takanizar (Duthan)	1	1286.6	2637.1
iokemizer (Pymon)	×	1286.8	2580.9

PangoCairo renderer: can mix fonts within a sequence, rendering speed comparable to HuggingFace BPE implementations

PIXEL sequence lengths

Evaluating against

Ädu3 rsarīał a<u>t</u>tacķs

How well does PIXEL deal with visually similar attacks?

Attack	Sentence
None	Penguins are designed to be streamlined
Confusable	Pemguns are desigπed to be streamlined
Shuffle (inner)	Pegnuins are designed to be sieatromled
Shuffle (full)	ngePnius rae dsgednei to be etimaslernd
Disemvowel	Pngns r dsgnd to be strmlnd
Intrude	Pe'nguins a{re d}esigned t;o b*e stre <amlined< td=""></amlined<>
Keyboard typo	Penguinz xre dwsigned ro ne streamlined
Natural noise	Penguijs ard design4d ti bd streamlinfd
Truncate	Penguin are designe to be streamline
SEGMENTATION	Penguinsaredesignedtobestreamlined
PHONETIC	Pengwains's ar dhiseind te be storimlignd

Evaluating against

Saliency visualization in NLI tasks with % substitutions

(a) 0%, contradiction

(b) 80%, contradiction

(c) 80%, entailment

Results on Zeroé (SNLI)

PIXEL dynamics across training

Penguins are desi**gn**ed to be streamlined ar d hydrody**neutic**, so hav**ing the tie**gs would a dd ex**preading**. H**av**ing sho**rt l**egs with w**eitae** d feet to act like ru**nder**s, helps to give them that the ledo-like figure diain't compare bird anatomy with humans, we would see somet ning has speculiar. By taking a look at the side e-by-side image in Figure 1, you can see how their leg bon**es premed**e to ours. What most people mistake for knees are actually the ar atoricited birds. This gives a coclusion that b ird **kn**ees bend opposite of ours. The knees are actually tucked up inside the boxes botte of the **bine**! So how does this look insi**de the** penguin? In the **brace**es below, **you ca**n see b oxes surrounding the penguins' knees.

Penguins are designed to be streamlined ar d hydrody**namic**, so hav**ing long le**gs would a dd expaming. Having short legs with weode d feet to act like ru**nber**s, helps to give them that these do-like figures. We compare bird anatomy with humans, we would see somet hing toog peculiar. By taking a look at the side e-by-side in age in Figure 1, you can see how their leg bon**es are mat**e to ours. What most people mistake for knees are actually the an aomnes of birds. This gives the clusion that b ird **kn**ees bend opposite of ours. The knees are actually tucked up inside the boxesmote of the **bird**! So how does this look insi**de of a** i penguin? In the **atmri**es below, **you ca**n see b oxes surrounding the penguins' knees.

Penguins are designed to be streamlined an d hydrody**namic**, so hav**ing long le**gs would a dd expanding. Having short legs with wedde d feet to act like rubhers, helps to give them that torpedo-like figure. If we compare bird anatomy with humans, we would see somet hing atot peculiar. By taking a look at the side e-by-side image in Figure 1, you can see how their leg bon**es bee clos**e to ours. What most people mistake for knees are actually the an atomies of birds. This gives the illusion that b ird **kn**ees bend opposite of ours. The knees are actually tucked up inside the body to out a of the **bird**! So how does this look insi**de of a** : penguin? In the **imag**es below, **you ca**n see b oxes surrounding the penguins' knees.

100K training steps

500K training steps

1M training steps

PIXEL structured rendering

Structured rendering

(a) Continuous rendering (CONTINUOUS):

I must be growing small again.

(b) Structured rendering (BIGRAMS):

I must be gr ow in g sm al l ag ai n.

(c) Structured rendering (MONO):

I must be growing small again.

(d) Structured rendering (WORDS):

must be growing small again.

Figure 1: Examples of rendering strategies for the sentence "*I must be growing small again*." from Carroll (1865). We use black patches to mark the end of a sequence, following Rust et al. (2023).

Structured rendering

Figure 2: A continuous rendering strategy results in many uniquely-valued image patches for similar inputs, while structured rendering (here, BIGRAMS) regularises and compresses the potential input space.

Structured rendering results

Structure							Scale			
	UDP	GLUE			U	DP	G	LUE	TyDiQ.	A-GoldP
Renderer	Avg.	Avg.	Variant	$ \theta $	Avg.	$\Delta \mu$	Avg.	$\Delta \mu$	Avg.	$\Delta \mu$
CONTINUOUS	76.2	71.0	TINY	5.5M	72.0	-0.3	66.5	+12.7	41.6	+4.9
BIGRAMS	76.1	75.4	SMALL	22M	76.1	-0.1	75.4	+4.4	50.8	+2.0
MONO	75.9	74.4	BASE	86M	75.5	-0.6	78.0	+3.9	52.8	+0.5
WORDS	76.6	74.7	BERT	110M	50.5		80.0		51.5	

Table 2: Structure (left): averaged results for SMALL-models comparing downstream performance on UDP and GLUE following the different rendering strategies. Scale (right): averaged results across model scales using the BIGRAMS rendering structure. $\Delta \mu$ is the difference in average performance between BIGRAMS and CONTINUOUS rendering for a given model scale.

Distributions of cos similarities across layers

(a) BASE-BIGRAMS

(b) BERT

Distributions of cosine similarities for verbs and nouns from the WiC dataset across model layers 0-12, layer 0 being the input layer. Every example presents a target word in either a similar or different context across a sentence pair. The representation of the target word is computed as the mean hidden state output over the corresponding tokens. We generally see that BASE-BIGRAMS encodes target words in a similar context as more similar. The median cosine similarity between random words from random sentences are shown as a baseline.

Words in Context

Distributions of cosine similarities for verbs and nouns from the WiC dataset across model layers 0-12, layer 0 being the input layer. Every example presents a target word in either a similar or different context across a sentence pair. The representation of the target word is computed as the mean hidden state output over the corresponding tokens. We generally see that BASE-BIGRAMS encodes target words in a similar context as

Words in Context

Distributions of cosine similarities within samples of high-frequency words (High), low-frequency words (Low), or between the two samples. Rendering with BIGRAMS structure leads to less directionally aligned vector representations of frequent words that have seen more updates during pretraining compared to infrequent words.

BENCHMARKING img-translation

OCR Annotation Interface

MT Annotation Interface

Task John_Hopkinsuniversity_20240701_DE_test

Please provide translations as they would appear on corresponding traffic signs locally where possible

SKIP HIT

If corresponding sign exists in your location, but with significantly different text, staying true to the text in image takes priority

If sign does not exist in your location, then provide a translation which stays true to text in image while being an appropriate translation for a sign.

If for some reason it is impossible to provide a translation which works in local language, while staying true to source please raise a query and we will confirm with client.

Transcript directional sign	Translation de	1
CAUTION		
	1.	
WET FLOOR		
	4	

Did the visual context influence the translation? *

Yes

No

VST (OCR \rightarrow MT) on Vistra

	I	mBART			Google Translate			GPT-4o		
OCR Model	chrF	BLEU	COMET	chrF	BLEU	COMET	chrF	BLEU	COMET	
[Direct]							36.9	9.1	60.1	
Tesseract-OCR	2.3	0.1	28.8	3.5	0.1	30.4				
Paddle-OCR	26.8	9.0	46.1	36.0	16.7	57.0				
GPT-OCR	28.1	6.9	48.0	36.4	13.2	58.2				
Google-OCR	31.1	9.1	47.3	37.4	14.9	55.3				
[Direct]										
Tesseract-OCR	2.4	0.1	30.1	3.6	0.3	31.7	54.0	21.4	73.4	
Paddle-OCR	17.5	3.1	44.4	60.8	33.8	75.1				
GPT-OCR	23.3	4.2	50.4	60.8	24.6	75.0				
Google-OCR	22.0	4.0	45.5	62.2	29.9	71.3				
[Direct]										
Tesseract-OCR	1.7	0.1	25.3	2.6	0.1	27.3	35.6	10.7	70.2	
Paddle-OCR	13.0	5.8	42.4	46.5	20.0	73.0				
GPT-OCR	16.0	7.5	42.4	48.1	18.4	71.0				
Google-OCR	14.8	5.1	43.1	47.1	15.1	74.4				
[Direct]										
Tesseract-OCR	0.3		32.6	0.4		34.4	33.6		85.5	
Paddle-OCR	18.2		62.0	40.2		82.0				
GPT-OCR	19.7		63.1	40.1		82.5				
Google-OCR	18.7		59.2	41.6		77.7				

Translating text in natural images

Combining separate modeling stages

Translating text in natural images

Creating a benchmark dataset: Vistra

772 images containing English text, with metadata, transcripts, and translations to 4 target languages (German, Spanish, Russian, and Chinese)


```
{
    "image_file": "3c2b0778.png",
    "height": 1024, "width": 768,
    "category": "directional sign",
    "transcript": ["EXIT ONLY", "ONE WAY"],
    "translation":
        "de": ["NUR AUSFAHRT", "EINBAHNSTRAßE"],
        "es": ["SOLO SALIDA", "UNA VÍA"],
        "ru": ["TOЛЬКО ВЫЕЗД", "OДНОСТОРОННЕЕ ДВИЖЕНИЕ"],
        "zh": ["仅用作出口", "单向"],
    "bounding_boxes": {'EXIT': [[0.4701, 0.2565], ...},
    "requires_image_context":
        "de":true, "es":true, "ru":false, "zh":true
```

Creating a benchmark dataset: Vistra

772 images containing English text, with metadata, transcripts, and translations to 4 target languages (German, Spanish, Russian, and Chinese)

Examples marked context-sensitive:

German: 99% Spanish: 54% Russian: 6% Chinese: 96%

```
{

"image_file": "3c2b0778.png",

"height": 1024, "width": 768,

"category": "directional sign",

"transcript": ["EXIT ONLY", "ONE WAY"],

"translation":

    "de": ["NUR AUSFAHRT", "EINBAHNSTRAßE"],

    "es": ["SOLO SALIDA", "UNA VÍA"],

    "ru": ["TOЛЬКО ВЫЕЗД", "OДHOCTOPOHHEE ДВИЖЕНИЕ"],

    "zh": ["仅用作出口", "单向"],

"bounding_boxes": {'EXIT': [[0.4701, 0.2565], ...},

"requires_image_context":

    "de":true, "es":true, "ru":false, "zh":true
```

Models evaluated

Model	OCR	MT	VST	Release	OCR level	Returns bboxes?	Multilingual
PaddleOCR	\checkmark			OPEN-SOURCE	linelword	yes	
TesseractOCR	\checkmark			OPEN-SOURCE	word	yes	
Google Cloud Vision	\checkmark			COMMERCIAL	word	yes	
mBART		\checkmark		OPEN-SOURCE			\checkmark
Google Translate		\checkmark		COMMERCIAL			
GPT-40	\checkmark	\checkmark	\checkmark	COMMERCIAL	unknown	no	\checkmark

OCR Error Taxonomy

Class Description

		Class	Description
		I	Undetected text: missing text and
text d	text detection (I-III) errors	II	bounding boxes Text hallucination: text detected where no text present
		III	Bounding box misplaced: text clipped, cropping would affect recognition
		IV	Grouping error: text from different groups intermixed in output text
	recognition (IV-VIII)	V	Punctuation error
	errors	VI	Spacing error
(VII	Character-level substitution
		VIII	Word-level substitution

Examples of Errors by Class

I: Undetected text

Model: Google OCR Output: ESPASSING Reference: NO TRESPASSING STATE HIGHWAY ADMINISTRATION

II: Text hallucination

Model: Google OCR Output: ACCESS RAMP ... HHHHHHHI Reference: ACCESS RAMP

		a inter state of a
		t in the stars and an
	and the second second	
	Marrie Contraction	a state of the second
	Value and	

III: Bounding box error

Model:Paddle-OCROutput:Private Sign DONOTREADReference:Private Sign DO NOT READ
Examples of Errors by Class

IV: Grouping error

V: Punctuation error

VI: Spacing error

Model: Paddle OCR

Output: ... I'M THINKING OF HAVE YOU GOT ANY DRAWING A NEW GOOD IDEAS? COMIC STRIP

Reference: ... I'M THINKING OF DRAWING A NEW COMIC STRIP HAVE YOU GOT ANY GOOD IDEAS?

PULL TO OPEN | PUSH TO CLOSE

Model: Paddle-OCR Output: PULLTOOPEN|PUSHTOCLOSE Reference: PULL TO OPEN | PUSH TO CLOSE

Examples of Errors by Class

VII: Character-level substitution

Model: Google OCR Output: NO QVERNIGHT PARKING Reference: NO OVERNIGHT PARKING

VIII: Word-level substitution

Model:Google OCROutput:TOWN OF FEAST LYME ...Reference:TOWN OF EAST LYME ...

OCR Results on Vistra

Model	CER↓	TER↓	Sub.	Del.	Ins.
Paddle-OCR	13.0	21.5	963	2824	2851
Google OCR	18.0	32.0	186	381	8496
GPT-40	23.8	36.0	1132	1277	9728
Tesseract-OCR	124.0	134.3	9597	37081	16477

Motivational OCR \rightarrow MT Error Examples

MT output:

| (NO OUTSIDE)! |; FOOD OR |! || DRINKS |]| ALLOWED |, NO SE PERMITEN ALIMENTOS Y BEBIDAS AJENOS A ESTE ESTABLECIMIENTO

Inserted punctuation breaks up the text sequence, resulting in translation errors despite correctly recognized text (mBART)

Cascaded visually-situated translation (OCR \rightarrow MT) on Vistra

open-source

		mBART			
Target Language	OCR Model	chrF	BLEU	COMET	
German	Tesseract-OCR	2.3	0.1	28.8	
	Paddle-OCR	26.8	9.0	46.1	
Spanish	Tesseract-OCR	2.4	0.1	30.1	
	Paddle-OCR	17.5	3.1	44.4	
Russian	Tesseract-OCR	1.7	0.1	25.3	
	Paddle-OCR	13.0	5.8	42.4	
Chinese	Tesseract-OCR	0.3	_	32.6	
	Paddle-OCR	18.2	_	62.0	

Cascaded visually-situated translation (OCR \rightarrow MT) on Vistra

commercial

		Google Translate			
Farget Language	OCR Model	chrF	BLEU	COMET	
German	GPT-OCR	36.4	13.2	58.2	
	Google Cloud	37.4	14.9	55.3	
Spanish	GPT-OCR	60.8	24.6	75.0	
	Google Cloud	62.2	29.9	71.3	
Russian	GPT-OCR	48.1	18.4	71.0	
	Google Cloud	47.1	15.1	74.4	
Chinese	GPT-OCR	40.1	—	82.5	
	Google Cloud	41.6	_	77.7	

Direct visually-situated translation with a multimodal model

commercial

		Google Translate			GPT-4o		
Target Language	OCR Model	chrF	BLEU	COMET	chrF	BLEU	COMET
German	GPT-OCR	36.4	13.2	58.2	36.9	9.1	60.1
	Google Cloud	37.4	14.9	55.3			
Spanish	GPT-OCR	60.8	24.6	75.0	54.0	21.4	73.4
	Google Cloud	62.2	29.9	71.3			
Russian	GPT-OCR	48.1	18.4	71.0	35.6	10.7	70.2
	Google Cloud	47.1	15.1	74.4			
Chinese	GPT-OCR	40.1	_	82.5	33.6	_	85.5
	Google Cloud	41.6	_	77.7			

Can Multimodal LLMs resolve contextual ambiguity?

References:

English transcript: EXIT ONLY ONE WAY

German translation:

Nur Ausfahrt Einbahnstraße **GPT-4o Cascade:**

English OCR:

EXIT ONLY **ONE WAY** →

German translation:

NUR AUSGANG EINWEG →

GPT-40 Direct: German translation: **AUSFAHRT NUR** **EINEN WEG**

> 15 3

Can Multimodal LLMs resolve contextual ambiguity?

14/14 examples of "EXIT" are translated as "AUSGANG" in a cascade

4 examples of "EXIT" are translated as "AUSFAHRT" with a multimodal model

*and 5 as AUSGANG, and 6 are fully incorrect GPT-4o Cascade:

English OCR:

EXIT ONLY **ONE WAY** →

German translation:

NUR AUSGANG EINWEG →

GPT-40 Direct:

German translation:

AUSFAHRT NUR **EINEN WEG**

Cautionary note on evaluation metrics

With COMET, all combinations of these as hyp and ref score exactly the same!

Lexical metrics may (for now) better check use of context-sensitive terms