Efficient machine translation. How to get the bestest and fastest models

Nikolay Bogoychev

University of Edinburgh
N.Bogoych@ed.ac.uk
We all love winning WMT with huge machine translation systems.

- 4x transformer big - 800M parameters
- Wider transformers - 2B parameters
- NLLB - 50B parameters
- What’s next?
We all love winning WMT with huge machine translation systems.

- 4x transformer big - 800M parameters
- Wider transformers - 2B parameters
- NLLB - 50B parameters
- What’s next?

How do we actually do MT in production?
Models
Model size

- How do we speed up the machine translation?
• How do we speed up the machine translation?
• It’s simple, just use smaller models.
• How do we speed up the machine translation?
• It’s simple, just use smaller models.
• But we also want translation quality.
Knowledge distillation

- We want to learn a small model, but it has bad quality.
- Instead learn a big model (transformer-big ensemble)
- Translate your training set with your big model.
- Train your small model on the artificial data.
Training the student

- Overfit the student to the teacher distribution (all training tricks that you know apply).
Training the student

- Overfit the student to the teacher distribution (all training tricks that you know apply).
- Evaluate the student on the dev set TRANSLATED by the teacher. You expect to approach 100 BLEU.
Training the student

- Overfit the student to the teacher distribution (all training tricks that you know apply).
- Evaluate the student on the dev set TRANSLATED by the teacher. You expect to approach 100 BLEU.
- Training will take a while...
- Student can run with a beam size of 1!
Shrinking the model always reduces the computational costs, but not all parameters are born equally computationally heavy.

- Encoder runs once, decoder runs for every word.
Shrinking the model always reduces the computational costs, but not all parameters are born equally computationally heavy.

- Encoder runs once, decoder runs for every word.
- Self-attention is really expensive, especially in the decoder.
Shrinking the model always reduces the computational costs, but not all parameters are born equally computationally heavy.

- Encoder runs once, decoder runs for every word.
- Self-attention is really expensive, especially in the decoder.
- The output layer is usually the largest matrix in the model.
Encoder is much cheaper computationally than the decoder. Don’t use 6-6 configuration but explore:

- 12-1?
- 6-2?

Evaluate the speed/quality tradeoff and make a decision.
We want to reduce the computational cost of decoders of our model.

- Reduce their depth: Use only 1 or 2 layer decoder.
- Replace expensive components: Replace attention with AAN or SSRU

Evaluate the speed/quality tradeoff and make a decision.
Reducing the dimensions of the matrices is the easiest way to scale down the model

- Reduce embedding layer size: 512 -> 256 -> 128
- Reduce FFNN layer size: 2048x2048 -> 1024x1024
- Reduce the dimension of attention heads.

Evaluate the speed/quality tradeoff and make a decision.
Models have a lot of built in redundancy. Prune parameters that have little affect on the overall computation.

- Identify non important parameters during training.
- Set them to zero
- Remove them from the model

Less parameters *should* reduce the computational workload.
Decoding time tricks
The output layer matrix has size $\text{DIM}_{\text{emb}} \times |N|_{\text{vocab}}$ and is the single largest computation in the model. Speed it up by:

- Reduce vocabulary size. Bad
The output layer matrix has size $DIM_{emb} \times |N|_{vocab}$ and is the single largest computation in the model. Speed it up by:

- Reduce vocabulary size. Bad
- Use lexical shortlist.
- Use KNN clustering

Evaluate the speed/quality tradeoff and make a decision.
Our hardware is faster when multiplying larger matrices

- Group similarly sized sentences together
- Higher throughput and higher latency
Quantisation

CPUs and GPUs have 8-bit integer multiplication instructions that allow for much faster matrix multiplication than what is possible in FP32.

- Hardware allows us to do $\text{INT}_8 \times \text{INT}_8 = \text{INT}_{32}$. (Not really true for a lot of the hardware)
CPUs and GPUs have 8-bit integer multiplication instructions that allow for much faster matrix multiplication than what is possible in FP32.

- Hardware allows us to do $\text{INT}_8 \times \text{INT}_8 = \text{INT}_{32}$.
 (Not really true for a lot of the hardware)
- Quantise Activation and parameter matrices to 8-bit.

 \[
 A_i = \frac{127 \times A_i}{\text{MAX}(|A|)}, \quad B_i = \frac{127 \times B_i}{\text{MAX}(|B|)}
 \]
Quantisation

CPUs and GPUs have 8-bit integer multiplication instructions that allow for much faster matrix multiplication than what is possible in FP32.

- Hardware allows us to do $INT_8 \times INT_8 = INT_{32}$.
 (Not really true for a lot of the hardware)
- Quantise Activation and parameter matrices to 8-bit.
 \[A_i = \frac{127 \times A_i}{\text{MAX}(|A|)} , \quad B_i = \frac{127 \times B_i}{\text{MAX}(|B|)} \]
- After multiplication, perform de-quantisation and re-quantisation for the next activation:
 \[A_{fp32} \times B_{fp32} \approx A_{int8} \times B_{int8} \times \frac{\text{MAX}(A) \times \text{MAX}(B)}{127^2} \]
Quantisation

CPUs and GPUs have 8-bit integer multiplication instructions that allow for much faster matrix multiplication than what is possible in FP32.

- Hardware allows us to do $\text{INT}_8 \times \text{INT}_8 = \text{INT}_{32}$. (Not really true for a lot of the hardware)
- Quantise Activation and parameter matrices to 8-bit.
 $$A_i = \frac{127 \times A_i \max(|A|)}{\max(|A|)}, \quad B_i = \frac{127 \times B_i \max(|B|)}{\max(|B|)}$$
- After multiplication, perform de-quantisation and re-quantisation for the next activation:
 $$A_{fp32} \times B_{fp32} \approx A_{int8} \times B_{int8} \times \frac{\max(A) \times \max(B)}{127^2}$$
- Parameters are converted to 8-bit in advance, activations at runtime, always before multiplication.
- Quantisation Multipliers are computed in advance.
Speed results
Applying out full bag of tricks:

<table>
<thead>
<tr>
<th></th>
<th>TIME</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU, 16 threads, 3000 SENTENCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher latency</td>
<td>4597s</td>
<td>36.5</td>
</tr>
<tr>
<td>Teacher batched</td>
<td>652s</td>
<td>36.5</td>
</tr>
<tr>
<td>Student latency</td>
<td>84s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched</td>
<td>11s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched shortlisted</td>
<td>8s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched quantised shortlisted</td>
<td>7.1s</td>
<td>35.0</td>
</tr>
</tbody>
</table>
Applying out full bag of tricks:

<table>
<thead>
<tr>
<th>CPU, 16 threads, 3000 SENTENCES</th>
<th>TIME</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher latency</td>
<td>4597s</td>
<td>36.5</td>
</tr>
<tr>
<td>Teacher batched</td>
<td>652s</td>
<td>36.5</td>
</tr>
<tr>
<td>Student latency</td>
<td>84s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched</td>
<td>11s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched shortlisted</td>
<td>8s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched quantised shortlisted</td>
<td>7.1s</td>
<td>35.0</td>
</tr>
</tbody>
</table>

1 Thread, to make it more granular

<table>
<thead>
<tr>
<th>CPU, 1 thread, 3000 SENTENCES</th>
<th>TIME</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student latency</td>
<td>189s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched</td>
<td>38s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched shortlisted</td>
<td>27s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched quantised shortlisted</td>
<td>21s</td>
<td>35.0</td>
</tr>
</tbody>
</table>
Applying out full bag of tricks for the GPU... Maybe it’s better to not use more all tricks.

<table>
<thead>
<tr>
<th>GPU, 100k SENTENCES</th>
<th>TIME</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher latency</td>
<td>13539s</td>
<td>36.5</td>
</tr>
<tr>
<td>Teacher batched 64</td>
<td>1763s</td>
<td>36.5</td>
</tr>
<tr>
<td>Student latency</td>
<td>2784s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched 64</td>
<td>218s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched 64 shortlisted</td>
<td>220s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched 64 fp16</td>
<td>197s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched 64 fp16 + software optimisation</td>
<td>124s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched 1132 fp16 + software optimisation</td>
<td>36s</td>
<td>35.2</td>
</tr>
<tr>
<td>Student batched 1132 8-bit + software optimisation</td>
<td>40s</td>
<td>35.0</td>
</tr>
</tbody>
</table>
Cloud cost to translate 1M characters.

- Google: $20
- Amazon: $15
- Microsoft: $10
- Efficient submissions: $0.001

Cloud MT providers running pretty hefty profit margins
Hardware Aware optimisation
Tune to your hardware

CPUs and GPUs have fundamentally different properties and optimising for them differs a bit.

GPUs:

- Don’t mind larger matrices all that much.
- Limited gains from quantisation
- Good for throughput, not so much for latency.
Tune to your hardware

CPUs and GPUs have fundamentally different properties and optimising for them differs a bit.

GPUs:

- Don’t mind larger matrices all that much.
- Limited gains from quantisation
- Good for throughput, not so much for latency.

CPUs:

- Really want smaller matrices.
- Huge gains from quantisation.
- Cache is extremely important.
- Good for latency, not so much for throughput.
- Cheaper to decode in most production cases than the GPU.
Figure 1: Taken from
Different memory models:
CPU is transparent
GPU memory management is very explicit.

<table>
<thead>
<tr>
<th>Memory type</th>
<th>Latency</th>
<th>Memory type</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>0</td>
<td>Register</td>
<td>0</td>
</tr>
<tr>
<td>L1 cache</td>
<td>4</td>
<td>Shared</td>
<td>4–8</td>
</tr>
<tr>
<td>L2 cache</td>
<td>10</td>
<td>Global GPU</td>
<td>200–800</td>
</tr>
<tr>
<td>L3 cache</td>
<td>40</td>
<td>CPU</td>
<td>10K+</td>
</tr>
<tr>
<td>Remote L3*</td>
<td>80</td>
<td>Remote GPU</td>
<td>22K+</td>
</tr>
<tr>
<td>DRAM</td>
<td>330+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CPU decoding

GPU Decoding
Running GPUs is expensive in terms of cloud credits.

- Batch translation
- Back/Forward translation
- Seldom used in production
GPUs care mostly about big matrices. Diminishing returns for smaller models.

- Shortlisting doesn’t help unless your vocabulary size is > 100000
- \(fp16\) decoding works well
- Quantisation to 8-bit doesn’t help in most cases
- Sparsity helps in limited cases.
CPU Decoding
Memory access

It’s all about memory, really.

Figure 2: Source: Andalam et al. (2013)
Memory access

It’s all about memory, really.

Modern systems have 40-80MB of L3 Cache. What is the most intensive part of decoding?

Figure 2: Source: Andalam et al. (2013)
Accessing L3 cache is 10X faster than accessing main memory. Idea: Fit the most computationally intensive parts in the cache.

- Decoder (Deep encoder - Shallow decoder/ tied decoder)
- Output Layer/Embeddings (Shortlisting techniques)

Further size reductions have diminishing returns when it comes to speed.
Quantisation

Why does quantisation help? It’s all about SIMD.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Parameters</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>_mm256_fmadd_ps</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>_mm256_dpbusd_epi32</td>
<td>32</td>
<td>5</td>
</tr>
</tbody>
</table>

And of course MEMORY.
Quantisation complications #1

x86 has no $\text{INT}_8 \times \text{INT}_8$, unlike ARM. It only has $\text{UINT}_8 \times \text{INT}_8$.
x86 has no $INT_8 \times INT_8$, unlike ARM. It only has $UINT_8 \times INT_8$.

- Shift the sign bit onto the parameter. Slow ;(
- Add 127 to the activations
Quantisation complications #1

x86 has no $INT_8 \times INT_8$, unlike ARM. It only has $UINT_8 \times INT_8$.

- Shift the sign bit onto the parameter. Slow ;(
- Add 127 to the activations

\[
\alpha = \max(|A|) \quad (1)
\]
\[
\beta = \max(|B|) \quad (2)
\]
\[
A_{fp32} \times B_{fp32} \approx \quad (3)
\]
\[
\frac{\alpha \beta}{127^2} \left(\frac{A \times 127}{\alpha} + [127] \right) \times \frac{B \times 127}{\beta} = \quad (4)
\]
\[
= \frac{\alpha \beta}{127^2} \left(\frac{AB \times 127^2}{\alpha \beta} + [127]B \times 127 \right) = \quad (5)
\]
\[
AB + \frac{[127]B \times \alpha}{127} = \quad (6)
\]
\[
= AB + [1]B \times \alpha \quad (7)
\]
Quantisation complications #2

Different architectures support a disjoint set of instructions

- ARM: $\text{INT}_8 \times \text{INT}_8 = \text{INT}_{32}$
- x86 non-server pre 2019: $\text{UINT}_8 \times \text{INT}_8 = \text{INT}_{16}$
- x86 server after 2019: $\text{UINT}_8 \times \text{INT}_8 = \text{INT}_{32}$
- x86 2023?: $\text{INT}_8 \times \text{INT}_8 = \text{INT}_{32}$

Library takes care of abstractions, but...
Different architectures support a disjoint set of instructions

- ARM: $\text{INT}_8 \times \text{INT}_8 = \text{INT}_{32}$
- x86 non-server pre 2019: $\text{UINT}_8 \times \text{INT}_8 = \text{INT}_{16}$
- x86 server after 2019: $\text{UINT}_8 \times \text{INT}_8 = \text{INT}_{32}$
- x86 2023?: $\text{INT}_8 \times \text{INT}_8 = \text{INT}_{32}$

Library takes care of abstractions, but... it doesn’t take advantage of streaming memory.

- Execute a single _mm256_dpbusd_epi32
- Apply de-quantisation
- Apply activation functions
- Then write to memory
Quantisation complications #2

Different architectures support a disjoint set of instructions

- ARM: $\text{INT}_8 \times \text{INT}_8 = \text{INT}_{32}$
- x86 non-server pre 2019: $\text{UINT}_8 \times \text{INT}_8 = \text{INT}_{16}$
- x86 server after 2019: $\text{UINT}_8 \times \text{INT}_8 = \text{INT}_{32}$
- x86 2023?: $\text{INT}_8 \times \text{INT}_8 = \text{INT}_{32}$

Library takes care of abstractions, but... it doesn’t take advantage of streaming memory.

- Execute a single _mm256_dpbusd_epi32
- Apply de-quantisation
- Apply activation functions
- Then write to memory

Existing libraries (oneDNN/MKL/FBGEMM) don’t quite do that (oneDNN almost does it). On the GPU side, nvidia’s CUTLASS does it. Hence, write your own GEMM implementation: https://github.com/kpu/intgemm
Pruning complications

Pruning can drastically decrease the number of parameters

• Up to 70% Sparsity with minimal loss of BLEU
• Hardware doesn’t like it as much
• Minimal loss of BLEU doesn’t mean minimal loss in quality
Fire up the profiler and see what doesn’t add up.
Fire up the profiler and see what doesn’t add up.

<table>
<thead>
<tr>
<th>Function</th>
<th>CPU Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Loop@0x7f38980a01a8 in jit_avx512_core_amx_gemm_kern]</td>
<td>293.680011</td>
</tr>
<tr>
<td>[Loop@0x7f38980a21a8 in jit_avx512_core_amx_gemm_kern]</td>
<td>173.910006</td>
</tr>
<tr>
<td>[Loop at line 213 in marian::cpu::integer::PrepareBNodeOpmarian::Type77825::<forwardOps(void)::{lambda()#1}::opar]</td>
<td>139.320005</td>
</tr>
<tr>
<td>[Loop@0x7f38980a2324 in jit_avx512_core_amx_gemm_kern]</td>
<td>98.230004</td>
</tr>
<tr>
<td>[Loop@0x7f38980a0320 in jit_avx512_core_amx_gemm_kern]</td>
<td>95.200003</td>
</tr>
<tr>
<td>Z13_mm512_max_psDv16_fs</td>
<td>87.360003</td>
</tr>
<tr>
<td>[Loop@0x7f3897c550c0 in jit_avx512_core_amx_copy_kern]</td>
<td>70.960003</td>
</tr>
<tr>
<td>func@0x1a6884</td>
<td>61.020002</td>
</tr>
<tr>
<td>[Loop@0x7f389653a90 in jit_avx512_core_amx_copy_kern]</td>
<td>57.090002</td>
</tr>
<tr>
<td>Z13_mm512_mul_psDv16_fs</td>
<td>42.430002</td>
</tr>
<tr>
<td>[Loop at line 507 in dnn::impl::cpu::x64::gemm_kernel<signed char, signed char, int>]</td>
<td>41.670001</td>
</tr>
<tr>
<td>[Loop@0x7f3894d411c1 in inner_product_utils::jit_pp_kernel_t]</td>
<td>40.970001</td>
</tr>
<tr>
<td>[Loop@0x7f3894d811c1 in inner_product_utils::jit_pp_kernel_t]</td>
<td>40.950001</td>
</tr>
<tr>
<td>[Loop@0x7f3894f11c1 in inner_product_utils::jit_pp_kernel_t]</td>
<td>40.840001</td>
</tr>
<tr>
<td>[Loop@0x7f3894f411c1 in inner_product_utils::jit_pp_kernel_t]</td>
<td>40.640001</td>
</tr>
<tr>
<td>[Loop at line 224 in marian::cpu::Transpose0213<(bool)0>]</td>
<td>39.140001</td>
</tr>
<tr>
<td>func@0x7abc4</td>
<td>38.410001</td>
</tr>
<tr>
<td>[Loop@0x280d4e1 in [MKL BLAS]@avx512_xsgemv]</td>
<td>32.810001</td>
</tr>
<tr>
<td>std::partial_sort<gnu_cxx::normal_iterator<int*>, std::vector<int, std::allocator<int>>, marian::NthElementCPU::getNBE></td>
<td>27.500001</td>
</tr>
<tr>
<td>[Loop at line 33 in marian::cpu::E<{unsigned long}3>::element<{unsigned long}3, marian::functional::Assign<marian::function::getNBE<marian::cpu::E<marian::cpu::NthElementCPU::getNBE<marian::cpu::Transpose0213<(bool)0>)}}>)]</td>
<td>27.240001</td>
</tr>
<tr>
<td>[Outside any known module]</td>
<td>26.790001</td>
</tr>
<tr>
<td>Z13_mm512_and_psDv16_fs</td>
<td>25.090001</td>
</tr>
</tbody>
</table>
Fire up the profiler and see what doesn’t add up.

<table>
<thead>
<tr>
<th>Function</th>
<th>CPU Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop@0x7f38980a01a8 in jit_avx512_core_amx_gemm_kern</td>
<td>293.680011</td>
</tr>
<tr>
<td>Loop@0x7f38980a21a8 in jit_avx512_core_amx_gemm_kern</td>
<td>179.910006</td>
</tr>
<tr>
<td>Loop at line 213 in marian::cpu::integer::PrepareBNodeOpmarian::Type77825::forwardOps(void)::{lambda0}#1::operator+</td>
<td>139.320005</td>
</tr>
<tr>
<td>Loop@0x7f38980a324 in jit_avx512_core_amx_gemm_kern</td>
<td>98.230004</td>
</tr>
<tr>
<td>Loop@0x7f38980a0320 in jit_avx512_core_amx_gemm_kern</td>
<td>95.200003</td>
</tr>
<tr>
<td>_Z13_mm512_max_psDv16_fs</td>
<td>87.360003</td>
</tr>
<tr>
<td>Loop@0x7f3897c55c0 in jit_avx512_core_amx_copy_kern</td>
<td>70.960003</td>
</tr>
<tr>
<td>func@0x1a6884</td>
<td>61.020002</td>
</tr>
<tr>
<td>Loop@0x7f389653a090 in jit_avx512_core_amx_copy_kern</td>
<td>57.090002</td>
</tr>
<tr>
<td>_Z13_mm512_mul_psDv16_fs</td>
<td>42.430002</td>
</tr>
<tr>
<td>Loop at line 507 in dnn!::impl::cpu::x64::gemm_kernel<signed char, signed char, int></td>
<td>41.670001</td>
</tr>
<tr>
<td>Loop@0x7f3894d411c1 in inner_product Utils::jit_pp_kernel_t</td>
<td>40.970001</td>
</tr>
<tr>
<td>Loop@0x7f3894d811c1 in inner_product Utils::jit_pp_kernel_t</td>
<td>40.950001</td>
</tr>
<tr>
<td>Loop@0x7f3894f811c1 in inner_product Utils::jit_pp_kernel_t</td>
<td>40.840001</td>
</tr>
<tr>
<td>Loop@0x7f3894f411c1 in inner_product Utils::jit_pp_kernel_t</td>
<td>40.640001</td>
</tr>
<tr>
<td>Loop at line 224 in marian::cpu::Transpose0213<boo>0></td>
<td>39.140001</td>
</tr>
<tr>
<td>func@0x7abc4</td>
<td>38.410001</td>
</tr>
<tr>
<td>Loop@0x280d4e1 in [MKL BLAS]@avx512_xsgemv</td>
<td>32.810001</td>
</tr>
<tr>
<td>std::partial_sort< gnu_cxx::normal_iterator<int*, std::vector<int, std::allocator<int>>>, marian::NthElementCPU::getNBEϾched<marian::fuc</td>
<td>27.500001</td>
</tr>
<tr>
<td>[Loop at line 33 in marian::cpu::E<unsigned long3>::element<unsigned long3>, marian::functional::Assign<marian::functiona</td>
<td>27.240001</td>
</tr>
<tr>
<td>[Outside any known module]</td>
<td>26.790001</td>
</tr>
<tr>
<td>_Z13_mm512_and_psDv16_fs</td>
<td>25.090001</td>
</tr>
</tbody>
</table>

What is ntd_element doing there with beam size of 1?
Understand, Optimise, Overcome!

<table>
<thead>
<tr>
<th></th>
<th>GCC 11.2</th>
<th>clang 14</th>
<th>icc 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>std::max_element</td>
<td>2.6696s</td>
<td>0.4221s</td>
<td>0.4662s</td>
</tr>
<tr>
<td>sequential</td>
<td>1.0831s</td>
<td>1.1924s</td>
<td>1.1472s</td>
</tr>
<tr>
<td>AVX512 max + max_reduce</td>
<td>0.2412s</td>
<td>0.2152s</td>
<td>0.2142s</td>
</tr>
<tr>
<td>AVX512 max_reduce only</td>
<td>0.2570s</td>
<td>0.2629s</td>
<td>0.2325s</td>
</tr>
<tr>
<td>AVX512 cmp_ps_mask</td>
<td>0.1884s</td>
<td>0.1826s</td>
<td>0.1833s</td>
</tr>
<tr>
<td>AVX512 ^+ vectorized overhang</td>
<td>0.2097s</td>
<td>0.2089s</td>
<td>0.2072s</td>
</tr>
<tr>
<td>AVX cmp_ps + movemask</td>
<td>0.2181s</td>
<td>0.1697s</td>
<td>0.1702s</td>
</tr>
<tr>
<td>SSE cmplt_psp + movemask</td>
<td>0.2692s</td>
<td>0.2051s</td>
<td>0.2221s</td>
</tr>
</tbody>
</table>

Table 1: Performance of *max element* on various different compilers on Intel Cascade lake. For more information check https://github.com/XapaJIaMnu/maxelem_test.
Quality
Shortlisting

• IBM models don’t capture idioms
• KNN shortlisting requires specific model configuration
Quantisation drops quality

- Some can be recovered with fine tuning
- Combining different methods together further drops quality
Use multiple metrics.

- Monitor changes in BLEU and COMET
- Beware of sudden drops in either
Use multiple metrics.

- Monitor changes in BLEU and COMET
- Beware of sudden drops in either

<table>
<thead>
<tr>
<th></th>
<th>BLEU</th>
<th>COMET</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline:</td>
<td>27.5</td>
<td>0.45</td>
<td>35s</td>
</tr>
<tr>
<td>baseline + A</td>
<td>27.4</td>
<td>0.44</td>
<td>18s</td>
</tr>
<tr>
<td>baseline + B</td>
<td>27.2</td>
<td>0.43</td>
<td>15s</td>
</tr>
<tr>
<td>baseline + C</td>
<td>27.2</td>
<td>0.37</td>
<td>10s</td>
</tr>
</tbody>
</table>
Use multiple metrics.

- Monitor changes in BLEU and COMET
- Beware of sudden drops in either

<table>
<thead>
<tr>
<th></th>
<th>BLEU</th>
<th>COMET</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline:</td>
<td>27.5</td>
<td>0.45</td>
<td>35s</td>
</tr>
<tr>
<td>baseline + A</td>
<td>27.4</td>
<td>0.44</td>
<td>18s</td>
</tr>
<tr>
<td>baseline + B</td>
<td>27.2</td>
<td>0.43</td>
<td>15s</td>
</tr>
<tr>
<td>baseline + C</td>
<td>27.2</td>
<td>0.37</td>
<td>10s</td>
</tr>
</tbody>
</table>

- Something is wrong, look at our data!

In der Nähe der Nähe der Nähe der Nähe
MT in your pocket

Let’s see, what did we do?
MT in your pocket

Let’s see, what did we do?

https://translatelocally.com
https://translatelocally.com/web/
Alternatives
What else is out there

Many methods exist

- IBdecoder (Zhang et al, 2020)
- Non-autoregressive MT (Choose your pickings)
- Semi-non autoregressive
- Something else?
What else is out there

Many methods exist

• IBdecoder (Zhang et al, 2020)
• Non-autoregressive MT (Choose your pickings)
• Semi-non autoregressive
• Something else?

Student transformers still work the best
What else is out there

Many methods exist

- IBdecoder (Zhang et al, 2020)
- Non-autoregressive MT (Choose your pickings)
- Semi-non autoregressive
- Something else?

Student transformers still work the best

Thank you for your time
• Sequence-Level Knowledge Distillation by Kim and Rush, 2016
• Deep Encoders and Shallow decoders by Kasai et al, 2020
• KNN shortlisting by Shi et al, 2018
• Pruning Behnke and Heafield, 2021
• IBdecoder (Zhang et al, 2020)
• Tutorial on efficient MT: https://nbogoychev.com/efficient-machine-translation/