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Machine translation is heavy

We all love winning WMT with huge machine translation systems.

• 4x transformer big - 800M parameters
• Wider transformers - 2B parameters
• NLLB - 50B parameters
• What’s next?

How do we actually do MT in production?
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Models



Model size

• How do we speed up the machine translation?

• It’s simple, just use smaller models.
• But we also want translation quality.
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Knowledge distillation

• We want to learn a small model, but it has bad quality.
• Instead learn a big model (transformer-big ensemble)
• Translate your training set with your big model.
• Train your small model on the artificial data.
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Training the student

• Overfit the student to the teacher distribution (all training tricks
that you know apply).

• Evaluate the student on the dev set TRANSLATED by the teacher.
You expect to approach 100 BLEU.

• Training will take a while...
• Student can run with a beam size of 1!
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Computational cost

Shrinking the model always reduces the computational costs, but not
all parameters are born equally computationally heavy.

• Encoder runs once, decoder runs for every word.

• Self-attention is really expensive, especially in the decoder.
• The output layer is usually the largest matrix in the model.
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Deep encoder shallow decoder

Encoder is much cheaper computationally than the decoder. Don’t
use 6-6 configuration but explore:

• 12-1?
• 6-2?

Evaluate the speed/quality tradeoff and make a decision.
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Decoders

We want to reduce the computational cost of decoders of our model.

• Reduce their depth: Use only 1 or 2 layer decoder.
• Replace expensive components:
Replace attention with AAN or SSRU

Evaluate the speed/quality tradeoff and make a decision.
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Matrix sizes

Reducing the dimensions of the matrices is the easiest way to scale
down the model

• Reduce embedding layer size: 512 -> 256 -> 128
• Reduce FFNN layer size. 2048x2048 -> 1024x1024
• Reduce the dimension of attention heads.

Evaluate the speed/quality tradeoff and make a decision.
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Pruning

Models have a lot of built in redundancy. Prune parameters that
have little affect on the overall computation.

• Identify non important parameters during training.
• Set them to zero
• Remove them from the model

Less parameters should reduce the computational workload.
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Decoding time tricks

Decoding time tricks
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Output layer

The output layer matrix has size DIMemb ∗ |N|vocab and is the single
largest computation in the model. Speed it up by:

• Reduce vocabulary size. Bad

• Use lexical shortlist.
• Use KNN clustering

Evaluate the speed/quality tradeoff and make a decision.
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Batching

Our hardware is faster when multiplying larger matrices

• Group similarly sized sentences together
• Higher throughput and higher latency
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Quantisation

CPUs and GPUs have 8-bit integer multiplication instructions that
allow for much faster matrix multiplication than what is possible in
FP32.

• Hardware allows us to do INT8 × INT8 = INT32.
(Not really true for a lot of the hardware)

• Quantise Activation and parameter matrices to 8-bit.
Ai = 127∗Ai

MAX(|A|) , Bi =
127∗Bi
MAX(|B|)

• After multiplication, perform de-quantisation and
re-quantisation for the next activation:

Afp32 ∗ Bfp32 ≈ Aint8 ∗ Bint8 ∗
MAX(A) ∗MAX(B)

1272

• Parameters are converted to 8-bit in advance, activations at
runtime, always before multiplication.

• Quantisation Multipliers are computed in advance.
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Speed results



CPU

Applying out full bag of tricks:

CPU, 16 threads, 3000 SENTENCES TIME BLEU
Teacher latency 4597s 36.5
Teacher batched 652s 36.5
Student latency 84s 35.2
Student batched 11s 35.2
Student batched shortlisted 8s 35.2
Student batched quantised shortlisted 7.1s 35.0

1 Thread, to make it more granular

CPU, 1 thread, 3000 SENTENCES TIME BLEU
Student latency 189s 35.2
Student batched 38s 35.2
Student batched shortlisted 27s 35.2
Student batched quantised shortlisted 21s 35.0
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GPU

Applying out full bag of tricks for the GPU... Maybe it’s better to not
use more all tricks.

GPU, 100k SENTENCES TIME BLEU
Teacher latency 13539s 36.5
Teacher batched 64 1763s 36.5
Student latency 2784s 35.2
Student batched 64 218s 35.2
Student batched 64 shortlisted 220s 35.2
Student batched 64 fp16 197s 35.2
Student batched 64 fp16 + software optimisation 124s 35.2
Student batched 1132 fp16 + software optimisation 36s 35.2
Student batched 1132 8-bit + software optimisation 40s 35.0
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Cost

Cloud cost to translate 1M characters.

Google $20
Amazon $15
Microsoft $10
Efficient submissions $0.001

Cloud MT providers running pretty hefty profit margins
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Hardware Aware optimisation



Tune to your hardware

CPUs and GPUs have fundamentally different properties and
optimising for them differs a bit.
GPUs:

• Don’t mind larger matrices all that much.
• Limited gains from quantisation
• Good for throughput, not so much for latency.

CPUs:

• Really want smaller matrices.
• Huge gains from quantisation.
• Cache is extremely important.
• Good for latency, not so much for throughput.
• Cheaper to decode in most production cases than the GPU.
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GPU vs CPU

Figure 1: Taken from
https://www.adlinktech.com/en/gpu-computing
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Memory Latency

Different memory models:
CPU is transparent
GPU memory management is very explicit.

CPU GPU
Memory type Latency Memory type Latency

Register 0 Register 0
L1 cache 4 Shared 4–8
L2 cache 10 Global GPU 200–800
L3 cache 40 CPU 10K+
Remote L3* 80 Remote GPU 22K+
DRAM 330+

19



CPU decoding

GPU Decoding
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Purpose

Running GPUs is expensive in terms of cloud credits.

• Batch translation
• Back/Forward translation
• Seldom used in production
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Optimising for GPU

GPUs care mostly about big matrices. Diminishing returns for smaller
models.

• Shortlisting doesn’t help unless your vocabulary size is > 100000
• fp16 decoding works well
• Quantisation to 8-bit doesn’t help in most cases
• Sparsity helps in limited cases.
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CPU decoding

CPU Decoding
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Memory access

It’s all about memory, really.

Figure 2: Source: Source: Andalam et al. (2013)

Modern systems have 40-80MB of L3 Cache. What is the most
intensive part of decoding?
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Crucial bits

Accessing L3 cache is 10X faster than accessing main memory. Idea:
Fit the most computationally intensive parts in the cache.

• Decoder (Deep encoder - Shallow decoder/ tied decoder)
• Output Layer/Embeddings (Shortlisting techniques)

Further size reductions have diminishing returns when it comes to
speed.
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Quantisation

Why does quantisation help? It’s all about SIMD.

Instruction Paramters Cycles
_mm256_fmadd_ps 8 4
_mm256_dpbusd_epi32 32 5

And of course MEMORY.
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Quantisation complications #1

x86 has no INT8 ∗ INT8, unlike ARM. It only has UINT8 ∗ INT8.

• Shift the sign bit onto the parameter. Slow ; (
• Add 127 to the activations

α = max(|A|) (1)
β = max(|B|) (2)
Afp32 ∗ Bfp32 ≈ (3)

αβ

1272 (
A ∗ 127

α
+ [127]) ∗ B ∗ 127

β
= (4)

=
αβ

1272 (
AB ∗ 1272

αβ
+

[127]B ∗ 127
β

) = (5)

= AB+
[127]B ∗ α

127 = (6)

= AB+ [1]B ∗ α (7)
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Quantisation complications #2

Different architectures support a disjoint set of instructions

• ARM: INT8 ∗ INT8 = INT32
• x86 non-server pre 2019: UINT8 ∗ INT8 = INT16
• x86 server after 2019: UINT8 ∗ INT8 = INT32
• x86 2023?: INT8 ∗ INT8 = INT32

Library takes care of abstractions, but...

it doesn’t take advantage of
streaming memory.

• Execute a single _mm256_dpbusd_epi32
• Apply de-quantisation
• Apply activation functions
• Then write to memory

Existing libraries (oneDNN/MKL/FBGEMM) don’t quite do that (oneDNN
almost does it). On the GPU side, nvidia’s CUTLASS does it. Hence, write your
own GEMM implementation: https://github.com/kpu/intgemm

28
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Pruning complications

Pruning can drastically decrease the number of parameters

• Up to 70% Sparsity with minimal loss of BLEU
• Hardware doesn’t like it as much
• Minimal loss of BLEU doesn’t mean minimal loss in quality
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Profiling

Profiling
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Profiling

Fire up the profiler and see what doesn’t add up.

What is ntd_element doing there with beam size of 1?
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Max element

Understand, Optimise, Overcome!

GCC 11.2 clang 14 icc 2022
std::max_element 2.6696s 0.4221s 0.4662s
sequential 1.0831s 1.1924s 1.1472s
AVX512 max + max_reduce 0.2412s 0.2152s 0.2142s
AVX512 max_reduce only 0.2570s 0.2629s 0.2325s
AVX512 cmp_ps_mask 0.1884s 0.1826s 0.1833s
AVX512 ^+ vectorized overhang 0.2097s 0.2089s 0.2072s
AVX cmp_ps + movemask 0.2181s 0.1697s 0.1702s
SSE cmplt_psp + movemask 0.2692s 0.2051s 0.2221s

Table 1: Performance of max element on various different compilers on Intel
Cascade lake. For more information check
https://github.com/XapaJIaMnu/maxelem_test.
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Quality



Shortlisting

• IBM models don’t capture idioms
• KNN shortlisting requires specific model configuration
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Quantisation

Quantisation drops quality

• Some can be recovered with fine tuning
• Combining different methods together further drops quality
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Evaluation

Use multiple metrics.

• Monitor changes in BLEU and COMET
• Beware of sudden drops in either

BLEU COMET time
baseline: 27.5 0.45 35s
baseline + A 27.4 0.44 18s
baseline + B 27.2 0.43 15s
baseline + C 27.2 0.37 10s

• Something is wrong, look at our data!

In der nähe der nähe der nähe der nähe
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MT in your pocket

Let’s see, what did we do?

https://translatelocally.com
https://translatelocally.com/web/
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Alternatives



What else is out there

Many methods exist

• IBdecoder (Zhang et al, 2020)
• Non-autoregressive MT (Choose your pickings)
• Semi-non autoregressive
• Something else?

Student transformers still work the best

Thank you for your time
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