

Sharp Students - Dull Teachers Tricks of the Trade for Neural Machine Translation

Orhan Firat Research Scientist Mountain View - CA

Sept 4th, 2018

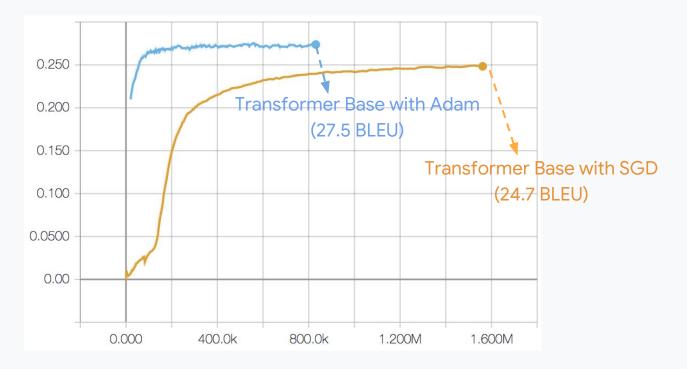
MTM'18 Prague

Let's read some Theano

[US] https://github.com/lisa-groundhog/GroundHog/blob/master/groundhog/trainer/SGD_adadelta.py#L114

T	100	
	101	norm_gs = TT.sqrt(sum(TT.sum(x**2)
	102	<pre>for x,p in zip(gs, self.model.params) if p not in self.model.exclude_params_for_norm))</pre>
	103	<pre>if 'cutoff' in state and state['cutoff'] > 0:</pre>
	104	<pre>c = numpy.float32(state['cutoff'])</pre>
	105	<pre>if state['cutoff_rescale_length']:</pre>
	106	<pre>c = c * TT.cast(loc_data[0].shape[0], 'float32')</pre>
	107	
	108	<pre>notfinite = TT.or_(TT.isnan(norm_gs), TT.isinf(norm_gs))</pre>
	109	_gs = []
	110	<pre>for g,p in zip(gs,self.model.params):</pre>
	111	<pre>if p not in self.model.exclude_params_for_norm:</pre>
	112	<pre>tmpg = TT.switch(TT.ge(norm_gs, c), g*c/norm_gs, g)</pre>
	113	_gs.append(
	114	<pre>TT.switch(notfinite, numpy.float32(.1)*p, tmpg))</pre>
	115	else:
	116	_gs.append(g)
	117	gs = _gs
	118	<pre>store_gs = [(s,g) for s,g in zip(self.gs, gs)]</pre>
	119	updates = store_gs + [(s[0], r) for s,r in zip(model.updates, rules)]
	120	

Shiniest Hammer



Google AI

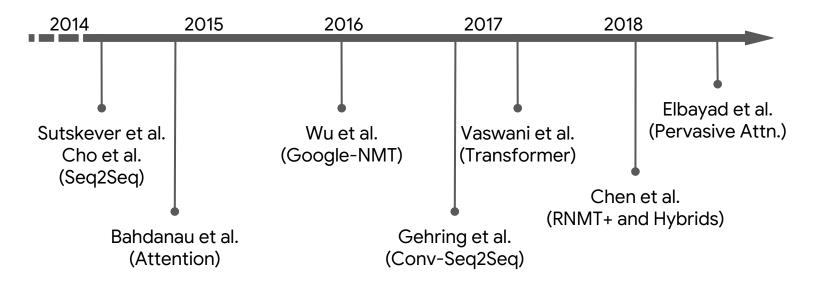
••	•••	•••	•	••	• •	•	•••	• •



Conclusion

- 1. Each model comes with a set of additional techniques that might also be applicable to the others. (tricks of the trade for NMT)
- 2. Gains from training (optimization) might be larger than the other ingredients for improvement. (sharp students - dull teachers)

A Brief History of NMT Models



$$quality = f(X, \theta, \mu) \qquad \begin{array}{l} X : \text{Data} \\ \theta : \text{Model} \\ \mu : \text{Hyperparameters} \end{array}$$

The Best of Both Worlds - I (Chen et al. 2018)

Every new approach is:

• accompanied by a set of <u>modeling</u> and <u>training</u> techniques.

Goal:

- 1. Tease apart architectures and their accompanying techniques.
- 2. Identify key modeling and training techniques.
- 3. Apply them on RNN based Seq2Seq \rightarrow **RNMT+**

Conclusion:

• **RNMT+** outperforms all previous three approaches.

The Best of Both Worlds - II (Chen et al. 2018)

Also, each new approach has:

• a fundamental architecture (signature wiring of neural network).

Goal:

- 1. Analyse properties of each architecture.
- 2. Combine their strengths.
- 3. Devise new hybrid architectures → Hybrids

Conclusion:

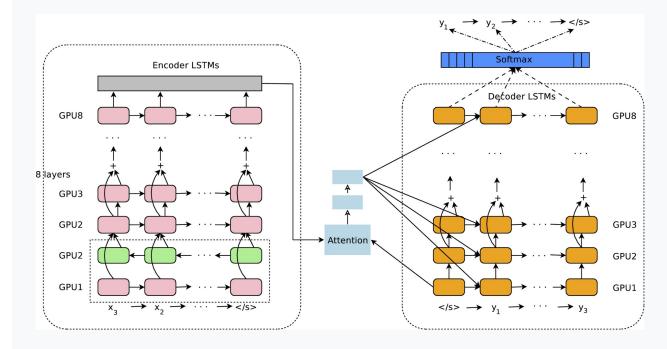
• Hybrids obtain further improvements over all the others.

Building Blocks

- RNN Based NMT RNMT
- Convolutional NMT ConvS2S
- Conditional Transformation Based NMT **Transformer**

GNMT - Wu et al.

- Core Components:
 - RNNs
 - Attention (Additive)
 - biLSTM + uniLSTM
 - Deep residuals
 - Async Training
- Pros:
 - De facto standard
 - Modelling state space
- Cons:
 - Temporal dependence
 - Not enough gradients

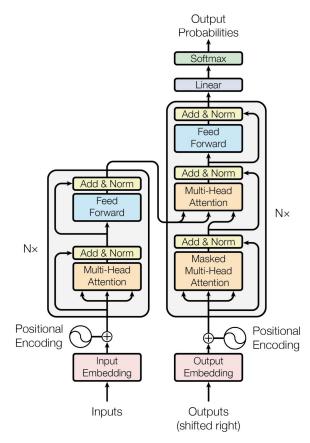


ConvS2S - Gehring et al.



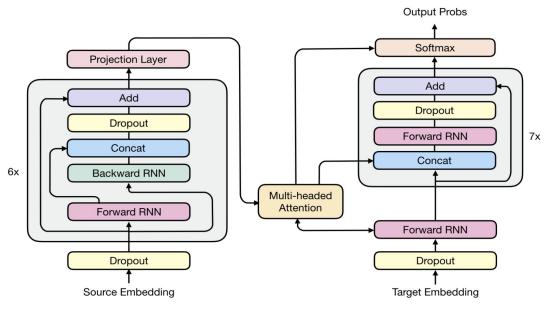
- Core Components:
 - Convolution GLUs
 - Multi-hop attention
 - Positional embeddings
 - Careful initialization
 - Careful normalization
 - Sync Training
- Pros:
 - No temporal dependence
 - More interpretable than RNN
- Cons:
 - Need to stack more to increase the receptive field

Transformer - Vaswani et al.



- Core Components:
 - \circ Self-Attention
 - Multi-headed attention
 - Layout: $N \rightarrow f() \rightarrow D \rightarrow R$
 - Careful normalization
 - Careful batching
 - Sync training
 - Label Smoothing
 - Per-token loss
 - Learning rate schedule
 - Checkpoint Averaging
- Pros:
 - Gradients everywhere faster optimization
 - Parallel encoding both training/inference
- Cons:
 - Combines many advances at once
 - Fragile

The Best of Both Worlds - I: RNMT+



- The Architecture:
 - Bi-directional encoder 6 x LSTM
 - Uni-directional decoder 8 x LSTM
 - Layer normalized LSTM cell
 - Per-gate normalization
 - Multi-head attention
 - 4 heads
 - Additive (Bahdanau) attention

Model Comparison - I : BLEU Scores

WMT'14 En-Fr (35M sentence pairs)

Model	Test BLEU	Epochs	Training Time
GNMT	38.95	-	-
ConvS2S ⁷	39.49 ± 0.11	62.2	438h
Trans. Base	39.43 ± 0.17	20.7	90h
Trans. Big ⁸	40.73 ± 0.19	8.3	120h
RNMT+	41.00 ± 0.05	8.5	120h

WMT'14 En-De (4.5M sentence pairs)

Model	Test BLEU	Epochs	Training Time
GNMT	24.67	-	-
ConvS2S	25.01 ± 0.17	38	20h
Trans. Base	27.26 ± 0.15	38	17h
Trans. Big	27.94 ± 0.18	26.9	48h
RNMT+	28.49 ± 0.05	24.6	40h

- RNMT+/ConvS2S: 32 GPUs, 4096 sentence pairs/batch.
- Transformer Base/Big: 16 GPUs, 65536 tokens/batch.

Model Comparison - II : Speed and Size

WMT'14 En-Fr (35M sentence pairs)

Model	Test BLEU	Epochs	Training Time
GNMT	38.95	-	-
ConvS2S ⁷	39.49 ± 0.11	62.2	438h
Trans. Base	39.43 ± 0.17	20.7	90h
Trans. Big ⁸	40.73 ± 0.19	8.3	120h
RNMT+	41.00 ± 0.05	8.5	120h

Model	Examples/s	FLOPs	Params
ConvS2S	80	15.7B	263.4M
Trans. Base	160	6.2B	93.3M
Trans. Big	50	31.2B	375.4M
RNMT+	30	28.1B	378.9M

WMT'14 En-De (4.5M sentence pairs)

Model	Test BLEU	Epochs	Training
Widder	ICST DEEC	Lpoens	Time
GNMT	24.67	-	-
ConvS2S	25.01 ± 0.17	38	20h
Trans. Base	27.26 ± 0.15	38	17h
Trans. Big	27.94 ± 0.18	26.9	48h
RNMT+	28.49 ± 0.05	24.6	40h

- RNMT+/ConvS2S: 32 GPUs, 4096 sentence pairs/batch.
- Transformer Base/Big: 16 GPUs, 65536 tokens/batch.

 	• •	• •	• •	• •	

	•
	•••••
· · · · · · · ·	

Well... no!

Google Al

Stability: Ablations

WMT'14 En-Fr

Model	RNMT+	Trans. Big
Baseline	41.00	40.73
- Label Smoothing	40.33	40.49
- Multi-head Attention	40.44	39.83
- Layer Norm.	*	*
- Sync. Training	39.68	*

* Indicates an unstable training run

Evaluate importance of four key techniques:

- 1. Label smoothing
 - Significant for both
- 2. Multi-head attention
 - Significant for both
- 3. Layer Normalization
 - Critical to stabilize training (especially with multi-head attention)
- 4. Synchronous training
 - Critical for Transformer
 - Significant quality drop for RNMT+
 - Successful only with a tailored learning-rate schedule

The Best of Both Worlds - II: Hybrids

Strengths of each architecture:

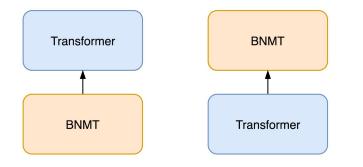
- RNMT+
 - Highly expressive continuous state space representation.

• Transformer

- Full receptive field powerful feature extractor.
- Combining individual architecture strengths:
 - Capture complementary information "Best of Both Worlds".
- Trainability important concern with hybrids
 - Connections between different types of layers need to be carefully designed.

Google Al

Encoder - Decoder Hybrids



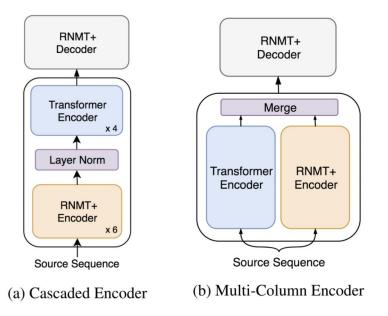
2	Encoder	Decoder	En→Fr Test BLEU
-	Trans. Big	Trans. Big	40.73 ± 0.19
	RNMT+	RNMT+	41.00 ± 0.05
	Trans. Big	RNMT+	$\textbf{41.12} \pm \textbf{0.16}$
	RNMT+	Trans. Big	39.92 ± 0.21
_			

Separation of roles:

- Decoder conditional LM
- Encoder build feature representations

 \rightarrow Designed to contrast the roles. (last two rows)

Encoder Layer Hybrids



Improved feature extraction:

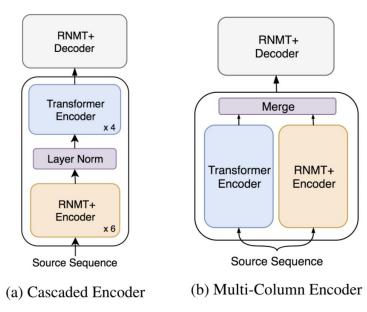
- Enrich stateful representations with global self-attention
- Increased capacity

Details:

- Pre-trained components to improve trainability
- Layer normalization at layer boundaries

Cascaded Hybrid - **vertical** combination Multi-Column Hybrid - **horizontal** combination

Encoder Layer Hybrids



Model	En→Fr BLEU	En→De BLEU
Trans. Big	40.73 ± 0.19	27.94 ± 0.18
RNMT+	41.00 ± 0.05	28.59 ± 0.05
Cascaded	$\textbf{41.67} \pm \textbf{0.11}$	28.62 ± 0.06
MultiCol	41.66 ± 0.11	$\textbf{28.84} \pm \textbf{0.06}$

Lessons Learnt

Need to separate other improvements from the architecture itself:

- Your good ol' architecture may shine with new modelling and training techniques
- Stronger baselines (Denkowski and Neubig, 2017)

Dull Teachers - Smart Students

• "A model with a sufficiently advanced Ir-schedule is indistinguishable from magic."

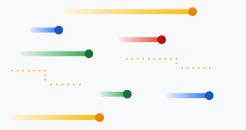
expressivity $\not\propto$ trainability

Understanding and Criticism

- Hybrids have the potential, more than duct taping.
- Game is on for the next generation of NMT architectures

$$quality = f(X, \theta, \mu)$$

Sharp Students Dull Teachers



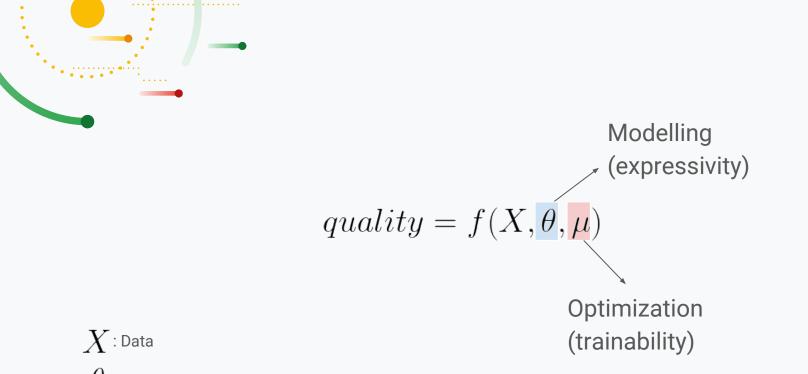
Machine Translation is a problem.

.

What computations can this model perform?

How easy is it to fit a model to the data?

Google Al



 μ : Hyperparameters

Google AI

Aiding the Model

Aiding the Optimizer

Model enhancements that eases the training:

- Residuals
- Normalizations (layer, batch, spectral)
- Transparent attention (Bapna et al. 2018)

• Parameter Sharing

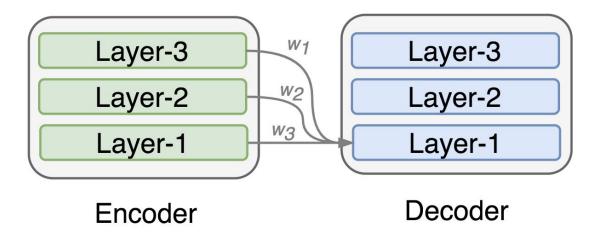
(Press and Wolf 2016, Jean et al. 2018, Dehghani et al. 2018) Step rule enhancements that eases the training:

- Sync-training
- Grad-norm tracker (Chen et al. 2018)
- Large batches (Goyal et al. 2017, Ott et al. 2018)
- Learning Rate Schedules (Bengio 2012)
- New step rules

(Shazeer and Stern 2018, Gupta et al. 2018)

Transparent Attention or Encoder -I

(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)



Transparent Attention or Encoder -II

(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)

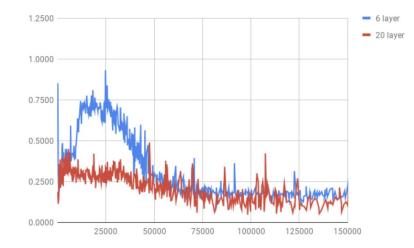


Figure 1: Grad-norm ratio (r_t) vs training step (t) comparison for a 6 layer (blue) and 20 layer (red) Transformer trained on WMT 14 En \rightarrow De.

$$r_t = \left(\|\nabla_{h_1} L^{(t)}\| / \|\nabla_{h_N} L^{(t)}\| \right)$$

Indicator of a healthy training (Raghu et al. 2017)

- Lower layers converge quickly
- Topmost layers take longer

Expect large grad-norm ratio at the early stages of the training, then flatten.

Transparent Attention or Encoder -III

(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)

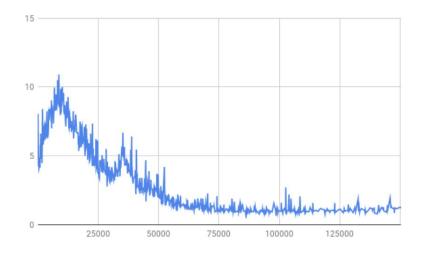


Figure 3: Grad-norm ratio (r_t) vs training step for 20 layer Transformer with transparent attention.

$$r_t = \left(\|\nabla_{h_1} L^{(t)}\| / \|\nabla_{h_N} L^{(t)}\| \right)$$

Indicator of a healthy training (Raghu et al. 2017)

- Lower layers converge quickly
- Topmost layers take longer

Expect large grad-norm ratio at the early stages of the training, then flatten.

Transparent Attention or Encoder -IV

(Bapna et al. 2018- Training Deeper NMT Models with Transparent Attention)

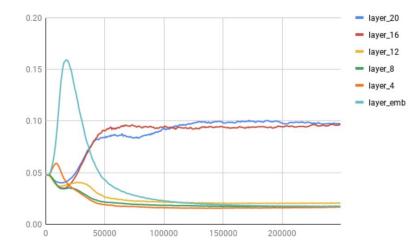


Figure 4: Plot illustrating the variations in the learned attention weights $s_{i,6}$ for the 20 layer Transformer encoder over the training process.

En→De WMT 14]]	(Big)			
Encoder layers	6	12	16	20	6
Num. Parameters	94M	120M	137M	154M	375M
Baseline	27.26	*	*	*	27.94
Baseline - residuals	*	6.00	*	*	N/A
Transparent	27.52	27.79	28.04	27.96	N/A

Training dynamics:

• Raghu et al. 2017

Caveats:

• Residuals & Skip-connections \rightarrow Shallowness

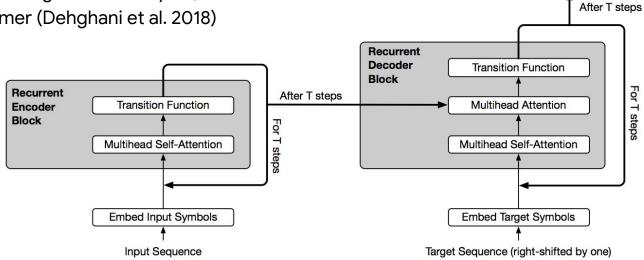
Output Probabilities

Softmax

Parameter Sharing

Reuse the same layer (tie weights across layers)

Universal Transformer (Dehghani et al. 2018) •



- Short-cuts for the credit assignment. •
- Improve SOTA further

Gradient Norm Tracker - II

(Chen et al. 2018- The Best of Both Worlds)

All gradients are equal, but some gradients are more equal:

- Identifying pathological error signal dynamically.
- What to discard, when to discard?

Adaptive gradient clipping:

- Keep track of the log of the gradient norm:
 - Exponential moving average
 - Exponential moving standard deviation
- Abort step (skip update completely) when:
 - moving average exceeds 4 std

Large (very large) Batches

(Goyal et al. 2017, Ott et al. 2018)

What is gradient?

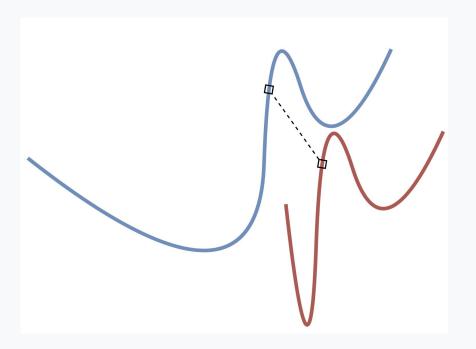
• The vector of first order partial derivatives.

What is gradient descent?

• Use local information to find a minimum.

What does it mean to increase the batch size?

• Better estimate of this first order approximation.

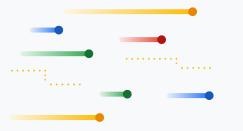


.

	· · · · · · · · · · · · · · · · · · ·
: 	
	•
· · · · · · · · · · · · · · · · · · ·	

Google AI

•••	• •	• •	• •	• •	• •	• •	• •



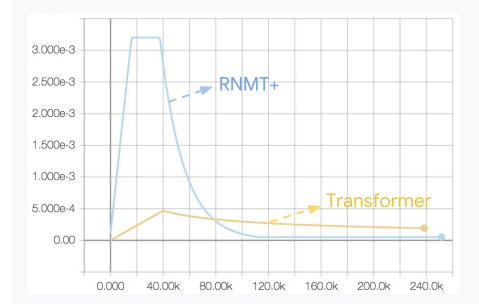
"Often the single most important hyper-parameter"

Practical recommendations for gradient-based training of deep architectures, Bengio 2012

Should always be tuned.

The Learning Rate Schedules - I

- Warm-up
 - Stabilize
 - Necessary for sync training
- Plateau
 - Memorize/Explore/Drift (Shwartz-Ziv and Tishby, 2017)
 - Danger zone if too long
- Decay
 - Compress/Exploit/Diffusion (Shwartz-Ziv and Tishby, 2017)
 - When to end is critical for quality



.

Google AI

Adafactor (Adam++)

Shazeer and Stern. 2018

Algorithm 1 Adam (Kingma & Ba, 2015)

- 1: Inputs: initial point x_0 , step sizes $\{\alpha_t\}_{t=1}^T$, first moment decay β_1 , second moment decay β_2 , regularization constant ϵ
- 2: Initialize $m_0 = 0$ and $v_0 = 0$
- 3: for t = 1 to T do
- $q_t = \nabla f_t(x_{t-1})$ 4: 5: $m_t = \beta_1 m_{t-1} + (1 - \beta_1) q_t$ 6: $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$
- $\hat{m}_t = m_t / (1 \beta_1^t)$ 7: $\begin{array}{l} m_t - m_t \\ \hat{v}_t = v_t / (1 - \beta_2^t) \\ \sim \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon) \end{array}$ 8:

9:
$$x_t = x_{t-1} - \alpha_t m_t / (\sqrt{9})$$

Algorithm 4 Adafactor for weight matrices. 1: Inputs: initial point $X_0 \in \mathbb{R}^{n \times m}$, relative step sizes $\{\rho_t\}_{t=1}^T$, second moment decay $\{\beta_{2t}\}_{t=1}^T$ such that $\hat{\beta}_{21} = 0$, regularization constants ϵ_1 and ϵ_2 , clipping threshold d2: for t = 1 to T do $\alpha_t = \max(\epsilon_2, \text{RMS}(X_{t-1})) \rho_t$ 3: 4: $G_t = \nabla f_t(X_{t-1})$ 5: $R_t = \hat{\beta}_{2t} R_{t-1} + (1 - \hat{\beta}_{2t}) (G_t^2 + \epsilon_1 \mathbf{1}_n \mathbf{1}_m^\top) \mathbf{1}_m$ 6: $C_t = \hat{\beta}_{2t} C_{t-1} + (1 - \hat{\beta}_{2t}) \mathbf{1}_n^\top (G_t^2 + \epsilon_1 \mathbf{1}_n \mathbf{1}_m^\top)$ 7: $V_t = R_t C_t / 1_n^{\top} R_t$ 8: $U_t = G_t / \sqrt{\hat{V}_t}$ $\hat{U}_t = U_t / \max\left(1, \text{RMS}(U_t)/d\right)$ 9: 10: $X_t = X_{t-1} - \alpha_t U_t$ 11: end for

Recipe to make a better teacher

- 1. Increase the batch size to its maximum
 - Synchronous training
 - Accumulate gradients (gradient checkpointing)
 - Parameter sharing
- 2. Identify instabilities
 - Normalization
 - Gradient tracking
- 3. Work on your optimizer
 - Learning-rate schedules
 - Better step-rules

More Practical Tips - I

- Gradient norm can be misleading
 - look at the norm of the actual step (update)
- Denominator or the decaying squared sum of gradients that you normalize by can shrink and become really close to zero (towards the end of the training)
 - may increase the step size too much and prevent you to converge
 - will keep oscillating around a local minima.
- Another summary: (variable norm / norm of the update) ~ [1e-2 to 1e-3]

More Practical Tips - II

- Linear Scaling Rule: (Krizhevsky, 2014, Goyal et al. 2017)
 - When a batch size is multiplied by k, multiply the learning rate by k.
 - Pick as high a learning rate as possible (cannot exceed a certain value)
 - Reduce Beta2 of Adam
- Warmup: (He et al. 2016, Goyal et al. 2017)
 - Initial learning phase (network changes rapidly)
 - Increase warm-up if the model is unstable.

From Firat and Cho MTM'16 Talk: Conclusion

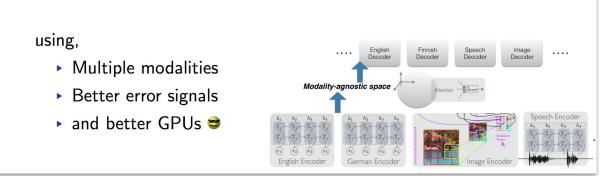
What Lies Ahead?

Perhaps, we've only scratched the surface!

Language barrier, surpassing human level quality.

Revisiting the new territory:

Character-level Larger-Context Multilingual Neural Machine Translation



• •	• •	 	 	





Google Al

Thank You

Open source implementations coming very soon!

https://ai.google/research/join-us/

https://ai.google/research/join-us/ai-residency/

