
NN Language Models

David Vilar

david.vilar@nuance.com

MT Marathon 2016

14. September 2016

About Myself

2003-2010

PhD on hierarchical MT

Main author of Jane MT toolkit

2011-2013

Researcher. More work on MT, trying to make it

usable for professional translators

2013-2014 Pixformance

Lead developer

Since 2014

Sr. Research Scientist: Language Modelling and

Natural Language Understanding
1

Overview

1. Introduction to Word Embeddings

2. Recurrent Neural Networks

3. LSTMs

4. A Few Notes About the Output Layer

2

Introduction to Word

Embeddings

1-hot encodings

• 1-hot encoding is the “natural” way to encode symbolic

information (e.g. words)

• But:

• The encoding itself is arbitrary (e.g. first appearance of a

word in the training text)

• No useful information can be read from the vector

representation

• Example:

the green dog bites the cat

the (1, 0, 0, 0, 0)

green (0, 1, 0, 0, 0)

dog (0, 0, 1, 0, 0)

bites (0, 0, 0, 1, 0)

cat (0, 0, 0, 0, 1)

3

Feed-forward LM

p(wn)

wn−2 wn−1
4

Intuition

• A NN represents a flow of information

• A NN can be decomposed into smaller networks

• Each of these networks transforms the information, which

serves as input to the next network

• Can be seen in the recursive structure of the equations

y(l)(x) = f(W (l)y(l−1)(x) + b(l))

5

The most “stupid” network

x

x

6

The most “stupid” network

x

x

6

The most “stupid” network

x

x

6

The most “stupid” network

If the “stupid” network has no errors:

• We mapped an 12-dimensional (sparse?) vector into a

4-dimensional dense vector

However:

• The representation is still arbitrary, as no information

about the word themselves is taken into account

We can do better!

7

The most “stupid” network

If the “stupid” network has no errors:

• We mapped an 12-dimensional (sparse?) vector into a

4-dimensional dense vector

However:

• The representation is still arbitrary, as no information

about the word themselves is taken into account

We can do better!

7

The most “stupid” network

If the “stupid” network has no errors:

• We mapped an 12-dimensional (sparse?) vector into a

4-dimensional dense vector

However:

• The representation is still arbitrary, as no information

about the word themselves is taken into account

We can do better!

7

Skip-gram model

wn

wn−2wn−1 wn+1 wn+2

8

Skip-gram model

• Assumption: similar words appear in similar contexts

• Goal: similar words have similar representations (as they

will predict similar contexts)

• Indeed:

• vec(King)− vec(Man) + vec(Woman) results in a vector

that is closest to Queen

• vec(Madrid)− vec(Spain) + vec(France) results in a vector

that is closest to Paris

9

Skip-gram model

10

word2vec

• Different implementations available (many of them open

source)

• (One of) The most widely used: word2vec by Mikolov et al.

• Efficient implementation, can deal with big datasets

• https://code.google.com/archive/p/word2vec/

• Normally used pre-training for embedding layer

• May be further refined by task-specific training

11

https://code.google.com/archive/p/word2vec/

Recurrent Neural Networks

Recap

• Language model

p(wN
1)

• Chain rule (mathematical equality)

p(wN
1) =

N∏
n=1

p(wn|wn−1
1)

• k-th order Markov assumption: (k + 1)-grams

p(wN
1) ≈

N∏
n=1

p(wn|wn−1
n−k)

12

Recap

Advantage of NNLMs we encountered up to this point:

• FF language models deal with the sparsity problem (by

projecting into a continuous space)

• but they still are under the Markov chain assumption

We would like to be able to take into account the whole history!

→ Let the network remember everything it has seen!

13

Recap

Advantage of NNLMs we encountered up to this point:

• FF language models deal with the sparsity problem (by

projecting into a continuous space)

• but they still are under the Markov chain assumption

We would like to be able to take into account the whole history!

→ Let the network remember everything it has seen!

13

Recap

Advantage of NNLMs we encountered up to this point:

• FF language models deal with the sparsity problem (by

projecting into a continuous space)

• but they still are under the Markov chain assumption

We would like to be able to take into account the whole history!

→ Let the network remember everything it has seen!

13

Recap

Advantage of NNLMs we encountered up to this point:

• FF language models deal with the sparsity problem (by

projecting into a continuous space)

• but they still are under the Markov chain assumption

We would like to be able to take into account the whole history!

→ Let the network remember everything it has seen!

13

Recurrent NNs

wn−1

p(wn)

R

In Equations: y[t] = f(Wx[t] +Ry[t−1] + b)

14

Recurrent NNs

wn−1

p(wn)

R

In Equations: y[t] = f(Wx[t] +Ry[t−1] + b)

14

Recurrent NNs

wn−1

p(wn)

R

x[t]

y[t]

W

R

In Equations: y[t] = f(Wx[t] +Ry[t−1] + b)

14

Recurrent NNs

p(w4
1) =

p(w1|< s >)

×p(w2|w1, < s >)

×p(w3|w2, w1, < s >)

×p(w4|w3, w2, w1, < s >)

[< s >]
[w1]
[w2]

< s >w1

p(w4|w3, w2, w1, < s >)

15

Recurrent NNs

p(w4
1) =

p(w1|< s >)

×p(w2|w1, < s >)

×p(w3|w2, w1, < s >)

×p(w4|w3, w2, w1, < s >)

[< s >]
[w1]
[w2]

< s >w1

p(w4|w3, w2, w1, < s >)

< s >

p(w1|< s >)

15

Recurrent NNs

p(w4
1) =

p(w1|< s >)

×p(w2|w1, < s >)

×p(w3|w2, w1, < s >)

×p(w4|w3, w2, w1, < s >)

[< s >]
[w1]
[w2]

< s >w1

p(w4|w3, w2, w1, < s >)

w1

p(w2|w1, < s >)

[< s >]

15

Recurrent NNs

p(w4
1) =

p(w1|< s >)

×p(w2|w1, < s >)

×p(w3|w2, w1, < s >)

×p(w4|w3, w2, w1, < s >)

[< s >]
[w1]
[w2]

< s >w1

p(w4|w3, w2, w1, < s >)

w2

p(w3|w2, w1, < s >)

[< s >]

[w1]

15

Recurrent NNs

p(w4
1) =

p(w1|< s >)

×p(w2|w1, < s >)

×p(w3|w2, w1, < s >)

×p(w4|w3, w2, w1, < s >)

[< s >]
[w1]
[w2]

< s >w1

p(w4|w3, w2, w1, < s >)

w3

p(w4|w3, w2, w1, < s >)

[< s >]
[w1]
[w2]

15

Backpropagation through time

How to train a RNN?

• Of course. . .

with backpropagation

• Unfold recurrent connections through time

• Results in a wide network, backpropagation can be used

• Use chain rule not only for layers, but also for time steps

16

Backpropagation through time

How to train a RNN?

• Of course. . . with backpropagation

• Unfold recurrent connections through time

• Results in a wide network, backpropagation can be used

• Use chain rule not only for layers, but also for time steps

16

Backpropagation through time

How to train a RNN?

• Of course. . . with backpropagation

• Unfold recurrent connections through time

• Results in a wide network, backpropagation can be used

• Use chain rule not only for layers, but also for time steps

16

Backpropagation through time

How to train a RNN?

• Of course. . . with backpropagation

• Unfold recurrent connections through time

• Results in a wide network, backpropagation can be used

• Use chain rule not only for layers, but also for time steps

16

Backpropagation through time

x[4]

y[4]

x[3]

y[3]

x[2]

y[2]

x[1]

y[1]∂y[1]

∂θ

∂L
∂θ

=

17

Backpropagation through time

x[4]

y[4]

x[3]

y[3]

x[2]

y[2]

x[1]

y[1]∂y[1]

∂θ

∂L
∂θ

=

17

Backpropagation through time

x[4]

y[4]

x[3]

y[3]

x[2]

y[2]

x[1]

y[1]∂y[1]

∂θ

∂L
∂θ

=

17

Backpropagation through time

x[4]

y[4]

x[3]

y[3]

x[2]

y[2]

x[1]

y[1]∂y[1]

∂θ

∂L
∂θ

=

17

Backpropagation through time

x[4]

y[4]

x[3]

y[3]

x[2]

y[2]

x[1]

y[1]∂y[1]

∂θ

∂L
∂θ

=∂L
∂θ

=

17

Backpropagation through time

x[4]

y[4]

x[3]

y[3]

x[2]

y[2]

x[1]

y[1]∂y[1]

∂θ

∂L
∂θ

=∂L
∂θ

=

∂L
∂y[4]

17

Backpropagation through time

x[4]

y[4]

x[3]

y[3]

x[2]

y[2]

x[1]

y[1]∂y[1]

∂θ

∂L
∂θ

=∂L
∂θ

=

∂L
∂y[4]

∂y[4]

∂y[3]

17

Backpropagation through time

x[4]

y[4]

x[3]

y[3]

x[2]

y[2]

x[1]

y[1]∂y[1]

∂θ

∂L
∂θ

=∂L
∂θ

=

∂L
∂y[4]

∂y[4]

∂y[3]

∂y[3]

∂y[2]

17

Backpropagation through time

x[4]

y[4]

x[3]

y[3]

x[2]

y[2]

x[1]

y[1]∂y[1]

∂θ

∂L
∂θ

=∂L
∂θ

=

∂L
∂y[4]

∂y[4]

∂y[3]

∂y[3]

∂y[2]

∂y[2]

∂y[1]

17

Backpropagation through time

x[4]

y[4]

x[3]

y[3]

x[2]

y[2]

x[1]

y[1]∂y[1]

∂θ

∂L
∂θ

=∂L
∂θ

=

∂L
∂y[4]

∂y[4]

∂y[3]

∂y[3]

∂y[2]

∂y[2]

∂y[1]

∂y[1]

∂θ

17

Exploding and vanishing gradient

Observation: sometimes the gradient “misbehaves”

• Sometimes vanishes (norm ≈ 0)

• Sometimes explodes (norm →∞)

18

Exploding and vanishing gradient

Observation: sometimes the gradient “misbehaves”

• Sometimes vanishes (norm ≈ 0)

• Sometimes explodes (norm →∞)

18

Exploding and vanishing gradient

Observation: sometimes the gradient “misbehaves”

• Sometimes vanishes (norm ≈ 0)

• Sometimes explodes (norm →∞)

18

Exploding and vanishing gradient

Observation: sometimes the gradient “misbehaves”

• Sometimes vanishes (norm ≈ 0)

• Sometimes explodes (norm →∞)

18

Exploding and vanishing gradient

What to do?

• Exploding gradient: clip the gradient (divide by the norm)

(Full vector or element-wise)

• Vanishing gradient: you have a problem!

19

Exploding and vanishing gradient

What to do?

• Exploding gradient: clip the gradient (divide by the norm)

(Full vector or element-wise)

• Vanishing gradient: you have a problem!

19

Exploding and vanishing gradient

What to do?

• Exploding gradient: clip the gradient (divide by the norm)

(Full vector or element-wise)

• Vanishing gradient:

you have a problem!

19

Exploding and vanishing gradient

What to do?

• Exploding gradient: clip the gradient (divide by the norm)

(Full vector or element-wise)

• Vanishing gradient: you have a problem!

19

Exploding and vanishing gradient

Why does this happen?

Sequence of length T , y[t] = f(Wx[t] +Ry[t−1] + b).

Derivative of the loss function L:

∂L
∂θ

=
∑

1≤t2≤T

∂L[t2]
∂θ

=
∑

1≤t2≤T

∑
1≤t1≤t2

∂L[t2]
∂y[t2]

∂y[t2]

∂y[t1]
∂y[t1]

∂θ

and for
∂y[t2]

∂y[t1]
:

∂y[t2]

∂y[t1]
=

∏
t1<t≤t2

∂y[t]

∂y[t−1]
=

∏
t1<t≤t2

RT diag
(
f ′(Ry[t−1])

)

20

Exploding and vanishing gradient

Why does this happen?

Sequence of length T , y[t] = f(Wx[t] +Ry[t−1] + b).

Derivative of the loss function L:

∂L
∂θ

=
∑

1≤t2≤T

∂L[t2]
∂θ

=
∑

1≤t2≤T

∑
1≤t1≤t2

∂L[t2]
∂y[t2]

∂y[t2]

∂y[t1]
∂y[t1]

∂θ

and for
∂y[t2]

∂y[t1]
:

∂y[t2]

∂y[t1]
=

∏
t1<t≤t2

∂y[t]

∂y[t−1]
=

∏
t1<t≤t2

RT diag
(
f ′(Ry[t−1])

)

20

Exploding and vanishing gradient

Why does this happen?

Sequence of length T , y[t] = f(Wx[t] +Ry[t−1] + b).

Derivative of the loss function L:

∂L
∂θ

=
∑

1≤t2≤T

∂L[t2]
∂θ

=
∑

1≤t2≤T

∑
1≤t1≤t2

∂L[t2]
∂y[t2]

∂y[t2]

∂y[t1]
∂y[t1]

∂θ

and for
∂y[t2]

∂y[t1]
:

∂y[t2]

∂y[t1]
=

∏
t1<t≤t2

∂y[t]

∂y[t−1]
=

∏
t1<t≤t2

RT diag
(
f ′(Ry[t−1])

)

20

Exploding and vanishing gradient

Why does this happen?

Sequence of length T , y[t] = f(Wx[t] +Ry[t−1] + b).

Derivative of the loss function L:

∂L
∂θ

=
∑

1≤t2≤T

∂L[t2]
∂θ

=
∑

1≤t2≤T

∑
1≤t1≤t2

∂L[t2]
∂y[t2]

∂y[t2]

∂y[t1]
∂y[t1]

∂θ

and for
∂y[t2]

∂y[t1]
:

∂y[t2]

∂y[t1]
=

∏
t1<t≤t2

∂y[t]

∂y[t−1]
=

∏
t1<t≤t2

RT diag
(
f ′(Ry[t−1])

)

20

Exploding and vanishing gradient

Why does this happen?

Sequence of length T , y[t] = f(Wx[t] +Ry[t−1] + b).

Derivative of the loss function L:

∂L
∂θ

=
∑

1≤t2≤T

∂L[t2]
∂θ

=
∑

1≤t2≤T

∑
1≤t1≤t2

∂L[t2]
∂y[t2]

∂y[t2]

∂y[t1]
∂y[t1]

∂θ

and for
∂y[t2]

∂y[t1]
:

∂y[t2]

∂y[t1]
=

∏
t1<t≤t2

∂y[t]

∂y[t−1]
=

∏
t1<t≤t2

RT diag
(
f ′(Ry[t−1])

)

20

Exploding and vanishing gradient

Why does this happen?

Sequence of length T , y[t] = f(Wx[t] +Ry[t−1] + b).

Derivative of the loss function L:

∂L
∂θ

=
∑

1≤t2≤T

∂L[t2]
∂θ

=
∑

1≤t2≤T

∑
1≤t1≤t2

∂L[t2]
∂y[t2]

∂y[t2]

∂y[t1]
∂y[t1]

∂θ

and for
∂y[t2]

∂y[t1]
:

∂y[t2]

∂y[t1]
=

∏
t1<t≤t2

∂y[t]

∂y[t−1]

=
∏

t1<t≤t2
RT diag

(
f ′(Ry[t−1])

)

20

Exploding and vanishing gradient

Why does this happen?

Sequence of length T , y[t] = f(Wx[t] +Ry[t−1] + b).

Derivative of the loss function L:

∂L
∂θ

=
∑

1≤t2≤T

∂L[t2]
∂θ

=
∑

1≤t2≤T

∑
1≤t1≤t2

∂L[t2]
∂y[t2]

∂y[t2]

∂y[t1]
∂y[t1]

∂θ

and for
∂y[t2]

∂y[t1]
:

∂y[t2]

∂y[t1]
=

∏
t1<t≤t2

∂y[t]

∂y[t−1]
=

∏
t1<t≤t2

RT diag
(
f ′(Ry[t−1])

)

20

Exploding and vanishing gradient

Why does this happen?

∥∥∥∥∥ ∂y[t]

∂y[t−1]

∥∥∥∥∥ ≤ ‖RT ‖
∥∥∥diag

(
f ′(Ry[t−1]

)∥∥∥ ≤ γσmax

with

• γ a maximal bound for f ′(Ry[t−1])

• e.g. | tanh′(x)| ≤ 1; |σ′(x)| ≤ 1
4

• σmax the largest singluar value of RT

More details: R. Pascanu, T. Mikolov, Y. Bengio On the difficulty of training

recurrent neural networks ICML 2013

(and previous work)

21

Exploding and vanishing gradient

• Vanishing gradient: you have a problem!

• We cannot distinguish if

• There is no dependency in the data

• We have chosen the wrong parameters

22

Exploding and vanishing gradient

• Vanishing gradient: you have a problem!

• We cannot distinguish if

• There is no dependency in the data

• We have chosen the wrong parameters

22

LSTMs

Intuition

• RNNs blindly pass information from one state to the other

• LSTMs include mechanisms for

• Ignoring the input

• Ignoring the “current” output

• Forgetting the history

23

Intuition

• RNNs blindly pass information from one state to the other

• LSTMs include mechanisms for

• Ignoring the input

• Ignoring the “current” output

• Forgetting the history

23

Intuition

• RNNs blindly pass information from one state to the other

• LSTMs include mechanisms for

• Ignoring the input

• Ignoring the “current” output

• Forgetting the history

23

Intuition

• RNNs blindly pass information from one state to the other

• LSTMs include mechanisms for

• Ignoring the input

• Ignoring the “current” output

• Forgetting the history

23

RNN units

24

RNN units

25

LSTM Equations

Compute a “candidate value”, similar to RNNs:

C̃t = tanh(Wcxt + Ucht−1 + bc)

Input gate: control the influence of the current output

it = σ(Wixt + Uiht−1 + bi)

Forget gate: control the influence of the history

ft = σ(Wfxt + Ufht−1 + bf)

26

LSTM Equations

Compute a “candidate value”, similar to RNNs:

C̃t = tanh(Wcxt + Ucht−1 + bc)

Input gate: control the influence of the current output

it = σ(Wixt + Uiht−1 + bi)

Forget gate: control the influence of the history

ft = σ(Wfxt + Ufht−1 + bf)

26

LSTM Equations

Compute a “candidate value”, similar to RNNs:

C̃t = tanh(Wcxt + Ucht−1 + bc)

Input gate: control the influence of the current output

it = σ(Wixt + Uiht−1 + bi)

Forget gate: control the influence of the history

ft = σ(Wfxt + Ufht−1 + bf)

26

LSTM Equations

Memory cell state: combination of new and old state

Ct = itC̃t + ftCt−1

Output gate: how much we want to output to the exterior

ot = σ(Woxt + Uoht−1 + bo)

Output of the cell:

yt = ot · tanh(Ct)

27

LSTM Equations

Memory cell state: combination of new and old state

Ct = itC̃t + ftCt−1

Output gate: how much we want to output to the exterior

ot = σ(Woxt + Uoht−1 + bo)

Output of the cell:

yt = ot · tanh(Ct)

27

LSTM Equations

Memory cell state: combination of new and old state

Ct = itC̃t + ftCt−1

Output gate: how much we want to output to the exterior

ot = σ(Woxt + Uoht−1 + bo)

Output of the cell:

yt = ot · tanh(Ct)

27

LSTM Visualization

28

LSTM Visualization

Compute a “candidate value”, similar to RNNs

Input gate: control the influence of the current output

C̃t = tanh(Wcxt + Ucht−1 + bc)

it = σ(Wixt + Uiht−1 + bi)

29

LSTM Visualization

Forget gate: control the influence of the history

ft = σ(Wfxt + Ufht−1 + bf)

30

LSTM Visualization

Memory cell state: combination of new and old state

Ct = itC̃t + ftCt−1

31

LSTM Visualization

Output gate: how much we want to output to the exterior

Output of the cell

ot = σ(Woxt + Uoht−1 + bo)

yt = ot · tanh(Ct)

32

LSTM Visualization

33

LSTMs: additional remarks

• LSTMs solve the vanishing gradient problem, but the

gradient can still explode

• Use gradient clipping

• Different variants of LSTMs. Basic idea is similar, but

• Different gates

• Different parametrization of the gates

• Pay attention when reading the literature

• Mathematically: “Constant Error Carousel”

• No repeated weight application in the derivative

• “The derivative is the forget gate”

34

LSTMs: additional remarks

• LSTMs solve the vanishing gradient problem, but the

gradient can still explode

• Use gradient clipping

• Different variants of LSTMs. Basic idea is similar, but

• Different gates

• Different parametrization of the gates

• Pay attention when reading the literature

• Mathematically: “Constant Error Carousel”

• No repeated weight application in the derivative

• “The derivative is the forget gate”

34

LSTMs: additional remarks

• LSTMs solve the vanishing gradient problem, but the

gradient can still explode

• Use gradient clipping

• Different variants of LSTMs. Basic idea is similar, but

• Different gates

• Different parametrization of the gates

• Pay attention when reading the literature

• Mathematically: “Constant Error Carousel”

• No repeated weight application in the derivative

• “The derivative is the forget gate”

34

GRUs

Gated Recurrent Units:

• Combine forget and input gates into an “update gate”

• Suppress output gate

• Add a “reset gate”

Simpler than LSTMs (less parameters) and quite succesful

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

h̃t = tanh(Wxt + U(rtht−1) + b)

ht = zth̃t + (1− ztht−1)

35

GRUs

Gated Recurrent Units:

• Combine forget and input gates into an “update gate”

• Suppress output gate

• Add a “reset gate”

Simpler than LSTMs (less parameters) and quite succesful

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

h̃t = tanh(Wxt + U(rtht−1) + b)

ht = zth̃t + (1− ztht−1)

35

GRUs Visualization

36

Experimental Results

Results on 1B Word Benchmark

Model Test PPL

RNN 68.3

Interpolated KN 5-gram, 1.1B N-Grams 67.6

RNN + MaxEnt 9-gram features 51.3

“Small” LSTM 54.1

“Big” LSTM with dropout 32.2

2 Layer LSTM with dropout 30.6

From R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, Y. Wu Exploring the

Limits of Lanugage Modelling, 2016

37

A Few Notes About the Output

Layer

The Output Layer

Computing a softmax is expensive

(specially for large vocabularies)

Possible approaches:

• Use a shortlist (and usually combine with standard n-gram

model)

• Use hierarchical output

• Use self-normalizing networks (e.g. NCE training)

38

The Output Layer

Computing a softmax is expensive

(specially for large vocabularies)

Possible approaches:

• Use a shortlist (and usually combine with standard n-gram

model)

• Use hierarchical output

• Use self-normalizing networks (e.g. NCE training)

38

The Output Layer

Computing a softmax is expensive

(specially for large vocabularies)

Possible approaches:

• Use a shortlist (and usually combine with standard n-gram

model)

• Use hierarchical output

• Use self-normalizing networks (e.g. NCE training)

38

The Output Layer

Computing a softmax is expensive

(specially for large vocabularies)

Possible approaches:

• Use a shortlist (and usually combine with standard n-gram

model)

• Use hierarchical output

• Use self-normalizing networks (e.g. NCE training)

38

References

Word embeddings:

• T. Mikolov, K. Chen, G. Corrado, J. Dean Efficient

Estimation of Word Representations in Vector Space

Workshop at ICLR. 2013

• T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean

Distributed Representations of Words and Phrases and

their Compositionality NIPS. 2013.

• https://code.google.com/archive/p/word2vec/

39

https://code.google.com/archive/p/word2vec/

References

Recurrent NNs:

• First reference?

• T. Mikolov, M. Karafiát, L. Burget, J. Cernocký,

S. Khudanpur Recurrent Neural Network Based Language

Model Interspeech. 2010

40

References

Backpropagation through time:

• From wikipedia: The algorithm was independently derived

by numerous researchers

• A. J. Robinson, F. Fallside, The utility driven dynamic

error propagation network (Technical report). Cambridge

University, Engineering Department, 1987

• P. J. Werbos Generalization of backpropagation with

application to a recurrent gas market model Neural

Networks. 1988

41

References

Vanishing gradient:

• Y. Bengio, P. Simard, P. Frasconi Learning long-term

dependencies with gradient descent is difficult IEEE

Transactions on Neural Networks. 1994

• R. Pascanu, T. Mikolov, Y. Bengio On the difficulty of

training recurrent neural networks ICML. 2013

42

References

LSTMs:

• S. Hochreiter, J. Schmidhuber Long short-term memory

Neural Computation. 1997

• K. Greff, R. K. Srivastava, J. Koutnk, B. R. Steunebrink,

J Schmidhuber LSTM: A Search Space Odyssey IEEE

Transactions on NN and Learning Systems 2015

• Pictures taken from http://colah.github.io/posts/

2015-08-Understanding-LSTMs/

GRUs:

• K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,

H. Schwenk, Y. Bengio Learning Phrase Representations

using RNN Encoder-Decoder for Statistical Machine

Translation EMNLP 2014
43

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

References

Hierarchical Output:

• F. Morin, Y. Bengio Hierarchical Probabilistic Neural

Network Language Models AISTATS. 2005

NCE:

• A. Mnih, Y. W. Teh A fast and simple algorithm for

training neural probabilistic language models ICML. 2012

44

NN Language Models

David Vilar

david.vilar@nuance.com

MT Marathon 2016

14. September 2016

	Introduction to Word Embeddings
	Recurrent Neural Networks
	Backpropagagiont through time

	LSTMs
	A Few Notes About the Output Layer

