Lucia Specia

University of Sheffield 1.specia@sheffield.ac.uk

MTM - Prague, 12 September 2016

Outline

- Quality evaluation
- 2 Reference-based metrics
- Quality estimation metrics
- 4 Metrics in the NMT era

Outline

- Quality evaluation

Why do we care?

... or why is this the first lecture of the Marathon?

In the business of developing MT, we need to

- measure progress over new/alternative versions
- compare different MT systems
- decide whether a translation is good enough for something
- optimise parameters of MT systems
- understand where systems go wrong (diagnosis)

Why do we care?

- One should optimise a system using the same metric that will be used to evaluate it
- Issue: how to choose a metric? Choice should be related to the purpose of the system will be used (not the case in practice)
- Other aspects are important for tuning (sentence/corpus-level, fast, cheap, differentiable, ...)

"MT evaluation is better understood than MT" (Carbonell and Wilks, 1991)

"MT evaluation is better understood than MT" (Carbonell and Wilks, 1991)

"MT evaluation is better understood than MT" (Carbonell and Wilks, 1991)

"There are more MT evaluation metrics than MT approaches" (Specia, 2016)

- What does quality mean?
 - Fluent? Adequate? Both?
 - Easy to post-edit?
 - System A better than system B?
 - ...

Quality evaluation

- What does quality mean?
 - Fluent? Adequate? Both?
 - Easy to post-edit?
 - System A better than system B?
 - ...
- Quality for whom/what?
 - End-user (gisting vs dissemination)
 - Post-editor (light vs heavy post-editing)
 - Other applications (e.g. CLIR)
 - MT-system (tuning or diagnosis for improvement)
 - ...

MT Do buy this product, it's their craziest invention!

MT Do buy this product, it's their craziest invention!
HT Do **not** buy this product, it's their craziest invention!

- MT Do buy this product, it's their craziest invention!
 HT Do **not** buy this product, it's their craziest invention!
 - Severe if end-user does not speak source language
 - Trivial to post-edit by translators

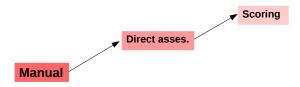
MT Six-hours battery, 30 minutes to full charge last.

- MT Six-hours battery, 30 minutes to full charge last.
- HT The battery lasts 6 hours and it can be fully recharged in 30 minutes.

- MT Six-hours battery, 30 minutes to full charge last.
- HT The battery lasts 6 hours and it can be **fully recharged** in 30 minutes
 - Ok for gisting meaning preserved
 - Very costly for post-editing if style is to be preserved

Manual

Automatic



Automatic

Source: les deux pays constituent plutôt un laboratoire nécessaire au fonctionnement interne de l'ue.

Reference: rather, the two countries form a laboratory needed for the internal working of the eu.

Translation	Adequacy	Fluency
both countries are rather a necessary laboratory the internal operation of the eu .	cccce	00000
	1 2 3 4 5	1 2 3 4 5

Is this translation correct?

Read the text below. How much do you agree with the following statement:

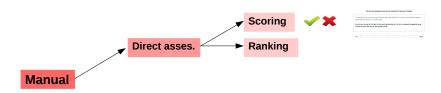
The black text adequately expresses the meaning of the gray text in English.

To snobs like me who declare that they'd rather play sports than watch them, it's hard to see the appeal of watching games rather than taking up a controller myself.

Snob like me, who say that it is better to be in sports than watching him, it is hard to understand the appeal of having to watch the game, rather than to take a joystick in hand.

Quality evaluation Reference-based metrics Quality estimation metrics Metrics in the NMT era

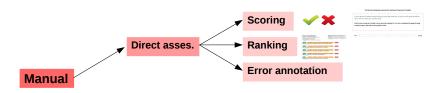
A taxonomy of MT evaluation methods



Automatic

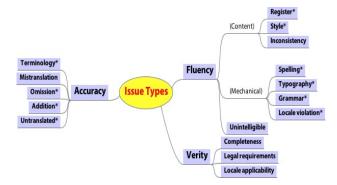
Quality evaluation Reference-based metrics Quality estimation metrics Metrics in the NMT era

A taxonomy of MT evaluation methods



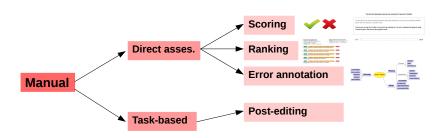
Automatic

 Quality evaluation
 Reference-based metrics
 Quality estimation metrics
 Metrics in the NMT era

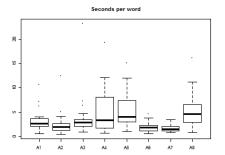


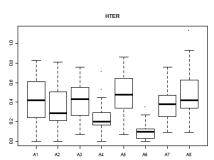
Quality evaluation Reference-based metrics Quality estimation metrics Metrics in the NMT era

A taxonomy of MT evaluation methods



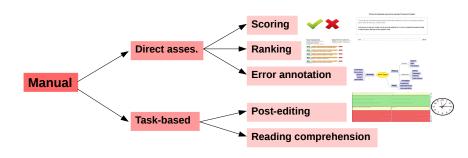
Automatic



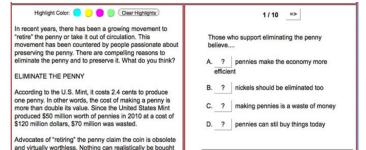


Quality evaluation Reference-based metrics Quality estimation metrics Metrics in the NMT era

A taxonomy of MT evaluation methods



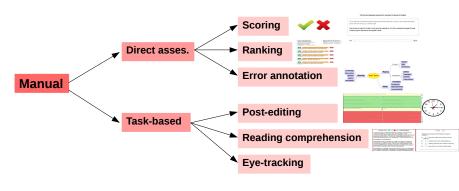
Automatic



for a penny anymore. In addition, simply handling pennies

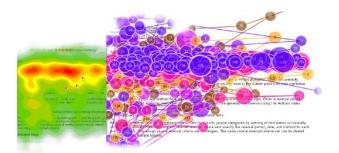
Quality evaluation Reference-based metrics Quality estimation metrics Metrics in the NMT era

A taxonomy of MT evaluation methods

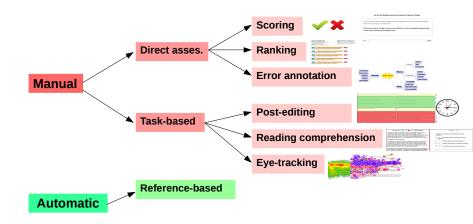


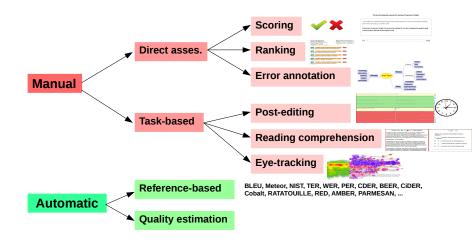
Automatic

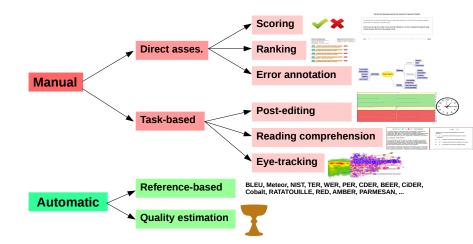
Quality evaluation Reference-based metrics Quality estimation metrics Metrics in the NMT era

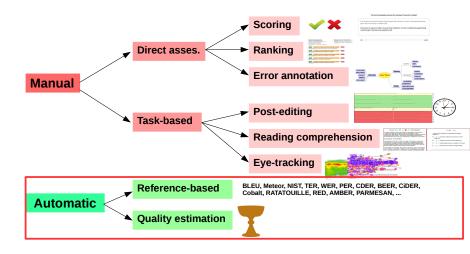


 Quality evaluation
 Reference-based metrics
 Quality estimation metrics
 Metrics in the NMT era









Outline

- Reference-based metrics

Assumption

The closer an MT system output is to a human translation (HT = reference), the better it is.

Quality estimation metrics

Which system is better?

- MT₁ Indignation in front of photos of a veiled woman controlled on the beach in Nice
- MT₂ Outrage at pictures of a veiled woman controlled on the beach in Nice
- HT_a Indignation at pictures of a veiled woman being checked on a beach in Nice

Assumption

The closer an MT system output is to a human translation (HT = reference), the better it is.

Which system is better?

- MT₁ Indignation in front of photos of a veiled woman controlled on the beach in Nice
- MT₂ Outrage at pictures of a veiled woman controlled on the beach in Nice
- HT_a Indignation at pictures of a veiled woman being checked on a beach in Nice.
- Or, simply, how good is the MT_1 system output?

Assumption

Quality evaluation

Which system is better?

- MT₁ Indignation in front of photos of a veiled woman controlled on the beach in Nice.
- MT₂ Outrage at pictures of a veiled woman controlled on the beach in Nice.
- HT_a Indignation at pictures of a veiled woman being checked on a beach in Nice.
- HT_b **Photos** of a veiled woman checked by the police **on the** beach in Nice cause outrage.

Which system is better?

- MT₁ Indignation in front of photos of a veiled woman controlled on the beach in Nice.
- MT₂ Outrage at pictures of a veiled woman controlled on the beach in Nice.
- HT_a Indignation at pictures of a veiled woman being checked on a beach in Nice.
- HT_b **Photos** of a veiled woman checked by the police **on the** beach in Nice cause outrage.
- Or, again, how good is the MT_1 system output?

Quality evaluation BLEU

BLEU: BiLingual Evaluation Understudy

- Most widely used metric, both for MT system evaluation/comparison and SMT tuning
- Matching of n-grams between MT and HT: rewards same words in equal order
- #clip(g) count of reference n-grams g which happen in a MT sentence h clipped by the number of times g appears in the HT sentence for h; #(g') = number of n-grams inMT output
- n-gram precision p_n for a set of translations in C:

$$p_n = \frac{\sum_{c \in C} \sum_{g \in ngrams(c)} \# clip(g)}{\sum_{c \in C} \sum_{g' \in ngrams(c)} \# (g')}$$

BLEU

• Combine (mean of the log) 1-*n n*-gram precisions

$$\sum_{n} \log p_n$$

BLEU

• Combine (mean of the log) 1-n n-gram precisions

$$\sum_{n} \log p_n$$

- Bias towards translations with fewer words
- Brevity penalty to penalise MT sentences that are shorter than reference
 - Compares the overall number of words w_h of the entire hypotheses set with ref length w_r :

$$BP = \begin{cases} 1 & \text{if } w_c \ge w_r \\ e^{(1-w_r/w_c)} & \text{otherwise} \end{cases}$$

Quality evaluation BLEU

• Combine (mean of the log) 1-n n-gram precisions

$$\sum_{n} \log p_n$$

- Bias towards translations with fewer words
- Brevity penalty to penalise MT sentences that are shorter than reference
 - Compares the overall number of words w_h of the entire hypotheses set with ref length w_r :

$$BP = \begin{cases} 1 & \text{if } w_c \ge w_r \\ e^{(1-w_r/w_c)} & \text{otherwise} \end{cases}$$

$$BLEU = BP * \exp\left(\sum_{n} \log p_n\right)$$

BLEU

- Scale: 0-1, but highly dependent on the test set
- Rewards **fluency** by matching high n-grams (up to 4)
- Rewards adequacy by unigrams and brevity penalty poor model of recall
- Synonyms and paraphrases only handled if in one of reference translations
- All tokens are equally weighted: incorrect content word = incorrect determiner

BLEU

- Scale: 0-1, but highly dependent on the test set
- Rewards **fluency** by matching high n-grams (up to 4)
- Rewards adequacy by unigrams and brevity penalty poor model of recall
- Synonyms and paraphrases only handled if in one of reference translations
- All tokens are equally weighted: incorrect content word = incorrect determiner
- Better for evaluating changes in the same system than comparing different MT architectures

Quality evaluation BLEU

Example:

MT: in two weeks Iraq's weapons will give army

HT: the Iraqi weapons are to be handed over to the army within two weeks

Quality estimation metrics

1-gram precision: 4/8

• 2-gram precision: 1/7

• 3-gram precision: 0/6

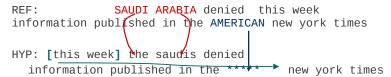
4-gram precision: 0/5

TER: Translation Error Rate

- Levenshtein edit distance
- Minimum proportion of insertions, deletions, and substitutions to transform MT sentence into HT
- Adds shift operation

TER: Translation Error Rate

- Levenshtein edit distance
- Minimum proportion of insertions, deletions, and substitutions to transform MT sentence into HT
- Adds shift operation



TER: Translation Error Rate

- Levenshtein edit distance
- Minimum proportion of insertions, deletions, and substitutions to transform MT sentence into HT
- Adds shift operation

```
SAUDI ARABIA denied this week
REF:
information published in the AMERICAN new york times
HYP: [this week] the saudis denied
  information published in the ****
                                        new york times
```

1 shift, 2 substit., 1 deletion: TER = $\frac{4}{13}$ = 0.31

TER: Translation Error Rate

- Levenshtein edit distance
- Minimum proportion of insertions, deletions, and substitutions to transform MT sentence into HT
- Adds shift operation

SAUDI ARABIA denied this week REF: information published in the AMERICAN new york times HYP: [this week] the saudis denied information published in the **** new york times

1 shift, 2 substit., 1 deletion: TER = $\frac{4}{13}$ = 0.31

Human-targeted TER (HTER)

TER between MT and its post-edited version

Alignment-based metrics

METEOR:

- Unigram Precision and Recall
- Align MT & HT
- Matching considers inflection variants (stems), synonyms, paraphrases
- Fluency addressed via a direct penalty: fragmentation of the matching
- METEOR score = F-mean score discounted for fragmentation = F-mean * (1 - DF)
- Parameters can be trained

MT: in two weeks Iraq's weapons will give army

HT: the Iraqi weapons are to be handed over to the army within two weeks

Alignment-based metrics

MT: in two weeks Iraq's weapons will give army

HT: the Iraqi weapons are to be handed over to the army within two weeks

Matching:

MT two weeks Iraq's weapons army

HT: Iraqi weapons army two weeks

Alignment-based metrics

MT: in two weeks Iraq's weapons will give army

HT: the Iraqi weapons are to be handed over to the army within two weeks

Matching:

MT two weeks Iraq's weapons army

HT: Iraqi weapons army two weeks

- P = 5/8 = 0.625
- R = 5/14 = 0.357
- F-mean = 10*P*R/(9P+R) = 0.373

Quality evaluation

Alignment-based metrics

MT: in two weeks Irag's weapons will give army

HT: the Iragi weapons are to be handed over to the army within two weeks

Quality estimation metrics

• Matching:

MT two weeks Irag's weapons army

HT: Iraqi weapons army two weeks

- \bullet P = 5/8 = 0.625
- R = 5/14 = 0.357
- F-mean = 10*P*R/(9P+R) = 0.373
- Fragmentation: 3 frags for 5 words = (3)/(5) = 0.6
- Discounting factor: DF = 0.5 * (0.6**3) = 0.108
- **METEOR**: F-mean * (1 DF) = 0.373 * 0.892 = 0.333

BFFR

BEER: BEtter Evaluation as Ranking

- Trained metric $score(h, r) = \sum_{i} w_{i} \times \phi_{i}(h, r) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\phi}$
- Learns from pairwise rankings
- Various features between MT output and reference translation
 - Precision, Recall and F1 over character n-grams (1-6)

Quality estimation metrics

- Idem for word unigrams: content vs function separately
- Reordering through permutation trees and distance to ideal monotone permutation

Dozens more....

Some - WMT metrics task:

- CharacTer
- chrF/wordF
- TerroCat
- MEANT and TINE
- TESLA
- LEPOR
- ROSE
- AMBER
- Many other linguistically motivated metrics where matching goes beyond word forms
- ...

Asiya toolkit - up until \sim 2014

WMT16 metrics task (by Bojar et al.):

Metric	# Wins	Language Pairs
BEER	11	csen, encs, ende, enfi, enro, enru, entr, fien, roen, ruen, tren
UoW.ReVal	6	csen, deen, fien, roen, ruen, tren
chrF2	6	csen, encs, enro, entr, fien, ruen
chrF1	5	encs, enro, fien, ruen, tren
chrF3	4	deen, enfi, entr, ruen
mosesCDER	4	csen, enfi, enru, entr
CharacTer	3	csen, deen, roen
mosesBLEU	3	csen, encs, enfi
mosesPER	3	enro, ruen, tren
mtevalBLEU	3	csen, encs, enro
wordF1	3	csen, encs, enro
wordF2	3	csen, encs, enro
mosesTER	2	csen, encs
mtevalNIST	2	encs, tren
wordF3	2	csen, entr
mosesWER	1	csen

Metrics in the NMT era

Problems with reference-based evaluation

- Reference(s): subset of good translations, usually one Some metrics expand matching, e.g. synonyms in Meteor
- Huge variation in reference translations. E.g.

Source	不过这一切都由不得你		
	However these all totally beyond the control of you.		
MT	But all this is beyond the control of you.	Human score	BLEU score
HT ₁	But all this is beyond your control.	3.4	0.427
HT ₂	However, you cannot choose yourself.	2	0.049
HT ₃	However, not everything is up to you to decide.	2	0.050
HT ₄	But you can't choose that.	2.8	0.055

- Metrics completely disregard source segment
- Cannot be applied for MT systems in use

Problems with reference-based evaluation

- Reference(s): subset of good translations, usually one Some metrics expand matching, e.g. synonyms in Meteor
- Huge variation in reference translations. E.g.

Source	不过这一切都由不得你 However these all totally beyond the control of you.		
MT	But all this is beyond the control of you.	Human score	BLEU score
HT,	But all this is beyond your control.	3.4	0.427
HT ₂	However, you cannot choose yourself.	2	0.049
HT ₃	However, not everything is up to you to decide.	2	0.050
HT ₄	But you can't choose that.	2.8	0.055

- Metrics completely disregard source segment
- Cannot be applied for MT systems in use

Metrics in the NMT era

Problems with reference-based evaluation

 Reference(s): subset of good translations, usually one Some metrics expand matching, e.g. synonyms in Meteor

Quality estimation metrics

• Huge variation in reference translations. E.g.

Source	不过这一切都由不得你		
MT	However these all totally beyond the control of you. But all this is beyond the control of you.	Human score	BLEU score
HT ₁	But all this is beyond your control.	3.4	0.427
HT ₂	However, you cannot choose yourself.	2	0.049
HT ₃	However, not everything is up to you to decide.	2	0.050
HT ₄	But you can't choose that.	2.8	0.055

- Metrics completely disregard source segment
- Cannot be applied for MT systems in use

Outline

- Quality estimation metrics

QE - Overview

• Quality estimation (QE): metrics that provide an estimate on the quality of translations on the fly

QE - Overview

- Quality estimation (QE): metrics that provide an estimate on the quality of translations on the fly
- Quality defined by the data: purpose is clear, no comparison to references, source considered

Metrics in the NMT era

- estimate on the quality of translations on the fly
- Quality defined by the data: purpose is clear, no comparison to references, source considered

Quality = Can we publish it as is?

Metrics in the NMT era

- Quality estimation (QE): metrics that provide an estimate on the quality of translations on the fly
- Quality defined by the data: purpose is clear, no comparison to references, source considered

Quality = Can we publish it as is?

Quality = Can a reader get the gist?

QE - Overview

- Quality estimation (QE): metrics that provide an estimate on the quality of translations on the fly
- Quality defined by the data: purpose is clear, no comparison to references, source considered

Quality = Can we publish it as is?

Quality = Can a reader get the gist?

Quality = **Is it worth post-editing it?**

Metrics in the NMT era

QE - Overview

- Quality estimation (QE): metrics that provide an estimate on the quality of translations on the fly
- Quality defined by the data: purpose is clear, no comparison to references, source considered

Quality = Can we publish it as is?

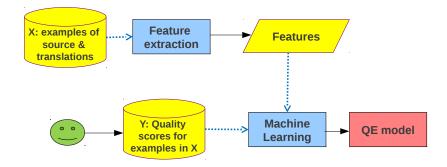
Quality = Can a reader get the gist?

Quality = **Is it worth post-editing it?**

Quality = **How much effort to fix it?**

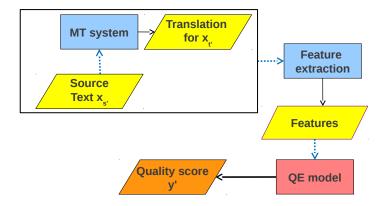
QE - Framework

Building a model:



QE - Framework

Applying the model:

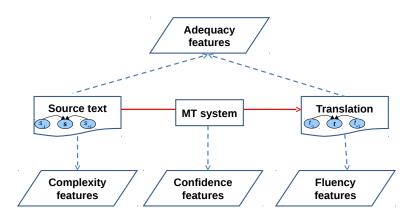


Data and levels of granularity

- **Sentence level**: 1-5 subjective scores, PE time, PE edits
- Word level: good/bad, good/delete/replace, MQM
- Phrase level: good/bad
- **Document level:** PE effort

Quality evaluation Reference-based metrics Quality estimation metrics Metrics in the NMT era

Features and algorithms



Algorithms can be used off-the-shelf

QE - baseline setting

Features:

- number of tokens in the source and target sentences
- average source token length
- average number of occurrences of words in the target
- number of punctuation marks in source and target sentences
- LM probability of source and target sentences
- average number of translations per source word
- % of seen source n-grams

Features:

- number of tokens in the source and target sentences
- average source token length
- average number of occurrences of words in the target
- number of punctuation marks in source and target sentences
- LM probability of source and target sentences
- average number of translations per source word
- % of seen source n-grams

SVM regression with RBF kernel

Features:

- number of tokens in the source and target sentences
- average source token length
- average number of occurrences of words in the target
- number of punctuation marks in source and target sentences
- LM probability of source and target sentences
- average number of translations per source word
- % of seen source n-grams

SVM regression with RBF kernel

QuEst: http://www.quest.dcs.shef.ac.uk/

QE - SoA sentence-level

Predicting HTER (WMT16)

System ID	Pearson ↑	Spearman ↑
English-German		
YSDA/SNTX+BLEU+SVM	0.525	_
POSTECH/SENT-RNN-QV2	0.460	0.483
SHEF-LIUM/SVM-NN-emb-QuEst	0.451	0.474
POSTECH/SENT-RNN-QV3	0.447	0.466
SHEF-LIUM/SVM-NN-both-emb	0.430	0.452
UGENT-LT3/SCATE-SVM2	0.412	0.418
UFAL/MULTIVEC	0.377	0.410
RTM/RTM-FS-SVR	0.376	0.400
UU/UU-SVM	0.370	0.405
UGENT-LT3/SCATE-SVM1	0.363	0.375
RTM/RTM-SVR	0.358	0.384
Baseline SVM	0.351	0.390
SHEF/SimpleNets-SRC	0.182	_
SHEF/SimpleNets-TGT	0.182	_

Metrics in the NMT era

Outline

- Quality evaluation
- Reference-based metrics
- Quality estimation metrics
- Metrics in the NMT era

SMT vs NMT

Pearson correlation with DA scores for popular metrics on 200 sentences from WMT16's **uedin** SMT and NMT systems:

	uedin-pbmt	uedin-nmt
BLEU	0.4433	0.5126
Meteor	0.5123	0.5781
TER	-0.4042	-0.5592
chrF2	0.4959	0.5826
BEER	0.5034	0.6140
UPF-Cobalt	0.5365	0.5511
CobaltF-comp	0.5306	0.6064
DPMFcomb	0.5757	0.6507

(Work with Marina Fomicheva)

Are metrics better for NMT because systems are better?

Correlation with DA scores on 840 **low-quality** (Q1-human) & 840 **high-quality** (Q4-human) sentences (all systems)

	Q1 - low quality	Q4 - high quality	
BLEU	0.0338	0.4561	
Meteor	0.1985	0.5143	
TER	-0.0870	-0.3710	
UPF-Cobalt	0.1499	0.4035	
CobaltF-comp	0.0918	0.4691	
DPMFcomb	0.2035	0.4426	
BEER	0.2277	0.3840	
chrF2	0.2177	0.3749	

(Work with Marina Fomicheva)

Metrics in the NMT era

Quality evaluation

Or was it a feature of the **uedin** systems?

Correlation of various MT systems on 400 sentences per group:

	PBMT	PBMT + NMT	Syntax
BLEU	0.5662	0.4676	0.4521
Meteor	0.6178	0.5462	0.5560
TER	-0.5277	-0.4177	-0.3929
chrF2	0.5549	0.5093	0.4602
BEER	0.5445	0.4913	0.4598
UPF-Cobalt	0.6510	0.5400	0.5221
CobaltF-comp	0.6328	0.5788	0.5693
MetricsF	0.6575	0.5840	0.5803
DPMFcomb	0.6700	0.5876	0.5815

These NMT systems only use neural models for rescoring. Also, average DA scores not higher for the PMT+NMT group

(Work with Marina Fomicheva)

• (Machine) Translation evaluation is still an open problem

- (Machine) Translation evaluation is still an open problem
- Quality estimation and other trained metrics can learn different "versions" of quality

- (Machine) Translation evaluation is still an open problem
- Quality estimation and other trained metrics can learn different "versions" of quality
- Which metrics are used in practice?
 - BLEU + your favourite other
 - And same metric for tuning

- (Machine) Translation evaluation is still an open problem
- Quality estimation and other trained metrics can learn different "versions" of quality
- Which metrics are used in practice?
 - BLEU + your favourite other
 - And same metric for tuning
- And for official comparisons?
 - WMT: manual ranking and direct assessment
 - IWSLT: manual post-editing

- (Machine) Translation evaluation is still an open problem
- Quality estimation and other trained metrics can learn different "versions" of quality
- Which metrics are used in practice?
 - BLEU + your favourite other
 - And same metric for tuning
- And for official comparisons?
 - WMT: manual ranking and direct assessment
 - IWSLT: manual post-editing
- Are our metrics good at assessing NMT systems?
- Are these metrics good to optimise NMT systems?

Translation Quality Assessment: Evaluation and Estimation

Lucia Specia

University of Sheffield 1.specia@sheffield.ac.uk

MTM - Prague, 12 September 2016

MT system	Туре	Average score	Segments
AFRL-MITLL-Phrase	PBMT + NMT	0.0118	56
AFRL-MITLL-contrast	PBMT + NMT	-0.1423	72
AMU-UEDIN	PBMT + NMT	0.1981	61
KIT	PBMT + NMT	0.1431	73
LIMSI	PBMT	-0.1482	84
NRC	PBMT	0.0877	58
PJATK	PBMT	0.0137	132
PROMT-Rule-based	RBMT	0.0107	56
PROMT-SMT	PBMT	-0.1163	154
UH-factored	PBMT	-0.1138	70
UH-opus	PBMT	-0.0059	72
cu-mergedtrees	Syntax PBMT	-0.4976	106
dvorkanton	PBMT + NMT	-0.1548	72
jhu-pbmt	PBMT	-0.0985	446
jhu-syntax	Syntax PBMT	-0.2491	125
online-B	PBMT	0.0793	430
online-F	PBMT	-0.2447	125
online-G	PBMT	0.0186	272
tbtk-syscomb	PBMT	-0.0594	85
uedin-nmt	NMT	0.0774	342
uedin-pbmt	PBMT	0.0391	231
uedin-syntax	Syntax PBMT	0.0121	238