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Predictive gd

ty type types  typical | typing T

p(type | Predictive) > p(Tyler | Predictive)




Win or |use, it was a great game.
Win or lose, it were a great game.
Win or |oose, it was a great game.

p(lose | Win or) > p(loose | Win or)

[Church et al, 2007]




Heated indoor swimming pool
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Chambre

Bedroom
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présidente de la Chambre des représentants

chairwoman of the Bedroom of Representatives
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présidente de la] Chambre des représentants

chairwoman of the| House of Representatives
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présidente de la] Chambre des représentants

chairwoman of the| House of Representatives

p(chairwoman of the House of Representatives)
>
p(chairwoman of the Bedroom of Representatives)
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Speak now

p(Another one bites the dust.)
>
p(Another one rides the bus.)




loose, IS
Prediction Spelling Translation Speech

Essential Component: Language Model
p(in the raw) =7
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Language model: fluency of output

X How well it translates the source
X Ratio to source sentence

v Length
v Ratio of letter “Z" to letter “e"
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Language model: fluency of output

X How well it translates the source
X Ratio to source sentence

v Length
v Ratio of letter “Z" to letter “e"

v Parsing
v Sequence Models
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Parsing

p(Moses compiles) =
S

/ \ p(S — NP VP)

NP VP
‘ ‘ -p(NP = N)p(VP — V)

N Vv

‘ -p(N — Moses)p(V — compiles)

Moses compiles
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O@0000



Sequence Models

Chain Rule

p(Moses compiles)=p(Moses)p(compiles | Moses)

Moses




Sequence Model

log p(iran | <s> )
log p(is | <s> iran )
log p(one | <s>iranis )
log p(of | <s> iran is one )
log p(the | <s> iran is one of )
log p(few | <s> iran is one of the )
log p(countries | <s> iran is one of the few )
log p(. | <s> iran is one of the few countries )
+ logp(</s> | <s> iran is one of the few countries .)
= log p(<s> iran is one of the few countries . </s> )
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Sequence Model

log p(iran | <s> )
log p(is | <s> iran )
log p(one | <s>iranis )
log p(of | <s> iran is one )
log p(the | <s> iran is one of )
log p(few | <s> iran is one of the )
log p(countries | <s> iran is one of the few )
log p(. | <s> iran is one of the few countries )
+ logp(</s> | <s> iran is one of the few countries .)
= log p(<s> iran is one of the few countries . </s> )

Explicit begin and end of sentence.
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Sequence Model

log p(iran | <s> )= -3.33437
log p(is | <s> iran )= -1.05931
log p(one | <s>iranis )= -1.80743
log p(of | <s> iran is one )= -0.03705
log p(the | <s> iran is one of )= -0.08317
log p(few | <s> iran is one of the )= -1.20788
log p(countries | <s> iran is one of the few )= -1.62030
log p(. | <s> iran is one of the few countries )= -2.60261
+ logp(</s> | <s> iran is one of the few countries .)= -0.04688
= log p(<s> iran is one of the few countries . )= -11.79900

Where do these probabilities come from?
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Probabilities from Text

_%’1. ey p(raw | in the)
/ Model
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help in the search for an answer .
Copper burned in the raw wood .
put forward in the paper

Highs in the 50s to lower 60s .
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Estimating from Text
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Estimating from Text
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help in the search for an answer .
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Copper burned in the raw wood . ; P(l’aW | In the) ~ 5
forward in the paper U in the) ~ -2

put p(Ugrasena | in the) =~ 1555

Highs in the 50s to lower 60s .
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Problem

“in the Ugrasena” was not seen, but could happen.

count(in the Ugrasena)

=07
count(in the)

p(Ugrasena | in the) =

Smoothing
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Problem

“in the Ugrasena” was not seen, but could happen.

courre(s U
U in the) = =07
p(Ugrasena | in the) IR
_ count(the Ugrasena) 50710~
count(the)

Stu pid Backoff: Drop context until count is non-zero
[Brants et al, 2007]

Can we be less stupid?

Smoothing
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Smoothing

“in the Ugrasena” was not seen, but could happen.

1 Neural Networks: classifier predicts next word
2 Backoff: maybe “the Ugrasena” was seen?

Smoothing
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Language Modeling

1 Smoothing
Neural Networks

Backoff
2 Kneser-Ney Smoothing

3 Implementation




Turning Words into Vectors

<s> in the raw
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Assign each word a unique row.




Recurrent Neural Network

<s>
1 p(<s>) = (0
0 in) =10.4
Word p(in) .
0 p(the) = (0.2
0 Neural /p(raw) = \0.4
N
State | 0 —4
0 0.3




Recurrent Neural Network

<s> raw
1 p(<s>) = (0 0
0 p(in) =10.4 0
Word |, p(the) = |0.2 0]
0 Neural /p(raw) = \0.4 1 Neural
N N
State | 0 —4
0 0.3




Recurrent Neural Network Properties

Treat language modeling as a classification problem:
Predict the next word.

State uses the entire context back to the beginning.




Turning Words into Vectors

<s> in the raw
—3 2.2 — .1 1.1
1.5 7.5 0.8 7.0
6.2 —.8 9.1 —.2

Vectors from a recurrent neural network

...or your favorite ACL paper.




Neural N-gram Models

p(raw | Vector(in), Vector(the))

Vectors for context words
— neural network classifier

— probability distribution over words




Language Modeling

1 Smoothing
Neural Networks

Backoff
2 Kneser-Ney Smoothing

3 Implementation




Backoff Smoothing

“in the Ugrasena” was not seen — try “the Ugrasena”

p(Ugrasena | in the) ~ p(Ugrasena | the)




Backoff Smoothing

“in the Ugrasena” was not seen — try “the Ugrasena”

p(Ugrasena | in the) ~ p(Ugrasena | the)

“the Ugrasena” was not seen — try “Ugrasena”

p(Ugrasena | the) ~ p(Ugrasena)




Backoff Smoothing

“in the Ugrasena” was not seen — try “the Ugrasena”

p(Ugrasena | in the) = p(Ugrasena | the)b(in the)

“the Ugrasena” was not seen — try “Ugrasena”

p(Ugrasena | the) = p(Ugrasena)b(the)

Backoff b is a penalty for not matching context.




Example Language Model

Unigrams
Words logp logb
<s> —oo —2.0
iran —41 -0.8
is —25 —14
one —-3.3 —-0.9
of —25 —-11

Smoothing

Bigrams
Words logp
<s> iran —3.3
iran is -1.7
is one —-2.0
one of —1.4

log b
—-1.2
—0.4
—0.9
—0.6

Trigrams
Words log p
<s>iranis —1.1
iran isone —2.0
is one of -0.3
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Example Language Model

Unigrams Bigrams Trigrams
Words logp logb Words logp logh Words log p
<s> —oo —2.0 <s>iran —3.3 —-1.2 <s>iranis —1.1
iran —41 -0.8 iran is —-17 —-04 iran isone —2.0
is —25 —-14 is one —-2.0 -0.9 is one of -0.3
one —-3.3 -0.9 one of —14 —-0.6
of —25 —-11

Query
log p(is | <s> iran) = —1.1

Smoothing
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Example Language Model

Unigrams Bigrams Trigrams
Words logp logb Words logp logh Words log p
<s> —oo —2.0 <s>iran —3.3 —1.2 <s>iranis —1.1
iran —4.1 —-0.8 iran is —-17 —-04 iran isone —2.0
is —25 —14 is one —-2.0 -0.9 is one of -0.3
one -33 -0.9 one of -1.4 —-0.6
of —25 —-11

Query : p(of | iran is)

log p(of) —25
log b(is) —14
log b(iran is) + —0.4
log p(of | iranis) = —4.3




Close words matter more.

Though long-distance matters:
Grammatical structure
Topical coherence
Words tend to repeat
Cross-sentence dependencies

Alternative: skip over words in the context
[Pickhardt et al, ACL 2014]




Language Modeling

1 Smoothing

Neural Networks

Backoff
2 Kneser-Ney Smoothing
3 Implementation




Where do p and b come from?
Textl!

Kneser-Ney
Witten-Bell
Good-Turing




Kneser-Ney

Common high-quality smoothing

1 Adjust
2 Normalize
3 Interpolate




Adjusted counts are:

Trigrams Count in the text.
Others Number of unique words to the left.

Lower orders are used when a trigram did not match.
How freely does the text associate with new words?

Kneser-Ney
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Adjusted counts are:

Trigrams Count in the text.
Others Number of unique words to the left.

Lower orders are used when a trigram did not match.
How freely does the text associate with new words?

Input Output Output
Trigam  Count 1-gram Adjusted || 2-gram Adjusted
are one of 1 of 2 || oneof 2
is one of 5 { two of 1J
are two of 3

Kneser-Ney
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Discounting and Normalization

Save mass for unseen events

adjusted(w;') — discount,(adjusted(wy'))
> adjusted(w; 'x)

pseudo(w,|w/ ™) =

Normalize




Discounting and Normalization

Save mass for unseen events

adjusted(w;') — discount,(adjusted(wy'))

pseudo(w,|w/ ™) =

> adjusted(w; 'x)

Normalize

Input Output
3-gram Adjuste 3-gram Pseudo

o |
are one of 1 are one of 0.26
are one that 2 are one that 0.47
is one of 5 is one of 0.62

Kneser-Ney
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Interpolate: Sparsity vs. Specificity

Interpolate unigrams with the uniform distribution.
1

|vocabulary|

p(of) = pseudo(of) + backoff(¢)




Interpolate: Sparsity vs. Specificity

Interpolate unigrams with the uniform distribution,

1
p(of) = pseudo(of) + backofF(e)m

Interpolate bigrams with unigrams, etc.
p(offone) = pseudo(of | one) + backoff(one)p(of)




Interpolate: Sparsity vs. Specificity

Interpolate unigrams with the uniform distribution,

1
p(of) = pseudo(of) + backofF(e)m

Interpolate bigrams with unigrams, etc.
p(offone) = pseudo(of | one) + backoff(one)p(of)

Input Output
n-gram pseudo interpolation weight n-gram p
of 0.1 backoff( €)=0.1 of 0.110
oneof 0.2 backoff( one)=0.3 one of 0.233
are one of 0.4 backoff(are one) = 0.2 are one of 0.447

Kneser-Ney
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Kneser-Ney Intuition

Adjust Measure association with new words.
Normalize Leave space for unseen events.
Interpolate Handle sparsity.

How do we implement it?




Language Modeling

1 Smoothing

Neural Networks
Backoff
2 Kneser-Ney Smoothing
3 Implementation




“LM queries often account for more than 50% of the CPU"
[Green et al, WMT 2014]

500 billion entries in my largest model

Need speed and memory efficiency

Implementation
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Counting n-grams

<s> Australia is one of the few

2

5-gram Count
<s> Australia is one of 1
Australia is one of the 1
is one of the few 1

Hash table?

Implementation
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Counting n-grams

<s> Australia is one of the few

\

5-gram Count
<s> Australia is one of 1
Australia is one of the 1
is one of the few 1
Hash table?

Runs out of RAM.

Implementation
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Spill to Disk When RAM Runs Out

[ Hash Table |




Split Data

Hash Table Hash Table

Implementation
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Split and Merge

Hash Table Hash Table

Merge Sort

Implementation
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Training Problem:
Batch process large number of records.

Solution: Split/merge
Stupid backoff in one pass
Kneser-Ney in three passes

Implementation
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Training Problem:
Batch process large number of records.

Solution: Split/merge
Stupid backoff in one pass
Kneser-Ney in three passes

Training is designed for mutable batch access.
What about queries?

Implementation
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Query

count(wy) ,
_ if count(wy') >0
stupid(w, | w"1) = { count(wy™!) (wr)

0.4stupid(w, | wy ') if count(wy) =0

stupid(few | is one of the)

count(is one of the few) =5

count(is one of the) = 12

Implementation
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Query

t n
stupid(w, | wy'™") = { count(wy ")

0.4stupid(w, | wy ') if count(wy) =0

stupid(periwinkle | is one of the)

count(is one of the periwinkle) = 0 X
count(one of the periwinkle) = 0 X
count(of the periwinkle) = O X
count(the periwinkle) =
)=

count(the) = 1000

Implementation
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Save Memory: Forget Keys

Giant hash table with n-grams as keys and counts as values.

Replace the n-grams with 64-bit hashes:
Store hash(is one of) instead of “is one of".
lgnore collisions.

Implementation

0@00000000



Save Memory: Forget Keys

Giant hash table with n-grams as keys and counts as values.

Replace the n-grams with 64-bit hashes:
Store hash(is one of) instead of “is one of".
lgnore collisions.

Birthday attack: /264 = 232,
— Low chance of collision until = 4 billion entries.

Implementation

0@00000000



Default Hash Table

boost: :unordered_map and __gnu_cxx: :hash_map

@

f M f n-grams

| | Bucket array

Implementation
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Default Hash Table

boost: :unordered_map and __gnu_cxx: :hash_map

@

f M f n-grams

| | Bucket array

Lookup requires two random memory accesses.

Implementation

0000000000



Linear Probing Hash Table

@ 1.5 buckets/entry (so buckets = 6).
o Ideal bucket = hash mod buckets.

@ Resolve bucket collisions using the next free bucket.

Bigrams
Words Ideal Hash
iran is 0  0x959e48455f4a2e90
0x0
is one 2  0x186a7caef34acf16
one of 2 0xac66610314db8dac

<s> iran 4  0xf0ae9c2442c6920e
0x0

Implementation
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Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n — grams|)
— Use these as array offsets.

Implementation
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Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n — grams|)
— Use these as array offsets.

Entries not in the model get assigned offsets
— Store a fingerprint of each n-gram

Implementation
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Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n — grams|)
— Use these as array offsets.

Low memory, but potential for false positives

Implementation
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Less Memory: Sorted Array

Look up “zebra” in a dictionary.

Binary search
Open in the middle. O(nlog n) time.

Interpolation search
Open near the end. O(nloglog n) time.

Implementation
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Entries

Implementation
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Trie
Reverse n-grams, arrange in a trie.

/>iS

of —— one
T are

<s>

% is — Australia — <s>

is — Australia
N _— one —
\ T are

Australia — <s>

Implementation
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Saving More RAM

o Quantization: store approximate values

o Collapse probability and backoff

Implementation

000000000



Implementation Summary

Implementation involves sparse mapping
e Hash table

Probing hash table

Minimal perfect hash table

Sorted array with binary or interpolation search

Implementation
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Conclusion

Language models measure fluency.

Neural networks and backoff are the dominant formalisms.

Efficient implementation needs good data structures.

Conclusion

. 77
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