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overview: MT @ LIMSI

MT @ LIMSI: some facts and numbers
Statistical Machine Learning and Machine Translation (PI: F. Yvon)

Part of “Spoken Language Processing”

Joint venture with “Information, Written and Signed Languages”
Contributors:

5 faculty members (Univ. Paris-Sud) + 2 CNRS researchers
9 Ph.D students
2 post-docs

Main Theme: Structured Machine learning for multilingual NLP
sequence labeling, dependency parsing, WSD
weakly supervised learning & cross-lingual transfert
alignment models, statistical machine translation

Z http://www.limsi.fr/tlp [Machine Translation]
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overview: MT @ LIMSI

MT @ LIMSI: Recent Activities and Contributions
Covering all aspects of Multilingual (spoken and written) NLP

Some recent contributions
Discriminative & sampling-based alignements models [AMTA’10, IWSLT’10, MT’13, MT’14]

Contextual models, on-the-fly learning for SMT [IWSLT’13, IWSLT’14]
Large-scale continuous space language and translation models [ICASSP’11, NAACL’12, AMTA’14,

IWSLT’14, EMNLP’15]
Large-scale discriminative learning for SMT [WMT’11, TALN’13]
Evaluation: computing oracles, quality estimation [MT’13, ACM TSLP’13, WMT’13...]
Ambiguous supervision and cross-lingual transfert [TALN’14, EMNLP’14]
Structured learning with large, structured, output spaces [ACL’10, LREC’12, InterSpeech’13, TALN’15,

InterSpeech’15, EMNLP’15]

Current Projects (multi-lingual NLP)
Evaluation campaigns
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Covering all aspects of Multilingual (spoken and written) NLP

Some recent contributions
Current Projects (multi-lingual NLP)

QT-21: Quality translation for 21 languages [H2020, +10 academic, TAUS, Tilde...]
Transread: towards bilingual reading [French ANR, +CNAM, Reverso]
Papyrus: cross-domain and cross-lingual transfert for Information processing
[French DGA, +Systran]
Bulb: NLP tools for collecting and annotating unwritten languages [German/French
ANR, +LPL, LIG, LLACAN, KIT, Uni. Stuttgart]

Evaluation campaigns
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overview: MT @ LIMSI

MT @ LIMSI: Recent Activities and Contributions
Covering all aspects of Multilingual (spoken and written) NLP

Some recent contributions
Current Projects (multi-lingual NLP)
Evaluation campaigns

WMT Translation [2007-2015], Quality Estimation [2012-2015], Metrics [2015]
consistently among the top systems for English:French both directions
IWSLT Translation [2010, 2011, 2014], Recognition+Translation [2014]
SemEval 2015 [Task 13: all word WSDs]
best system for English
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n-gram-based MT: Basics Tuples: bilingual units for SMT

Bilingual n-grams for Statistical Machine Translation
n-gram LM of tuples

a bilingual language model as primary translation model
parallel sentences are sequences of tuples = synchronous phrases

u1 = (f , e)1 u2 = (f , e)2 u3 = (f , e)3 u4 = (f , e)4
f = we want translations perfect
e = nous voulons des traductions parfaites

translation context introduced through tuple n-gram history

P(f, e) =

T∏

t=1

P
(
(f , e)t|(f , e)t−1, (f , e)t−2

)

with back-off, smoothing, etc.
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n-gram-based MT: Basics Tuples: bilingual units for SMT

Training and Decoding with n-gram TMs

Training
1 identify tuples
2 synchronize bitext

asymmetric, target oriented

3 train LM
4 train reordering component

Steps 1 and 2 are currently performed simultaneously (but don’t need to be)

Decoding
1 generate source reorderings L(f)
2 solve:

e∗ = argmax
f̃∈L(f)

P(̃f, e)

or use the standard log-linear model

F. Yvon (LIMSI) n-gram-based MT MTM@Prague - 2015-09-08 8 / 49



n-gram-based MT: Basics Tuples: bilingual units for SMT

Training and Decoding with n-gram TMs

Training
1 identify tuples
2 synchronize bitext

asymmetric, target oriented

3 train LM
4 train reordering component

Decoding
1 generate source reorderings L(f)
2 solve:

e∗ = argmax
f̃∈L(f)

P(̃f, e)

or use the standard log-linear model

F. Yvon (LIMSI) n-gram-based MT MTM@Prague - 2015-09-08 8 / 49



n-gram-based MT: Basics How is this done ?

Steps 1+2: extract tuples, synchronize phrase pairs
Extracting tuples from word alignments

1 compute (symmetric) word alignments
parfaites

traductions
des

voulons
nous

we want perfect translations

2 a unique joint segmentation of each sentence pair
3 no NULL on the source side

source-NULL can’t be predicted
attach the target word to the previous/next tuple

we want translations perfect
nous voulons des traductions parfaites

optimizing attachment direction
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n-gram-based MT: Basics How is this done ?

Bitext synchronization
Reordering and segmenting parallel sentences

1 unfold the word alignments
2 segment into minimal bilingual units→ a tuple sequence

original f: demanda de nouveau le vengeur masqué

original e: the masked avenger said again
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n-gram-based MT: Basics How is this done ?

Bitext synchronization
Reordering and segmenting parallel sentences

1 unfold the word alignments
2 segment into minimal bilingual units→ a tuple sequence

original f: demanda de nouveau le vengeur masqué

original e: the masked avenger said again

unfold f̃: le masqué vengeur demanda de nouveau

u: u1 u2 u3 u4 u5
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n-gram-based MT: Basics Order

Word (dis)order issues
Towards Dissociating reordering and decoding

Reproducing source reorderings

Solving e∗ = argmax̃f∈L(f) P(̃f, e) assumes L(f)
L(f) is a set of reordering hypotheses

Generating permutations

Our way: learn rewrite reordering rules from word alignments

Decoding is easy (Finite-State SMT (Bengalore et al, 2000))

F. Yvon (LIMSI) n-gram-based MT MTM@Prague - 2015-09-08 11 / 49



n-gram-based MT: Basics Order

Word (dis)order issues
Towards Dissociating reordering and decoding

Reproducing source reorderings

Generating permutations

L(f) =all (|f|!) permutations is untractable
permutations make MT NP-hard

combinatorial reorderings: distance-based, WJ1, IBM, ITG, etc.
computationally effective (polynomial), linguistically risky

Our way: learn rewrite reordering rules from word alignments

Decoding is easy (Finite-State SMT (Bengalore et al, 2000))
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n-gram-based MT: Basics Order

Word (dis)order issues
Towards Dissociating reordering and decoding

Reproducing source reorderings

Generating permutations

Our way: learn rewrite reordering rules from word alignments
1 crossing alignment: perfect translations ||| translations perfect

lexical rules: r = perfect translations; 2 1
POS rules: r = JJ NN; 2 1

2 compose rules as a reordering transducer R =©i(ri ∪ Id)

3 in decoding: L(f) = π1(tag(f) ◦ R)
Computes L(f as a word lattice

Decoding is easy (Finite-State SMT (Bengalore et al, 2000))
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n-gram-based MT: Basics Order

Word (dis)order issues
Towards Dissociating reordering and decoding

Reproducing source reorderings

Generating permutations

Our way: learn rewrite reordering rules from word alignments

Decoding is easy (Finite-State SMT (Bengalore et al, 2000))

e∗ = bestpath(π2(L(f) ◦ pt) ◦ lm)
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n-gram-based MT: Basics Simplicity of the n-gram based approach

Comparison with (PB)-Moses

translation units are minimal
training segmentation is deterministic much smaller models, well-defined
transduction models, much less spurious derivations
static vs dynamic reordering spaces
different search and pruning strategies
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n-gram-based MT: Basics Simplicity of the n-gram based approach

n-gram based approach: pros and cons

, isolates two main components
reordering model (can vary accross language pairs)
translation model

, leverages ± 20 yrs of LM technologies (and counting)
(smoothing techniques, adaptation, trigger-based LMs, skip LMs, etc)

, scales to very-large bitexts (hardly any redundancy in TM + LM compression techniques)

, decoding (search) is easy - use generic finite-state technologies
generate Nbest, lattices, etc. + larger translation options (reordering is small)

/ source reordering is difficult (and ill-posed)
, performance ≈ to other PB systems for many European language pairs
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n-gram-based MT: Basics Simplicity of the n-gram based approach

Recent improvements of N-gram based models

The building blocks
1 identify tuples
2 synchronize bitexts
3 train TM as LM
4 train reordering component
5 include more models
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n-gram-based MT: Basics Simplicity of the n-gram based approach

Recent improvements of N-gram based models

The building blocks : what we have tried
1 identify tuples: + discontiguous tuples [Crego and Yvon, 2009]
2 synchronize bitexts: + discriminative alignments [Tomeh et al., 2014]
3 train TM as LM
4 train reordering component
5 include additional models: + lex. reordering, +source LM [Crego and Yvon,

2010]
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n-gram-based MT: Basics Simplicity of the n-gram based approach

Leveraging improved LM modeling techniques

2� class-based LMs
2� LM adaptation [Bellagarda, 2001]
2� factored models [Bilmes and Kirchhoff, 2003]
2� compact LMs [Heafield, 2011]
2� continuous-space LMs [Bengio et al., 2003]
2� discriminative LMs [Roark et al., 2004]
2 whole sentence log-linear LMs [Rosenfeld et al., 2001]
2 Bayesian models with HDPs à la [Teh, 2006]
2 M-Models [Chen, 2009]
2 training with fractional counts [Zhang and Chiang, 2014]

(include incertainty in alignment / segmentation)
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

The tuple-based n-gram translation model
Can be conventionally learnt with NNs

Training LMs: the lazy way

the n-gram translation model ...

P(f, e) =

L∏

i=1

P(ui|ui−1, ..., ui−n+1)

... is easy to train
(CMU-LM, SriLM, IRSTLM, KenLM, (yes, we even have tried LimsiLM))

The lazy way is the inefficient way

elementary units are tuples⇒ Very large unit set
very sparse training data.
smoothing is a big problem

ZDecompose tuples in smaller parts ⊕ use best-known smoothing: NNs
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

The phrase-factored n-gram translation model
A novelty of the factored n-gram-based TM

Decompose tuples in phrases

 s̅8: à 

 t̅8: to 

 s̅9: recevoir 

 t̅9: receive 

 s̅10: le 

 t̅10: the 

 s̅11: nobel de la paix 

 t̅11: nobel peace 

 s̅12: prix 

 t̅12: prize 

 u8  u9  u10  u11  u12 

s :   .... 

t :   .... 

à recevoir le prix nobel de la paixorg :   ....

....

....

Notations:
u = (s, t): a tuple
s: the source side of u

t: the target side of u
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

The phrase-factored n-gram translation model

P(ui|ui−1, ..., ui−n+1) = P( ti|si ,si−1, ti−1, ..., si−n+1, ti−n+1)

×P(si|si−1, ti−1, ..., si−n+1, ti−n+1)

Conditional translation model

s :   .... 

t :   .... 

               

 ui-n+1 

t̅i-n+1

s̅i-n+1

               

               

 ui-1 

s̅i-1

               

 ui 

t̅i

s̅i

               

....

               
t̅i-1
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A ’distortion’ model
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

A word-factored n-gram translation model
Decomposing further

P(ti|si, si−1, ti−1, ..., si−n+1, ti−n+1) =

|ti|∏

k=1

P
(

tk
i | hn−1(tk

i ) , hn−1(s1
i+1)

)

P(si|si−1, ti−1..., si−n+1, ti−n+1) =

|si|∏

k=1

P
(
sk

i |hn−1(s1
i ), hn−1(sk

i )
)

s :   .... 

t :   .... t̅i-n+1

s̅i-n+1 s̅i-1

t̅i

s̅i

....

t̅i-1

ti1 ti2  ... 

si
1 si

2  ... si-1
1 si-1

2  ... 

ti-11 ti-12  ... ti-k1 ti-k2  ... 

si-k
1 si-k

2  ... 

(n-1) source words
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A word-factored n-gram translation model
Decomposing further

P(ti|si, si−1, ti−1, ..., si−n+1, ti−n+1) =

|ti|∏

k=1

P
(

tk
i | hn−1(tk

i ) , hn−1(s1
i+1)

)

P(si|si−1, ti−1..., si−n+1, ti−n+1) =

|si|∏

k=1

P
(
sk

i |hn−1(s1
i ), hn−1(sk

i )
)

(n-1) target words  before ti2

(n-1) source words

s :   .... 

t :   .... t̅i-n+1

s̅i-n+1 s̅i-1

t̅i

s̅i

....

t̅i-1

si
1 si

2  ... si-1
1 si-1

2  ... 

ti-11 ti-12  ... ti-k1 ti-k2  ... 

si-k
1 si-k

2  ... 

ti1           ti2 ...
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

Three factorization of the n-gram model
Under the n-gram assumption

Three n-gram models of a sentence pair based on different units:
1 tuple-based (u)
2 phrase-factored (s, t)
3 word-factored (s, t)

Larger units make sparser models (and conversely)
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

Continuous space n-gram models
Overview of the standard model [Bengio et al., 2003, Schwenk, 2007]

Projection in a continuous space

one-hot encodings (in {0, 1}|V|)
linear projections in Rd, (d � |V|)
merge context vectors in one history

wi-1

wi-2

wi-3

R

R

R

W Wih ho

 shared projection space

context layer
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

Continuous space n-gram models
Overview of the standard model [Bengio et al., 2003, Schwenk, 2007]

Projection in a continuous space

one-hot encodings (in {0, 1}|V|)
linear projections in Rd, (d � |V|)
merge context vectors in one history

Probability estimation

create a feature vector for the word to
be predicted.
estimate probabilities for all words
given history

wi-1

wi-2

wi-3

R

R

R

W Wih ho

prediction space

output layer
(softmax)

 shared projection space
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

Large-scale Continuous Space LMs

Key points

projection in continuous spaces
improves smoothing
joint learning of representation and
the prediction layers

wi-1

wi-2

wi-3

R

R

R

W Wih ho

Probability estimation based 
on the similarity 

among the feature vectors
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Large-scale Continuous Space LMs

Key points

projection in continuous spaces
improves smoothing
joint learning of representation and
the prediction layers

Complexity issues

handles arbitrary input vocabularies.
handles high-order models

wi-1

wi-2

wi-3

R

R

R

W Wih ho

Probability estimation based 
on the similarity 

among the feature vectors

F. Yvon (LIMSI) n-gram-based MT MTM@Prague - 2015-09-08 23 / 49



Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

Large-scale Continuous Space LMs

Key points

projection in continuous spaces
improves smoothing
joint learning of representation and
the prediction layers

Complexity issues

handles arbitrary input vocabularies.
handles high-order models
main bottleneck: output vocabulary
size

wi-1

wi-2

wi-3

R

R

R

W Wih ho

  Matrix multiplication
500 x |V|    
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

The SOUL model [Le et al., 2011]
Use a structured output layer

P(wi|h) = P(c1(wi)|h)×
D∏

d=2

P(cd(wi)|h, c1:d−1(wi))

R

R

R

Wih

 shared projection space
0
1
0
0
0
0
0
0
0

wi-1

0
1
0
0
0
0
0
0
0

wi-2

0
1
0
0
0
0
0
0
0

wi-3

}short list

The associated clustering tree

} top classes (c1(wi))
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Use a structured output layer

P(wi|h) = P(c1(wi)|h)×
D∏

d=2

P(cd(wi)|h, c1:d−1(wi))

R

R

R

Wih

 shared projection space
0
1
0
0
0
0
0
0
0

wi-1

0
1
0
0
0
0
0
0
0

wi-2

0
1
0
0
0
0
0
0
0

wi-3

}short list

The associated clustering tree

Sub-class
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

The SOUL model [Le et al., 2011]
Use a structured output layer

P(wi|h) = P(c1(wi)|h)×
D∏

d=2

P(cd(wi)|h, c1:d−1(wi))

R

R

R

Wih

 shared projection space
0
1
0
0
0
0
0
0
0

wi-1

0
1
0
0
0
0
0
0
0

wi-2

0
1
0
0
0
0
0
0
0

wi-3

}short list

The associated clustering tree

Sub-class
layers (cd(wi))

Word layers
(cD(wi))

} top classes (c1(wi))
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

Implementing CSLMs with SOUL

The tuple-based n-gram translation model

Straightforward implementation (already in [Schwenk et al., 2007])

Phrase and word factored models
They involve two languages and two unit sets:

the predicted unit is a target phrase (resp. word),
the context is made of both source and target phrases (resp. words).

Z use multiple projection matrices (Rf and Re).
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

Training example
For a «4-gram» model

Tuple-based model

prix 

prize 

recevoir 

receive 

le 

the 

nobel de la paix 

nobel peace 

SOUL 
Model

Context

Unit to be predicted
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Training example
For a «4-gram» model

Phrase-based model

receive 

le 

the 

nobel de la paix 

nobel peace 

prize SOUL 
Model

Context

Unit to be predicted
prix
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

Training example
For a «4-gram» model

Word-based model

la 

the 

paix 

nobel 

prix

peace 

prize SOUL 
Model

Context

Unit to be predicted
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

Inference with SOUL
Use wo steps decoding

1 Generate a k-best list with the baseline system
2 Re-rank the k-best hypotheses (additional feature)

RerankingFirst pass SMT

Dev Data

Decode

n-best

Tune

Train Data

Learn features

Dev Data

Decode

n-best

Tune

NN Data

Train NN
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Continuous space LMs and TMs: SOUL and beyond Towards large-scle CSTMs

SOUL: promisses and caveats

, guaranted large BLEU improvements across the board
see LIMSI@(IWSLT’11 – WMT’15)

, compatible with any SMT architecture

/ complex training and inference
/ inadequate training objective
/ computationally unsustainable - burns a lot of energy
/ irrealistic in decoding (large histories + computational cost of normalization)

possible with the “generation” trick
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Continuous space LMs and TMs: SOUL and beyond Discriminative training for NNs

Training objectives for NNLMs and NNTMs

Two generic learning objectives
1 Train NNLMS

negated conditional likelihood (including RNN, SOUL, etc):

`(θ) =
∑
(w,h)

− log Pθ(w|h)(+R(θ)),with Pθ(w|h) =
exp bθ(w, h)∑
w′ exp bθ(w′, h)

NCE: for each observed (h,w), generate k negative samples (x1...xk); optimize:

`(θ) =−
∑

h

(
log Pθ(w|h)− log(Pθ(w|h) + kPN(w))+∑

i

log(PN(xi))− log(Pθ(xi|h) + kPN(xi))
)

Pθ(w|h) unnormalized; PN() a noise distribution (eg. unigram) [Mnih and Teh,
2012].

2 Train scoring function (log-linear combination) with MERT, MIRA, etc.
3 rerank hypotheses e with Gλ,θ(f, e, a) = Fλ(f, e, a)− λk+1 log(Pθ(e))
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Continuous space LMs and TMs: SOUL and beyond Discriminative training for NNs

Training objectives for NNLMs and NNTMs

Two generic learning objectives
1 Train NNLMS
2 Train scoring function (log-linear combination) with MERT, MIRA, etc.
3 rerank hypotheses e with Gλ,θ(f, e, a) = Fλ(f, e, a)− λk+1 log(Pθ(e))

Issues
step 1 very costly (in training)
λ and θ trained separately
θ trained with an inadequate objective
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Continuous space LMs and TMs: SOUL and beyond Discriminative training for NNs

A new ranking objective
Learning to rank with a margin criterium

BLEU-based cost function
costα(h = (a, e)) = α

(
sBLEU(e∗)− sBLEU(e)

)
where

e∗ = argmax
e

sBLEU(f) is the best hypothesis
(costα(h) ≥ 0)

A Max-margin objective

n-best hypothesessBLEU
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Learning to rank with a margin criterium

BLEU-based cost function
costα(h = (a, e)) = α

(
sBLEU(e∗)− sBLEU(e)

)
where

e∗ = argmax
e

sBLEU(f) is the best hypothesis
(costα(h) ≥ 0)

A Max-margin objective

n-best hypotheses

h*

sBLEU

G�,✓(s,h⇤) + cost↵(h⇤)
0
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Continuous space LMs and TMs: SOUL and beyond Discriminative training for NNs

A new ranking objective
Learning to rank with a margin criterium

BLEU-based cost function
costα(h = (a, e)) = α

(
sBLEU(e∗)− sBLEU(e)

)
where

e∗ = argmax
e

sBLEU(f) is the best hypothesis
(costα(h) ≥ 0)

A Max-margin objective

In practice, minimize:

`(θ) =
∑

(i,k)

Gλ,θ(f,hk) + costα(hk)− Gλ,θ(f,hi)− costα(hi)

where (hi,hk) are pairs of (good, bad) hypotheses (wrt. sBLEU)
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Continuous space LMs and TMs: SOUL and beyond Discriminative training for NNs

Training discriminative NN: the global view
Still uses two steps decoding

1 generate k-best list with the baseline system for all the training and dev data
2 jointly train re-ranker and NN

Out of domain In domain

Dev Data

Decode

n-best

Tune

Train Data

Learn features

Dev Data

Decode

n-best

Tune

NN Data

n-best

Decode

Train NN
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Continuous space LMs and TMs: SOUL and beyond Discriminative training for NNs

Training algorithm
A rather abstract representation

1: Init. λ and θ
2: for N Iterations do
3: for M NN-train batches do
4: Compute sub-gradient of `(θ) for each sentence f in batch
5: update θ . λ fixed
6: end for
7: update λ on dev. set (MERT, MIRA) . θ fixed
8: end for
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Continuous space LMs and TMs: SOUL and beyond Discriminative training for NNs

Some experimental results
NCE vs. CLL

Data and Condition:
Out-of-domain: WMT en-fr system
In-domain: TED Talks

Full details in EMNLP paper [Do et al., 2015]
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Continuous space LMs and TMs: SOUL and beyond Discriminative training for NNs

Some experimental results
NCE vs. CLL

dev test
Baseline 33, 9 27, 6

Continuous space models training
+ SOUL/CLL 35, 1 (+1, 2) 28, 9 (+1, 3)
+ NCE 35, 0 (+1, 1) 28, 8 (+1, 2)

Full details in EMNLP paper [Do et al., 2015]
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Continuous space LMs and TMs: SOUL and beyond Discriminative training for NNs

Some experimental results
NCE vs. CLL

dev test
Baseline 33, 9 27, 6

NNs in reranking
+ NCE 35, 0 28, 8

Discriminative training
+ DT 35, 3 (+1, 4) 29, 0 (+1, 4)
+ Init. NCE + DT 35,4 (+1, 5) 29,7 (+2, 1)

comparable results when initializing with SOUL

Full details in EMNLP paper [Do et al., 2015]

F. Yvon (LIMSI) n-gram-based MT MTM@Prague - 2015-09-08 33 / 49



From n-gram to CRF based TMs

Outline

1 overview: MT @ LIMSI

2 n-gram-based MT: Basics
Tuples: bilingual units for SMT
How is this done ?
Order
Simplicity of the n-gram based approach

3 Continuous space LMs and TMs: SOUL and beyond
Towards large-scle CSTMs
Discriminative training for NNs

4 From n-gram to CRF based TMs

5 Conclusion
Roadmap
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From n-gram to CRF based TMs

Motivations and inspirations

Motivations

n-gram models P(̃f, e) - Yet f is known in advance !
Z learn P(e|̃f) instead (cf. previous part)
n-gram models are trained generatively
Z learn TM towards good translations
n-gram models are “surfacist”
Z integrate reach linguistic features
cf. factored models in LM and TMs

Get rid of log-linear combination, tuning, etc.
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From n-gram to CRF based TMs

From n-gram to CRF-based TMs
Implementation

Training
1 identify tuples
2 synchronize bitext

asymmetric, target oriented

3 train LM
4 train reordering rules

Steps 1 and 2 are performed simultaneously

Decoding
1 generate source reorderings L(f)
2 solve:

e∗ = argmax
f̃∈L(f)

Pθ (̃f, e)

or use the standard log-linear model
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From n-gram to CRF based TMs

From n-gram to CRF-based TMs
Implementation

Training
1 identify tuples
2 synchronize bitext

asymmetric, target oriented

3 train CRF
4 train reordering rules

Decoding
1 generate source reorderings L(f)
2 solve:

e∗ = argmax
f̃∈L(f)

Pθ(e|̃f)

and that is all there is !
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From n-gram to CRF based TMs

The CRF Translation Model

Basic formulation: known tuple alignment (inc. segmentation and reordering)

Pθ(e, a|̃f) =
exp

(
θ>Φ(e, a, f̃)

)

∑
e′,a′

exp
(
θ>Φ(e′, a′, f̃)

)

with Φ(e, a, f̃)) =
∑

i

Φ(ti, ti−1, f̃, i)

With marginalization (reorderings and segmentations unobserved)
Pθ(e|f) =

∑

f̃∈L(f)

∑

a∈S(̃f)

P(e, a|̃f)
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From n-gram to CRF based TMs

Training and Inference

Training: optimize CLL
θ∗ = argmax

θ

∑

i

log Pθ(ei|fi)

Caveat: objective no longer convex - still doable with gradient based techniques

Approximate inference: find optimal derivation
e∗ = argmax

e
Pθ(e|f) NP hard

e∗ = argmax
e,a,̃f

Pθ(e, a|̃f) “Viterbi” decoding

e∗ = argmax
e

N∑

i=1

Pθ(ei, ai|f) approx. marginalization with N-Bests
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From n-gram to CRF based TMs

Training: the true story

Training: optimize CLL
θ∗ = argmax

θ
`(θ) =

∑

i

log Pθ(ei|fi) + α||θ||2

gradients computed as differences of expectations

∇`
θk

=
∑

i

EPθ
(Φk(e, a, fi))− EP̃(Φk(e, a, fi))

“Possibility” lattice “Reference” lattice
reference reachability: reference ei not in model
Z use “oracle” derivations instead

caveat: oracles need a goodness measure eg. sBLEU
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From n-gram to CRF based TMs

Feature engineering
Includes LM, TM, RM, and more

 swi-1: le nobel de la paix 

 twi-1: the nobel peace 

 spi-1: DET ADJ PRP DET NN 

 sri-1: 1 3 4 5 6 

 tpi-1: DET ADJ NN 

 swi: prix

 twi: prize 

 spi: NN  

 sri: 2 

 tpi: NN  

1 LM:uni-tphr: I
(
twi = tw

)
2 LM:uni-tpos : I

(
tpi = tp

)
3 LM:big-tphr : I

(
twi = tw ∧ twi−1 = tw′

)
4 LM:big-tpos : I

(
tpi = tp ∧ tpi−1 = tp′

)
5 TM:ci-phrp : I

(
twi = tw ∧ swi = sw

)
6 TM:ci-posp : I

(
tpi = tp ∧ spi = sp

)
7 TM:ci-mixp : I

(
twi = tw ∧ spi = sp

)
8 TM:cd-phrs : I

(
twi = tw ∧ swi = sw ∧ swi−1 = sw′

)
9 TM:cd-poss : I

(
tpi = tp ∧ spi = sp ∧ spi−1 = sp′

)
10 TM:cd-phrt : I

(
twi = tw ∧ twi−1 = tw′ ∧ swi = sw

)
11 TM:cd-post : I

(
tpi = tp ∧ tpi−1 = tp′ ∧ spi = sp

)
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From n-gram to CRF based TMs

CRF-based ngrams: successes and failures

A success story: translating BTEC into French Lavergne et al. [2013]

Configuration devel03 test09 test10
n-gram-based

n-gram TM n = 2 68.7 61.1 –
n-gram TM n = 3 68.0 61.6 53.4

CRF-based
Viterbi-decoding 64.0 58.8 51.5
+ marginalisation 64.7 59.3 52.0
+ target LM 67.7 61.7 53.9

Remember: no dense features, no MERT, just plain CRF training on parallel data

A more bumpy road: train on Newsco, translate NewsTest

Basic config. hardly tractable: > 50B “basic (lexical) features
“Debug” config: Ncode lattices as proxy search space
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CRF-based ngrams: successes and failures

A success story: translating BTEC into French Lavergne et al. [2013]

A more bumpy road: train on Newsco, translate NewsTest

Basic config. hardly tractable: > 50B “basic (lexical) features
“Debug” config: Ncode lattices as proxy search space

En→Fr Fr→En
BLEU BP BLEU BP

n-gram TM n = 2 22.05 0.990 21.99 1.000
CRF (basic) 15.31 0.969 13.96 0.884
CRF (+LM, +p) 16.65 0.970 14.80 0.857
CRF (+dense) 17.52 0.963 16.73 0.881

F. Yvon (LIMSI) n-gram-based MT MTM@Prague - 2015-09-08 41 / 49



From n-gram to CRF based TMs

CRF-based ngrams: successes and failures

A success story: translating BTEC into French Lavergne et al. [2013]

A more bumpy road: train on Newsco, translate NewsTest

Basic config. hardly tractable: > 50B “basic (lexical) features
“Debug” config: Ncode lattices as proxy search space

oracles (pseudo-refs) a problem⇒ length issues (?)
overtraining a problem
log-loss a poor objective
next steps: fix length issue, fix regularization issues, add more features, try
alternative losses (eg. soft-max margin)
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From n-gram to CRF based TMs

Discriminative TMs: what we know, what we dont
Confirmation of many studies

1 marginalize nuisance variables if you can
already well documented

2 the pay-offs of discriminative training
use translation metrics / cost (eg. BLEU in your objective)

3 beware of “dangerous” references
use hope derivations instead [Chiang, 2012]

4 avoid oracle / pseudo-references if you can
use ranking [Flanigan et al., 2013] or Expected-BLEU [He and Deng, 2012, Gao and He, 2013] etc.

5 sparse or sparse+dense features ?
Probably an ill-posed alternative, but can we do better ?

6 still the right way to go ?
time will tell
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Conclusion Roadmap

n-gram based TMs: a simple and effective implementation
of PBMT

What we have
1 open full pipeline for n-gram-based MT
2 effective implementation for large-scale NNLMs
3 generic implementation for “generalized” CRFs

(with latent variable and arbitrary costs) - coming soon

Where we look
1 fix CRF-based model
2 include morpheme-based LMs
3 develop formal characterisation of gappy derivations
4 tick more boxes on slide 17
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Conclusion Roadmap

Roadmap

Improved learning and decoding
faster NN training and adaptation with task-related objectives
large-scale discriminative learning with sparse features
learning to translate with RL / ILR (and very long histories)

More realistic models
more syntax in reordering
morphologically aware units for translation
optimizing speech segmentation / recognition for MT
contextual / discourse level features in MT

Do more with less resources
cross-lingual transfert (in MT and elsewhere)
learn tuples from comparable corpora (caveat: require sparse features)

Better translation environnements
improved UIs for the translator workbench
seamless online learning, with pre- and post-edition
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