
MTSpell
improved spelling correction 

for post-editing and interactive MT
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More resources    better suggestions

Bad:
● Common spell checkers (aspell and friends) 

limited to single word
● Best at suggesting common words

Better:
● Look at the context
● Use more RAM
● Use the source, Luke



Real-word errors



Pipeline

1. Find correction 
candidates
a. Edit distance
b. Split words
c. Join words

2. Score locally
3. Produce search 

graph
4. Score with LM
5. Cross fingers



Levenshtein Distance

● The minimum number of single-character 
edits (insertion, deletion, substitution) 
required to change one word into the other

● e.g.  Lev(from, form) = 2
['A', 'D', 'A', 'I', 'A']
● where:

○ A: aligned = 3 (count 0)
○ D: deleted = 1 (count 1)
○ I: Inserted = 1 (count 1)



Levenshtein Distance

● More sensitive measure (feature)

● Two Variations:
a. different weights for each edit based on the letters 

involved 
■ high probability to misspell letter ‘s’ with letter ‘z’ 



Levenshtein Distance

● More sensitive measure (feature)

● Two Variations:
a. different weights for each edit based on the letters 

involved 
■ high probability to misspell letter ‘s’ with letter ‘z’ 

b. different weights for each edit based on the edit 
position in the words
■ high probability to adjust morphology at the end 

of the word



Letter-Weighted Lev. Distance

● Weight differently edits according to the 
letters that are involved
○ ‘s’ into ‘z’ more probable than ‘s’ into ‘k’

● Given an annotated corpus, 
○ compute the substitution matrix:

■ count how often letter ‘j’ in the misspelled word is 
replaced by ‘i’ in the correct word

■ for each letter pair, compute the probability of 
replacing ‘j’ with ‘i’

○ in testing, use the probability as weight of each edit 



Letter-Weighted Lev. Distance 

● Toy example:
Lev(from, *) = 2

wLev(from, frim) = 0.985

wLev(from, frlm) = 0.992

wLev(from, fram) = 0.995

wLev(from, frxm) = 1



Position-Weighted Lev. Distance

● Weight edits differently according to their 
positions in the words
○ corrections at the end of the word are more probable 

than at the beginning

● Given an annotated corpus: 
○ count how often an error appears in a certain 

position
○ smooth the counts using the kernel density 

estimation
○ in testing, use this probability as weight of each edit



Position-Weighted Lev. Distance

Substitution:



Position-Weighted Lev. Distance

Insertion:



Position-Weighted Lev. Distance

Deletion:



Position Weighted Lev. Distance

● Toy example:
Lev(from, *) = 2

pwLev(from, irom) = 0.106

pwLev(from, fiom) = 0.799

pwLev(from, frim)  = 1.047

pwLev(from, froi)   = 0.238



Phonetic algorithm



Phonetic algorithm

Homophones may have EditDistance > 1

● Soundex algorithm: 

e.g.   czech: C200
check: C200

faster than other phonetic algorithms (e.g. 
NYSIIS, Double Metaphone)



Finding correction candidates

Naive approach:
● for each item in the dictionary, compute edit 

distance to word in question

Peter Norvig’s algorithm 
● systematically distort word in question by 

inserting, deleting, transposing etc. letters 
and checking if they are in the dictionary
(http://norvig.com/spell-correct.html)

http://norvig.com/spell-correct.html


Finding correction candidates
Faroo algorithm (100,000 times faster for ed=3)
● for each word in the dictionary, 

systematically remove up to n letters
● build a map from each of the resulting 

strings to the original string
● at lookup time, delete up to n words from the 

word in question, consult the map from 
step 2

● compute edit distance for each candidate 
word found this way 

(http://blog.faroo.com/2012/06/07/improved-
edit-distance-based-spelling-correction/)

http://blog.faroo.com/2012/06/07/improved-edit-distance-based-spelling-correction/
http://blog.faroo.com/2012/06/07/improved-edit-distance-based-spelling-correction/
http://blog.faroo.com/2012/06/07/improved-edit-distance-based-spelling-correction/


Done so far

● Naive approach in Python (works)
● Faroo algorithm in C++ with MPH for 

indexing (also works, yay!)



Finding correction candidates

Split words

Not just simple segmentation:

haveto      have to
mydag        ?  

renew list of candidates for misspelled word



Finding correction candidates

Split words

for all possible splits:
for left split in dictionary(edit distance <=1):

for right split in dictionary(edit distance <=1):
 add to candidates



Finding correction candidates

Split words

for all possible splits:
for left split in dictionary(edit distance <=1):

for right split in dictionary(edit distance <=1):
 add to candidates

e.g. m-ydag my-dag myd-ag myda-g

(my day,  my dog)



Progress



Progress

● Candidates
● Scores
● FAST candidate

Ongoing:
● Splits / Joins

Soon
● Evaluation



Example 1
$ echo "Kissed a girl one night and here iyes 
were burning blue" | ./spell.py -mincount=1000 -
dist 2 -counts dict/english.counts > data/0

read 61036 entries from dict/english.counts with 
min count 1000

$ decode -i data/ -l 10M.kenlm -K 1000 --weight 
WordPenalty=0 LanguageModel=1.0 
LanguageModel_OOV=-10 EditDistance=-2  
SoundMap=1 WeightedEditDistance=-10

0 |||  kissed a girl one night and her eyes were 
burning blue  



Example 2
$ echo "they hade cleand the river and made it 
very wide fore the ducks" | ./spell.py -
mincount=1000 -dist 2 -counts dict/english.
counts > data/2

$ decode -i data/ -l 10M.kenlm -K 1000 --weight 
WordPenalty=0 LanguageModel=1.0 
LanguageModel_OOV=-10 EditDistance=-2  
SoundMap=1 WeightedEditDistance=-10

0 |||  they have cleaned the river and made it 
very wide for the ducks  


