MTSpell

Improved spelling correction
for post-editing and interactive MT

{Marco, Chara, Uli, Herve, Christian}

More resources = better suggestions

Bad:

e Common spell checkers (aspell and friends)
limited to single word
e Best at suggesting common words

Better:

e Look at the context
e Use more RAM
e Use the source, Luke

Real-word errors

File Edit View Inse [s] able Tools Wi w He
B-2gAe 5NE & ™) 0-38 6 - = -¢F 4w 1 -

Most off Ikea’s product's are
mad 1n china, butt there China
itself i form Cambodia,

-

Pipeline

1. Find correction

candidates

a. Edit distance
b. Split words
c. Join words

2. Score locally

3. Produce search
graph

4. Score with LM

5. Cross fingers

Levenshtein Distance

e The minimum number of single-character
edits (insertion, deletion, substitution)
required to change one word into the other

e e.g. Lev(from, form) =2
[lAl, lDl, lAl, lll, IAI]
e where:
o A: aligned = 3 (count 0)

o D: deleted =1 (count 1)
o |:Inserted =1 (count 1)

Levenshtein Distance

e More sensitive measure (feature)

e Two Variations:
a. different weights for each edit based on the letters
involved
m high probability to misspell letter ‘s’ with letter 'z’

Levenshtein Distance

e More sensitive measure (feature)

e Two Variations:
a. different weights for each edit based on the letters
iInvolved
m high probability to misspell letter ‘s’ with letter 'z’

b. different weights for each edit based on the edit
position in the words
m high probability to adjust morphology at the end
of the word

Letter-Weighted Lev. Distance

e \Weight differently edits according to the

letters that are involved
o ‘s’into 'z’ more probable than ‘s’into ‘k’

e Given an annotated corpus,
o compute the substitution matrix:
m count how often letter '/’ in the misspelled word is
replaced by ‘i’ in the correct word
m for each letter pair, compute the probability of
replacing j’ with ‘7’
o in testing, use the probability as weight of each edit

Letter-Weighted Lev. Distance

e Toy example:
Lev(from, *) = 2

wLev(from, frim) = 0.985
wLev(from, frim) = 0.992
wLev(from, fram) = 0.995

wLev(from, frxm) =1

Position-Weighted Lev. Distance

e \Weight edits differently according to their

positions in the words

o corrections at the end of the word are more probable
than at the beginning

e Given an annotated corpus:
o count how often an error appears in a certain
position
o smooth the counts using the kernel density
estimation
o in testing, use this probability as weight of each edit

Position-Weighted Lev. Distance

Substitution:

14

Leter 5 ubstitution

1.2

0.8 |

0.6

04+

0.2

| | | | | |
1] n.z2 0.4 0.5 n.a 1
Leter Position

1.2

Position-Weighted Lev. Distance

|nsert|0n . Insertion

1 | | | | |
-0.2 n nz 04 0.6 0.s 1
Leter Position

1.2

Position-Weighted Lev. Distance

Deletion:

1.6

Deletion

141

1.2+

0.8k

0.6 |

04 -

0.2k

| | | | |
0.2 0.4 0.6 n.s 1
Leber Position

1.2

Position Weighted Lev. Distance

e Toy example:
Lev(from, *) = 2

pwLev(from, irom) = 0.106
pwLev(from, fiom) = 0.799
pwLev(from, frim) = 1.047

pwLev(from, froi) = 0.238

Phonetic algorithm

WORDS ERE PUK

CHAPTER |: HOMOPHONES

L BOARD OfF EDUCATION BORED OF EDUCATION |
y

Phonetic algorithm

Homophones may have EditDistance > 1

e Soundex algorithm:

e.g. czech: C200
check: C200

faster than other phonetic algorithms (e.qg.
NYSIIS, Double Metaphone)

Finding correction candidates

Naive approach:

e for each item in the dictionary, compute edit
distance to word in question

Peter Norvig's algorithm

e systematically distort word in question by
Inserting, deleting, transposing etc. letters
and checking if they are in the dictionary

(http://norvig.com/spell-correct.html)

http://norvig.com/spell-correct.html

Finding correction candidates

Faroo algorithm (100,000 times faster for ed=3)

e for each word in the dictionary,
systematically remove up to n letters

e Dbuild a map from each of the resulting
strings to the original string

e at lookup time, delete up to n words from the
word in question, consult the map from
step 2

e compute edit distance for each candidate
word found this way

(http://blog.faroo.com/2012/06/07/improved-
edit-distance-based-spelling-correction/)

http://blog.faroo.com/2012/06/07/improved-edit-distance-based-spelling-correction/
http://blog.faroo.com/2012/06/07/improved-edit-distance-based-spelling-correction/
http://blog.faroo.com/2012/06/07/improved-edit-distance-based-spelling-correction/

Done so far

e Naive approach in Python (works)
e Faroo algorithm in C++ with MPH for
iIndexing (also works, yay!)

Finding correction candidates

Split words
Not just simple segmentation:

haveto = have to
mydag = 7

renew list of candidates for misspelled word

Finding correction candidates

Split words

for all possible splits:
for left split in dictionary(edit distance <=1):
for right split in dictionary(edit distance <=1):
add to candidates

Finding correction candidates

Split words

for all possible splits:
for left split in dictionary(edit distance <=1):
for right split in dictionary(edit distance <=1):
add to candidates

e.g. m-ydag my-dag myd-ag myda-g

/N

(my day, my dog)

Progress

MISSION ACCOMPLISHED

Progress

e (Candidates
e Scores
e FAST candidate

Ongoing:
e Splits / Joins

Soon
e Evaluation

Example 1

$ echo "Kissed a girl one night and here iyes
were burning blue" | ./spell.py -mincount=1000 -
dist 2 -counts dict/english.counts > data/@

read 61036 entries from dict/english.counts with
min count 1000

$ decode -i data/ -1 10M.kenlm -K 1000 --weight
WordPenalty=0 LanguageModel=1.0

LanguageModel OOV=-10 EditDistance=-2
SoundMap=1 WeightedEditDistance=-10

© ||| kissed a girl one night and her eyes were
burning blue

Example 2

$ echo "they hade cleand the river and made it
very wide fore the ducks" | ./spell.py -
mincount=1000 -dist 2 -counts dict/english.

counts > data/2

$ decode -i data/ -1 10M.kenlm -K 1000 --weight
WordPenalty=0 LanguageModel=1.0

LanguageModel OOV=-10 EditDistance=-2
SoundMap=1 WeightedEditDistance=-10

© ||| they have cleaned the river and made it
very wide for the ducks

