Morphological Knowledge in Statistical Machine Translation

Kristina Toutanova

Microsoft Research

Morphology

- Morpheme the smallest unit of language that carries information about meaning or function
- Word the smallest free form in language (that does not have to occur in a fixed position relative to neighboring elements)
- Typical MT systems model the translation process based on words

Language differences in word granularity

 Some words in one language correspond to bound affix morphemes in another

wa+li+al+maktaba+āt

Language differences in word granularity

 Languages mark different amounts of grammatical information using inflection

	Russian	English
Noun gender	3	1
Noun case	6	1
Adjective gender, number, case	3 x 2 x 6	1
Verbs person, number	3 x 2	2

Language differences in word granularity

 Languages exhibit different amount of compounding

elin-keino-tulo-vero-laki (life's means income tax law)

income tax law

Finnish-English example

Challenges for Machine Translation

- Standard word alignment and translation models work best when the mapping between words in largely one-to-one
 - Breaks for languages with different word granularity
- Rich morphology leads to sparsity
 - Translation rules with less coverage
 - Poor estimation of translation probabilities
- Rich systems of grammatical agreement lead to insufficiency of standard language models
 - Need longer context from source and target to predict correct target forms

Impact of Morphology on Vocabulary Size

tietä+isi+mme

know+would+we

Creutz et al. 2005

Slide from Costa-jussà & Quirk NAACL 2013 tutorial

Opportunities and Challenges in Modeling Morphology for MT

- Achieve better source-target alignment
- Expand translation rule coverage
- Generalize statistics by parameter sharing among morphologically related words

- Morphological analysis is not observed
- Morphological analyzers are hard to obtain for many languages
- Can make incorrect predictions based on less specific evidence

Use of Morphogical Knoweldge

 Alignment – basic units and correspondence among them

- Translation rules
 - Defining the set of options

Modeling

 Morphology-related models for scoring candidates

Outline

- Unsupervised Induction of Morphology
- Pre-processing to reduce language divergence [Alignment, Rules, Modeling]
- Factored translation models [Rules, Modeling]
- Models for generation of complex morphology [Rules, Modeling]
- Scoring models for rich target morphology [Modeling]

Unsupervised Induction of Morphology

Unsupervised Morphology

- For many languages, no high-quality analyzers available.
- Even when we have supervised analysis, it is not clear what is the optimal segmentation for a given language pair and data size [Goldwater & McKlosky, Habash & Sadat 2006].
- Can we have an unsupervised morphological analyzer determining the optimal units?

Unsupervised Morphological Segmentation

- Monolingual morphological segmentation
- Bilingual morphological segmentation
- Supervised versus unsupervised morphology for translation performance

Monolingual morphological segmentation

walialmaktabaāt →wa+li+al+maktaba+āt

- Morfessor [Creutz et al, 2005]
 - Categories-MAP uses an HMM statistical model with prefix, stem, and suffix states
 - Publicly available
- [Poon et al 2009], [Naradowsky & Toutanova 2011]
 Feature-rich models, higher accuracy on Arabic and Hebrew
- Active area of research

Bilingual Morphological Segmentation

- Given source segmentation into words or morphemes, segment and align the target to the source
- Target segmentation may vary to match source units

Models using standard IBM-1 and HMM alignment modes [Chung & Gildea 09]

... the red flower s ...
... червен-и-те цвет-я ...
$$P(m_1, m_2, m_3, m_4, m_5, A \mid e) = \prod_{i=1}^{5} \frac{1}{5} p(m_i \mid e_{a_i}) \varphi(\mid m_i \mid)$$

Use our standard alignment models except now the target segmentation is a hidden variable.

Inference is fast using a dynamic program like the one for semimarkov CRFs.

i=1

Improvement in MT over monolingual segmentation.

Model using richer morpho-syntactic information [Naradowsky & Toutanova 2011]

- Model based on HMM word alignment model
- Leverage source morpho-syntactic information
- Generate latent morpheme state prefix, root, stem
- Distortion model aware of source and target morphosyntactic context

Supervised versus Unsupervised Morphology

- [Chung & Gildea 09] on Korean-English
 supervised vs unsupervised BLEU 7.27 vs 7.46
- [Chahuneau et al 13] on English-Russian
 - word baseline 15.7
 - supervised vs unsupervised BLEU 16.7 vs 16.2
- [Stallard et al 12] on Arabic-English 35mln train
 - word baseline 43.45
 - supervised vs unsupervised BLEU 45.64 vs 45.84

Outline

- Unsupervised Induction of Morphology
- Pre-processing to reduce language divergence [Alignment, Rules, Modeling]
- Factored translation models [Rules, Modeling]
- Models for generation of complex morphology [Rules, Modeling]
- Scoring models for rich target morphology [Modeling]

Preprocessing to Reduce Language Divergence

[Alignment, Rules, Modeling]

Preprocessing to Reduce Language Divergence

- Transform source tokens but leave target tokens alone (or enrich target words)
- From highly inflect to less inflected language
 - Remove some information from source
 - Convert bound morphemes to free
- From less inflected to more inflected language
 - Enrich the source words using syntactic information
 - Covert free morphemes to bound

Preprocessing for high → low [Goldwater & McClosky 2005]

 For several morphological features, try splitting them off as pseudowords, dropping them, or appending to the lemma

Words:	Pro	nĕkoho	b by	její	prove	dení	mĕlo	smys	1.		
Lemmas:	pro	nĕkdo	být	jeho	prove	dení	mít s	mysl			
Lemmas+Pseudowords:	${\tt pro}$	nĕkdo	být	PER_3	jeho	prov	redení	mít	PER_X	smysl	
Modified Lemmas:	pro	nĕkdo	být-	+PER_3	jeho	prov	redení	mít-	PER_X	smysl	•

It would make sense for somebody to do it

- Optimal scheme: lemmatize words, treat person and negation as pseudo-words, append number and tense
- Gain 6 BLEU points using 20K sent training data

Preprocessing for high → low [Habash & Sadat 2006]

Arabic Morphology

[CONJ+ [PART+ [Al+ BASE +PRON]]]

ТОК	
ST	Splitting off punctuation and numbers
D1	Declitization (w+, f+)
D2	Declitization (D1+ l+, k+, b+, s+)
D3	Declitization (D1,D2, AI+)
MR	Stem + affixival morphemes
EN	English-like

Slide from Costa-jussà & Quirk NAACL 2013 tutorial

Preprocessing for high → low [Habash & Sadat 2006]

Input	wsynhY	Alr}ys	jwlth	bzyArp	AlY	trkyA.	
Gloss	and will fi nish	the president	tour his	with visit	to	Turkey	
English	The president will fi nish his	s tour with a visi	t to Turkey.				
ST	wsynhY	Alr}ys	jwlth	bzyArp	AlY	trkyA	
D1	w+ synhy	Alr}ys	jwlth	bzyArp	<ly< th=""><th>trkyA</th><th></th></ly<>	trkyA	
D2	w+ s+ ynhy	Alr}ys	jwlth	b+ zyArp	<ly< th=""><th>trkyA</th><th></th></ly<>	trkyA	
D3	w+ s+ ynhy	Al+ r}ys	jwlp +P _{3MS}	b+ zyArp	<ly< th=""><th>trkyA</th><th></th></ly<>	trkyA	
MR	w+ s+ y+ nhy	Al+ r}ys	jwl +p +h	b+ zyAr +p	<ly< th=""><th>trkyA</th><th></th></ly<>	trkyA	
EN	$w+s+>nhY_{VBP}+S_{3MS}$	Al+ r}ys _{NN}	jwlp _{NN} +P _{3MS}	b+ zyArp _{NN}	$< lY_{IN}$	trkyA _{NNP}	

- -

The optimal segmentation dependent on training set size.

For a training set of 50,000 words: EN best, gaining 7 to 8 BLEU points.

For training set of 5 million words: D2 best, gaining 1 to 2 BLEU points.

Preprocessing for low → high [Avramidis & Koehn 08]

In English-to-Greek translation we need to predict case for nouns and person for verbs.

- EN: The president, after reading the press review and the announcements, left his office
- GR: The president[nominative], after reading[3S] the press review[Accusative,S] and the announcements[<u>Accusative</u>,p], left[3S] his office[Accusative,S]

Preprocessing for low → high [Avramidis & Koehn 08]

• Annotate English source with rules looking at syntactic tree for noun case and verb person

• Results: small improvement in BLEU but large error reduction in noun and verb inflection errors

Preprocessing for low → high [Yeniterzi & Oflazer 2010]

25 rules specifying how to convert function words in English into Turkish morphemes 5 BLEU points improvement for a 50K training corpus (in combination with factored translation models)

Outline

- Unsupervised Induction of Morphology
- Pre-processing to reduce language divergence [Alignment, Rules, Modeling]
- Factored translation models [Rules, Modeling]
- Models for generation of complex morphology [Rules, Modeling]
- Scoring models for rich target morphology [Modeling]

Factored Translation Models

[Rules, Modeling]

Factored Translation Models [Koehn & Hoang 2007]

 The phrase-based model sees every word as a sequence of factors (indicating morphological, syntactic, or semantic information)

(word) = \Rightarrow (word, lemma, PoS, morphology, ...)

• The system can now generalize over factors in addition to words

Factored Translation Models

Can define target phrase generation in a factored way

Can use richer information for modeling

Example: Decomposing translation

 Translate the lemmas and syntactic features separately

Slide by Philipp Koehn

Example: Decomposing translation

• Generate surface forms on target side

Slide by Philipp Koehn

Example: Decomposing Translation

Input: (Autos, Auto, NNS)

- 1. Translation step: lemma \Rightarrow lemma (?, car, ?), (?, auto, ?)
- Generation step: lemma ⇒ part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NN), (?, auto, NNS)
- 3. Translation step: part-of-speech \Rightarrow part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NNP), (?, auto, NNS)
- 4. Generation step: lemma,part-of-speech \Rightarrow surface (car, car, NN), (cars, car, NNS), (auto, auto, NN), (autos, auto, NNS)

Slide by Philipp Koehn

Results with Factored Translation Models

Enriching output and using high-order LM over POS: gains 1 to 2 BLEU points using small training set [Koehn & Hoang 07]

Generation through lemma and morphology: gain 19.05 \rightarrow 19.47 when using alternative decoding for a small German-English system

Outline

- Unsupervised Induction of Morphology
- Pre-processing to reduce language divergence [Alignment, Rules, Modeling]
- Factored translation models [Rules, Modeling]
- Models for generation of complex morphology [Rules, Modeling]
- Scoring models for rich target morphology [Modeling]

Models for Generation of Complex Morphology [Rules, Modeling]

Models for generation of complex morphology

 Factors the translation process into translation from source to target stem sequence and a separate inflection prediction component

Please select one of the values

Correct	Изберете	ед <u>на</u>	ОТ	стойности <u>те</u>
	Izberete	edna	ot	stoinostite

Morphology Prediction

 Morphology generation as classification: Classify each stem into an inflected form

Morphology Prediction

 Morphology generation as classification: Classify each stem into an inflected form

Generation of Complex Morphology [Minkov et al 07, Toutanova et al 08]

- Morphology
 - Russian, Arabic
 - Lexicon operations
- The task of inflection prediction
- A log-linear model
- Features
 - Lexical, Syntax and Morphology
- Evaluation

Russian Morphology

- 3 genders, 2 numbers, 6 cases
- Nouns have gender, and inflect for number and case
- <u>Adjectives</u> agree with nouns in number, gender, and case; have short and long forms;
- <u>Verbs</u> agree with Subject person and number (past tense agrees with gender and number) –not many variations though in our domain

Я	люблю	мой	синий	карандаш.
1	love	тy	blue	pencil
Pers1 Sing	Pers1 Sing	Acc Masc Sing	Acc Masc Sing	Acc Masc Sing

Arabic morphology

- Arabic: inflection + clitics
 - Prefixes: Conj/Prep/Compl/Def (in strict order)
 - Suffixes: Object/Possessive pronouns

(from Bar-Haim et al)

و للمكتبات /walilmaktabāt/ و+ل+ال+مكتبة+ات wa+li+al+maktaba+āt and+for+the+library+plural and for the libraries فقلناها

/faquInāhā/ ف+ قال+ نا+ ها fa+quI+na+hā so+said+we+it so we said it (from Nizar Habash)

- Agreement:
 - In person, number, gender and definiteness

Lexicon Operations

то то+Conj (then)

Linguistic Annotation & Features

Inflection Prediction

• Given lemmatized text, predict the inflection of each word.

 $y_i \in Inflections(stem_i)$

- A sequence Conditional Markov Model
 - globally conditioned on the source sentence, the target sentence content words or stems, and the linguistic annotations of the context
 - local probability distributions are estimated with log-linear (maximum entropy) models

$$p(\overline{y} \mid \overline{x}) = \prod_{t=1}^{n} p(y_t \mid y_{t-1}, y_{t-2}, x_t)$$

Reference Experiments

Data	Eng-Russian	Eng-Arabic
Training	1M	~0.5M
Dev	1K	1K
Test	1K	1K

- Baselines
 - Random baseline (pick a label at random)
 - Word-trigram language model baseline
 - Trained using the CMU toolkit on the same training dataset
- Models: log-linear models
 - Monolingual, Bilingual, Word, Syntax
- Lexicons:
 - Russian..., Arabic: Buckwalter
 - Evaluated only on words in the lexicon

Russian inflection prediction: accuracy

The log-linear monolingual word model significantly outperforms the language model 77.6 \rightarrow 85.1

Using syntactic and morphological information reduces the error by 35% for the best bilingual models $87.1 \rightarrow 91.5$

Integrating inflection models with an SMT system

• a chaining (factoring) approach

Inflection Prediction

Baseline SMT

- Method 1 train baseline system to predict full target forms and ignore the produced inflections [Rules, Modeling]
- Method 2 train baseline system to predict target sequences of stems (pre-process parallel data by stemming) [Alignment, Rules, Modeling]

•

Results for Integration with treeto-string MT system

Other advancements in translating to morphologically rich languages

- Predict word formation (compound merging) in addition to inflection with a feature-rich generation model [Fraser at al 2013]
- Study which morphological features are best predicted by the MT system, and which ones are best predicted through a separate generation model [Kholy & Habash 2012]
- Using a feature-rich model, extend the translation rules for an MT system on a sentence basis to generate possible inflections for target words [Chahuneau et al 13]

Use phrase-based decoder with additional feature

 Reverse self-training – adding automatically translated data from Czech-to-English to improve English-Czech translation [Bojar & Tamchyna 2013]

Outline

- Unsupervised Induction of Morphology
- Pre-processing to reduce language divergence [Alignment, Rules, Modeling]
- Factored translation models [Rules, Modeling]
- Models for generation of complex morphology [Rules, Modeling]
- Scoring models for rich target morphology [Modeling]

Scoring Models for Rich Target Morphology [Modeling]

Toward tighter integration of feature-rich models for morphology [Jeong et al 2010]

- Given: (a) group of source words + (b) context from whole source sentence
- Predict the target translations
- Parallel data provides training pairs

Integrated as a feature in tree-to-string decoder

Model features

MT results

	MER	T Dev	Test		
	Baseline	+DL	Baseline	+DL	
Bulgarian	21.78	22.44	19.00	19.63	
Czech	11.87	12.45	11.90	12.38	
Korean	61.23	62.04	59.04	59.52	

Table 8: Results (BLEU) on MT task

- Pros:
 - Tightly integrated with decoder
- Cons:
 - Only impacts modeling, not Alignment or Rules
 - No target context used

A Class-Based Agreement Model for Generating Accurately Inflected Translations [Green & DeNero 2012]

- Keep baseline hypothesis space, define new feature: classbased agreement model.
- Compute best morphological segmentation and tagging of target hypotheses during decoding.
- Efficient decoder integration.
- Gains of 1 BLEU on average for train size 500 million words.

Summary

- Unsupervised morphology is useful in MT.
- Pre-processing and re-defining the basic units can be very effective.
- Factored Models generalize translation rules and incorporate more information locally.
- Feature-rich models for generation into morphologically rich languages improve quality.
- New features in standard decoders targeted at agreement and sparsely reduction are effective.