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Maximum Mutual Information and Word Classes

David Klusáček
1

Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic.

Abstract. Herein, I present some notes concerning implementation of now classical
method of data clustering, called Maximum Mutual Information Clustering. It was
introduced in [Mercer et al., 1992] in context of language modeling. The original
article contained some cues concerning its implementation. These are carried out in
detail here, together with some new tricks. Results of the test run on 110M words
long Czech National Corpus are briefly described then. Also, some problems of the
original approach are identified and their possible cause is suggested.

1. Introduction

In statistical machine learning we often have to face problem of data sparseness. This problem makes the
probability estimation of rare events nearly impossible, since we usually have one or even no observation
of such an event in the training data. To overcome this, we have to incorporate some prior knowledge
into our model. This prior knowledge reflects our belief that the world is regular in some sense and that
we can reasonably deduce probability of unseen events from the encountered ones.

In a bigram language model, for instance, we want to estimate conditional probability of some word
given its predecessor. For instance, when we are doing back-off probability smoothing, then we are
implicitly expecting that this probability could be reasonably approximated by unigram probability2.

Background idea of Maximum Mutual Information Clustering is in an intuition that a given word is
more “interchangeable” with some words than with the others. Therefore it should be possible to have
classes of words, lumping together the words which usually appear in similar contexts. Then, we could
work with these classes instead of with the words in estimation of n-gram probabilities. As there will be
much less classes than the words, we can expect the probability estimates to be more reliable than those
that are using words directly.

1.1. Model

More formally, let us assume, that we are given the set W of possible words, together with a joint
probability P0(vk, vk−1), meaning how probable it is to encounter a fixed pair of consecutive words
(vk, vk−1) in typical input text v0, . . . , vM . Then, for sake of simplicity, we define probability of a word
sequence w0, . . . , wN to be

P (w0, . . . , wN ) := P (w0) · P (w1, . . . , wN |w0) := P (w0) ·
N
∏

k=1

P1(wk|C(wk)) · P2(C(wk)|C(wk−1)) (1)

where C is the class function C : W → 2W satisfying C(x)∩C(y) = ∅ for any x, y such that C(x) 6= C(y),
and

⋃

x∈W C(x) = W . Probabilities concerning the set of words are defined as one would expect:

Pc(A,B) :=
∑

a∈A,b∈B

P0(a, b) for sets A,B ⊆ W

P1(x|C(x)) := Pc({x},W )/Pc(C(x),W )
P2(C(x)|C(y)) := Pc(C(x), C(y))/Pc(W,C(y)) (2)

Our goal is to select function C so as to maximize P (w0, . . . , wN ) for some heldout data w0, . . . , wN .
This is equivalent with maximizing logarithm of P (w1, . . . , wN |w0), leading to

L(C) :=
N
∑

k=1

(

log2 P1(wk|C(wk)) + log2 P2(C(wk)|C(wk−1))
)

=

1This work was supported by the Czech Grant Agency under Contract 201/05/H014 and from the Grant Agency of the
Academy of Sciences project No. 1ET201120505.

2This example is not very striking, since even the use of bigram model itself is based on our hope that bigrams will
approximate true distribution well enough. So it would be surprising if unigrams would not work at all.
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−

(

−
N
∑

k=1

log2 Pc({wk},W )

)

+

N
∑

k=1

log2

Pc(C(wk), C(wk−1))

Pc(C(wk),W ) · Pc(W,C(wk−1))
=

N ·
(

I
(

C(w0), ..., C(wN−1);C(w1), ..., C(wN )
)

− H
(

w1, ..., wN

)

)

(3)

where I
(

C(w0), ..., C(wN−1);C(w1), ..., C(wN )
)

= 1
N

∑N

k=1 log2
Pc(C(wk),C(wk−1))

Pc(C(wk),W )·Pc(W,C(wk−1))
is cross mutual

information and H
(

w1, ..., wN

)

= − 1
N

∑N
k=1 log2 Pc({wk},W ) is cross entropy. Now it can be clearly seen

where the name for the method came from. All we have to do is to find the mapping C maximizing
mutual information of some training data (where we have estimated P0) versus some (different) heldout
data, and the result will be one that maximizes probability of heldout data in the framework of our
model.

But, unfortunately, I am not aware of any reasonably fast algorithm, achieving this. It is clear that
we have to back slightly off the optimality requirement for sake of practical feasibility. The next section
explains how MMI method achieves this.

2. MMI clustering method

The MMI clustering method was introduced in [Mercer et al., 1992] and is also described in [Jelinek, 1997].
The key idea is to use the same data for P0 estimation as well as for C selection. This greatly simplifies
algebra and also alleviates the need for probability smoothing required by the original formulation (which
was needed there so that we would not get log2(0) somewhere on the heldout data). On the other hand
it is not very natural solution and has to be commented, at least: Working on the single data set means
that the optimal classes become the singleton classes, one for each word. But this is not what we want.
Here, the second idea takes place: Instead of maximizing L(C) on the heldout data, we will try to keep
L(C) as high as possible for the preselected number of classes, putting aside the question of how do we
discover right number of them. Still it is too difficult to be done on a computer except for very small
input. So we back-off from the optimality even more and instead of trying to find the right classes, we
will use eager solution working in a bottom-up way, building a forest of classes (eventually ending with
one big classification tree).

Suppose we have the input text w0, . . . , wN and define co-occurrence matrix cyx the following way

cyx = #{k | k ∈ 1 : N,wk = y, wk−1 = x} (4)

Then we assign P0(y, x) to be cyx/N .
N -times the mutual information N · I

(

C(w0), ..., C(wN−1);C(w1), ..., C(wN )
)

can then be written as

I := N · I(. . . ; . . .) =
∑

X,Y ∈Rng(C)

(

∑

x∈X

y∈Y

cyx

)

log2

Pc(Y,X)

Pc(Y,W ) · Pc(W,X)
(5)

Note that we treat 0 log2 0 as 0 here, to make (5) equivalent to the original cross-entropy formulation
(with P0 estimated on the same data). We will only need special case of (5), having the C an identity,
which is3

I =
∑

x,y∈W

cyx log2

N · cyx

cy• · c•x

(6)

2.1. Basic algorithm

The following pseudocode describes how a simple clustering can be done. Its input is considered to be
the matrix cyx set up by (4) and indexed by words w ∈ W . For sake of simplicity we treat the words
as numbers from 1 to A (the resulting classes will then have numbers from A+1 on). Function I(c) is
defined by formula (6). Note that not all the words are being classified. This is because rarely appearing
words (imagine T to be say 10) are too sparse to be classified reliably. Nevertheless, they are still in cyx

matrix to help the classification of other words. For sake of brevity, the algorithm does not build the
tree, it only prints the history of merges as the tree can be easily reconstructed from it.

3cy• is Einstein’s summing notation meaning
∑

x
cyx, where x goes over the whole range in question.
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set(int) active={ y | sum a (c[y,a]+c[a,y]) >= 2*T }

for(n=A+1; #active>1; n++) (

{l,r}=argmax {y,x}, x in active, y in active ( I(merge(c,y,x,n)) )

c:=merge(c,l,r,n); active \= {l,r}; active U= {n}

output("merging %d and %d into %d", l,r,n)

)

where merge() is

merge([M,M]int c, int k, int l, int n):[M,M]int

(

for x in M\{k,l} (

c[n,x]=c[k,x]+c[l,x] /* set M is assumed to be large enough */

c[x,n]=c[x,k]+c[x,l] /* to hold all the new classes */

)

c[n,n]=sum (a,b) in {k,l}*{k,l} (c[a,b])

for a in M ( c[k,a]=c[l,a]=c[a,k]=c[a,l]=0 )

return c

)

3. Optimizations

The above algorithm has a complexity of Ω(C5) where C = #active is the number of words being
classified. Optimizations are therefore necessary. The first step is to minimize the loss of I() occurring
after the merge instead of maximizing total I(). Although it seems to be a minor modification at the
first sight, it turns out that the Iloss() can be precomputed into an array and only slightly changed upon
each merge, leading to a considerable speedup.

Iloss(c, l, r) = I(c) − I(merge(c, l, r, n)) =
∑

x,y∈W

cyx log2

N · cyx

cy• · c•x

−

(

∑

x∈W\{r,l}
y∈W\{r,l}

cyx log2

N · cyx

cy• · c•x

+
∑

x∈W\{r,l}

(clx + crx) log2

N(clx + crx)

(cl• + cr•) · c•x

+
∑

y∈W\{r,l}

(cyl + cyr) log2

N(cyl + cyr)

cy• · (c•l + c•r)

+ (cll + clr + crl + crr) log2

N · (cll + clr + crl + crr)

(cl• + cr•) · (c•l + c•r)

)

(7)

After rather technical manipulations this can be simplified into

Q(cl•, cr•)+Q(c•l, c•r)+Q(cll, clr)+Q(crl, crr)−Q(cll +crl, clr +crr)−
∑

y∈JY

Q(cyl, cyr)−
∑

x∈JX

Q(clx, crx)

(8)

where Q(a, b) = R(a + b) − R(a) − R(b) and R(x) = x log2(x) for x > 0 and R(0) = 0. The sets JY

and JX can be any supersets of {y | cyl · cyr 6= 0} and {x | clx · crx 6= 0}, respectively4. Note that
once we precompute c•x and cy• into suitable arrays all the terms in the formula except last two, can be
evaluated in constant time. This already has a complexity of O(A) for one evaluation of Iloss (where the
naive implementation took O(A2)). Moreover, the sets JX and JY over which we are summing usually
have much lower cardinality then A, leading to yet more improvement.

The algorithm can now precompute Iloss into an array for all C(C−1)/2 pairs using formula (8) (this
amounts to O(AC2) operations), and then it can start iterations as before but instead of recomputing
I every time, it would simply select the pair with minimal Iloss. Let this pair be (l, r). Then it would
merge(c, l, r, n) and compute Iloss of the new class n with all other classes (search for minimal Iloss

takes O(C2), merging takes O(A), and all new Iloss values require O(AC) — doing it C times leads to
a complexity of O(AC2)).

Last thing that must be done is the correction of all other Iloss values. It must be done since as l and
r classes no longer exist (they were merged into a new class n), value of Iloss(c, a, b) might have changed.

4this freedom is caused by the fact that Q(0, x) = 0 and Q(x, y) = Q(y, x)
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Let the result of merge(c, l, r, n) be denoted by ĉ. Now we are about to compute what correction to
Iloss(c, a, b) has to be added to make it Iloss(ĉ, a, b).

Icorrection(c, l, r, a, b) := Iloss(ĉ, a, b) − Iloss(c, a, b) =

Q(ĉa•, ĉb•)+Q(ĉ•a, ĉ•b)+Q(ĉaa, ĉab)+Q(ĉba, ĉbb)−Q(ĉaa+ĉba, ĉab+ĉbb)−
∑

y∈W∪{n}

Q(ĉya, ĉyb)−
∑

x∈W∪{n}

Q(ĉax, ĉbx)

−

(

Q(ca•, cb•)+Q(c•a, c•b)+Q(caa, cab)+Q(cba, cbb)−Q(caa+cba, cab+cbb)−
∑

y∈W

Q(cya, cyb)−
∑

x∈W

Q(cax, cbx)

)

(9)

Since {a, b} ∩ {l, r} = ∅, many terms cancel out (see the definition of merge()), leading to

Icorrection(c, l, r, a, b) =
∑

y∈W

Q(cya, cyb) +
∑

x∈W

Q(cax, cbx) −
∑

y∈W∪{n}

Q(ĉya, ĉyb) −
∑

x∈W∪{n}

Q(ĉax, ĉbx)

= Q(cla, clb) + Q(cra, crb) + Q(cal, cbl) + Q(car, cbr) − Q(ĉna, ĉnb) − Q(ĉan, ĉbn)

= Q(cla, clb) + Q(cra, crb) + Q(cal, cbl) + Q(car, cbr) − Q(cla + cra, clb + crb) − Q(cal + car, cbl + cbr)

= U(cla, cra, clb, crb) + U(cal, car, cbl, cbr)

(10)where

U(a, b, c, d) := Q(a, c) + Q(b, d) − Q(a + b, c + d) (11)

Icorrection(c, l, r, a, b) has to be added to every pair of Iloss[a, b] array (a, b such that {a, b}∩{l, r} = ∅) just
before merging l with r. This amounts to O(C2) operations per iteration. Combining it with complexity
estimates already done we have that the total complexity of the algorithm just sketched is O(AC2).

4. Implementation tricks

To further cut down the execution time (although the worst case complexity measured by means of A
and C stays the same5) certain tricks are needed. As already hinted, the input data is preprocessed such
that numbers are substituted for words. The second idea concerns the matrix cyx. It is typically quite
sparse, so it worths to implement it via a hash table.

4.1. Hash table

Note that it has to be a special table, since we need to be able to walk thru columns and rows as well
as to delete elements no longer needed after the merge. Memory demands also impose some constraints
on the form the hashing table should have. For instance, implementing the row/column walking ability
via a linked list would be quite expensive, considering that on a 64 bit machine each pointer occupies 8
bytes and we would probably need two of them. The solution, I’ve chosen, is using an array (indexed
by y) of hashing tables indexed by x. So for each line of the matrix we have an extra hash table. Their
entries contain only the key x (32 bit integer) and the counter (32 bit integer) holding the value of
cyx. Collisions are resolved by double hashing. Thus, each bigram theoretically occupies 8 bytes of the
memory. In practice it is more, since for the hashing to be fast we have keep say 60% of the table unused6.
According to test runs, this leads to an average collision rate of less than 2 collisions per access7 which is
acceptable. Note that construction of such a table is a three phase process. In the first phase we read all
the input data and count unigram frequencies. These frequencies are used as upper bounds for row sizes
of the table. In the second phase, we allocate such a table and fill it with bigrams. The only purpose
of this table is to count the true number of bigrams appearing in the respective rows. Finally this table

5In fact, it will even be worse than that, if we consider that the worst case behavior of hashing is worse than O(1).
In the following I will simply ignore that possibility since it is very unlikely to happen, thus not affecting the average
performance.

6I know that it is not very good performance and that hashing functions exist, behaving well down to 30% of unused
slots of the table. But these are more complicated, the one I mean requires size of the table to be from the set of prime
twins. Definitely there is a room for improvement. But there are other things to improve that would result in much
noticeable speedup, so this does not worth to be changed, now.

7this means that to store/retrieve single item to/from the hash, the array (representing the hash) has to be accessed
less than 3 times on average.
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is deleted and the right-sized table is build which has its row sizes selected such that they will be filled
at 40%, unless they have less then two elements — in such cases8 they are allocated tight, since there
would be no speedup from an empty space, anyway.

4.2. Loss Computation and Merging

For Iloss computation as well as for merging we need to walk thru rows and columns. Walking along
the row is done simply by reading valid entries of the hash table (60% items read are unused but it is
acceptable). To walk thru a column, we need special array, one for each column holding y-indexes of
entries in that column. The walk is then performed by look-up of y-indexes followed by search in the
y-th hash for the key x. Therefore, it is slower than a row-walk.

For Iloss, it would be nice to walk only over the intersection of sets of indexes of non-zero entries of
the respective rows/columns. But keeping track of the all O(C2) intersections would be very expensive.
Therefore we only keep the track of number of non-zero items stored in a given row/column and select
the shorter one for walking. While it is walked the corresponding data from the other column are being
looked-up in the hash.

Merging l with r (where l < r) is done such that it reuses index l for the new class (instead of
introducing new index n as in the basic algorithm). As we still want the new index in the output, we
need to maintain translation array. Note that on each merge, number of items in rows and columns may
decrease, so after the number of items stored in any given hash table falls below say 1/5 of the original
filling, the whole table is rehashed to be smaller (this makes row-walks faster and it is also taking the
advantage of CPU’s caches, so the extra work pays off). Note that when merging rows, the number of
entries of the resulting row l can generally increase. It is implemented such that a new (optimal sized)
hash is created and the source hashes are unallocated after the data has been moved.

4.3. Loss-Correction Computation

Symmetries of U() can be used to spare some evaluations of it. It is easy to see, that

U(a, b, c, d) = U(c, d, a, b) = U(b, a, d, c) = U(d, b, c, a) = U(a, c, b, d) = U(b, c, d, a)
U(0, b, c, d) = Q(b, d) − Q(b, c + d) = R(c + d) + R(b + d) − R(d) − R(b + c + d)

U(0, 0, c, d) = 0
U(0, b, c, 0) = −Q(b, c) (12)

Corrections from U(cla, cra, clb, crb) are processed separately from U(cal, car, cbl, cbr) since the first tra-
verses rows while the other columns of cyx (a and b is changing, l, r will be merged). To make it fast,
we first gather for x ∈ active those pairs (clx, crx) having at least one of their member non-zero; we can
also precompute Q(clx, crx). This way we get the set X containing those x-es appearing in the non-zero
pairs. Then we will compute the value of U() for each a < b, a ∈ X, b ∈ X. We are using identities (12)
to suppress evaluation of U() in cases when

(cla = 0 and clb = 0) or (cra = 0 and crb = 0) (13)

In cases where cla = 0 or cra = 0 simplified formula is used.
This trick proved itself to be crucial for the speed. The same program without it can run 4 days

while it can only take 30 minutes with it (observed on part (1M words) of the Czech National Corpus
(number of unigrams A = 120187, number of bigrams B = 592188, and the number of words being
classified was C = 10612)). This optimization was not mentioned in [Mercer et al., 1992] nor in [Jelinek,
1997] and constitutes the main theoretical contribution of this work.

4.4. Miscellaneous

There are also some auxiliary arrays there. As already noted, we have an array of arrays used to walk
thru columns of the main table. We also have an array of lengths of those arrays. Then, there are
mapping arrays translating internal numbering (which originates due to index re-usage) into external
numbering and another one which translates it into numbering used by triangular Iloss matrix. Used by
Iloss computations, there are arrays of row and column sums cy•, c•x as well as R(cy•), R(c•x) which
saves some evaluations of the log2 function. Also note that all of the column-walking-arrays may need
an update when merging two rows. As this would be too expensive, lazy implementation is used which
require some bookkeeping (I will not describe it here since it is marginal and quite long).

8these typically occupy half of the rows of the table due to the Zipf’s Law
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5. Experiments

The experiments were only meant to test the performance of the program. First, 1.2M words of collected
Shakespeare’s work were processed in 6 minutes (on 2.4 GHz machine, using single CPU), using less
than 200 MB of RAM, yielding to 2.8k words classified. Next, larger input of 120M words of the Czech
National Corpus was processed. It took 14 hours and 2 GB of RAM (on the same machine) to classify
10k most common words. Below, some selected parts of the tree are presented:

především +-------+-/ nic -+-------+--/ účetnictví ---+/ přičemž ++----+/
zejména +-/ | něco / | bankovnictví +/ avšak --/| |
hlavně -/ | vůbec ------+/ plavání -----/ byť ----+/ |
nejen -----------+/ nikdy -----+/ nicméně / |
buď -----------++/ nikdo ----+/ zvýšit ----++ nýbrž -+-----+/
jedině -------+/| nijak ---+/ snížit ---+/| ba ---+/ |
přinejmenším +/ | nikoho -+/ zvyšovat +/ | jakož / |
nejenom -----/ | nikomu +/ snižovat / | případně ---+/
převážně ---+---/ nikde -/ omezit --++-/ respektive +/
výhradně --+/ rozšířit /| popřípadě +/
speciálně +/ dvakrát ----+-+/ zlepšit +-/ natož ----/
výlučně --/ třikrát ---+/ | posílit /

čtyřikrát +/ | pivo -+---+/
by ---------+--/ pětkrát --/ | dobré --------+ čaj -+/ |
jsem ------+/ dávno -------+/ běžné -----+-+/ kávu / |
jsme -----+/ několikrát -+/ přirozené +/ | alkohol ++/
bych ---++/ tradičně --+/ obvyklé --/ | sex --+-/|
bychom +/| navždy ---+/ nebezpečné ++/ chléb / |
byste +/ | mnohokrát / časté -+---/| nábytek +/
bys --/ | vzácné / | odpad --/
jste -+--/ Martin --+ drahé --+---/
jsi -+/ David --+/ prosté +/ šance -++
ses +/ Marek -+/ levné -/ naděje /|
sis / Daniel / naději +/

pozor -/

At the first sight they look quite convincing, but occasionally we can see weird classes (like naději/pozor
or bankovnictví/plavání). I suppose that this is caused by classes which have very small (maybe even
empty) sets JX and JY in formula (8). Then, especially for rarely occurring words, Iloss becomes very
small although the words being eventually merged have little in common. As the loss is very small such
pairs are likely to be formed early as the program runs. They may form misleading classes which further
spoil classification of other words.

This effect, hugely amplified, can be observed on a short data (having, say, 20k words of length)
where we set T to be 1. Although for T high enough (such that there are few words to classify, say C = 70)
the classes are acceptable, if we try to classify all the words, the result looks completely arbitrary. Even
the words that were classified sufficiently well when C was 70 are wrong now with respect to one another.

6. Conclusions

In this paper I have described how MMI method can be efficiently implemented. Most of the tricks
were already mentioned in [Mercer et al., 1992]. However, slightly different and more compact formulas
were found — symmetric formula (8) for Iloss and formulation of Icorrection using U -function (11). Their
impact is twofold. At first, analysis of symmetries (12) leads to further savings in computation time, since
it turns out that many results are 0 (what was not directly visible in the formulas of the original paper).
Secondly, they yield to deeper insight into the numbers according to which the classes are selected. It was
noticed that from (8) it follows that the criterion which eliminates rarely used words from classification
should take the size of sets JX and JY into the account, not only the total number of occurrences of a
given word. Suitable formula taking these things into account is the aim of ongoing research.
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