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Abstract

Neural Machine Translation (NMT) has
recently gained substantial popularity not
only in academia, but also in industry.
In the present work, we compare the
quality of Phrase-Based Statistical Ma-
chine Translation (PBSMT) and NMT so-
lutions of a commercial platform for Cus-
tom Machine Translation (CMT) that are
tailored to accommodate large-scale trans-
lation production. In a large-scale trans-
lation production line, there is a limited
amount of time to train an end-to-end sys-
tem (NMT or PBSMT). Our work focuses
on the comparison between NMT systems
trained under a time restriction of 4 days
and PBSMT systems. To train both NMT
and PBSMT engines for each language
pair, we strictly use the same parallel cor-
pora and show that, even if trained within
this time limit, NMT quality surpasses sub-
stantially that of PBSMT.

Furthermore, we challenge the reliability
of automatic quality evaluation metrics (in
particular, BLEU) for NMT quality evalu-
ation. We support our hypothesis with both
analytical and empirical evidence.

1 Introduction

Recent research in MT based on Artificial Neu-
ral Networks – Neural Machine Translation
(NMT) (Bahdanau et al., 2014; Cho et al., 2014;
Sutskever et al., 2014) – has shown promising
results and has gained popularity not only in
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academia but also in industry. It promises to solve
some of the drawbacks that SMT comes upon.
Studies like those of Bentivogli et al. (2016), Wu
et al. (2016) and Junczys-Dowmunt et al. (2016)
indicate that the quality of NMT surpasses that of
SMT, and a shift in the state of the art is imminent.
Although several MT vendors, such as Google,
Microsoft, Systran, KantanMT, offer NMT as part
of their services, it is still uncertain to which ex-
tent NMT can replace SMT as core technology
for large-scale translation projects. The main rea-
sons are the computational (and financial) cost of
NMT and the uncertainty in the actual quality:
while NMT output is often very fluent, sometimes
it lacks adequacy or is even completely wrong.

In this work, we compare Phrase-Based SMT
(PBSMT) and NMT within a translation produc-
tion line. We set a time limit for training NMT
models of 4 days – sufficient for our NMT mod-
els to reach high quality without introducing over-
head in the production line. We use quality evalua-
tion metrics such as BLEU (Papineni et al., 2002),
F-Measure (Melamed, 1995), and TER (Transla-
tion Error Rate) (Snover et al., 2006),1 as well as
human evaluation. We challenge the relevance of
BLEU for scoring NMT models. Our hypothesis
is that BLEU underestimates the quality of NMT
models. We provide empirical as well as analyti-
cal evidence to support our hypothesis.

2 Related work

Since 2015, NMT systems have been clearly out-
doing SMT. In the International Workshop on Spo-
ken Language Translation (IWSLT) 2015 competi-
tion (Cettolo et al., 2015), an NMT system outper-
1BLEU, F-Measure and TER are algorithms for quality eval-
uation of MT systems, typically used to estimate fluency, ad-
equacy and extent of translation errors.



formed a number of PBSMT systems. Bentivogli
et al. (2016) compare and analyse the overall trans-
lation quality as well as the translation errors of
NMT and PBSMT systems for English→German
based on data from the IWSTL 2015 competi-
tion (Cettolo et al., 2015). Their results show that
NMT is better than all the four different SMT sys-
tems on all investigated criteria: (i) higher auto-
matic scores (i.e., BLEU); (ii) lower morphologic,
lexical and reordering (especially, verb reordering)
errors and (iii) reduced post-editing effort.

Despite the thoroughness of their analysis and
the significance of their results, Bentivogli et
al. (2016) compare systems trained and tuned on
different data – their NMT system is trained on
parallel data of 120,000 tokens, whereas their stan-
dard PBSMT system is trained on parallel data of
117,000 tokens and 2.4 billion tokens of monolin-
gual data. Our work compares PBSMT and NMT
trained on exactly the same data; we scored our
systems and performed side-by-side comparison
(i.e., AB tests) on the same test sets as well.

SMT and NMT systems have also been
extensively compared by Junczys-Dowmunt et
al. (2016). The authors investigate the BLEU
scores of multiple NMT and SMT systems for 10
languages and 30 language directions trained on
the United Nations Parallel Corpus v 1.0 (Ziemski
et al., 2016). Their NMT systems outrank SMT for
all but three cases: French→Spanish (the BLEU
score for PBSMT is 1.16% higher than NMT),
French→English (the BLEU score for the hierar-
chical system Hiero as implemented in Moses is
1.15% higher than their initial NMT system; af-
ter additional training, the BLEU score for NMT
is 1.13% higher than Hiero) and Russian→English
(the BLEU score for the hierarchical system is re-
spectively 1.32% and 0.75% higher than the initial
NMT system and the one with additional training).
On an NVIDIA GTX 1080, their NMT systems
were initially trained for 8 days; for the language
pairs that include English, an additional training of
8 days (16 days in total) was performed.

One of the largest providers of MT services
(both public and commercial) – Google – has
recently presented their NMT (Google NMT or
GNMT) approach and compared it to PBSMT
(employing both BLEU scoring and human eval-
uation) as well as to human translation (Wu et
al., 2016). The results they report, although quite
disputed, provide once again empirical evidence

that the quality of NMT is generally higher than
that of PBSMT. The GNMT systems follow a
rather optimised implementation of the sequence-
to-sequence model (Sutskever et al., 2014) with at-
tention mechanism (Bahdanau et al., 2014) trained
on 96 GPUs2. Each model was trained for approx-
imately 6 days, then refined for approximately 3
days (9 days in total). For training 36 million par-
allel sentences for English→German and 5 million
parallel sentences for English→French were used.

Another comparison between NMT and other
MT paradigms was presented by (Crego et al.,
2016). Their work investigates the quality (scored
in terms of BLEU as well as human evaluation)
of NMT systems, PBSMT, rule-based MT and hu-
man translation (from both professional and non-
professional translators); moreover, an error analy-
sis is presented. Although their NMT systems out-
perform PBSMT and rule-based MT, they still do
not reach human translation quality.

3 BLEU as a quality metric for (N)MT

The most widely used quality evaluation metric
for MT systems, i.e., BLEU (BiLingual Evaluation
Understudy) (Papineni et al., 2002), was one of the
first metrics to report high correlation between MT
quality and human judgment. BLEU measures the
precision of an MT system computed through the
comparison of the system’s output and a set of ide-
ally correct, and usually human-generated refer-
ence translations. The BLEU algorithm compares
the n-grams (typically, n∈{1, .., 4}) of a candidate
translation with those of the corresponding refer-
ence and counts the number of matches. The more
n-gram matches between a translation and the ref-
erence, the higher the score.

BLEU scores can be computed either at a docu-
ment level or at a sentence level (Chen and Cherry,
2014). They range between 0 (or 0% – lowest qual-
ity = completely irrelevant to the reference) and 1
(or 100% – highest quality = same as the refer-
ence). The relevant factors for computing BLEU
scores are: (i) Translation length: a correct trans-
lation matches the reference in length; (ii) Trans-
lated words: the words in a correct candidate
translation match the words in the reference; (iii)
Word order: the order of words in a correct can-
didate translation and in the reference is the same.

In PBSMT, phrase-level (n-gram) translations
are arranged in a specific order that maximises
2The reported GPUs are NVIDIA Tesla K80.



the sentence-level translation likelihood. If an n-
gram cannot be translated, usually the original text
is transferred. PBSMT translations typically con-
form with BLEU according to translation length,
translated words and word order, as they are both
n-gram based.

NMT systems operate differently from PSMT.
A typical encoder-decoder system (Sutskever et
al., 2014; Cho et al., 2014) would generate a sen-
tence translation based on the complete sequence
of tokens from the source sentence, as well as all
preceding translated tokens from the current sen-
tence. NMT translations are not bound by the lim-
its of n-grams. As such, NMT output may devi-
ate from the reference according to sentence length
and word order within the n-gram limit specified
by the BLEU algorithm. Furthermore, to tackle
out-of-vocabulary (OOV) issues and reduce vocab-
ulary size, it is customary to build NMT systems
on subword units (Sennrich et al., 2016) or even
characters (Chung et al., 2016). This would pro-
vide the network with greater flexibility and allow
it to extend beyond exact words or phrases from
the training data. For this reason, NMT output, al-
though representing a correct translation, may de-
viate significantly from the reference also accord-
ing to word choice (see Example 3.1).

That is why, we believe that BLEU underesti-
mates NMT systems. In Section 4, we empirically
support our claim. We ought to note that we focus
on sentence-level BLEU, which has the granularity
that suits our sentence-by-sentence comparison.

Example 3.1 An NMT translation with 0% BLEU
that is better than a PBSMT one with 58% BLEU.
Source (EN): All dossiers must be individually analysed by

the ministry responsible for the economy and scientific policy.

Reference (DE): Jeder Antrag wird von den Dienststellen des

zuständigen Ministers für Wirtschaft und Wissenschaftspolitik

individuell geprüft.

PBSMT: Alle Unterlagen müssen einzeln analysiert wer-

den von den Dienststellen des zuständigen Ministers fär

Wirtschaft und Wissenschaftspolitik. BLEU: 58%
NMT: Alle Unterlagen müssen von dem für die Volk-

swirtschaft und die wissenschaftliche Politik zuständigen

Ministerium einzeln analysiert werden. BLEU: 0% 4

4 Comparing NMT to SMT output

4.1 SMT and NMT pipelines
For the present work, we employ KantanMT
(https://kantanmt.com/) – a cloud-based
MT platform which delivers MT services individu-
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Figure 1: MT training pipeline.

ally to each user. A user can create, customise and
exploit their own MT engine(s)3 within a secure
environment. Typically, a user creates an engine
from scratch; in case their data is not sufficient to
train a performant engine, additional data or a pre-
built engine can be retrieved from our data banks.

The training pipeline for both NMT and PBSMT
engines follows the same architecture: 1. Instance
setup – hardware is allocated, software is set up
and data is downloaded; 2. Data pre-processing
– data is converted to suitable format, cleansed
and partitioned for training, testing and tuning; in
the case of NMT, any duplicate sentence pair that
appears in the source and the target sides of the
parallel corpus (i.e., the training data) is removed;
moreover, the required dictionaries are prepared;
3. Building of models – for PBSMT, a translation, a
language and a recasing models are built; for NMT
an encoder-decoder model is built; 4. Engine post-
processing – the engine is evaluated, optimised and
stored for future use. Figure 1 illustrates these
steps. To train PBSMT models, our pipeline uses
the Moses toolkit (Koehn et al., 2007) with default
settings and lexicalised reordering model with dis-
tortion limit of 6 words. We use monolingual data
extracted from the target side of the parallel cor-
pus to build a 5-gram language model. For word
alignment, we use fast align (Dyer et al., 2013).
Tuning is performed with MERT (Och and Ney,
2003) and a maximum of 25 iterations. For NMT,
we employ OpenNMT (Klein et al., 2017). A sin-
gle NMT model is trained on one NVIDIA G520
GPU with 4GB RAM. As a learning optimiser, we
use ADAM (Kingma and Ba, 2014) with a learn-
ing ratio of 0.005. Within the scope of this study,
we impose the following training limits: minimum
number of training epochs is 3; maximum train-

3An MT engine refers to the package of models (transla-
tion, language and recasing models for PBSMT and encoder-
decoder model for NMT) as well as to the required rules and
dictionaries for pre- and post-processing.



ing time is four days; to consider a model fitted for
evaluation, its validation perplexity should be be-
low 3 at the end of the training. One exception,
English→German, has a perplexity of 3.02 at the
end of the fourth day; we ought to note also that
the English→Chinese engine achieved perplexity
of 2 on the first day.

Our decision to set a limit of four days is guided
by economical and practical reasons. Our MT de-
velopment process has a duration of six weeks.
Training an engine for more than four days would
disrupt the structure of this process and may im-
pose further delays in a large-scale translation
project. Furthermore, it is also financially inviable.

For data in Chinese, Japanese, Korean or Thai,
our pipeline uses dictionaries based on character-
by-character segmentation (Chung et al., 2016).
For other languages, we use dictionaries built from
word-subunits. These subunits are generated from
the training data according to a byte pair encod-
ing (BPE) (Sennrich et al., 2016) of 40,000 oper-
ations. We prepare the dictionaries from normal-
cased (i.e., lower- and upper-cased) tokenised data.

4.2 Used data
We built five NMT and five PBSMT engines for
the following language pairs: English→German
(EN-DE), English→Chinese (EN-ZH-CN),4

English→Japanese (EN-JA), English→Italian
(EN-IT) and English→Spanish (EN-ES). For each
language pair, both the PBSMT and the NMT
engines were built using strictly the same data set.
By keeping identical train, test and tune data sets
from one engine to another, we can give a more
informative comparison of the SMT and NMT
engines and their outputs. Details about the data
used in our experiments are given in Table 1. The

Lang. pair Sent. count Word count Dict. size Domain
EN-DE 8,820,562 110,150,238 859,167 Legal/Medical
EN-ZH-CN 6,522,064 84,426,931 956,864 Legal/Technical
EN-JA 8,545,366 87,252,129 676,244 Legal/Technical
EN-IT 2,756,185 35,295,535 765,930 Medical
EN-ES 3,681,332 44,917,583 752,089 Legal

Table 1: Details on the data used for experiments.

data comprises parallel translation memories in the
Legal, Medical and Technical domains, acquired
from the European Commission (DGT)5 and from
Opus.6 Prior to training, the data was cleansed
4By Chinese, we mean Simplified Mandarin Chinese
5https://ec.europa.eu/jrc/en/language-technologies/dgt-
translation-memory
6http://opus.lingfil.uu.se/

and normalised, i.e., duplicates were removed.
Untranslated segments and segments constructed
of special characters were also removed, as they
would not be relevant to the evaluation.

4.3 Evaluation
Quality evaluation metrics Table 2 shows the
scores of the quality evaluation metrics we use (F-
Measure, BLEU and TER) for both PBSMT and
NMT engines. We also show the training time in
hours; for the NMT engines, each model’s perplex-
ity on the test set is also given.

PBSMT NMT
Lang. Pair F-Measure BLEU TER T F-Measure BLEU TER P T
EN-DE 62.00 53.08 54.31 18 62.53 47.53 53.41 3.02 92
EN-ZH-CN 77.16 45.36 46.85 6 71.85 39.39 47.01 2.00 10
EN-JA 80.04 63.27 43.77 9 69.51 40.55 49.46 1.89 68
EN-IT 69.74 56.98 42.54 8 64.88 42.0 48.73 2.70 83
EN-ES 71.53 54.78 41.87 9 69.41 49.24 44.89 2.59 71

Table 2: Evaluation scores (in %), training time
(T ) in hours and perplexity (P ) (only for NMT).

Side-by-side comparison We set up a side-by-
side, or AB Test, project with our online quality
evaluation tool. For the test, human evaluators
compared 200 segments translated using the afore-
mentioned PBSMT and NMT engines. This exer-
cise was performed by 15 evaluators – three evalu-
ators per language pair – all of whom were native
speakers of the (target) language they evaluated.
All evaluators were Translation Studies students
recruited from five different universities in Europe,
holding certificates of English proficiency or at-
tending courses taught in English. All evaluators
of one language pair had to compare the same seg-
ments translated by the two engines. The test was
performed online. Each evaluator was instructed
on how to access the platform and how to perform
the test. Each evaluator was requested to evalu-
ate all test sentences without taking any significant
break. The sentences were presented on the screen
as a triplet (Source, PBSMT Translation, NMT
Translation) – denoted as (s, tNMT , tPBSMT . The
order of the sentences tNMT and tPBSMT was ran-
domised, i.e., tNMT could be preceding tPBSMT

or vice versa. This would ensure that the evalua-
tors do not get used to one style of translation and
show preference towards it. The evaluator was in-
structed to first read the original sentence (s) in En-
glish, then the two translation candidates (tNMT

or tPBSMT ) and then decide which was of better
quality or whether they were of equal quality (ei-
ther good or bad). The test sets did not contain any



EN → ZH-CN EN → JA EN → DE EN → IT EN → ES
Same PBSMT NMT Same PBSMT NMT Same PBSMT NMT Same PBSMT NMT Same PBSMT NMT

Evaluator 1 41% 20% 39% 21% 19% 60% 19% 27% 54% 25% 19% 56% 12% 28% 60%
Evaluator 2 34% 26% 40% 14% 28% 58% 14% 35% 51% 29% 14% 57% 10% 26% 64%
Evaluator 3 37% 25% 38% 27% 16% 57% 6% 40% 54% 19% 25% 56% 7% 31% 62%
Average 37% 24% 39% 21% 21% 58% 13% 34% 53% 24% 19% 56% 10% 28% 62%

Table 3: Side-by-side PBSMT and NMT evaluation performed by human reviewers.

duplicates – i.e., training, testing and tuning data
was normalised beforehand.

The results we gathered, summarised in Table 3,
clearly contradict the scores presented in Table 2.
We observe that all evaluators scored more of the
translations that originate from an NMT engine
better (i.e., being translations of higher linguis-
tic quality and/or expressing more accurately the
meaning of the source sentences) than their PB-
SMT alternatives. This (i) shows that NMT is bet-
ter under the conditions specified in Section 4.1,
and (ii) supports our claim that quality evaluation
metrics are not reliable for NMT. It is, however, in-
teresting to observe that for the EN-ZH-CN data,
37% of the translations are scored the same; in
general, for this language pair, the NMT engine is
not evaluated as high as the others. A closer inves-
tigation shows that this engine was trained quite
quickly reaching a low perplexity that allowed the
training process to terminate at an early stage.
While further investigation for whether additional
training will lead to improving these scores is re-
quired, we ought to stress the importance of how
much time is devoted to training an NMT engine.

BLEU underestimation of NMT output quality
We use the data from our AB Test to analyse to
what extent BLEU underestimates NMT quality as
compared to human judgement.

For each language pair, we selected the set of
triplets (s, tNMT , tPBSMT ) for which the transla-
tion produced by the NMT engine was considered
of better quality by all three evaluators. Let us de-
note their count as dNMT . Then, from this set we
counted the number of translations with a BLEU
score lower than their PBSMT counterparts. Let
us denote this number as dNMT

PBSMT . We then com-

puted the fraction dNMT
PBSMT

dNMT . We performed the
same check for the PBSMT candidates that were
considered of better quality by the three evalua-

tors, i.e., we computed the fraction dPBSMT
NMT

dPBSMT . We
present these scores as percentages in Table 4. We
observe that the percentage of underestimated sen-
tences for NMT is significantly higher then for PB-
SMT. It is interesting to highlight that two of the

EN-ZH-CN EN-JP EN-DE EN-IT EN-ES Average
NMT 40 59 55 34 53 48
SMT 12 0 9 9 0 6

Table 4: Underestimation of BLEU scores (%).

language pairs, EN-JA and EN-ES, do not have
any underestimated scores for PBSMT, but they
are respectively the highest and the third highest
underestimated language pairs in the NMT case.
On average, the underestimation of BLEU for our
NMT engines and our test sentences amounts to
48%. That is, we can say that on average, 48%
of the NMT translations with BLEU scores worse
than for their PBSMT counterparts are judged by
the human evaluators as better. We should also
mention that, for the other quality evaluation met-
rics (i.e., F-Measure and TER), the results are
rather similar. As it extends beyond our current re-
search (which focuses on BLEU), further analysis
will be addressed in future work.

5 Conclusions and future work

In this work, we analysed the NMT and PBSMT
systems of a commercial MT platform. We trained
five NMT and five PBSMT engines on the same
data and under a time limitation that would allow
for a large-scale translation development with no
delays. We then compared the quality evaluation
scores (F-Measure, TER and BLEU) of these en-
gines with human evaluation. In all cases, the hu-
man reviewers, all native speakers of the evalu-
ated language pairs, ranked the quality of the NMT
engines higher than that of PBSMT. While these
results are in agreement with previous research,
we show that BLEU scores do not always con-
form with NMT quality. Rather, they underesti-
mate NMT quality.

In the future, we plan to perform quality rank-
ing of other language pairs, including challenging
ones, e.g., Baltic languages. Furthermore, we in-
tend to measure the quality of the NMT output in
comparison to the quality of the PBSMT output
to observe if the difference is significant and if it
varies depending on the language pairs. Given the
current differences in terms of setup and cost be-



tween PBSMT and NMT, this information is es-
sential for MT users in a commercial environment.
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