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What is MT Quality Estimation?
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• Quality control when 

there are no references

• Real-time estimations
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Applications

• Informing the reader of the target language about 

whether the translation is reliable.
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Applications

 Deciding whether the translation is good enough to be 

published

 Selecting best MT output out of a pool of MT systems

 Deciding whether the translation needs to be post-edited 

 Computer-assisted translation (CAT) scenario
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CAT scenario

 Fuzzy match score for translation memory

 MT suggestions require scores: MT QE
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Outline

 Quality Estimation

Quality Judgments

Quality Indicators

 Current (static) MT QE approaches

 Adaptive approaches 

Online
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Online Multitask
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Quality Estimation (QE)

 Supervised learning task

 Quality Judgments (labels)

 Proxy for correctness and 

usefulness

 Quality Indicators (features)

 Granularity

 Word

 Sentence

 Document
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Quality Judgments

 Perceived post-editing effort (Specia, 2011)

 Two levels of ambiguity

 Post-editing time (O’Brien, 2005)

 High variability

 Actual Post-editing effort (HTER) (Tatsumi, 2009)

 Does not capture cognitive effort
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Quality indicators

 Complexity of the source sentence

 Fluency of the translation

 Adequacy of the translation

 MT confidence
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9

QuEst [ACL13a]



Quality indicators

 Complexity of the source sentence;

 Sentences that are complex at the syntactical, semantic, 
discursive or pragmatic levels are harder to translate.

 Examples:

 n-gram language model perplexity

 average source token length

Source 

sentences

Translated 

sentences
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Quality indicators

 Fluency of the translation

 Related to grammatical correctness in the target language

 Example:

 n-gram language model perplexity

Source 

sentences

Translated 

sentences
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Quality indicators

 Translation adequacy

 Related to the meaning equivalence between source and its 

translation.

 Examples:

 Ratios of aligned word classes [ACL13b, WMT13, WMT14]

 Topic-model-based features [MTSummit13]
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Quality indicators

 MT confidence

Related to the difficulty of the MT process 

 Examples

 log-likelihood scores (normalized by source length)

average distances between n-best hypothesis [WMT13,14]
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sentences
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Outline
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Problems in current MT QE approaches

 Systems assume ideal conditions:

Single MT system, text type and user

 Best setting is task-dependent

 Scarcity of labeled data
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MT QE in real conditions

 QE in the CAT scenario typically requires dealing with diverse input

 Different genres/types of text/projects

 Different MT systems

 Different post-editors

 Here, users + text type + MT system = domain/task
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Outline
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Adaptive QE
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 Copes with variability in:

 Post-editors 

 Text types

 MT quality



Online QE
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[ACL14]
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Online QE

 Explores user corrections to adapt to different post-

editing styles and text types

 Online learning for MT QE

 Passive Aggressive (PA) (Crammer et al., 2006)

 Online Support Vector Machines (Parrella, 2007)
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Results

 Online QE improves over batch on very different domains

 Empty more accurate than Adaptive
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MT QE across multiple domains

 Online MT QE is not able to deal with several 

domains at the same time

QE model
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MT QE across multiple domains

 Multitask learning (Caruana 1997)

 Leverages different domains

 Knowledge transfer between domains
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Experimental Setting

 Data: 363 src, tgt and post-edit sentences

 TED talks transcripts, IT manuals, News-wire texts

 181/182 training/test

 Baselines:

Single task learning (SVR in-domain)

SVR

data

Model
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data
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data
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Concatenation of domains

(SVR pooling)

FEDA

Model

data

Frustratingly Easy Domain 

Adaptation

(SVR FEDA)(Daumé, 2007)
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MT QE across multiple Domains

 Pooling and FEDA worse than Mean

 Improvements over in-domain models

 RMTL usually requires less in-domain 

data
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Learning curve showing MAE for different amounts 
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What have we learnt so far?

 Online QE methods

Continuous learning from user feedback

Do not exploit similarities between domains

 Batch multitask learning

Models similarities between domains

 Requires complete re-training 
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Online Multitask MT QE (PAMTL)

 Combines online learning and multitask learning

Based on Passive Aggressive algorithms (Crammer et al. 2006)

 Epsilon-insensitive loss (regression)

 Identifies task relationships (Saha et al. 2011) 
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Online Multitask MT QE (PAMTL)

Interaction matrix

Model (feature weights)

D1 D2 D3
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…
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 Interaction matrix is initialized so that tasks are learnt 
independently

 After a given number of instances the matrix is updated 
computing divergences over the task weights



Experimental Setting (data)

 1,000 En-Fr tuples of (source, translation, post-edit):

 TED talks (TED)

 Educational Material (EM)

 (ITLSP1), software manual

 (ITLSP2), automotive software manual

 700/300 train/test
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Experimental Settings (baselines)

 Online learning for QE

 Passive Aggressive (PA-I)

 Two usages

Single task learning (STLin), 

one per domain

Learning 

Algorithm

data

Model

Learning 

Algorithm

data

Learning 

Algorithm

data

Learning 

Algorithm

data
Learning 

Algorithm

Model

data

Concatenation of domains

(STLpool), one for all domains
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Results (stream of domains)

Learning curve showing MAE for different amounts training data 

(95% conf. bands)
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 Pooling presents very poor performance

 PAMTL outperforms all baselines

 PAMTL MAE with 20% of data ≈ in-domain training with 100% of data



Conclusion

 Before the work presented here:

Static QE systems serving one domain

 After the work presented here:

Adaptive QE systems serving diverse domains
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Conclusion

 Adaptive approaches that can be used for domain 

adaptation

Single-domain adaptation: online QE 

Multi-domain adaptation: batch MTL QE

Multi-domain with online updates: online MTL QE
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Conclusion
34

 State-of-the-art MT QE features for post-editing time 

and effort prediction 

 Introduction of QE for ASR

 Adaptive QE for ASR shows improvements over in-domain 

models for both classification and regression scenarios

 New online multitask algorithm for multi-domain large-

scale regression problems 
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Thank you!
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