A Parametric Approach to Implemented Analyses

Valence-changing morphology in the LinGO Grammar Matrix

Christian Curtis cmc3c@uw.edu

Department of Linguistics University of Washington

DeRiMo 2019 September 19–20, Prague

- 1 Introduction
- 2 Typology of valence change
- 3 HPSG and Feature Structures
- 4 Analysis
- 5 Implementation
- 6 Evaluation
- 7 Conclusion

Situated in the LinGO Grammar Matrix (Bender et al., 2002)

- Situated in the LinGO Grammar Matrix (Bender et al., 2002)
 - Collection of cross-linguistically useful types and constraints

Introduction

- Situated in the LinGO Grammar Matrix (Bender et al., 2002)
 - Collection of cross-linguistically useful types and constraints
 - Customization system (Bender et al., 2010) combines elicited typological characteristics with Matrix core elements and stored analyses

Introduction

- Situated in the LinGO Grammar Matrix (Bender et al., 2002)
 - Collection of cross-linguistically useful types and constraints
 - Customization system (Bender et al., 2010) combines elicited typological characteristics with Matrix core elements and stored analyses
 - Minimal Recursion Semantics (MRS) (Copestake et al., 2005)

 HPSG
 Analysis
 Implementation
 Evaluation
 Conclusion

 000000000
 00000000
 00
 0
 0

Background

Introduction

- Situated in the LinGO Grammar Matrix (Bender et al., 2002)
 - Collection of cross-linguistically useful types and constraints
 - Customization system (Bender et al., 2010) combines elicited typological characteristics with Matrix core elements and stored analyses
 - Minimal Recursion Semantics (MRS) (Copestake et al., 2005)
- Hypotheses

Introduction

- Situated in the LinGO Grammar Matrix (Bender et al., 2002)
 - Collection of cross-linguistically useful types and constraints
 - Customization system (Bender et al., 2010) combines elicited typological characteristics with Matrix core elements and stored analyses
 - Minimal Recursion Semantics (MRS) (Copestake et al., 2005)
- Hypotheses
 - Typologically-informed set of valence-changing operations can cover meaningful portion of world languages that exhibit valence change

pology of valence change HPSG Analysis Implementation Evaluation Conclusion

000000 0000000 00000000 0000 00

Background

Introduction

- Situated in the LinGO Grammar Matrix (Bender et al., 2002)
 - Collection of cross-linguistically useful types and constraints
 - Customization system (Bender et al., 2010) combines elicited typological characteristics with Matrix core elements and stored analyses
 - Minimal Recursion Semantics (MRS) (Copestake et al., 2005)
- Hypotheses
 - Typologically-informed set of valence-changing operations can cover meaningful portion of world languages that exhibit valence change
 - These operations can be built up from reusable, isolated component operations in a building-block fashion

Christian Curtis

Typology of valence change

Largely following the framework of Haspelmath and Müller-Bardey 2004:

Typology of valence change •000000

Largely following the framework of Haspelmath and Müller-Bardey 2004:

- Valence-reducing
 - Subject removal
 - Object removal

Typology of valence change

Largely following the framework of Haspelmath and Müller-Bardey 2004:

- Valence-reducing
 - Subject removal
 - Object removal
- Valence-increasing
 - Subject addition
 - Object addition

Typology of valence change

Largely following the framework of Haspelmath and Müller-Bardey 2004:

- Valence-reducing
 - Subject removal
 - Object removal
- Valence-increasing
 - Subject addition
 - Object addition
- Relationship-altering
 - Altering relationship between semantic and syntactic roles

Subject removal

Anticausative:

- (1)Anne-m kapı-yı aç-tı mother-1SG door-ACC open-PAST(3SG) 'My mother opened the door.' [tur]
 - Kapı aç-tı-dı b. door open-ANTIC-PAST(3SG)

Typology of valence change 0000000

'The door opened.' [tur] (Haspelmath and Müller-Bardey 2004, p. 5)

Subject removal

0000000

Anticausative:

- (1)a. Anne-m kapı-yı aç-tı mother-1SG door-ACC open-PAST(3SG) 'My mother opened the door.' [tur]
 - b. Kapı aç-tı-dı door open-ANTIC-PAST(3SG) 'The door opened.' [tur] (Haspelmath and Müller-Bardey 2004, p. 5)

Passive:

- (2)ch-ok t-b'iyo-'n Cheep kab' xjaa a. ma PAST 3PL+O-DIRectional 3SG+A-hit-DIR José 'José hit two people.' [mam]
 - b. chi b'iy-eet kab' xjaa (t-u'n Cheep) PAST 3PL+S hit-PASS two person 3SG-REL/AGENT José 'Two people were hit (by José).' [mam]

(England 1983, in Dixon and Aikhenvald 1997, p. 75)

Object removal

Deobjective:

- (3)a. Sake a-ku sake 1SG.TR-drink 'I drink sake.' [ain]
 - I-ku-an b. DEOBJ-drink-1SG.INTR 'I drink.' [ain]

Typology of valence change 0000000

(Shibatani 1990, in Haspelmath and Müller-Bardey 2004, p. 3)

Object removal

Deobjective:

- (3) a. Sake a-ku sake 1sG.TR-drink 'I drink sake.' [ain]
 - b. I-ku-anDEOBJ-drink-1SG.INTR'I drink.' [ain]

[ain]

(Shibatani 1990, in Haspelmath and Müller-Bardey 2004, p. 3)

Deaccusative/antipassive:

- (4) a. Az orvos szán-ja a beteg-et the doctor pity-3SG the patient-ACC 'The doctor pities the patient.' [hun]
 - b. Az orvos szán-akoz-ik a beteg-en the doctor pity-DEACC-3SG the patient-SUPERESS

'The doctor feels pity for the patient.' [hun]

(Károly 1982, in Haspelmath and Müller-Bardey 2004, p. 4)

Subject addition

Causative (intransitive):

(5)a. nw nìi táa nìì enter in house 'He entered the house.' [bav]

Typology of valence change 0000000

nw táa nìì b. m nìi-s enter-CAUS him in house

```
'I made him enter the house.' [bav]
```

(Schaub 1982, in Haspelmath and Müller-Bardey 2004, p. 11)

Subject addition

Causative (transitive):

- (6) Mzia-s daanteb-in-a cecxli a. Mama-m father-ERG Mzia-DAT light-CAUS-AOR:3SG fire(ABS) 'Father made Mzia light the fire.' [kat]
 - (Harris 1981, in Haspelmath and Müller-Bardey 2004, p. 12) manga-gal-inda Siite-yannu huduki-si-danu
 - Raamanu b. Rama(NOM) monkey-PL-INSTR Sita-ACC search-CAUS-3SG 'Rama had the monkeys search for Sita.' [kan]
 - (Cole and Sridhar 1977, in Haspelmath and Müller-Bardey 2004, p. 12)
 - Iuzi-ka Iuan-ta ruwana-ta awa-chi-rka Juan-ACC poncho-ACC weave-CAUS-3SG 'José made Juan weave a poncho.' [qvi]

(Cole 1982, in Haspelmath and Müller-Bardey 2004, p. 12)

Object addition

Applicative:

- Orang itu masak ikan untuk perempuan itu Def cook fish for man woman Def 'The man cooked fish for the woman.' [ind]
 - Orang itu memasakan perempuan itu ikan b. Orang itu me-masak-kan perempuan itu ikan Def Tr-cook-Ben Def fish woman man 'The man cooked the woman fish.' [ind]

(Chung 1976, p. 58)

Object addition

Applicative:

- Orang itu masak ikan untuk perempuan itu Def cook fish for man woman Def 'The man cooked fish for the woman.' [ind]
 - Orang itu memasakan perempuan itu ikan b. Orang itu me-masak-kan perempuan itu ikan Def Tr-cook-Ben Def fish woman man

'The man cooked the woman fish.' [ind] (Chung 1976, p. 58)

Benefactive:

- (8) Ali memi telefisi untuk ibu-nja Ali TR.buy television for mother-his 'Ali bought a television for his mother.' [ind]
 - Ali mem-beli-kan ibu-nja telefisi Ali TR-buy-APPL mother-his television 'Ali bought his mother a television.' [ind]

(Chung 1976, in Wunderlich 2015, p. 21)

イロト イポト イラト イラト

Relationship-altering

Reflexive:

(9)Axmed ksíri-s-e ton Péro ART Ahmed shave-AOR-3SG ART Pedro 'Ahmed shaved Pedro.' [ell]

Typology of valence change 000000

Pero ksirí-s-tik-e b. ART Pedro shave-AOR-REFL-3SG 'Pedro shaved (himself).' [ell]

(Haspelmath and Müller-Bardey 2004, p. 6)

Relationship-altering

Reflexive:

- (9)Axmed ksíri-s-e ton Péro ART Ahmed shave-AOR-3SG ART Pedro 'Ahmed shaved Pedro.' [ell]
 - Pero ksirí-s-tik-e b. ART Pedro shave-AOR-REFL-3SG 'Pedro shaved (himself).' [ell]

(Haspelmath and Müller-Bardey 2004, p. 6)

Passive:

- (10)neko wo ot-ta inu ga dog NOM cat ACC chase-PST 'The dog chased the cat.' [jpn]
 - b. neko ga inu ni o-ware-ta NOM dog DAT chase-PASS-PST 'The cat was chased by the dog.' [jpn]

(Bender 2013, p. 103)

Head-driven Phrase Structure Grammar

Monostratal theory of grammar

- Language as a system of signs
- Unification
- Strong lexicalism
- Capturing generalizations at different granularities

¹Bender and Flickinger 2017

Head-driven Phrase Structure Grammar

- Monostratal theory of grammar
- Language as a system of signs
- Typed feature structures
- Unification
- Strong lexicalism
- Capturing generalizations at different granularities

¹Bender and Flickinger 2017

Head-driven Phrase Structure Grammar

- Monostratal theory of grammar
- Language as a system of signs
- Typed feature structures
- Unification
- Strong lexicalism
- Capturing generalizations at different granularities

A Developed Annual to Involute Annual Annual

¹Bender and Flickinger 2017

Head-driven Phrase Structure Grammar

- Monostratal theory of grammar
- Language as a system of signs
- Typed feature structures

Unification

- Strong lexicalism
- Capturing generalizations at different granularities

¹Bender and Flickinger 2017

Head-driven Phrase Structure Grammar

- Monostratal theory of grammar
- Language as a system of signs
- Unification
- Strong lexicalism
- Capturing generalizations at different granularities

¹Bender and Flickinger 2017

Head-driven Phrase Structure Grammar

- Monostratal theory of grammar
- Language as a system of signs
- Unification
- Strong lexicalism
- Capturing generalizations at different granularities

¹Bender and Flickinger 2017

Head-driven Phrase Structure Grammar

- Monostratal theory of grammar
- Language as a system of signs
- Typed feature structures
- Unification
- Strong lexicalism
- Capturing generalizations at different granularities

¹Bender and Flickinger 2017

 Introduction
 Typology of valence change
 HPSG
 Analysis
 Implementation
 Evaluation
 Conclusion

 0
 0000000
 000000000
 00000000
 00000
 0
 0
 0

Typed Feature Structures

- Feature structure is a collection of feature-value pairs
- Describes a set of objects that satisfy its constraints
- Typically underspecified
- Values can be atoms or feature structures

 Introduction
 Typology of valence change
 HPSG
 Analysis
 Implementation
 Evaluation
 Conclusion

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Typed Feature Structures

- Feature structure is a collection of feature-value pairs
- Describes a set of objects that satisfy its constraints
- Typically underspecified
- Values can be atoms or feature structures
- *Typed* feature structures add:

Typed Feature Structures

- Feature structure is a collection of feature-value pairs
- Describes a set of objects that satisfy its constraints
- Typically underspecified
- Values can be atoms or feature structures
- Typed feature structures add:
 - Specification of features appropriate to a type

Typed Feature Structures

- Feature structure is a collection of feature-value pairs
- Describes a set of objects that satisfy its constraints
- Typically underspecified
- Values can be atoms or feature structures
- Typed feature structures add:
 - Specification of features appropriate to a type
 - Specification of values appropriate to a feature

Typed Feature Structures

- Feature structure is a collection of feature-value pairs
- Describes a set of objects that satisfy its constraints
- Typically underspecified
- Values can be atoms or feature structures
- Typed feature structures add:
 - Specification of features appropriate to a type
 - Specification of values appropriate to a feature
 - Inheritance of constraints from supertypes

Typed Feature Structures

- Feature structure is a collection of feature-value pairs
- Describes a set of objects that satisfy its constraints
- Typically underspecified
- Values can be atoms or feature structures
- Typed feature structures add:
 - Specification of features appropriate to a type
 - Specification of values appropriate to a feature
 - Inheritance of constraints from supertypes
 - Additional constraints on unification

00000000

Typed Feature Structures

- Feature structure is a collection of feature-value pairs
- Describes a set of objects that satisfy its constraints
- Typically underspecified
- Values can be atoms or feature structures
- Typed feature structures add:
 - Specification of features appropriate to a type
 - Specification of values appropriate to a feature
 - Inheritance of constraints from supertypes
 - Additional constraints on unification

Example

$$\begin{bmatrix} & & \\ \text{SYNSEM} & | & \text{LOCAL} & | & \text{CAT} & \\ & & & & & \\ \text{AGR} & & & & & \\ \text{NUM} & & sg \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

Unification

HPSG Grammars consist of partial constraints on well-formed trees

- Lexical entries
- Phrase structure rules
- Lexical rules
- General principles
- Initial symbol

These constraints are combined via unification; any combination that succeeds licenses well-formed utterances

Unification

Informally:

- Given two feature structures
- If they contradict, unification fails
- Otherwise, result is the combination of the two

Unification

Informally:

- Given two feature structures
- If they contradict, unification fails
- Otherwise, result is the combination of the two

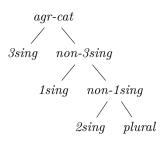
Example

$$\begin{bmatrix} \text{PERS} & 3rd \end{bmatrix} & & \begin{bmatrix} \text{NUM} & sg \end{bmatrix} & \longrightarrow & \begin{bmatrix} \text{PERS} & 3rd \\ \text{NUM} & sg \end{bmatrix}$$

000000000

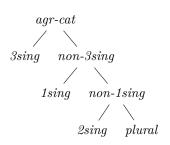
Unification

Informally:


- Given two feature structures
- If they contradict, unification fails
- Otherwise, result is the combination of the two

Example

$$\begin{bmatrix} \text{PERS} & 3rd \\ \text{NUM} & sg \end{bmatrix} \quad \& \quad \begin{bmatrix} \text{PERS} & 2nd \end{bmatrix} \quad \longrightarrow \quad \varnothing$$



Typed feature structure unification


```
[agr-catPER {1st, 2nd, 3rd}NUM {sg, pl}
3sing
PER 3rd
NUM sg
GEND {masc, fem, neut}
```


$$\begin{bmatrix} \texttt{GEND} & \textit{fem} \end{bmatrix} & \& & \begin{bmatrix} \texttt{NUM} & \textit{pl} \end{bmatrix} \implies \varnothing$$

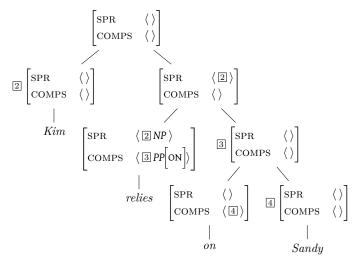
```
agr-catPER {1st, 2nd, 3rd}NUM {sg, pl}
3sing
PER 3rd
NUM sg
GEND {masc, fem, neut}
```

◆□▶ ◆圖▶ ◆圖▶

Identity and unification

Phrase structure rules

Head Complement Rule (English)


$$\begin{bmatrix} \textit{phrase} \\ \texttt{COMPS} & \langle \ \rangle \end{bmatrix} \ \rightarrow \ \ \mathbf{H} \begin{bmatrix} \textit{word} \\ \texttt{COMPS} & \langle \ 1, ..., \ n \ \rangle \end{bmatrix} \ \ 1, ..., \ n$$

Head Specifier Rule (English)

$$\begin{bmatrix} \textit{phrase} \\ \textit{SPR} & \langle \ \rangle \end{bmatrix} \ \rightarrow \ \ \square \ \ \ \boldsymbol{\mathsf{H}} \begin{bmatrix} \textit{word} \\ \textit{SPR} & \langle \ \square \ \rangle \end{bmatrix}$$

Phrase structure rules

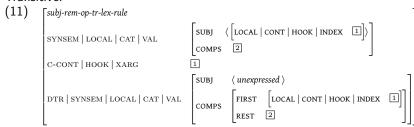
Strong lexicalism

Lexical entries are rich:

$$\left\langle \begin{array}{c} \text{Form} \\ \text{SYN} \end{array} \right. \left. \begin{array}{c} \text{HEAD} \quad \textit{verb} \\ \\ \text{SPR} \quad \left\langle \begin{array}{c} \text{NP} \\ [\text{INDEX} \quad \text{x} \end{array}] \right\rangle \\ \text{COMPS} \quad \left\langle \begin{bmatrix} \text{FORM} \quad \text{on} \\ [\text{INDEX} \quad \text{y} \end{array} \right] \right\rangle \\ \left. \begin{array}{c} \text{INDEX} \quad \text{e} \\ \\ \text{RELS} \quad \left\langle \begin{bmatrix} \text{PRED} \quad \text{rely} \text{-on} \\ \text{ARG0} \quad \text{e} \\ \text{ARG1} \quad \text{x} \\ \text{ARG2} \quad \text{y} \end{array} \right] \right\rangle \\ \end{array}$$

Lexical rules

3rd-Singular Verb Lexical Rule


$$\begin{bmatrix} \text{INPUT} & \left\langle \square \text{, } \textit{verb-lxm} \right\rangle \\ \\ \text{OUTPUT} & \left\langle \text{F}_{3SG}(\square) \text{,} \right| \begin{bmatrix} \text{SYN} & \begin{bmatrix} \text{HEAD} & \begin{bmatrix} \text{FORM fin} \\ \text{AGR} & \textit{3sing} \end{bmatrix} \\ \\ \text{VAL} & \begin{bmatrix} \text{SPR} & \left\langle \begin{bmatrix} \text{CASE nom} \end{bmatrix} \right\rangle \end{bmatrix} \end{bmatrix} \end{bmatrix} \right\rangle$$

Analysis 000000000

Subject removal

Transitive:

Subject removal

Transitive:

```
subj-rem-op-tr-lex-rule
                                                     \langle \left[ \text{LOCAL} \mid \text{CONT} \mid \text{HOOK} \mid \text{INDEX} \right] \rangle 
C-CONT | HOOK | XARG
                                                        ⟨ unexpressed ⟩
                                           COMPS FIRST LOCAL CONT HOOK INDEX 1
DTR | SYNSEM | LOCAL | CAT | VAL
```

Intransitive:

Object removal

unexpressed is a special type in the Grammar Matrix to support the threading analysis of Bouma et al. (2001).

 Typology of valence change
 HPSG
 Analysis
 Implementation
 Evaluation
 Conclusion

 0000000
 00000000
 00000
 0000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Object addition

Returning to this example:

(14) Ali mem-beli-kan ibu-nja telefisi
Ali TR-buy-APPL mother-his television

'Ali bought his mother a television.' [ind]

(Chung 1976, in Wunderlich 2015, p. 21)

Christian Curtis DeRiMo 2019
A Parametric Approach to Implemented Analyses 22/37

Object addition

Returning to this example:

(14)Ali mem-beli-kan ibu-nja telefisi Ali TR-buy-APPL mother-his television 'Ali bought his mother a television.' [ind] (Chung 1976, in Wunderlich 2015, p. 21)

This is our desired MRS:

$$\begin{bmatrix} _{memi_v_buy} \\ ARG0 & 4 \ event \\ ARG1 & 1 \\ ARG2 & 2 \end{bmatrix}, \begin{bmatrix} named \\ ARG0 & 1 \end{bmatrix}, \begin{bmatrix} _{telefisi_n_TV} \\ ARG0 & 2 \end{bmatrix}, \\ \begin{bmatrix} _{ibu_n_mother} \\ ARG0 & 3 \end{bmatrix}, \begin{bmatrix} benefactive_rel \\ ARG0 & event \\ ARG1 & 4 \\ ARG2 & 3 \end{bmatrix}$$

Object addition

Decomposing into underlying operations:

- adding an argument to the COMPS list;
- constraining the added argument (or promoted subject), e.g. to be an NP or PP (HEAD noun or adp), or applying a CASE constraint;
- appending the new argument's non-local dependencies to the rule mother's list:
- contributing an added elementary predication (EP) via C-CONT;
- linking the new EP's ARG1 to the daughter's INDEX; and
- linking the new EP's ARG2 to the new argument's INDEX.

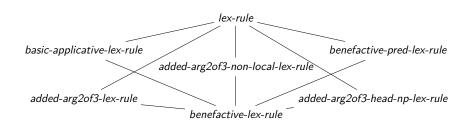
Object addition

A (mostly) complete rule implementing the benefactive:

This rule entails component operations that vary along independent axes:

rule component	varies by
added argument constraint on new argument non-local dependencies new EP's PRED value new EP's ARG1 new EP's ARG2	position (obliqueness), number of existing args position (obliqueness), constraint (e.g. case, head) position (obliqueness) predicate does not vary position (obliqueness)

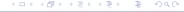
Example of variation


Example of variation

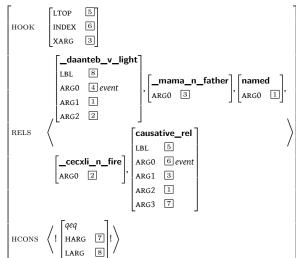
(18)
$$\begin{bmatrix} added\text{-}arg2of3\text{-}lex\text{-}rule \\ \\ \text{SYNSEM} \mid \text{LOCAL} \mid \text{CAT} \mid \text{VAL} \mid \text{COMPS} \\ \end{bmatrix} \begin{bmatrix} \text{CAT} \mid \text{VAL} \quad \begin{bmatrix} \text{SPR} & \langle \ \rangle \\ \text{COMPS} & \langle \ \rangle \end{bmatrix} \end{bmatrix} \end{bmatrix}, \boxed{2} \\ \end{bmatrix}$$

$$\begin{bmatrix} \text{C-CONT} \mid \text{RELS} \\ \text{DTR} \mid \text{SYNSEM} \mid \text{LOCAL} \mid \text{CAT} \mid \text{VAL} \mid \text{COMPS} & \langle \ 2 \ \rangle \end{bmatrix}$$

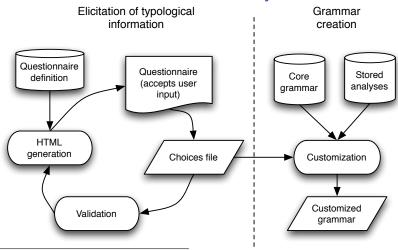
Rule component type hierarchy



Subject addition


Subject addition (e.g., causative):

- Similar to applicative, the need to add a new EP
- This EP introduces a new argument in S role
- Analyze new EP as scopal: underlying verb's EP is outscoped
 - **Expressed** via handle constraint: equality modulo qualifiers $(=_q)$
- Erstwhile subject is moved into another position


Example of causative MRS

(19)

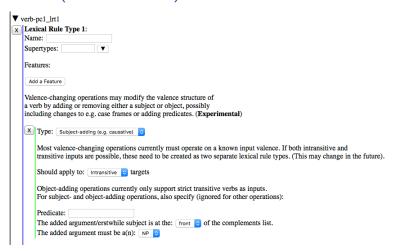
◆□▶ ◆圖▶ ◆圖▶ ◆圖♪

The Grammar Matrix customization system

Bender, Drellishak, et al. 2010, p. 31.

Elicitation (Questionnaire)

- * General Information
- * Word Order
- ▶ Number
- * Person
- Gender
- * Case
- Direct-inverse
- ▶ Tense, Aspect and Mood
- Other Features
- Sentential Negation
- Coordination
- Matrix Yes/No Questions
- ► Information Structure
- Argument Optionality
- ? Lexicon
- Morphology
- ► Import Toolbox Lexicon
- ► Test Sentences
- ► Test by Generation Options


Archive type:

.tar.gz .zip Create Grammar | Test by Generation

http://matrix.ling.washington.edu/index.html

Elicitation (Questionnaire)

Choices file

```
(20)
     section=morphology
       verb-pc1_order=suffix
       verb-pc1_inputs=verb
         verb-pc1 lrt1 name=subjrem-itr
           verb-pc1_lrt1_valchg1_operation=subj-rem
           verb-pc1_lrt1_valchg1_inputs=intrans
           verb-pc1_lrt1_lri1_inflecting=yes
            verb-pc1_lrt1_lri1_orth=-nosubjitr
          verb-pc1 lrt2 name=subjrem-tr
            verb-pc1_lrt2_valchg1_operation=subj-rem
            verb-pc1_lrt2_valchg1_inputs=trans
            verb-pc1_lrt2_lri1_inflecting=yes
            verb-pc1_lrt2_lri1_orth=-nosubjtr
```


Implementation

- Development process
 - Developed pseudolanguage test suites (choices file and test items) of specific operations and combinations

Implementation

- Development process
 - Developed pseudolanguage test suites (choices file and test items) of specific operations and combinations
 - Modeled valence change in three "illustrative" natural languages with accompanying test suites
 - Lakota [lkt] (Siouan)
 - Japanese [jpn] (Japonic)
 - Zulu [zul] (Bantu)

Implementation

- Development process
 - Developed pseudolanguage test suites (choices file and test items) of specific operations and combinations
 - Modeled valence change in three "illustrative" natural languages with accompanying test suites
 - Lakota [lkt] (Siouan)
 - Japanese [jpn] (Japonic)
 - Zulu [zul] (Bantu)
 - During development phase, iterated with library development

Analysis Implementation Evaluation Conclusio

Implementation

- Development process
 - Developed pseudolanguage test suites (choices file and test items) of specific operations and combinations
 - Modeled valence change in three "illustrative" natural languages with accompanying test suites
 - Lakota [lkt] (Siouan)
 - Japanese [jpn] (Japonic)
 - Zulu [zul] (Bantu)
 - During development phase, iterated with library development
- Mechanics

Implementation

- Development process
 - Developed pseudolanguage test suites (choices file and test items) of specific operations and combinations
 - Modeled valence change in three "illustrative" natural languages with accompanying test suites
 - Lakota [lkt] (Siouan)
 - Japanese [jpn] (Japonic)
 - Zulu [zul] (Bantu)
 - During development phase, iterated with library development
- Mechanics
 - Leveraged existing morphotactics system (Goodman 2013)

- Development process
 - Developed pseudolanguage test suites (choices file and test items) of specific operations and combinations
 - Modeled valence change in three "illustrative" natural languages with accompanying test suites
 - Lakota [lkt] (Siouan)
 - Japanese [jpn] (Japonic)
 - Zulu [zul] (Bantu)
 - During development phase, iterated with library development
- Mechanics
 - Leveraged existing morphotactics system (Goodman 2013)
 - Variable rule components modeled as functions, e.g.:

$$f: tr \in \{intrans, trans\} \times pos \in \{front, end\} \rightarrow lrt.$$

4 日 5 4 周 5 4 3 5 4 3 5

Evaluation

■ Development frozen for evaluation

Evaluation •0

Evaluation

- Development frozen for evaluation
- Evaluated on five held-out natural languages with different familial and areal features
 - Tsez [ddo] (Northeast Caucasian)
 - West Greenlandic/Kalallisut [kal] (Eskimo-Aleut)
 - Awa Pit [kwi] (Barbacoan)
 - Rawang [raw] (Sino-Tibetan)
 - Javanese [jav] (Austronesian)

Evaluation •0

Evaluation

- Development frozen for evaluation
- Evaluated on five held-out natural languages with different familial and areal features
 - Tsez [ddo] (Northeast Caucasian)
 - West Greenlandic/Kalallisut [kal] (Eskimo-Aleut)
 - Awa Pit [kwi] (Barbacoan)
 - Rawang [raw] (Sino-Tibetan)
 - Javanese [jav] (Austronesian)
- Test suites built, but only using library as implemented

Analysis Implementation Evaluation

○ ○○○○○○○○ ○○

Evaluation results

Language	examples		performance			
	positive	negative	parses	coverage	overgeneration	sp. ambig
Tsez [ddo]	11	8	10	91%	0%	0%
West Greenlandic [kal]	15	14	12	73%	0%	0%
Awa Pit [kwi]	7	7	5	71%	0%	0%
Rawang [raw]	11	6	6	55%	0%	0%
Javanese [jav]	13	8	12	92%	13%	0%
Total	57	43	45	79%	2%	0%

stian Curtis DeRiMo 2019

Evaluation results

Language	examples		performance			
	positive	negative	parses	coverage	overgeneration	sp. ambig
Tsez [ddo]	11	8	10	91%	0%	0%
West Greenlandic [kal]	15	14	12	73%	0%	0%
Awa Pit [kwi]	7	7	5	71%	0%	0%
Rawang [raw]	11	6	6	55%	0%	0%
Javanese [jav]	13	8	12	92%	13%	0%
Total	57	43	45	79%	2%	0%

■ Error analysis:

ristian Curtis DeRiMo 2019

Language	examples		performance			
	positive	negative	parses	coverage	overgeneration	sp. ambig.
Tsez [ddo]	11	8	10	91%	0%	0%
West Greenlandic [kal]	15	14	12	73%	0%	0%
Awa Pit [kwi]	7	7	5	71%	0%	0%
Rawang [raw]	11	6	6	55%	0%	0%
Javanese [jav]	13	8	12	92%	13%	0%
Total	57	43	45	79%	2%	0%

- Error analysis:
 - Majority of failure in Rawang, due to unimplemented reflexive/middle constructions

Language	examples		performance			
	positive	negative	parses	coverage	overgeneration	sp. ambig
Tsez [ddo]	11	8	10	91%	0%	0%
West Greenlandic [kal]	15	14	12	73%	0%	0%
Awa Pit [kwi]	7	7	5	71%	0%	0%
Rawang [raw]	11	6	6	55%	0%	0%
Javanese [jav]	13	8	12	92%	13%	0%
Total	57	43	45	79%	2%	0%

Error analysis:

- Majority of failure in Rawang, due to unimplemented reflexive/middle constructions
- Overgeneration due to inability to apply HEAD constraint to an existing argument

istian Curtis DeRiMo 20

Evaluation results

Language	examples		performance			
	positive	negative	parses	coverage	overgeneration	sp. ambig.
Tsez [ddo]	11	8	10	91%	0%	0%
West Greenlandic [kal]	15	14	12	73%	0%	0%
Awa Pit [kwi]	7	7	5	71%	0%	0%
Rawang [raw]	11	6	6	55%	0%	0%
Javanese [jav]	13	8	12	92%	13%	0%
Total	57	43	45	79%	2%	0%

Error analysis:

- Majority of failure in Rawang, due to unimplemented reflexive/middle constructions
- Overgeneration due to inability to apply HEAD constraint to an existing argument
- Both are primarily interface issues

Conclusions and future work

- Positive conclusions
 - Very good coverage across language families with relatively small set of basic operations
 - Building-block approach was very effective
 - Implementation via enerating functions further captures generalizations and simplifies coding

 HPSG
 Analysis
 Implementation
 Evaluation
 Conclusion

 00000000
 00000000
 00
 00
 •

Conclusions and future work

Positive conclusions

- Very good coverage across language families with relatively small set of basic operations
- Building-block approach was very effective
- Implementation via enerating functions further captures generalizations and simplifies coding
- Future improvements
 - Reflexives (coindexation capability more generally) would resolve nearly all coverage issues seen
 - Elicitation interface could be enhanced to allow more flexibility
 - Richer rule composition mechanisms needed to avoid theoretically-awkward constructions

ristian Curtis