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The problem

• Goal: separate inflection from derivation

(~lemmatization)
• Classical approach: supervised methods

• Manually annotate a corpus
• Train a tagger and lemmatizer on the corpus
• (Or: manually create a rule-based tool)
• Apply to text

• Our focus: unsupervised methods
• Use no annotated data
• Discover lemmasets solely based on unannotated plain-text corpora
• (Also interesting: semi-supervised methods, using a handful of annotated data, and/or

data for another language…)
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Why unsupervised?

• Practical reasons
• For most languages, there are no or low resources
• Creation of resources is costly

• (Also: resources are not consistent across languages)
• Plain text data available for hundreds of languages

• Bible (or part of it): 1,400 languages (Mayer and Cysouw, 2014)
• JW300: Watchtower texts (~100k sentences) for 300 languages (Agić and Vulić, 2019)

• Research reasons
• It is an interesting challenge
• We can learn something about language

• Empirical research independent of linguistic traditions and annotations
• Whatever we discover is true about the language itself, not only about a particular annotation

• Question the traditional strictly binary inflection-derivation dichotomy
• Replace it with an empirical inflectionality score?
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This work

• A modest beginning of a probably long journey
• Currently, we only present experiments for Czech language
• For evaluation, we rely on existing annotated resources

• lemmas and their inflections: PDT (Böhmová et al., 2003), SYN (Hnátková et al., 2014)
• derivational relations between lemmas: DeriNet (Žabokrtský et al., 2016)

• Inflection: lemma → word form
• take → take, takes, taking, took, taken
• pes (dog) → pes, psa, psu, psovi, pse, psem, psi, psů, psům, psy, psech
• case, number, gender, person, tense, degree, negation, voice

• Derivation: parent lemma → child lemma
• take → overtake, taker, intake, takeout, mistake…
• pes → pejsek, psí, psisko, psoun, psovitý, psův, zepsout…
• perfective-imperfective, adjective-adverb, possessive, diminuitive, noun gender…
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Approach

• Goal: unsupervised separation of inflection and derivation

• Hypothesis: inflections are closer than derivations
• Word forms that are inflections of one lemma are more similar than word forms belonging

to different lemmas
• We explore two kinds of similarity:

• Orthographic similarity, via string edit distance
• Meaning similarity, via word embeddings similarity

• Note: there are other potentially testable criteria (Stump, 1998)
• inflection is semantically more regular than derivation (Bonami and Paperno, 2018)
• syntax may determine inflection
• inflection is more productive
• …
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Orthographic similarity: string edit distance

Levenshtein distance 𝐿𝐷(𝑤1, 𝑤2) (Levenshtein, 1966)

• Number of single-character edit operations (addition, deletion, substitution)
• ‘prepositions’ → ‘postposition’: 4 (r→o, e→s, +t, –s)

Jaro-Winkler distance 𝐽𝑊(𝑤1, 𝑤2) (Winkler, 1990)
• Similar idea to Levenshtein distance
• The JW distance is a number between 0 and 1
• Imbalanced: matching at the beginning of the string is more important

• Useful for predominantly suffixing languages (typical for languages we usually encounter)

Additional tweak: average with distance of simplified form
• Lowercase, transliterate to ASCII, remove non-initial vowels (a e i o u y)
• “Účelový” → “uclv”
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Meaning similarity: word embeddings

• Word embedding: a vector of many real numbers,
e.g. 𝑣𝑒𝑐(‶𝑘𝑖𝑛𝑔″) = [0.12, 5.23, −7.12, … , 2.36]

• Computed unsupervisedly from large text corpora
• Tools to compute word embeddings from text

corpora are easy to download and use
• Pre-computed embedding dictionaries available for

download for hundreds of languages
• Based on the distributional hypothesis

• Embedding of a word determined by contexts in
which it appears in the corpus

• Words appearing in similar contexts have similar
embeddings

• Embedding similarity can serve as a proxy to
meaning similarity

• Also, some interesting regularities can be observed

 man

 king

queen

woman
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Meaning similarity: word embeddings

• Inflection tends to correspond to a vector shift
(Mikolov et al., 2013)

• Derivation tends to correspond to a vector shift
(Musil et al., 2019)

• Our hypothesis: an inflectional shift should be
smaller than a derivational shift barvička

(crayon)

barva
(colour)

barvy
(colours)

barvičky
(crayons)
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Meaning similarity: word embeddings cosine similarity

• Meaning similarity = cosine similarity of word embeddings
• Standard way of measuring word embedding similarity

• 𝐶𝑂𝑆𝑠𝑖𝑚(𝑤1, 𝑤2) = 𝑣𝑒𝑐(𝑤1)⋅𝑣𝑒𝑐(𝑤2)
|𝑣𝑒𝑐(𝑤1)|⋅|𝑣𝑒𝑐(𝑤2)|

• FastText word embeddings, downloaded from FastText website (Grave et al., 2018)
• Combine embeddings of full words and of character n-grams
• Provides a vector even for out-of-vocabulary words
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Combination, conversion to distance

Combined measure

• All similarities are scaled to [0, 1] interval
• Combined similarity measure: multiplication of Jaro-Winkler string similarity and word

embedding cosine similarity
• 𝐽𝑊𝑠𝑖𝑚(𝑤1, 𝑤2) ⋅ 𝐶𝑂𝑆𝑠𝑖𝑚(𝑤1, 𝑤2)

Distance measure
• For technical reasons, we need distances, not similarities
• Distance: 𝑋𝑑𝑖𝑠𝑡 = 1 − 𝑋𝑠𝑖𝑚
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Data

• DeriNet v1.7 (Žabokrtský et al., 2016)
• Derivational dictionary
• Lemmas in one derivational family linked by

derivational edges
• No inflections

barvička
(crayon)

barva
(colour)
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Data

• SYN v4 (Hnátková et al., 2014)
• Tagged corpus
• Words in sentences annotated by lemmas and

morphological features
• No derivational annotation

barvička
(crayon)

barva
(colour)

barvy
(colours)

barvičky
(crayons)
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Data

• Combine the resources
• DeriNet derivational trees with lemmas
• Add inflections from SYN to each lemma
• Add secondary derivational edges

barvička
(crayon)

barva
(colour)

barvička
(crayon)

barva
(colour)

barvy
(colours)

barvičky
(crayons)

barvička
(crayon)

barva
(colour)

barvy
(colours)

barvičky
(crayons)

Attempting to separate inflection and derivation using vector space representations Problem Approach Evaluation Summary 14/ 23



Task

• For a pair of words, decide if they are inflections of
the same lemma

• barva (colour), barvy (colours) → yes
• barvička (crayon), barvičky (crayons) → yes
• barva (colour), barvička (crayon) → no
• barvy (colours), barvičky (crayons) → no
• barva (colour), barvičky (crayons) → no

barvička
(crayon)

barva
(colour)

barvy
(colours)

barvičky
(crayons)

• We use only several of the largest derivational families from DeriNet
• Small derivational families are uninteresting (not many derivational relations)
• 561 derivational families with at least 50 lemmas

→ sample 42 families
→ 4,514 lemmas
→ 69,743 word forms
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Evaluation types

Pairwise evaluation
• Is the distance of the two words higher than a threshold?
• Inflections should be below the threshold, derivations above
• Oracle threshold

Clustering-based evaluation
• Use the word distances to find clusters of nearby words
• Agglomerative clustering algorithm
• Inflections of one lemma should fall into one cluster,

derivations into separate clusters
• Oracle number of clusters
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Which pairs of words to evaluate

• Pairs of all words
• Most realistic
• Too slow

• Pairs of all words in one derivational family
• Reasonably realistic
• Most pairs are very distant words – boring
• Use this for quantitative evaluation barvička

(crayon)

barva
(colour)

barvy
(colours)

barvičky
(crayons)

odbarvovat
(decolourize)

odbarvoval
(he decolourized)

• Pairs of words linked by a single derivational
or inflectional operation

• Not realistic, many close pairs omitted
• Focuses on the hard cases – interesting
• Use this for further manual analysis barvička

(crayon)

barva
(colour)

barvy
(colours)

barvičky
(crayons)

odbarvovat
(decolourize)

odbarvoval
(he decolourized)
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Quantitative evaluation: identification of inflection
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Pairwise evaluation
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Clustering evaluation

• Inflection and
derivation separable to
some extent

• Combination better
than individual
measures
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Further analysis: average count-weighted distances
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Further analysis

• Typical inflections have low distance (case, number, gender)
• Typical derivations have high distance (e.g. part of speech change)

• Some inflections have high distance: negation, grade, voice
• limited productivity, larger meaning shift

• Some derivations have low distance:
adjective→adverb (barevný–barevně), noun→possessive (hvězdář–hvězdářův),
perfective→imperfective (bloknout–blokovat), noun diminuitives (hvězda–hvězdička)

• very regular, very productive
• Inflection-derivation dichotomy: a strictly binary categorization or a continuous scale?
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Attempting to separate inflection and derivation using vector space representations

Summary
• Unsupervised separation of inflection from derivation

• Hypothesis: inflections are more similar than derivations
• Orthographic similarity: Jaro-Winkler edit distance
• Meaning similarity: cosine similarity of FastText word embeddings

• Combined similarity measure achieves respectable accuracy
• Inflection-derivation boundary is vague

http://ufal.cz/rudolf-rosa
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