The Computational Complexity
of Rule-Based Part-of-Speech Tagging

Karel Olival, Pavel Kvéton? and Roman Ondrugka?

! Austrian Research Institute for Artificial Intelligence (OeFAI),
Schottengasse 3, A-1010 Wien, Austria
karel@Qoefai.at
% Institute of Formal and Applied Linguistics,
Faculty of Mathematics and Physics, Charles University,
Malostranské nam. 25, CZ-118 00 Praha 1 — Mal4 Strana, Czech Republic
kvetonQufal.ms.mff.cuni.cz

Abstract. The paper deals with the computational complexity of Part-
of-Speech tagging (aka morphological disambiguation) by means of rules
derived from loosened negative n-grams. Loosened negative n-grams [2]
were originally developed as a tool for the task of pure verification of re-
sults of Part-of-Speech tagging (corpus quality checking). It is shown that
while the verification is just a polynomial problem, the time consumed by
the tagging (disambiguation) task cannot be bounded by a polynom in
the general case. The results presented in the paper are relevant above all
for disambiguation performed by means of Constraint-based Grammars
[1] and similar frameworks, which are in fact only notational variants of
the rules derived via loosened negative n-grams. Throughout the paper
some familiarity with finite-state automata (FSA) and the class of NP
problems is assumed.

1 Introduction

The linguistic core of the rule-based approach to Part-of-Speech (PoS) tagging
can be seen in the simple idea of negative bigrams. A negative bigram is a pair
of PoS tags (morphological analyses) of adjacent words which constitute an in-
correct configuration in a text of a particular language. For example, the pair
ARTICLE+FIN_VERB constitutes a negative bigram in English, since in no (cor-
rect) English sentence an article can be immediately followed by a finite verb.
Originally, the idea of negative bigrams was developed for the purpose of de-
tection of tagging errors in corpora [2], but it is obvious that after a small
modification it can be used also for the purpose of disambiguation (tagging). In
particular, in a situation where one of the words has a unique (i.e. safe) morpho-
logical reading while the other member of the pair is ambiguous (i.e. taken alone,
it offers a number of different possible morphological interpretations), some of
the readings of the ambiguous word can be discarded on the basis of the negativ-
ity of the bigrams which occur as combination of the readings of the two words.
In the above English example, such an approach can be applied for deciding on

2 Karel Oliva, Pavel Kvétori, Roman Ondruska

the noun/verb ambiguity, e.g., in the pairs the advices, the smells, the use, ...
where obviously the words advices, smells, use, ... cannot be finite verbs (since
otherwise the negative bigram ARTICLE+4FIN_VERB would occur).

The idea of disambiguation by negative bigrams can be easily generalized
in two directions. The first one is the usage of negative trigrams, tetragrams,
pentagrams, ..., i.e. of configurations of length 3,4,5, ...which cannot occur as
(correct) morphological analysis of sequences of adjacent words. Thus, for ex-
ample, the configuration FIN_.VERB+FIN_VERB+FIN_VERB is a negative trigram
in English, since sentences of the type The mouse the cat the dog chased caught
survived are considered unacceptable (the configuration FIN_VERB+FIN_VERB
does not constitute a negative bigram, however — cf. the correct (acceptable,
grammatical) sentence The man Mary loves came late).

The second possible generalization consists in the idea that the ”"negativity”
of the negative bigram (or trigram, tetragram, etc.) can be in certain cases kept
also if its parts are separated by some other lexical material which, on the one
hand, has to meet certain conditions but, on the other hand, on the amount of
which no limits are posed. For example, the configuration ARTICLE+FIN_VERB
remains incorrect even after any number of adverbs and/or personal pronouns
and/or prepositions and/or conjunctions is placed in-between the two constitut-
ing members of the negative bigram (and, hence, indeed the limitation is only
qualitative, but not a quantitative one). Such configurations are called loosened
n-grams (e.g., the configuration

ARTICLE+{ADV,PERS_PRON,PREP,CONJ }*++FIN_VERB

is an example of a loosened bigram). Such a loosening of configurations of fixed
length into configurations of arbitrary length provides for an extremely powerful
disambiguation tool.

In such a way, the original idea behind the negative n-grams could be de-
veloped into a tool for a partial disambiguation of a corpus, i.e. for removing
at least some of the tags within an ambiguous corpus (typically, a corpus which
underwent a morphological analysis, i.e. a corpus each word of which has been
assigned all its morphological readings). Such a partially disambiguated corpus
can further serve as an input for a stochastic tagger.

The rest of the paper is organized as follows:

— in Section 2, we present the loosened negative n-grams in more detail and
prove that the verification of a non-ambiguous sentence is a polynomial task;

— in Section 3, we define a very transparent but time-exponential algorithm for
total conservative partial disambiguation using loosened negative n-grams.

— finally, in Section 4, we define several formal languages representing diverse
types of partial disambiguation and we show that all these languages are
NP-hard to recognize.

2 Disambiguating with negative n-grams

Throughout the paper it is assumed that T is a tagset, i.e. a set of (morpholog-
ical) tags of a particular natural language.

The Computational Complexity of Rule-Based Part-of-Speech Tagging 3

Definition 1. A sentence (of length k) is a sequence Wi, Ws, ..., Wy, where
W; CT holds for all 1 <1 < k.

The sets W; denote the words of the particular sentence. A word W; is non-
ambiguous if the set W; contains at most one tag.

A sentence is non-ambiguous if every its word is non-ambiguous. Otherwise
the sentence is ambiguous.

Definition 2. A sentence S’ = W/{,..., W/ is a partial disambiguation of sen-
tence S = Wh,..., Wy whenever m =k and W/ CW,; for all 1 <i < k.

The disambiguation algorithms discussed below expect a sentence on their input
and their result is a partial disambiguation of this input sentence — in other
words, their task is to remove some tags from each word in the sentence.

Definition 3. By a reading of a sentence S we denote any non-ambiguous par-
tial disambiguation of S.

It can be immediately seen that an ambiguous sentence contains generally an
exponential number of readings (in the length of sentence).

Definition 4. The tag sequence t1,to,...,tn, (n € N, t; €T for all1 <i<n)
is called a negative n-gram if the sequence of words {t1},{t2},...,{tn} cannot
be found as a sub-sequence of any well-formed non-ambiguous sentence.

Definition 5. The sequence b= t1,C1,t2,Co,...,tp—1,Cpn_1,tn, ME N, t; €T
(for 1 < i < n) and tag sets C; (for 1 < i < n)) is called a loosened negative
n-gram if any non-ambiguous sentence S containing a subsequence

{tYWIWE LW YWy o Wt} At YW W T) ()

such that Wij C C; holds for all 1 < i < n, 1< j <n;is not a well-formed
sentence (of the particular language).

We denote |b| to be the length of the n-gram b (i.e. |b|=n, in this case).

If o sentence S contains the sub-sequence (1), we say that S matches the
loosened negative n-gram b.

In other words, if the tags of the (original) negative n-gram ¢y, s, . . ., ¢, are found
in a non-ambiguous sentence in the correct order, but some words in-between
them disturb the direct sub-sequentiality of ¢;’s, then loosening contexts C; are
taken into consideration — these contexts are defined in such a way that if all
positions (in any amount) in-between t; and ¢;11 contain only the tags from C;,
the configuration remains impossible.

Definition 6. A reading R of a sentence S is compatible with a set B of loos-
ened negative n-grams if R matches no element of B. Any reading R containing
a word O (word with no tag) is said to be incompatible with any set of negative
n-grams.

4 Karel Oliva, Pavel Kvétori, Roman Ondruska

Proposition 1. Let B be a set of loosened negative n-grams and S a mon-
ambiguous sentence. The compatibility of S and B can be verified on a deter-
ministic Turing machine (DTM) in polynomial time (in the size of S and B).

Proof. The basic idea is to convert (in polynomial time) the input set B to non-
deterministic FSA A that will try to find the occurence of an n-gram from B in
S and then simulate A on S by DTM in polynomial time.

The automaton A = (Q, X, 4,1, F) is defined as follows. The set of states is
Q ={4,9} U U, Qv, where Qp = {gj|1 <i < |b|} and g, g are states different
from all other states. The set of input symbols is X = {{t}|t € T} U {0}. The
set of initial states is I = {q}. The set of final (accepting) states is F' = {q,l,b‘ |b e
B} U {g}. The state g is the garbage state — any undefined transition leads to
this state (accepting).

The transition function ¢ is defined separately for ¢ and for the states arising
from the n-grams. For the state ¢, the transitions over every {t} for ¢t € T loops
to q. Moreover, if ¢ is the first tag of an n-gram b, there is also a transition from
q to q;. From a state gf € Q, for k < |b| and b = t,C ... Cp_1t}p|, there is a
transition to gi ' over {tz41} as well as loops to gf over every {t} such that
t € C. The transitions over every {¢} such that ¢ € C}, and t # tx41 lead back
to ¢. From qll)b‘, there is just a loop over every {t} such that t € T.

The automaton A first looks for possible start of an n-gram b € B (in state
q). Once A decides the b has started, it tries to match it on the sentence through
the states gp. If b matches, it waits in q,‘,b| for the end of input (or at most switches
to g over (). If b does not match, A returns back to ¢ and tries the next match.

If the automaton finishes in qu‘, the sentence is accepted (contains an n-gram
from B). If the automaton finishes in g, the sentence is somehow corrupted (and
accepted), thus the sentence is accepted by A if and only if the sentence is not
compatible with B.

It can be easily seen that the construction of A has a polynomial time com-
plexity (in the sizes of B and T).

Now, the work of the non-deterministic FSA A = (Q, X, 4, I, F) on the input
non-ambiguous sentence S = Wi,..., Wy can be simulated by the following
algorithm:

1. Start: Initialize a new set M = I;

2. for ¢ =1,...,k do the following steps:
(a) initialize a new set M' = {);
(b) for each g € M let M' = M'U (g, W,);
(c) let M = M";

3.if M NF = (then the algorithm accepts the input sentence (it neither
matches any n-gram from B nor contains an empty word), or refuses it
otherwise.

The algorithm consumes on DTM the time of at most k x |@Q|®> and accepts the
input if and only if the sentence S is compatible with B. O

The Computational Complexity of Rule-Based Part-of-Speech Tagging 5

Definition 7. A partial disambiguation S’ of the sentence S is conservative
w.r.t. a set B of loosened negative n-grams if every reading R of S such that R
is compatible with B is also present in S'.3

Definition 8. A partial disambiguation S" of the sentence S is total w.r.t. a set
B of loosened negative n-grams if every tag t from S’ is present in some reading
of S which is compatible with B.*

Trivially, any algorithm that does nothing (returns always the input sen-
tence as its output) produces always a conservative disambiguation, while any
algorithm that deletes everything (all tags of all words) produces always a total
disambiguation. The core of the problem is, however, how to produce a disam-
biguation which is both conservative and total.

It is worth mentioning on this spot that with respect to a total conservative
tagging result (which is unique, for a given sentence and a given set of negative
n-grams), any disambiguation which is conservative has a 100% recall, while any
total disambiguation has a 100% precision.

3 The generic disambiguator

In this section, we define the generic disambiguator algorithm, which is a trivial,
but time-exponential instance of a disambiguation algorithm producing total
conservative disambiguations.

Let S be an input sentence of length k and let B be the input set of negative
n-grams. In such case, let the following algorithm be defined:

1. Start: Let S' = Wi ... Wy be set to a sentence of length k& with all words
empty, i.e. W; = () holds for every 1 < i < k;

2. if there exists a reading R = V; ...V} of the sentence S that has not been
investigated yet, continue with the next step; otherwise, return S’ and finish;

3. check the reading R using n-grams from B; if R is not compatible with B,
continue with step 2;

4. if R is compatible with B, then for every 1 <i < k set W; = W; UV}, and
continue with step 2.

It is obvious that every result of the generic disambiguator is a total and con-
servative disambiguation, since every tag t of a word W from S is present in the
output S’ if and only if ¢ is contained in some compatible reading R and every
compatible reading R from S is contained in S’

On the other hand, it is also obvious that the loop over all the readings of
the input sentence S has to be passed an exponential number of times (in the
sentence length).

3 In other words: any algorithm which issues a conservative disambiguation must not
delete any tag taking part in a compatible reading.

4 In other words: any algorithm which issues a total disambiguation must delete all
tags which do not take part in some compatible reading. Please note that tag in the
definition means the particular tag in the particular word, not any tag from 7.

6 Karel Oliva, Pavel Kvétori, Roman Ondruska

4 NP-hardness

In this section several formal languages based on the various types of partial dis-
ambiguation are defined and shown to be NP-hard to recognize. First, however,
some bagic definitions from the theory of NP-completeness are recalled.

Definition 9. A formal language L (over an alphabet X) belongs to the class NP
if and only if the problem (x € L) can be decided by a non-deterministic Turing
machine (NTM) T in polynomial time (in the size of x) for every x € X* — if
there is at least one accepting computation of T, then x € L, otherwise x & L.

A language L (over an alphabet X) is polynomially-Turing-reducible to a
language M (over Y') if the problem (x € L) can be decided by DTM in polyno-
mial time (in the size of x) with oracle M5 for all x € X*.

A language L is NP-hard whenever every language M € NP is polynomially-
Turing-reducible to L. L is NP-complete if it is NP-hard and L € NP.

If M is NP-complete language polynomially-Turing-reducible to a language L,
then L is NP-hard.

Definition 10. We define the following formal languages (T is a tagset, S, S’
are sentences, B is a set of loosened negative n-grams, all based on T):

LVALID = {(T, B, S)|S contains a reading compatible with B}
LCONSERVATIVE = {(T, B, S, S")|S' is conservative disamb. of S w.r.t. B}
vrotaL = {(T, B, S,S8")|S’ is total disambiguation of S w.r.t. B}

LBEST = {(T, B, S, S")|S' is total conservative disambiguation of S w.r.t. B}

We shall show that the above languages (except LBEST) are NP-hard.

Proposition 2. The problem of recognition of LVALID is NP-hard.

Proof. NP-hardness of LVALID will be proved by a polynomial Turing-reduction
from the problem SAT (satisfiability of logical formula in conjunctive normal
form (CNF)). Determining whether a given formula in CNF is satisfiable or not
is a well-known NP-complete problem (cf. [3]).

Let F be a formula in CNF, i.e. F'is a conjunction of several simpler formulae
Fi,...,F}. Each formula F; (for 1 < i < k) is a disjunction of logical variables
and/or their negation, e.g. (a VbV —¢) A(—aVb) A (cV —b). In the example, the
formula can be satisfied by setting b and c to true and a to anything.

The input formula F of the problem SAT can be transformed to the input of
LVALID as follows. The tagset T contains exactly all the logical variables of F'
and their negation (in the example, T' = {a, b, ¢, ~a, =b, =c}).

The set B will contain all loosened negative bigrams in the forms z, T, —x
and —z, T, z for every logical variable z in F'. In the example, the set B is hence
defined as follows:

B ={(a,T,—a),(b,T,-b),(c,T,—c),(—a,T,a),(=b,T,b), (—¢c,T,c)}.

5 The oracle M is expected to decide the problem (y € M) for any y € Y*. During the
computation the oracle can be asked any number of times and the time consumed by
the oracle itself is not counted into the total time consumed by the DTM in question.

The Computational Complexity of Rule-Based Part-of-Speech Tagging 7

The input sentence S will contain k& words W1, ..., Wy. Each word W; arises
from F; by assigning all logical variables and their negations in F; as tags to W;.

It can be immediately seen that the transformation of F into (T, B,S) is a
polynomial task (in the size of the set of all logical variables used in the original
formula).

Now, if there exists a reading R of S that is compatible with B, then the
formula F is satisfiable since the reading R does not contain both a logical
variable and its negation (this is a trivial consequence of the construction of B).

On the other hand, if no reading R of S is compatible with B, then every
selection of single token (variable or its negation) from each sub-formula F; (over
all i) will contain both a logical variable and its negation and hence F' cannot
be satisfied. O

Corollary 1. LVALID is NP-complete.

First, take an input (T, B,S) of LVALID to be decided. Let be a NTM that
works as follows: it non-deterministically selects one reading R of S and verifies
(via Proposition 1) the compatibility of R with B. Now (T, B,S) € LVALID if
and only if there exists an accepting computation of @), hence LVALID € NP. The
Proposition 2 completes the proof. O

Proposition 3. LCONSERVATIVE is NP-hard.

Proof. Let (T, B, S) be an input of LVALID and let S’ be a sentence of the same
length as S with all words empty. Now note that S’ is conservative partial
disambiguation of S w.r.t. B if and only if no reading R of S is compatible
with B. Thus (T, B, S) belongs to LVALID if and only if (T, B, S,S’) is not in
LCONSERVATIVE. Hence LVALID has been Turing-reduced to LCONSERVATIVE. O

Proposition 4. LTOTAL is NP-hard.

Proof. Let (T, B, S) be an input of LVALID. If no reading of S is compatible with
B, the only total disambiguation is the sentence with all words empty. If there
exists a reading of S compatible with B, non-empty total disambiguation exists.

Let n be the length of S. For each word W; of S and every tag t € W;
we create a sentence S! = 0,...,0,{t},0,...,0 of length n, where {t} is on
the position i. Each of these sentences will be passed as an input (T, B, S, S})
to LTOTAL. The initial input (7, B,S) belongs to LVALID if and only if any of
(T, B, S, St) belongs to LTOTAL.

Because there is a linear amount of sentences S! arising from S, the Turing
reduction is finished. O

5 Conclusions and future work

For the theory of NP-completeness, it could be interesting to determine whether
LBEST is also an NP-hard problem and whether LCONSERVATIVE, LTOTAL and
LBEST are NP-complete.

8 Karel Oliva, Pavel Kvétori, Roman Ondruska

In practice, however, we rather study the complexity of algorithms that per-
form the disambiguation itself, mainly the algorithms that achieve total conser-
vative disambiguation of the input. As for these disambiguators, the NP-hardness
of LVALID implies® non-existence of deterministic polynomial total conservative
disambiguator (i.e. if there exists such a total conservative disambiguator, LVALID
could be solved deterministically in polynomial time).

Moreover, in practice we usually deal with a fixed set of negative n-grams
and the real input is only the sentence to be disambiguated, hence the set of
n-grams could be possibly pre-compiled before the disambiguation itself. We
have only shown that any polynomial pre-compilation still keeps the problems
NP-hard. Hence, it remains a matter of further research whether n-grams could
be pre-compiled (in an exponential time) into some machine that will achieve
total conservative disambiguation of the input sentence in polynomial time. In
other words, building a total conservative disambiguator using loosened n-grams
more efficient than the generic one is still an open problem.

Acknowledgment

This work has been sponsored in part by the Fonds zur Foerderung der wis-
senschaftlichen Forschung (FWF), Grant No. P12920, by the Grant Agency of
the Czech Republic (GACR), Grant No. 405/03/0913, and by the Czech Ministry
of Education, Youth and Sports (MSMT), Grant No. LNO0A063.

The Austrian Research Institute for Artificial Intelligence (OeFAI) is sup-
ported by the Austrian Federal Ministry of Education, Science and Culture.

References

1. Karlsson F., A. Voutilainen, J. Heikkila, and A. Antilla (eds.): Constraint Gram-
mar - A Language-Independent System for Parsing Unrestricted Text, Mouton de
Gruyter, Berlin & New York 1995

2. Kvéton, P. and K. Oliva: Achieving an Almost Correct PoS-Tagged Corpus. In:
”Proceedings of the 5th international conference Text, Speech and Dialogue TSD
2002”, Lecture Notes in Artificial Intelligence vol. 2448, Springer, Berlin 2002, pp.
19-26

3. Garey, M. R. and D. S. Johnson: Computers and Intractability: A Guide to the
Theory of NP-completeness. W. H. Freeman, San Francisco, 1979

8 With the silent assumption of NP#£P.

