
Annotation Procedure in Building the Prague
Czech-English Dependency Treebank

Marie Mikulová and Jan Štěpánek
Institute of Formal and Applied Linguistics, Charles University in Prague

Abstract. In this paper, we present some organizational aspects of building of a
large corpus with rich linguistic annotation, while Prague Czech-English De-
pendency Treebank (PCEDT) serves as an example. We stress the necessity to di-
vide the annotation process into several well planed phases. We present a system
of automatic checking of the correctness of the annotation and describe several
ways to measure and evaluate the annotation and annotators (inter-annotator ac-
cord, error rate and performance).

1 Introduction
Building a huge corpus with rich linguistic annotation calls for elaborate
organization of the annotation process. In our contribution, we will
present such a project, namely Prague Czech-English Dependency
Treebank (PCEDT). In the first place, we will focus on the
organizational aspects of the building of the corpus that can be generally
applied to building of any similar huge corpus. In particular, the main
points will be:

 division of the annotation into several phases

 system for checking the accuracy of the annotation

 ways of evaluation of the annotation and annotators

PCEDT is planned to be a corpus of (deeply) syntactically annotated
parallel texts (in English and Czech) intended chiefly for machine
translation experiments. The texts for PCEDT were taken from Penn
Treebank [4], which means there are mostly economical articles from the
Wall Street Journal. 2312 documents were used in PCEDT
(approximately 49,000 sentences) that are manually annotated with
constituent trees in Penn Treebank. For the Czech part of PCEDT, the
English texts were translated into Czech.

As a base of the process of creation of the corpus (hierarchical system of
annotation layers, annotation rules) we will use the already
accomplished Prague Dependency Treebank (PDT) 2.0 [1]. While
organizing the annotation of PCEDT (especially its Czech part, which is

the main concern of this article), we will prop ourselves upon
multifarious experiences (both positive and negative) gained from the
production of PDT 2.0.

2 Division of the annotation into several phases
If one builds up a corpus in which a rich and complex linguistic
information is attached to the input data (i.e. sentences), according to our
experience it is advisable to divide this process into several partial
phases. The question how to divide the annotation when the information
attached is mostly very complex and various phenomena are
interconnected remains rather difficult.

Example of such a rich annotation is the tectogrammatical (deep
syntactical) layer of PCEDT (and similarly the same layer of PDT 2.0).
In the annotation process, each sentence is assigned a deep syntactical
structure (which among others deals with ellipsis and valency of verbs
and nouns); each unit of the structure is assigned its deep syntactical
function (there are several tens of the “functors”) and many attributes,
mainly grammatemes (tectogrammatical counterparts of morphological
categories). The tectogrammatical tree captures coreference, topic-focus
articulation and deep word order. There are 39 different attributes, for a
node of a tectogrammatical tree in PDT 2.0 there are 8.42 attributes
filled on average.

The annotation of the tectogrammatical layer was divided into several
phases when the layer was being created for the PDT 2.0 already. The
division is inevitable because no annotator is able to keep all the
annotation rules for all the annotated phenomena in his or her head (the
annotation manual [3] has more than 1000 pages). Moreover, the more
information the annotator has to attach to the data, the more likely he or
she omits some of the details.

The experience from production of PDT 2.0 unveiled that the division of
the annotation process into several steps is desirable for the quality of
the output data, even if some phenomena had to be reconsidered
repeatedly by different annotators in various phases.

Today, when building PCEDT, we increased the number of phases even
more. The first phase of the PDT 2.0 annotation (creating a syntactical
structure and assigning functions to the units of the structure) proved to
be still too complex and comprising too many features. We also tried to
get rid of repeated resolution of the same problems, e.g. by introducing

new temporary values for some attributes whose final values will be
judged in a later phase of the annotation.

For the tectogrammatical annotation, we count on the following phases:

1. building a tree structure, dealing with ellipsis included;
assignment of functors and valency frames, links to lower layers
(10 attributes).

2. annotation of subfunctors (fine grained classification of functors,
1 attribute).

3. annotation of coreference (4 attributes).

4. annotation of topic-focus articulation, rhematizers and deep word
order (3 attributes).

5. annotation of grammatemes, final form of tectogrammatical
lemmata (17 attributes).

6. annotation of remaining phenomena (quotation, named entities
etc.)

The first phase is still the most difficult, each annotator is responsible for
the whole structure of the tree and correct values of ten attributes. All
these attributes are connected with the structure and deep syntactical
functions of the nodes. The annotator does not have to pay attention to
anything else.

For the first phase of the annotation process a “working value”
#NewNode was established for tectogrammatical lemmata of nodes
added to trees in case of ellipsis of valency frame arguments. Absent
obligatory arguments are represented by added nodes in final
tectogrammatical trees and their tectogrammatical lemmata signify the
type of the elision (#Gen stands for a general participant, #PersPron for
a deletion, #Cor and #QCor for a controlee in control constructions,
#Rcp for ellipses because of reciprocation). The type of elision is closely
connected with coreference (some types of absent arguments have a
coreferent, some do not). During the annotation of PDT 2.0, the lemmata
of absent arguments were assigned in the first phase, the coreference in a
following phase. By introducing the #NewNode value the final solution
of the tectogrammatical lemma was postponed to the following phase
together with remaining questions of coreference. An annotator inserts a
node with the “working value” of the tectogrammatical lemma and only

assigns its syntactical function, not taking care about the lemma.

In the first phase we also “neglect” the annotation of rhematizers (in
PDT 2.0, they were annotated in the first phase). Competent decision
about a rhematizer (whether an expression is a rhematizer or not, its
position in the tree) is possible only if the topic-focus articulation of the
sentence is decided at the same time. Therefore, definitive annotation of
rhematizers is planned to the topic-focus annotation phase.

Determine an amount of annotated information that does not harm the
quality of the data is obviously difficult. Our believe that the current
schedule of phases constitutes a reasonable and manageable rate seems
to be justified by the measuring of inter-annotator agreement (see section
4.1). The quality of the data is regularly guarded by a system of
automatic checking procedures (see section 3).

3 System for Checking the Accuracy of the
Annotation
When PDT 2.0 was in production, only random “manual” checks of the
accuracy were performed. The real checking took place when all the
annotation had finished. The checking and fixing phase was quite
complex and time-consuming; moreover, in some cases, the changes
were not realized full-scale [5].

We want to avoid such a procedure in the development of PCEDT.
Checking of the data is performed in parallel with the annotation
process. At the beginning of the process, a number of automatic
checking procedures was proposed and new tests subsequently come up
during the annotation process. Currently there are 99 checking
procedures that verify the annotation of Czech sentences.

The checking procedure proposal is based on the fact that many
annotation rules imply that particular phenomena cannot (or have to)
occur in the annotation output. They mainly combine attribute values
and structure of a tree. For example, a simple check states that every
coordination has at least two members and reports all one-member
coordinations as errors. Another check states that the root of a
tectogrammatical tree has only a limited set of possible functors (PRED
for a predicate, DENOM for nominative clause, PARTL for interjection
clause etc.). There is also a converse check monitoring that no dependent
node has the PRED functor, and so on.

The checking procedures return a list of erroneous (questionable)
positions in the data. The annotator gets his or her data back for
corrections, manually fixing each position.

The checking procedures are run periodically after a given volume of the
data has been annotated (1000 sentences) or once a quarter. All the data
are checked every time (in case a new check existed) and after the
correction, the data are checked again and again while there are any
errors (new errors can arise in fixing the old ones).

Automatic checking procedures improve the quality of the data not only
by fixing the present errors, but also by providing a feedback to the
annotators (because each annotator fixes his or her own data, i.e. his or
her own errors) and thus eventually improving the future annotation.

4 Ways of Evaluation of the Annotators
A system for evaluation of the annotation and annotators should by an
integral part of any annotation project. In the PCEDT project, the quality
of the work of a particular annotator is judged by several ways:

 the annotation agreement between annotators is measured,

 the output of the automatic checking procedures tells us how
often an annotator makes mistakes compared to the others,

 the annotators book the time they spend annotating; it allows
later to evaluate their performance and the relation of the efficiency
to the error rate.

4.1 The annotation agreement between annotators

The basic way how to evaluate an annotation is to measure the inter-
annotator agreement. However, the structure to be compared is very
complex. The algorithm aligning two tectogrammatical trees built upon
the same analytical tree is described in detail in [3], once the trees are
aligned node to node, we just compare the values of all the attributes of
all the aligned nodes. To evaluate the structural agreement, we treat the
identifier of a node's parent as a new attribute of the node. Complex
attributes (lists, structures etc.) need further manipulation in order to be
compared. For example, identifiers of linked analytical nodes have to be
sorted; for annotator's comment, we only compare the type, because the
text can vary.

Since there is no “golden” annotation, we just measure the agreement of

all the pairs of annotators (see Table 1, data from December 2007;
average value is shown for every attribute, and average value over all the
attributes and structure is presented as “Overall”). As a baseline, we use
the output of an automatic procedure with which the annotators start
their work (marked “Z” in the table). Note that the agreement among
annotators is always higher than the agreement between any annotator
and the baseline. The attributes with a lower difference between baseline
and the annotators (about 5%, i.e. is_state, is_generated, is_dsp_root,
compl.rf, annot_comment, and a/lex.rf) tend to contain more errors, or
have too vague annotation rules.

The annotator that agrees most with all the others (“K”) is at the same
time the annotator that makes the least errors and submits the most
sentences (see next sections).

Overall K 94,08%

Ma 94,01%
A 93,83%
O 93,78%
Z 84,58%

Structure A 88,62% is_dsp_root K 95,86%
Ma 88,60% A 95,83%
O 87,92% Ma 95,75%
K 87,88% O 95,72%
Z 69,28% Z 89,72%

a/aux.rf K 93,82% is_generated K 96,24%
Ma 93,58% A 96,05%
A 93,55% Ma 96,03%
O 93,53% O 96,02%
Z 82,45% Z 90,27%

a/lex.rf K 96,26% is_member K 94,72%
Ma 96,12% A 94,70%
A 96,00% Ma 94,50%
O 95,90% O 94,25%
Z 89,67% Z 85,47%

annot_comment K 96,52% is_parenthesis Ma 95,42%
Ma 96,40% K 95,40%
A 96,30% O 95,27%
O 96,27% A 95,15%
Z 90,43% Z 88,72%

compl.rf K 96,32% is_state K 96,50%
Ma 96,22% Ma 96,25%
A 96,12% O 96,13%

O 96,03% A 96,13%
Z 90,18% Z 90,35%

functor K 85,70% t_lemma K 93,76%
Ma 85,67% Ma 93,60%
O 85,57% O 92,70%
A 85,13% A 92,42%
Z 66,80% Z 81,60%

Table 1: Inter-annotator agreement

4.2 Error rate

Using the list of errors generated by the checking procedures we can
count how often the annotators make errors (only those errors the
procedures can detect, of course): the number of errors the annotator
made is divided by the number of sentences or nodes she annotated.
Table 2 shows the comparison of the error rate for 4 annotators in
December 2007 (at the beginning of the process) and current numbers
for 7 annotators from July 2009. The numbers from different periods
cannot be compared directly because since the beginning there have
been more than 30 new checking procedures, which means the current
list of errors is longer. On the other hand, the rank of the annotators can
be compared.

The table shows that our current best annotator (“K”) had approximately
30 errors per 100 sentences and 1.62 errors per 100 nodes. Her error rate
has not got worse over the two years and she remains the best annotator.
The table further shows that the differences in error rate between
annotators can be great and that all the annotators keep their positions:
no one gets markedly better nor worse. The comparison of veteran
annotators and the new ones that annotate only for a short time is also
interesting: it shows that knack, practice, and experience lead to quality
of the annotation.

 December 2007 July 2009
Who Errors per 100

sentences
Errors per
100 nodes

Errors per 100
sentences

Errors per
100 nodes

K 29.7851 1.6241 1.5103 0.0806
O 39.6699 2.0624 4.0331 0.2067
Ma 61.4087 3.2707 8.4670 0.4533
A 63.2318 3.3498 6.3583 0.3265
L - - 15.0668 0.8010
Mi - - 16.2241 0.8460

J - - 19.0476 1.0971

Table 2: Error rate

4.3 Performance of the annotators

In the annotation process, even the time spent working by the annotators
is measured. The annotators book the time to a web form. For each
month the web application counts the annotators' performance over the
month and the over-all performance. The data are important among
others to determine the wages; on the basis of the data we tariff a
sentence (annotators are being paid monthly according to the number of
sentences they have annotated).

Table 3 shows performance of the annotators in October 2008 and June
2009, table 4 shows the over-all performance. Monitoring the
performance illustrates the differences between annotators, but also the
fluctuation of each particular annotator. We can also observe the inverse
proportionality of the performance and error rate (see section 4.2): the
more is the annotator efficient (she annotates more data), the less errors
she makes.

 October 2008 June 2009
Who Hours Sentences Sentences

per hour
Minutes per
sentence Hours Sentences Sentences

per hour
Minutes per
sentence

A 18.50 147 7.946 7.551 - - - -
I 100.50 742 7.383 8.127 101.50 1229 12.108 4.955

J 11.50 97 8.435 7.113 2.00 28 14.000 4.286
K 33.00 418 12.667 4.737 23.50 332 14.128 4.247
L 46.00 143 3.109 19.301 27.88 365 13.092 4.583
Ma 40.00 310 7.750 7.742 - - - -
Mi 17.85 142 7.955 7.542 24.91 358 14.372 4.175
O 37.81 403 10.659 5.629 56.65 632 11.156 5.378

Table 3: Performance of the annotators

Who Hours Sentences Sentences per
hour Minutes per sentence

A 114.25 963 8.4289 7.1184
I 827.00 7006 8.4716 7.0825
J 105.70 1001 9.4702 6.3357

K 107.00 1430 13.3645 4.4895
L 266.41 1716 6.4412 9.3150
Ma 78.00 615 7.8846 7.6098
Mi 169.98 1655 9.7364 6.1624
O 289.02 3211 11.1100 5.4006

Table 4: Over-all performance of the annotators

5 Conclusion
In the article, we have presented some organizational aspects of building
of a large syntactical treebank. We stressed mainly the necessity to
divide the annotation process into several well planned phases. We
presented out system for checking the correctness of the annotation. The
fact that the correctness is being checked at all should be pointed out: it
is not a common practice in similar projects. We described three ways to
measure and evaluate the annotation and annotators.

We believe that having published PDT 2.0 with 50,000 sentences
annotated on the tectogrammatical layer and being in the halftime of the
PCEDT project with more than a half data already annotated (33,500
sentences, 68% of the corpus) our proposals are sufficiently backed by
our experience and practice.

Acknowledgement:

The research reported in this paper was supported by the LC536, GAUK
22908/2008, and FP6-IST-5-034291-STP.

Bibliography
[1] Hajič, J. et al. (2006). The Prague Dependency Treebank 2.0. CD-ROM.

Linguistics Data Consortium Cat. No. LDC2006T01. Philadelphia, PA, USA.
URL:http://ldc.upenn.edu, http://ufal.mff.cuni.cz/pdt2.0.

[2] Klimeš, V. (2006). Analytical and Tectogrammatical Analysis of a Natural
Language. PhD Thesis. MFF UK, Prague.

[3] Mikulová, M. et al. (2006). Annotation on the tectogrammatical level in
Prague Dependency Treebank. Annotation manual. Technical report ÚFAL
TR-2006-30. MFF UK, Prague.

[4] Mitchell, M. et al. (1995). Treebank 2. CD-ROM.. Linguistics Data
Consortium Cat. No. LDC95T7. Philadelphia, PA, USA. URL:
http://ldc.upenn.edu, http://www.cis.upenn.edu/~treebank/

[5] Štěpánek, J. (2006). Závislostní zachycení větné struktury v anotovaném
syntaktickém korpusu (nástroje pro zajištění konsistence dat) [Capturing a
Sentence Structure by a Dependency Relation in an Annotated Syntactical
Corpus (Tools Guaranteeing Data Consistence)]. PhD Thesis. MFF UK,
Prague.

