Automatic Functor Assignment
in the Prague Dependency Treebank *

Zdenék Zabokrtsky

Czech Technical University, Department of Computer Science
121 35 Praha 2, Karlovo ndm. 13, Czech Republic
zabokrtz@Qcs.felk.cvut.cz

Abstract. This paper presents work in progress, the goal of which is
to develop a module for automatic transition from analytic tree struc-
tures to tectogrammatical tree structures within the Prague Dependency
Treebank project. Several rule-based and dictionary-based methods were
combined in order to be able to make maximal use of both information
extractable from the training set and a priori knowledge. The imple-
mentation of this approach was verified on a testing set, and a detailed
evaluation of the results achieved so far is presented.

1 Introduction

The process of syntactic tagging in the Prague Dependency Treebank (PDT) is
divided into two steps: The first step results in analytic tree structures (ATS), in
which every word form and punctuation mark is explicitly represented as a node
of rooted tree, with no additional nodes added (except for the root of the tree
of every sentence). The second step results in tectogrammatical tree structures
(TGTS), which approximate the underlying sentence representations according
to [4]. In contrast to the ATSs, only autosemantic words have nodes of their
own in TGTSs, informations about functional words (prepositions, subordinating
conjunctions etc.) are contained in the tags attached to the autosemantics nodes.
Figure 1 depicts an example of a TGTS.

Besides slight changes in the topology of the input ATS (for instance, pruning
of synsemantic nodes), the transition from ATSs to TGTSs involves the assign-
ment of the tectogramatical function (functor) to every node in the tree. There
are roughly 60 functors divided into two subroups (cf. [4]): (i) actants (ACTor,
PATient, ADDRessee, EFFect, ORIGin) and (ii) free modifiers: TWHEN (time-
when), LOCaction, MEANS, EXTent, BENeficiary, AT Tribute ... ).

Presently, the topological conversion and the assignment of a few functors
(e.g., ACT, PAR, PRED) are solved automatically by the procedure of Bchmové
et al. [1]. However, most of the functors have to be assigned manually. The

* T would like to thank my advisor Ivana Kruijff-Korbayova for her permanent support.
I am also indebted to Alevtina Bémova for consultations about functor assignment,
to Petr Pajas for the help with the data preprocessing and to Julia Hockenmaier for
her useful comments.



H12
-\SENT

Zastavit_se
PRED

§

my vEak okamzik ustanaveni
ACT  PREC TFHL LOC
GEMN  rozhodujici norma
ACT  RSTR PAT
noy pranni
RSTR  RSTR

Fig. 1. TGTS of the sentence Zastavme se viak na okamzik u rozhodujicich ustanovent
nové prdvni normy. (Let’s however stop for a moment at the most important para-
graphs of the new legal norm.)

amount of labor involved in the manual annotation obviously slows down the
growth of the PDT on the tectogrammatical level. Decreasing the amount of
manual annotation has been the motivation for developing the more complex
automatic functor assignment system (AFA) presented in this paper. Let us
describe the starting position.

— No general unambiguous rules for functor assignment are known, human an-
notators use mostly only their language experience and intuition. We cannot
reach 100% correctness of AFA since even the results of individual annotators
sometimes differ.

— The annotators usually use the whole sentence context for their decision. It
has not been measured how often it is really unavoidable to take the full
context into account or how large the context must be.

— Preliminary measurements revealed that the distribution of functors is very
non-uniform. The 15 most frequent functors cover roughly 90% of nodes.
Conversely, there are hardly any examples for the least frequent functors.

— It would be very time consuming to test the performance AFA on randomly
selected ATSs and find errors manually. Fortunately we can use the ATSs for
which manually created TGTSs are already avaliable, annotate them auto-
matically and compare the results against the manually annotated TGTSs.

— The available TGTSs contain imperfect data. Some errors are inherited from
ATSs, and functor assignments are in some cases ambiguous (nodes with
more than one functor) or incomplete (some nodes have no functor yet).

2 Materials

Training and Testing Sets When I started working on AFA, 18 TGTS files were
available, each containing up to 50 sentences from newspaper articles. This was
a sufficient amount of data for mining knowledge, which can improve the AFA’s
performance. But in order to reliably measure AFA’s correctness, it is necessary



to have a separate data set not used for knowledge mining. Therefore I randomly
selected 15 files for the training set and 3 files for the testing set. After removing
incomplete and ambiguously assigned nodes, the training set contained 6049
annotated nodes, and the testing set 1089 annotated nodes.

Data Preprocessing Neither the maximum degree of a node (i.e., the number of
outgoing edges) nor the depth of a tree are limited in TGTSs. The trees thus can
be very complex, and working with the whole tree context of the individual nodes
would make AFA unnecessarily complicated. For the sake of the experiments
described here, I assumed that reasonable correctness can be achieved using
only information about the node to be annotated and about its governing node
(i.e., about the edge in the tree). So the first step of the preprocessing was the
transformation from the tree structure into the list of edges.

Each node in PDT can have tens of attributes, majority of them beeing use-
less for AFA. Hence, a selection of the relevant attributes is performed next
(feature selection). I chose the following set: word form, lemma, full morpho-
logical tag and analytical function of both the governing and dependent node,
preposition or conjunction which binds the governing and the dependent node,
and the functor of the dependent node.

In order to make the subsequent processing easier, 3 additional simple at-
tributes (the parts of speech of both nodes, the morphological case of the dep.
node) were extracted from these 10 attributes (feature extraction). Finally, each
accented character has been substituted with the corresponding AsciI character
followed by “_”. Having a vector of 13 symbolic attributes, the task of AFA can
be now formulated as the classification of the symbolic vectors into 60 classes.

3 Implementation

The AFA system has been designed as a collection of small programs written
mostly in Perl. Each method of functor assignment forms a separate program
(script), the data to be assigned goes through a sequence of these scripts in a
pipeline fashion. Each method can assign only those nodes which have not been
assigned by any of the previous scripts yet. This approach enables flexible tuning
of the AFA characteristics (precision, recall) simply by reordering or removing
the individual methods. This advantage would be lost in the case of one compact
complicated program.

Rule-based Methods (RBM) The RBMs consist of simple hand written decision
trees. They use no external data and therefore are independent of the quality
of the training set. They do not bring any new information into the PDT, only
transform the information contained in an ATS. Currently I have 7 methods
with reasonable precision:

1. verbs_active: if the governing node is a verb in active form then
— if the analytical function (afun) is subject, then the node is assigned the
functor ACT (— ACT)



— if afun is object and case is dative then — ADDR
— if afun is object and case is accusative then — PAT
2. verbs_passive: if the governing node is a verb in passive form:
— if afun is subject then — PAT
— if afun is object and case is dative then — ADDR
— if afun is object and case is instrumental then — ACT
3. adjectives: if the node corresponds to an adjective
— if it is a possessive adjective then — RSTR
— else - RSTR
pronounposs: if the node is a possessive pronoun then — APP
numerals: if the node is a numeral then -+ RSTR
pnom: if afun is PNOM then — PAT
pred: if afun is PRED then — PRED

NS ok

Dictionary-based Methods (DBM) It is not feasible to resolve all the remaining
unassigned functors using only simple RBMs like those above, since we could
not profit from the growing volume and diversity of the training set.

I have so far developed four methods using different types of dictionaries:

— adverbs: The couples adverb—functor were automatically extracted from the
training set, and added to the list of adverbs from [2]; from the combined
list, the unambiguous (accompanied always with the same functor) adverbs
were extracted. Such a dictionary can be used to assign functors to adverbs.
Examples from the dictionary: vifluéné (exclusively) RHEM, vgrazné (exten-
sively) EXT

— subconj: A dictionary of unambiguous subordinative conjunctions was con-
structed in the same way as the dictionary of adverbs. If a verb is related
to its governing node by one of these conjunctions, the functor can be easily
assigned.

Examples from the dictionary: i kdyZ (even when) CNCS,
jelikoz (because) CAUS, jen co (as soon as) TWHEN, jestli (if) COND

— prepnoun: All the preposition—noun pairs (a preposition followed by a noun)
were extracted from the training set. The unambiguous couples which oc-
cured at least twice were inserted into the dictionary.

Examples from the dictionary: v roce (in year) TWHEN, pro podnikatele (for
businessman) BEN, od doby (from time) TSIN, z odvétvi (from branch) DIR1,
v zemich (in countries) LOC

— similarity: The dictionary is formed by the entire training set. The functor
of the most similar vector found in the training set is used for assignment.
The (in)equality of individual attributes has different impact (weight) on
the similarity function, e.g., the part of speech is more important than the
lemma. The weights were determined experimentally. Example: for zdlohy
na dané (pre-payments of taxes), where the dependent node dané (taxes) is
to be assigned a functor, the most similar record found is ndvrh na stanoveni
(proposal of determination), so the functor PAT of the dependent node is
used.



4 Results

Testing Set The testing set was not used in the mining of knowledge (dictio-
naries), therefore we can apply both rule-base and dictionary method on it. For
each method, six quantitative characteristics have been determined (Table 1):

— Cover = the number of all nodes assigned by the given method

— Relative cover = cover divided by number of all functors to be assigned
(1089 in the training set). This number also reflects the frequency of several
phenomenona (e.g., possessive pronouns).

— Errors = the number of incorrectly assigned functors

— Hits = the number of correctly assigned functors

— Recall = the percentage of correct functor assignments by the given method
among all functors to be assigned (hit/1089-100%)

— Precision = the percentage of of correct functor assignments by the given
method among all functors assigned by this method (hits/cover-100%)

[Method | Cover[Rel. cover] Hits]  Recall| Errors|Precision]
pred 104 9.5 % 104 9.6 % 0 100 %
verbs_active 199 183 % 184 16.9 % 15| 92.5 %
verbs_passive 7 0.6 % 6 0.6 % 1| 85.7%
pnom 34 3.1 % 32 2.9 % 2 941 %
adjectives 177 16.3 % 170 15.6 % 71 96.0 %
numerals 21 1.9 % 15 1.4 % 6| 71.4 %
pronounpos 16 1.5 % 13 1.2 % 3| 81.3%
subconj 3 0.3 % 2 0.2 % 1 66.7%
adverbs 34 3.1 % 30 2.8 % 4 88.2 %
prepnoun 9 0.8 % 9 0.8 % 0| 100 %
similarity 485 445 % 287 26.4 % 198| 59.2 %
| Total |X=1089] ¥=100 %|¥=852|Y=178.2 %|¥=237] 78.2 %|

Table 1. Results of AFA on the testing set

The methods in Table 1 are sorted in the same order as they were executed.
This order permutation reaches the highest precision. The similarity method
is handicapped by the fact that all easily solvable cases are assigned by its
predecessors. If we use similarity alone, we get Recall=Precision=73%.

I believe that the results of this first implementation are satisfactory, I had
expected lower overall precision. However, I cannot compare it to anything else,
since there is no other AFA implementation with comparable recall within the
PDT project.

Rule-based Methods on Training Set In order to verify the precision of RBMs,
we can apply them on the training set as well (see Table 2). Note that the size
of the training set is 6049 nodes.



[Method | Cover| Rel. cover] Hits] Recall| Errors|Precision]

pred 574 9.5 % 554 9.2 % 20| 96.5 %
verbs_active 973 16.1 % 907 15.0 % 66| 93.2 %
verbs_passive 34 0.6 % 27 0.4 % 71 794 %
pnom 164 2.7 % 152 2.5 % 12| 92.7 %
adjectives 1063 17.6 % 976 16.1 % 87| 91.8 %
numerals 92 1.5 % 66 1.1 % 26| 71.7 %
pronounpos 64 1.1 % 61 1.0 % 3l 95.3%
| Total | $=2964]|X=49.0 %|¥=2743]|X=45.3 %|¥=221] 92.5 %]
Table 2. Results of RBMs on the training set

Precision versus Recall We have to decide whether we prefer to minimize the
number or errors (maximizing precision using only the methods with the best
precision) or mazimize the number of correctly assigned nodes (maximizing recall
using all the methods with admissible precision). The optimal compromise should
be influenced by the misclassification cost which can be estimated as an amount
of annotators’ work for finding and correcting incorrectly assigned functors.

5 Conclusion and Future Work

I implemented several methods for automatic functor assignment, tested them
and evaluated their characteristics. Methods based on rules had higher preci-
sion than dictionary-based methods. The possibility of combining individual ap-
proaches opened the question whether we prefer to assign, e.g., 49 % of functors
with 92 % precision or to assign everything with 78 % precision.

All the available TGTSs are from newspaper articles. The distance between
the training set and the testing set is thus rather small. If AFA were to be
applied to other than newspaper articles, it is likely that precision would be
slightly lower.

As more manually annotated TGTSs become available, we can expect im-
provements of the dictionary-based methods. Moreover, it will hopefully be possi-
ble to discover some more rules for functor assignment using the machine learning
system C4.5; we have so far obtained promising preliminary results.

References

1. Bohmov4, A., Panevovd, J., Sgall, P.: Syntactic Tagging: Procedure for the Transi-
tion from the Analytic to the Tectogrammatical Tree Structures. Text, Speech and
Dialogue, Springer (1999)

2. Hajicovd, E., Panevovd, J., Sgall, P.: Manudl pro tektogramatické znackovdni. UFAL
MFF UK (1999)

3. Panevovd, J.: Formy a funkce ve stavbé éeské véty. Academia (1980)

4. Petr Sgall, Eva Hajicovd, and Jarmila Panevova: The Meaning of the Sentence in
its Semantic and Pragmatic Aspects. Reidel, Dordrecht, The Netherlands, 1986.



