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Abstract

A VA

. . t John hit the ball ith the bat
We formalize weighted dependency pars- oo onn ! e hal W e ha

ing as searching for maximum spanning Figure 1: An example dependency tree.

trees (MSTSs) in directed graphs. Using

this representation, the parsing aigorithm Dependency representations, which link words to

of Eisner (1996) is sufficient for search- their arguments, have a long history (Hudson, 1984).

ing over all projective trees |@(n3) time. Figure 1 shows a dependency tree for the sentence

More surprisingly, the representation is John hit the ball with the bat. We restrict ourselves
extended naturally to non-projective pars-  to dependency treeanalyses, in which each word de-
ing using Chu-Liu-Edmonds (Chu and pends on exactly one parent, either another word or a
Liu, 1965; Edmonds, 1967) MST al- dummy root symbol as shown in the figure. The tree
gorithm’ yieiding anO(nz) parsing al- in Figure 1 iSprOjective, meaning that if we put the
gorithm. We evaluate these methods  Words in their linear order, preceded by the root, the
on the Prague Dependency Treebank us- edges can be drawn above the words without cross-
ing online large-margin learning tech- ings, or, equivalently, a word and its descendants
niques (Crammer et al., 2003; McDonald form a contiguous substring of the sentence.

et al., 2005) and show that MST parsing
increases efficiency and accuracy for lan-
guages with non-projective dependencies.

In English, projective trees are sufficient to ana-
lyze most sentence types. In fact, the largest source
of English dependency trees is automatically gener-
ated from the Penn Treebank (Marcus et al., 1993)
and is by convention exclusively projective. How-
ever, there are certain examples in which a non-
Dependency parsing has seen a surge of intgorojective tree is preferable. Consider the sentence
est lately for applications such as relation extracjohn saw a dog yesterday which wasa Yorkshire Ter-
tion (Culotta and Sorensen, 2004), machine transter. Here the relative clausghich was a Yorkshire
lation (Ding and Palmer, 2005), synonym generaferrier and the object it modifies (th#og) are sep-
tion (Shinyama et al., 2002), and lexical resourcarated by an adverb. There is no way to draw the
augmentation (Snow et al.,, 2004). The primargdependency tree for this sentence in the plane with
reasons for using dependency structures instead b crossing edges, as illustrated in Figure 2. In lan-
more informative lexicalized phrase structures iguages with more flexible word order than English,
that they are more efficient to learn and parse whilsuch as German, Dutch and Czech, non-projective
still encoding much of the predicate-argument infordependencies are more frequent. Rich inflection
mation needed in applications. systems reduce reliance on word order to express
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root  John saw a dog vyesterday which was a Yorkshire Terrier

(NN 7 N

root O nové vetsinou nema ani zaem a taky na to in@tE nema penize

Heis mostly not even interested in the new things and in most cases, he has no money for it either.

Figure 2: Non-projective dependency trees in English aretiz

grammatical relations, allowing non-projective deinative training methods to non-projective depen-
pendencies that we need to represent and parse eéncies.

ficiently. A non-projective example from the Czech The present work is related to that of Hirakawa
Prague Dependency Treebank (Haji¢ et al., ) is al9@001) who, like us, reduces the problem of depen-
shown in Figure 2. dency parsing to spanning tree search. However, his

Most previous dependency parsing models haearsing method uses a branch and bound algorithm
focused on projective trees, including the worKkhat is exponential in the worst case, even though
of Eisner (1996), Collins et al. (1999), Yamada andf @ppears to perform reasonably in limited experi-
Matsumoto (2003), Nivre and Scholz (2004), andn€nts. Furthermore, his work does not adequately
McDonald et al. (2005). These systems have show@fldress learning or measure parsing accuracy on
that accurate projective dependency parsers can bgld-out data.
automatically learned from parsed data. However, Section 2 describes an edge-based factorization
non-projective analyses have recently attracted sorfé dependency trees and uses it to equate depen-
interest, not only for languages with freer word ordefl€ncy parsing to the problem of finding maximum
but also for English. In particular, Wang and HarpefPanning trees in directed graphs. Section 3 out-
(2004) describe a broad coverage non—projecti\)énes the online large-margin learning framework
parser for English based on a hand-constructed co#sed to train our dependency parsers. Finally, in
straint dependency grammar rich in lexical and Syr§ection 4 we present parsing results for Czech. The
tactic information. Nivre and Nilsson (2005) pre-iré€s in Figure 1 and Figure 2 are untyped, that
sented a parsing model that allows for the introdudS: €dges are not partitioned into types representing
tion of non-projective edges into dependency tregddditional syntactic information such as grammati-
through learned edge transformations within theif@l function. We study untyped dependency trees
memory-based parser. They test this system dRainly, but edge types can be added with simple ex-
Czech and show improved accuracy relative to a prd€nsions to the methods discussed here.
jective parser. Our approach differs from those ea
lier efforts in searching optimally and efficiently the
full space of non-projective trees. 2.1 Edge Based Factorization

The main idea of our method is that dependencin what follows,z = x; - - - x,, represents a generic
parsing can be formalized as the search for a maxiput sentence, ang represents a generic depen-
mum spanning tree in a directed graph. This formalency tree for sentenee Seeingy as the set of tree
ization generalizes standard projective parsing mo@dges, we writéi, j) € y if there is a dependency
els based on the Eisner algorithm (Eisner, 1996) tim y from wordz; to wordz;.
yield efficientO(n?) exact parsing methods for non-  In this paper we follow a common method of fac-
projective languages like Czech. Using this spartering the score of a dependency tree as the sum of
ning tree representation, we extend the work of Mcthe scores of all edges in the tree. In particular, we
Donald et al. (2005) on online large-margin discrim-define the score of an edge to be the dot product be-
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tween a high dimensional feature representation oi‘:h”'éir‘;'fﬁéno_”?‘s/(%)s)
the edge and a weight vector, Edge weight function : E — R
LetM = {(z*,z) : x € V,z* = argmax,, s(z’,z)}
2. LetGy = (V, M)
3. If Gu has no cycles, thenitis an MST: retuhy,

4. Otherwise, find a cycl€' in G
Thi:s the score of a dependency tige®r sentence | LetGo — contract(, C, s)
x IS,

Lety = Chu-Liu-Edmond§Gc, s)
s(woy)= Y s, i)=Y w-f(i,j)

5
6.
7. Findavertexx € Cs.t.(z',x) €y, (2",z) € C
8
(i.9)€y (i.9)€y ¢

. returny U C — {(z",z)}
ontract(G = (V, E), C, s)
1. LetGc be the subgraph aff excluding nodes i

; ; ; . Add a node: to G¢ representing cyclé€’
Assuming an appropriate feature representation a Forz €V — C : Syeo(a . x) € B

well as a weight vectow, dependency parsingisthe ~  add edge(c, z) to Ge with
task of finding the dependency trgewith highest s(e, ) = maxec s(z', )
score for a given sentenae 4. FOXS dee‘g ;(O 1)3&; ch(fN i:fr;) =2

For the rest of this section we assume that the 5(%8 f’n(iaxw,eg[s(mw/) — s(a(z'),z') + s(O)]
weight vectorw is known and thus we know the wherea(v) is the predecessor ofin C
scores(i, j) of each possible edge. In Section 3 we ands(C) =3.,cc s(a(v),v)

. . 5. returnGc¢
present a method for learning the weight vector.
2.2 Maximum Spanning Trees Figure 3: Chu-Liu-Edmonds algorithm for finding

We represent the generic directed grapk- (V, E) maximum spanning trees in directed graphs.

by its vertex se¥V’ = {v1,...,v,} andsetl C [1: 221 Non-projective Trees
n] x [1 : n] of pairs(z, j) of directed edges; — v;.
Each such edge has a scai@, j). SinceG is di- To find the highest scoring non-projective tree we

rected,s(i, j) does not necessarily equdlj,i). A  simply search the entire space of spanning trees with
maximum spanning tree (MST) of Gisatreey C E  no restrictions. Well-known algorithms exist for the
that maximizes the valug(m.)ey s(i,7) such that less general case of finding spanning trees in undi-
every vertex inV appears irny. The maximunpro- rected graphs (Cormen et al., 1990).

jective spanning tree otz is constructed similarly  gicient algorithms for the directed case are less
except that it can only contain projective edges rebve” known, but they exist. We will use here the

ative to some total order on the vertices@f The Chu-Liu-Edmonds algorithm (Chu and Liu, 1965;
MST prgblem for directed graphs is also known A% dmonds, 1967), sketched in Figure 3 follow-
the maximum arborescence problem. ing Georgiadis (2003). Informally, the algorithm has
For each sentence we define the directed graph oo vertex in the graph greedily select the incoming
Go = (Va, Bz) given by edge with highest weight. If a tree results, it must be
Ve = {zo=rootai,...,zn) the maximum spannin_g tree. If not, there must be a
Ew = {(i,§):i#74, (i,§) €[0:n] x [1:n]) pycle. Th_e procedure identifies a cycle and contracts
it into a single vertex and recalculates edge weights
That is,G is a graph with the sentence words andjoing into and out of the cycle. It can be shown that
the dummy root symbol as vertices and a directed maximum spanning tree on the contracted graph is
edge between every pair of distinct words and fronequivalent to a maximum spanning tree in the orig-
the root symbol to every word. It is clear that dedinal graph (Georgiadis, 2003). Hence the algorithm
pendency trees far and spanning trees f@r, co- can recursively call itself on the new graph. Naively,
incide, since both kinds of trees are required to bthis algorithm runs irO(n?) time since each recur-
rooted at the dummy root and reach all the wordsive call takesO(n?) to find the highest incoming
in the sentence. Hence, finding a (projective) depermdge for each word and to contract the graph. There
dency tree with highest score is equivalent to findingre at mostO(n) recursive calls since we cannot
a maximum (projective) spanning treedty, . contract the graph more them times. However,



Tarjan (1977) gives an efficient implementation of

the algorithm withO(n?) time complexity for dense rool 40
graphs, which is what we need here. T - j Saw/;— 30

To find the highest scoring non-projective tree for  Jonn” w:/ -7 Mary
a sentenceg, we simply construct the grapfy, o7

and run it through the Chu-Liu-Edmonds algorithm,

The resulting spanning tree is the best non—projectiv-ghiS is a tree and thus the MST of this graph. We

dependency tree. We illustrate here the applicatio'?ﬁOW need to go up a level an_d_reconstruct the graph.
he edge fromw;, to Mary originally was from the

of the Chu-Liu-Edmonds algorithm to dependenc q i clude that edae. Eurth h
parsing on the simple exampte= John saw Mary, ordsaw, so we Inciude that edge. Furthermore, the
edge fronroot to w;; represented a tree froroot to

with directed graph representati6fy,, k
saw to John, so we include all those edges to get the

ot’“/;\ ° final (and correct) MST,
9/ 20 —\‘ELW/— 30 7'oot\ o
\>Ih/ /\ > 30jsaw\3o
John 30 0 ary “ -
&11 ? John Mary
3 A possible concern with searching the entire space
The first step of the algorithm is to find, for eachof spanning trees is that we have not used any syn-
word, the highest scoring incoming edge tactic constraints to guide the search. Many lan-
root guages that allow non-projectivity are still primarily
20 TN~ 30 projective. By searching all possible non-projective
M{ " / >W trees, we run the risk of finding extremely bad trees.

If the result were a tree, it would have to be the}Ne address this concern in Section 4.

maximum spanning tree. However, in this case wg.2.2 Projective Trees
have a cycle, so we will c_ontract it intq a singl_e node |tis well known that projective dependency pars-
and recalculate edge weights according to Figure 3,4 sing edge based factorization can be handled

Km\ 0 with the Eisner algorithm (Eisner, 1996). This al-
- SN gorithm has a runtime of(n3) and has been em-
//”sz - ( N ployed successfully in both generative and discrimi-
[ John” =7 Mary native parsing models (Eisner, 1996; McDonald et
\’l\& a1 _/ al., 2005). Furthermore, it is trivial to show that

The new vertexw;, represents the contraction ofthe Eisner algorithm solves the maximum projective
verticesJohn andsaw. The edge fromw;; to Mary  spanning tree problem.

is 30 since that is the highest scoring edge from any The Eisner algorithm differs significantly from
vertex inw;s. The edge fronroot into w; is set to the Chu-Liu-Edmonds algorithm. First of all, it is a
40 since this represents the score of the best spdmttom-up dynamic programming algorithm as op-
ning tree originating frontoot and including only posed to a greedy recursive one. A bottom-up al-
the vertices inwj;,. The same leads to the edgegorithm is necessary for the projective case since it
from Mary to w;s. The fundamental property of the must maintain the nested structural constraint, which
Chu-Liu-Edmonds algorithm is that an MST in thisis unnecessary for the non-projective case.

graph can be transformed into an MST in the origi-

nal graph (Georgiadis, 2003). Thus, we recursivelg-3 Dependency Trees as MSTs: Summary

call the algorithm on this graph. Note that we needh the preceding discussion, we have shown that nat-
to keep track of the real endpoints of the edges intoral language dependency parsing can be reduced to
and out ofw; for reconstruction later. Running the finding maximum spanning trees in directed graphs.
algorithm, we must find the best incoming edge tdhis reduction results from edge-based factoriza-
all words tion and can be applied to projective languages with



the Eisner parsing algorithm and non-projective lantraining data:Z = {(z, y:)}i—1
guages with the Chu-Liu-Edmonds maximum spant-Wo = 0; v =0; i =0
ning tree algorithm. The only remaining problem ig?- forn : 1..N
how to learn the weight vectav. 3. fort:1.T _
A major advantage of our approach over othef- minHW(ZH) —w
dependency parsing models is its uniformity and ~ Sts@oye) —s(@ny’) 2 Liye ), ¥y’ € di(ze)
simplicity. By viewing dependency structures as> V=V wy
spanning trees, we have provided a general framé-  i=i+1
work for parsing trees for both projective and non?-W =V/(V *T)
projective languages. Furthermore, the resulting
parsing algorithms are more efficient than lexi-
calized phrase structure approaches to dependertoys after each iteration. This averaging effect has
parsing, allowing us to search the entire space witlbeen shown to help overfitting (Collins, 2002).
out any pruning. In particular the non-projective On each update, MIRA attempts to keep the new
parsing algorithm based on the Chu-Liu-Edmondsveight vector as close as possible to the old weight
MST algorithm providedrue non-projective pars- vector, subject to correctly classifying the instance
ing. This is in contrast to other non-projective methunder consideration with a margin given by the loss
ods, such as that of Nivre and Nilsson (2005), whof the incorrect classifications. For dependency
implement non-projectivity in gseudo-projective  trees, the loss of a tree is defined to be the number
parser with edge transformations. This formulatiorf words with incorrect parents relative to the correct
also dispels the notion that non-projective parsing isee. This is closely related to the Hamming loss that
“harder” than projective parsing. In fact, it is eas-s often used for sequences (Taskar et al., 2003).
ier since non-projective parsing does not need to en- For arbitrary inputs, there are typically exponen-
force the non-crossing constraint of projective treesially many possible parses and thus exponentially
As a result, non-projective parsing complexity is jusmany margin constraints in line 4 of Figure 4.
O(n?), against theO(n?®) complexity of the Eis- _
ner dynamic programming algorithm, which by con3-1 ~ Single-best MIRA
struction enforces the non-crossing constraint. ~ One solution for the exponential blow-up in number
of trees is to relax the optimization by using only the
3 Online Large Margin Learning single margin constraint for the tree with the highest
score,s(x,y). The resulting online update (to be
In this section, we review the work of McDonald etinserted in Figure 4, line 4) would then be:
al. (2005) for online large-margin dependency pars-
ing. As usual for supervised learning, we assume a , ,
training set? = {(x;,y;)}/_,, consisting of pairs St S(w/t’yt) —s(@ny) 2 I/’(yt’y)
of a sentence:; and its correct dependency trge wherey’ = arg max,, s(z¢, y/')
In what follows, dfz) denotes the set of possibleMcDonald et al. (2005) used a similar update with
dependency trees for sentence k constraints for thek highest-scoring trees, and
The basic idea is to extend the Margin Infusedhowed that small values df are sufficient to
Relaxed Algorithm (MIRA) (Crammer and Singer,achieve the best accuracy for these methods. How-
2003; Crammer et al., 2003) to learning with strucever, here we stay with a single best tree because
tured outputs, in the present case dependency trebsst extensions to the Chu-Liu-Edmonds algorithm
Figure 4 gives pseudo-code for the MIRA algorithmare too inefficient (Hou, 1996).
as presented by McDonald et al. (2005). An on- This model is related to the averaged perceptron
line learning algorithm considers a single trainingalgorithm of Collins (2002). In that algorithm, the
instance at each updatewn The auxiliary vector single highest scoring tree (or structure) is used to
v accumulates the successive valuesro$o that the update the weight vector. However, MIRA aggres-
final weight vector is th@verage of the weight vec- sively updatesv to maximize the margin between

Figure 4: MIRA learning algorithm.

min HW(”U - W(i)H



the correct tree and the highest scoring tree, whiatbomplex, consisting of a series of slots that may
has been shown to lead to increased accuracy. or may not be filled with some value. These slots
represent lexical and grammatical properties such as
3.2 Factored MIRA standard POS, case, gender, and tense. The result
It is also possible to exploit the structure of the outis that Czech POS tags are rich in information, but
put space and factor the exponential number of maguite sparse when viewed as a whole. To reduce
gin constraints into a polynomial number of localsparseness, our features rely only on the reduced
constraints (Taskar et al., 2003; Taskar et al., 2004P.0S tag set from Collins et al. (1999). The num-
For the directed maximum spanning tree problenfer of features extracted from the PDT training set
we can factor the output by edges to obtain the folwas 13,450,672, using the feature set outlined by

lowing constraints: McDonald et al. (2005).

Czech has more flexible word order than English
min HW(HI) - W(i)H and as a result the PDT contains non-projective de-
s.t.s(l,j) —s(k,j) > 1 pendencies. On averag23% of the sentences in
V(l,7) € yi, (k. J) & i the training, development and test sets have at least

hi hat th iaht of th i . one non-projective dependency. However, less than
les statis t at; € Wg'gh to t E COfmTICt 'Ecor_mn%% of total edges are actually non-projective. There-
edge to tde word; ar; the welgdttc)) all ot er m-f fore, handling non-projective edges correctly has a
coming edges must be separated by a margin 0 r]elatively small effect on overall accuracy. To show
It is easy to show that when all these constraints, o affect more clearly, we created two Czech data
are satisfied, the correct spanning tree and all inco&ats The first. Czech-A. consists of the entire PDT
rect spanning trees are se_parated py a score at |eislﬁb second, Czech-B, includes only 8% of sen-
as _Ia_rge as the number of incorrect incoming edge?ences with at least one non-projective dependency.
This is because the scores for all the correct arcs CaPhis second set will allow us to analyze the effec-

cel out, leaving only the scores for the errors Causmﬁ\/eness of the algorithms on non-projective mater-
the difference in overall score. Since each single 5. We compared the following systems:

ror results in a score increase of at least 1, the entire
score difference must be at least the number of er-1- COLL1999: The projective lexicalized phrase-structure
. - parser of Collins et al. (1999).
rors. For sequences, this form of factorization has o _
. 2. N&N2005: The pseudo-projective parser of Nivre and

been called local lattice preference (Crammer etal., " \jsson (2005).
2004). Letn be the number of nodes in gragh,. 3. McD2005: The projective parser of McDonald et al.
Then the number of constraints @(n?), since for (2005) that uses the Eisner algorithm for both training and
each node we must maintain— 1 constraints. testing. This system usésbest MIRA withk=5.

The factored constraints are in general more re- 4. Single-best MIRA: In this system we use the Chu-Liu-

.. .. . Edmonds algorithm to find the best dependency tree for
strictive than the original constraints, so they may  gjngie-best MIRA training and testing.

rule out the optimal solution to thF‘T origin_al prob- 5. Factored MIRA: Uses the quadratic set of constraints
lem. McDonald et al. (2005) examines briefly fac- based on edge factorization as described in Section 3.2.
tored MIRA for projective English dependency pars- We use the Chu-Liu-Edmonds algorithm to find the best
. S tree for the test data.

ing, but for that applicationk-best MIRA performs

as well or better, and is much faster to train. 41 Results

Results are shown in Table 1. There are two main
metrics. The first and most widely recognized\ts

We performed experiments on the Czech Prague Dedracy, which measures the number of words that

pendency Treebank (PDT) (Haji¢, 1998; Hajit et al.correctly identified their parent in the tre@omplete

). We used the predefined training, developmenheasures the number of sentences in which the re-
and testing split of this data set. Furthermore, wsulting tree was completely correct.

used the automatically generated POS tags that areClearly, there is an advantage in using the Chu-

provided with the data. Czech POS tags are venyiu-Edmonds algorithm for Czech dependency pars-

4 Experiments



Czech-A Czech-B
Accuracy Complete Accuracy Complete
COLL1999 82.8 -
N&N2005 80.0 318 - -
McD2005 83.3 313 74.8 0.0
Single-best MIRA 84.1 32.2 81.0 14.9
Factored MIRA 84.4 32.3 815 14.3

Table 1: Dependency parsing results for Czech. Czech-Risuhset of Czech-A containing only sentences
with at least one non-projective dependency.

ing. Even though less that¥% of all dependencies English

are non-projective, we still see an absolute improve- Accuracy Complete
. McD2005 90.9 375

ment of up to1.1% in overall accuracy over the Single-best MIRA | 90.2 332

projective model. Furthermore, when we focus on Factored MIRA 90.2 323

the subset of data that only contains sentences with ) ]
at least one non-projective dependency, the effed@P!€ 2: Dependency parsing results for English us-
is amplified. Another major improvement here idhg spanning tree algorithms.

that the Chu-Liu-Edmonds non-projective MST al-

- - - 2
gorlthm3has a parsing complexity Gi(n"), Versus 54 testing with the Chu-Liu-Edmonds algorithm is
the O(n”) complexity of the projective Eisner algo- qse than using the Eisner algorithm. This is not

rithm, which in practice leads to improvements ing,rorising since the Eisner algorithm uses the a pri-
parsing time. The results also show that in termg; knowledge that all trees are projective.

of Accuracy, factored MIRA performs better than
single-best MIRA. However, for the factored modelg  piscussion
we do haveO(n?) margin constraints, which re-
sults in a significant increase in training time oveMWe presented a general framework for parsing de-
single-best MIRA. Furthermore, we can also see thaendency trees based on an equivalence to maxi-
the MST parsers perform favorably compared to thewum spanning trees in directed graphs. This frame-
more powerful lexicalized phrase-structure parsersvork provides natural and efficient mechanisms
such as those presented by Collins et al. (1999) atfior parsing both projective and non-projective lan-
Zeman (2004) that use expensi¢n®) parsing al- guages through the use of the Eisner and Chu-Liu-
gorithms. We should note that the results in CollinEdmonds algorithms. To learn these structures we
et al. (1999) are different then reported here due tesed online large-margin learning (McDonald et al.,
different training and testing data sets. 2005) that empirically provides state-of-the-art per-
One concern raised in Section 2.2.1 is that searckermance for Czech.
ing the entire space of non-projective trees could A major advantage of our models is the abil-
cause problems for languages that are primarily prégy to naturally model non-projective parses. Non-
jective. However, as we can see, this is not a prolprojective parsing is commonly considered more
lem. This is because the model sets its weights wittlifficult than projective parsing. However, under
respect to the parsing algorithm and will disfavorour framework, we show that the opposite is actu-
features over unlikely non-projective edges. ally true that non-projective parsing has a lower as-
Since the space of projective trees is a subset gmptotic complexity. Using this framework, we pre-
the space of non-projective trees, it is natural to worsented results showing that the non-projective model
der how the Chu-Liu-Edmonds parsing algorithnputperforms the projective model on the Prague De-
performs on projective data since it is asymptoticallypendency Treebank, which contains a small number
better than the Eisner algorithm. Table 2 shows thef non-projective edges.
results for English projective dependency trees ex- Our method requires a tree score that decomposes
tracted from the Penn Treebank (Marcus et al., 1993ccording to the edges of the dependency tree. One
using the rules of Yamada and Matsumoto (2003). might hope that the method would generalize to

This shows that for projective data sets, training



include features of larger substructures. Unfortud. Haji¢. 1998. Building a syntactically annotated cor-
nately, that would make the search for the best tree Pus: The Prague dependency treebatskues of Va-

intractable (Hoffgen, 1993). lency and Meaning, pages 106-132.
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