Building a Syntactically Annotated Corpus:

The Prague Dependency Treebank
Jan Haji¢

UFAL MFF UK
Charles University
Malostranské nam. 25
CZ-11800 Prague 1
Czech Republic
hajici@ufal. mff.cuni.cz

1 Introduction

In present-day computational linguistics (CL), availability of annotated data (spoken utterances, written
texts) is becoming a more and more important factor in any new developments. Apart from speech
recognition, where statistical methods are almost exclusively the solution and where the data is a conditio
sine qua non, textual data are being used for so-called training phase of various statistical methods solving
many other problems in the field of CL. While there are many methods which use texts in their plain (or
raw) form (for so-called unsupervised training), more accurate results may be obtained if annotated
corpora are available.

With the increasing complexity of such tasks, the data annotation itself is a complex task. While tagged
corpora (pioneered by Henry Kucera in the 60°s) are now available for English and other languages,
syntactically annotated corpora are rare. Inspired by the most widely used syntactically annotated corpus
of English, the Penn Treebank (now becoming ready to be distributed in its Third edition by the Linguistic
Data Consortium), we decided to develop' a similarly sized corpus of Czech with rich annotation scheme.

We have been in a very good position because as one of the leading personalities of the research team
working on this project we have Jarmila Panevovd, whose life-long intensive research in Czech Syntax
both from the tectogrammatical and syntactico-semantic aspects combining a subtle empirical analysis
with a rigorous explicit description (see ¢.g. Panevova 1971, 1973, 1974, 1975a, 1975b, 1978, 1979, 1991,
1994, and especially Panevova 1980) has been guiding our steps all the time.

The textual data used for the task contain general newspaper articles (40%; including but not limited to
politics, sports, culture, hobby, etc.), economic news and analyses (20%), popular science magazine
(20%), and information technology texts (20%), all selected from the Czech National Treebank.

2 The Prague Dependency Treebank Structure

The Prague Dependency Treebank (PDT) has a three-level structure. Full morphological tagging is done
on the lowest level. The middle level, which is the core level of the current project, deals with syntactic
annotation using dependency syntax; it is called the analytical level. The highest level of annotation is the

! The project was started by support from the grant GACR No. 405/96/0198 (Formal specification of
language structures), and the annotation effort has been made possible by the grant GACR No.
405/96/K214 and by the project of the Ministry of Education of the Czech Republic No. VS96151. The
development of some software tools used in this project has been supported by the grant GACR No.
405/95/0190 and by the individual author’s grant OSF RSS/HESP 1996/195.

tectogrammatical level, or the level of linguistic meaning. We annotate the same text on all three levels,
but the amount of annotated material decreases with the complexity of the levels.

2.1 The Morphological Level

On the morphological level, a tag and a lemma is assigned to each word form as found in the input text.
The annotation contains no (syntactic) structure; no attempt is even made to put together analytical verb
forms, for example.

2.1.1 The tag system

Czech is an inflectionally rich language. The full tag set contains currently 3030 tags (including
morphological variants, which are being distinguished). In order to save space, we present here their list
in an abbreviated form using so-called tag variables, which represent categories which may take all
possible values from a given set. These variables are:

Category Variable | Value | Description

number n singular

plural

dual (only for feminine, instrumental case)

both, or special combinations

case C nominative

genitive

dative

accusative

vocative

locative (always prepositional)

instrumental

any

gender g masc. animate

masc. inanimate

feminine

neuter

any of the above

M or I (masculine)

F or N(not masculine)

F or N (not masculine), but in special combinations only

I or F (masc. inanimate or feminine)

M, T or N (not feminine)

I or N (not masculine animate, not feminine)

—lzN|mlolz|=|=|z|m = |z x| [« = |« 2|~ |x|o|o|x

degrees of d
comparison

base form (positive)

comparative

superlative

person p.L 1™

2nd

3t (p only)

any (p only)

negation a affirmative

negated form

The list of all possible tags follows. Bracketed part in the first column is optional.

Tag Description

VFa verb: infinitive

VMnpa verb: imperative (only: VMS[23]a, VMP[123]a possible, 31 pers.arch.,-2)

VPnpa verb: indicative, present tense (pracujenie)

VUnpa verb: indicative, future tense (where applicable; e.g. byt, pojedu) but not perfective
present

VPEnpa verb: indicative, present tense, with -t (Contraction) (archaic, ex. pracujut)

VUEnpa verb: indicative, future tense, with -t’ (contraction) (archaic, ex. pijdut)

VRgna verb: past participle, active mood (dé/al): here only: VRYSa, VRQXa (for “VRFSa’ or
‘VRNPa’), VRNSa, VRMPa, VRTPa

VREgna verb: past participle, active mood + -t’ (by/t): here only: VREYSa, VREQXa (for
‘VREFSa’ or “'VRENPa’), VRENSa, VREMPa, VRETPa

VRAgnpa verb: past tense, with contracted -s (jsi, ex. by/s), only: VRAYS2a, VRAFS2a,
VRANS2a

VSgn[c]a verb: past participle, passive mood (udéldn): here only: VSYSa, VSQXa (for “VSFSa’
or “VSNPa’ or “VSYS4a’), VSNSa, VSMPa, VSTPa, VSFS4a (udeéldnu)

VSAgnpa verb: past participle, passive mood, with contracted -s (jsi, ex. déldnas), only:
VSAFS2a, VSANS2a

VGnga verb: transgressive present (only: VGSYa, VGSHa, VGPXa)

VVnga verb: transgressive past (only: VVSYa, VVSHa, VVPXa)

VCnp verb: conditional (hyr only); in 3" pers only VCX3

Ngnca nouns (but only patterns ktln, stn and irregular nouns can have neg. N, otherwise A)

Agncda adjectives

AVGgnca adjectives, verbal from present transgressive (délajici)

AVVgnca adjectives, verbal from past transgressive (dodélavsi)

Algn adjectives (sviij-2/nesviij-2/tentam) used as adj. (byt nesviij)

ASMgnc adjectives possessive (to masc.) (-i1v)

ASFgnc adjectives possessive (to fem.) (-in)

ACgn|c]a adjectives, short forms (used also as if verbal pass. part.)ex. rdd, zdrav; only: ACY Sa,
ACQXa (for ‘ACFSa’ or ‘ACNPa’ or ‘ACYS4a’), ACNSa, ACMPa, ACTPa, ACFS4a

PPfnc pronoun personal I/you (two lemmas: jd/ty)

PPfCnc pronoun personal I/you (two lemmas: jd/ty) short form (S[234] only)

PP3gnc pronoun personal he/she/it (one lemma: on) standalone (S[2347] only)

PP3Cgnc pronoun personal he/she/it (one lemma: or) short form (S[234] only)

PP3Rgnc pronoun personal he/she/it (one lemma: on) after prep. (ného, ...)

PPD pronoun personal (he) with prep (nain, pron, dori, ...)

PPA2S1 tys

PDgnc pronoun dem. this/that (lemma: ten, tento, tamten, ...)

PRnc pronoun reflexive se, ¢ from only [23467], n always X

PRCnc pronoun reflexive se, short form (only [34])), n always X (si, se)

PRACncp pronoun reflexive se, short form (only [34])), n always S + contracted -s (jisi, 2 pers.
of hyt): ses, sis; p==2

PSfngnc pronoun possessive my/your (lemma miij/tviij) first number: ‘inner’ number (miij/nds
(lemma maij), tviij/vds (fviij)) no inner gender!
short forms by tag suffix -1 etc. plural gender always X; sg gender mainly by
combinations

PS3gngnc pronoun possessive 3 pers (his/her/its/their), lemma: jeho first gn: inner

gender/mumber; second gn: object gender/number; only some combinations used:
PS3ZSXXX jeho (lemma: jeho)

Tag

Description

PS3FSgnc jeji in sg. (lemma: jeho), but only:gnc=XPc FSX ZS[123567] NS4 1S4 MS4
PS3XPXXX jejich (lemma: jeho)

PSEgngnc pronoun rel. (from poss. his/her/its/their), lemma: jehoz; first gn: inner
gender/mumber; second gn: object gender/number; only some combinations used:
PSEZSXXX jehoz (lemma: jehoz)
PSEFSgnc jejiz in sg. (lemma: jehoz), but only:gnc=XPc FSX ZS[123567] NS4 154
MS4
PSEXPXXX jejichz (lemma: jehoz)

PRSgnc pronoun reflexive possessive sviij NB: short forms by -1 etc.

PLgnc pronoun self (sdm), all (vSechen) NB: short forms by -1 etc.

PAEgnc pronoun rel. or adjectival (other) (jenz)

PAERgnc pronoun rel. jehoZ after prep. (néhoz, némuz, ...) after prep. (see PP3R...)

PEc pronoun rel. genderless/numberless (coz-1)

PQFgnc pronoun quest. or rel. adj. (other) (which, what—jaky, ktery, co)

PQKgc pronoun quest. or rel. (kdo, kdoZ), gender M only!

PQCc pronoun quest. or rel. (co), genderless

PQD pronoun quest. or rel. with prep. (nac, o¢)

PQAKcp pronoun quest. rel. + jsi (s) (kdos,cos), p == 2 always

PIFgnc pronoun indef. (néjaky)

PIK gc pronoun indef. (kdo), gender M only!

PICc pronoun indef. (co), genderless

PNFgnc pronoun neg. (nijaky, ...Zdadny)

PNKc¢ pronoun neg. genderless/numberless indef. (nikdo)

PNCc pronoun neg. genderless/numberless indef. (nic, pranic)

CRgnc numerals: ordinal

CDgnc numerals: generic (-ery), synt. adjective, also dvoji, troji

CDlgnc numerals: generic, have gender: jedny, nejedny

CD2nc¢ numerals: generic, (but: plural only, CD2Pc) (in endings!); counted noun must agree in
¢ and plural number

CDlInc numerals: generic, short forms (~ mésto) (but: singular only, CDJSc); counted noun in
genitive plural! (in endings)

CFgnc numerals: fractions (but: only feminine gender, CFFnc)

CBnc numerals, basic: 5,6,7,8,9,10-20,30,40,50,60,70,80,90 n = S only also sto-1, tisic-1
(num.; sto-2, tisic-2, milién noun)

CGgnce numerals, basic: 1,2 (have gender); 1 -n= Sonly, 2 -n=P only,3,4 - n=P only and
gender always X exc. FD
also sto-1, tisic-1 (mum. CGXnc; case not 1,4,5: sto-2, tisic-2, milién noun) piil-1,
¢tvrt-1 indecl. num. (CGXSX), (piil-2, étvrt-2 n.) case: usually only 2367

CX numerals: roman

CQFgnc numerals: que or rel w/gender/num (kolikdty)

CQc numerals: quest. (kolik)

CIFgnc numerals: indef. with gender/num (nejeden, S only (P see CD1), nékolikdty, tolikdty)

Clc numerals: indef. (tolik, also moc and other “adv.”) [1234567X]

CM numeral: multiplicative (-krdt), synt. adverb, number-krdt

CIM numeral: multiplicative (-krdt), synt. adverb, indef. (folikrdr)

CQM numeral: multiplicative (-krdt), synt. adverb, quest. (kolikrdr)

DB adverbs, base form only (no neg. no grad.)

DGda adverbs, with neg/grad (at least possible neg./grad.)
DGda are the most common — derived from adj. etc.

Rc prepositions

Tag Description

RF prepositions as first part of ‘compound prep.’ (vzhledem)

RVc prepositions with vocalization (-e; also -u, distinguished by -2)
JE conjunctions (coordinating, same level coordination)

JS conjunctions (subordinating)

IC conjunctions (coord.; numeric operators krdt, plus, minus, déleno)
JVnp conjunction “to/when”: condit. form (“aby/kdyby”); 3" pers: JVX3
T particles (ano, ne, ...)

I interjections (hurd, hajdy)

HYPH hyphenated (first part of hyphenated compound, usually from adj.)
ABBRN noun abbreviation

ABBRA adjective abbreviation

ABBRV verbal abbreviation

ABBRD adverbial abbreviation

ABBRC numerical abbreviation

ABBRX unspecified abbr.

ZNUM number using digits (<f num> tag and similar in csts)

ZIP punctuation (<d> tag in csts)

ZSB sentence boundary

NOMORPH no result from morphology

NOMORPH1 no result from morphology, one letter only in word form

Each tag may be followed by a numerical variant and/or register indication, which is separated from the
tag by a hyphen (-). The list of possible variant and register indications is presented in the following table.

Indication | Description

-1 other variant: less frequent

-2 other variant: much less frequent - archaic or bookish

-3 very archaic / possibly also colloquial (-..7)

-4 archaic/bookish, standard at the time it was used (transgr. ‘pres.’ perf.)
-5 colloquial, but tolerated in public writing/speaking

-0 colloquial (should not be used in public writing; mostly spoken)

-7 colloquial (same as -6, but less preferred by speakers)

-9 special use (after certain prepositions, etc.)

For example, NIS6A-1 is the variant form of locative case of a masculine inanimate noun in singular, not

negated.

2.1.2 Morphological Analysis

Morphological analysis is a process the input of which is a word form as found in the text, and the output
of which is a set of possible lemmas which represent such form in the dictionary, and each lemma is
accompanied by a set of possible tags (as defined in the previous section). For example, for the word form
Zenu the morphological analysis returns the following results:

lemma tag(s)

7Zena (woman) NFS4A

hnat (to rush) VPS1A

This example exhibits an ambiguity at the lemma level, but no ambiguity within the lemmas. On the other
hand, the word form uceni displays both types of ambiguity:

lemma tag(s)

uceni (theory) NNS1A,NNS2A NNS3A NNS4A NNS5A NNS6A,NNP1A NNP2A NNP4A NNP5SA

uceny (educated) | AMP11A AMPS1A

There could be as many as five different lemmas for a given word form and as many as 27 different tags
for one lemma.

Morphological analysis currently covers about 720,000 Czech lemmas (including derivations), and is
based on about 210,000 stems. It can recognize about 20 million word forms.

Morphological analysis is the first step towards the first level tagging in the Prague Dependency
Treebank. It can proceed fully automatically and very quickly (about 5000 word forms per second on
average on a P6/200-based machine). We have developed special software tool (called sgd on a Unix
platform, and DA under Windows) which allows for an easy manual disambiguation of the morphological
output. It also helps the annotators to edit the output of the morphology, thus allowing for identification of
possible problems and unknown words in the morphology itself. The disambiguation is being done by
students and proceeds relatively quickly. The texts are processed twice and the results are automatically
compared and manually corrected to get a single, as-much-as-possible error-free tagged text. The level of
differences between any two annotators working on a single text is on average 5%, and there are virtually
no opinion-type disagreements - the differences are typos, misunderstandings, etc.

2.2 The Analytical Level

The analytical (syntactic) level of annotation is central to the current stage of the project (Bémova et al.
1997). We have chosen the dependency structure to represent the syntactic relations within the sentence.
The basic principles can be thus formulated as follows:

¢ The structure of the sentence is an oriented, acyclic graph with one entry node; the nodes of the tree
are annotated by complex symbols (attribute-value pairs);
o The number of nodes of the graph is equal to the number of words in the sentence plus one for the
extra root node;
¢ The annotation result is only
e 1. the structure of the tree,
e 2. the analytical functions of every node;
an analytical function determines the relation between the dependent node and it governing node
(which is the node one level up the tree). All the other node attributes (see the table below) are
used as a guidance for the annotators, or they are used as an input or intermediate data for
various automatic tools which participate in the annotation process, but are not considered to be
the result of analytical annotation. In particular, the tags and lemmas are not disambiguated here,

but are merged into the resulting data structure from the manual annotation on the first
(morphological) level.
The first 12 node attributes are summarized in the following table (there are 8 more “technical” attributes
used for macro programming as intermediate data holders etc.):

Attribute name Brief description

lemma lemma (see sect. 2.1, The Morphological Level)

tag morphological categories, or tag (see sect. 2.1, The Morphological Level)

form word form, after minor changes in some cases (contractions, fixed idioms)

afun the analytical function, or the type of dependency relation (towards the
governing node)

lemid lemma identification (reserved only at present)

mstag morphological/syntactic tag (reserved only at present)

origft original word form as found in the text

origap formatting (preceding the original word form)

gapl,gapZ,gap3 | formatting info preceding form, parts 1,2,3

ord sequence no. of the word form in a sentence (attribute form)

The annotation rules are described in the manual (Bémova et al. 1997), which is currently available as a
technical report and in electronic form as an HTML document (in Czech; on the Internet at
http://fairway. ms.mff. cuni.cz/fes2a/tb/doc/tbman. html). These rules follow, where possible, the traditional
grammar books, but are both extended (where no guidance has been found in such books) and modified
(where the current grammars are inconsistent with themselves). They are intentionally as independent of
any formal theory as possible (even though the decision to use the traditional - at least in Prague -
dependency representations is certainly not quite theory independent - but in fact, this decision made our
lives easier because of several phenomena inherently occurring in Czech, which would otherwise result in
the well-known “crossing brackets” problem).

In the following table, all possible values of the analytical function attribute (a fun) are described

briefly. The existence of a suffixed version (_Co for coordination, _Ap for apposition, Pa for
parenthetical expressions) is marked by an x.

afun _Co | _Ap | _Pa | Description

Pred X X X Predicate if it depends on the tree root (#)

Sb X X X Subject

ObJ X X X Object

Adv X X X Adverbial (without a detailed type distinction)

Atv X X X Complement; technically depends on its non-verbal governor
AtvV X X X Complement, if only one governor is present (the verb)

Atr X X X Attribute

Pnom X X X Nominal predicate’s nominal part, depends on the copula “to be”
AuxV X X X Auxiliary Verb “to be” (hyr)

Coord X X X Coordination node

Apos X X X Apposition node

AuxT X X X Reflexive particle se, lexically bound to its verb

AuxR X X X Reflexive particle se, which is neither Obj nor AuxT (passive)
AuxP X X X Preposition, or a part of compound preposition

AuxC X X X Conjunction (subordinate)

AuxO X X X (Superfluously) referring particle or emotional particle

Auxz X X X Rhematizer or other node acting to stress another constituent
AuxX Comima (but not the main coordinating comma)

AuxG Other graphical symbols not classified as 2AuxK

AuxyY X X X Other words, such as particles without a specific (syntactic)

afun Co | _Ap | _Pa | Description
function, parts of lexical idioms, etc.

AUxS The (artificially created) root of the tree (#)

AuxK Punctuation at the end of sentence or direct speech or citation
clause

ExD X Ellipsis handling (Ex-Dependency): function for nodes which
“pseudo-depend” on a node on which they would not if there
were no ellipsis.

AtrAtr, X A node (analytical function: an attribute) which could depend

Atradv, also on its governor’s governor (and have the appropriate other

ii‘r’gg?' function). There must be no semantic or situational difference

ObjA ti’ between the two cases (or more, in case of several attributes

depending on each other). The order represents annotator’s
preference, but is largely unimportant.

As an example of an analytical-level annotation of a sentence we present here the representation of the
sentence (literal translation given after slashes; translation in parenthesis):

Do/Till 15./15™ kvétna/May mohow/can cestujici/passengers platit/pay dosud/hitherto platnym/valid
zpiisobem/way. (Until May 15, the passengers can pay in the way currently used.)

g2z

AlLxS

]
AuxP

rmohou .
Pred\ Ak
cestujici platit
Sh Chj
kvEtna zplsohem
Ay Ay
plateym
Atr
. dosud
ALHG Ady

The original word forms as well as the attribute values of the analytical function are displayed. This

example shows

ee the extra root node of the tree, with a number of the sentence within a file;

ee the handling of analytical verb form (modal verb mohou+ infinitive platir)

ee the fact that the verb is the governing node of the whole sentence (or of every clause in compound
sentences), as opposed to the complex subject - complex predicate distinction made even in the
otherwise dependency-oriented traditional grammars of Czech, such as (Smilauer 1969)

ee attachment of a manner-type adverbial to a analytical verb form

ee date handling

ee prepositional phrase structure (preposition on top)

and, of course, all the analytical functions assigned to these nodes

2.3 The Tectogrammatical Level

The tectogrammatical level annotation is based on the framework of Functional Generative Description
(FGD) as developed in Prague by Peter Sgall and his collaborators since the beginning of the +1960°s (for
a most detailed and integrated formulation, see Sgall, Hajicova and Panevova 1986). The basic principles
of annotation are different than on the analytical level. Instead of requiring every word becoming a node,
we require that every autosemantic word becomes a node, plus all nodes deleted on the surface - and thus
on the analytical level - will be added.

3 The Manual Annotation of the PDT at the Analytical Level

3.1 Organization

Not surprisingly, the effort to organize the structural annotation appears to be a complicated task. There is
little experience with such a task: we have learned from the LDC’s experience with Penn Treebank, but
there was no other description available of similar projects. The annotation itself begun in November 1996
by constituting a working group of 8 people, 5 of them hired just for the annotation thanks to an external
grant and other support. The remaining three are faculty members: the author of this article, who is
primarily a computer scientist, and who is responsible for the data preparation, software tools,
organization and general administration of the project, Jarmila Panevovd, who is responsible for the
annotation rules, and Alla Bémovd, who, while annotating the treebank, also works on the annotation
rules. All the newly hired people (Eva Burafiova, a linguist, now retired, former faculty member and
member of the Institute, three students of linguistics at the Faculty of Arts: Jifi Karnik, Petr Pajas and Jan
Stépanek, and Zdeiika Ureova, also a linguist by education, with experience in lexicography) were not
only computer-literate, but the students were also studying computer science with various intensity.
Therefore their background allowed us virtually to skip any introduction to computational linguistics and
we could start immediately with the annotation process itself.

The process of annotation has been (and still is) viewed as a cyclical process where the rules for
annotation are being constructed based on the evidence found in the data. Thus we have explained the
basic principles of annotation to the annotators, and asked them to use existing grammar books, most
notably (Smilauer 1969), an old. but still the best Czech grammar description. It also uses dependency
framework, although there are some (easily identifiable and replaceable) deviations. We were aware of the
fact that there are many gaps in such a traditional grammar from the point of view of an explicit
annotation based on the basic principles stated above: mainly, the request to have each input word
represented by a node in the tree (a request quite natural from the computational point of view) is largely
not reflected in any human-oriented grammar description. Nevertheless, before starting to write
authoritative guidelines based on such a grammar, we believed that a definite version can be constructed
on the fly, with annotation corrections made later should the rules change.

After solving the initial hardware and software installation problems the annotation begun in December
1996. The key software tool used was the GRAPH program, developed by Michal Kien initially as his
undergraduate thesis in 1995/96, and greatly enhanced afterwards (see also below under the section 3.2
Tools). This tool allows for graphical viewing and editing of the dependency representation of annotated
sentences.

During the first 6 months (until May 1997) we have annotated roughly 4,000 sentences of newspaper
texts. We held regular meetings every 2-3 weeks and solved problems which the annotators identified. We
have generated an (rather unordered) set of rules for cases found in the data, which had not been treated
previously in the grammar books or which had been treated inconsistently. After those six months it
became apparent that there is a strong need to organize all these rules (plus those which could be used

directly from the existing grammar) into an “Annotator’s Guidelines”. The development of the Guidelines
is considered to be the second phase of the project.

We have distributed those 4,000 sentences among all the annotators and divided the work in a different
way. Four subtasks were defined:

ee Complete rewrite of the existing grammar (Smilauer 1969) from the annotation point of view based on
examples taken from the grammar.

ee Revision and merging of the above examples and the rules created during the first 6 months.

ee Existing data (those 4,000 sentences) correction based on the Annotator’s Guidelines.

ee Technical editing of the guidelines, to be available both in an HTML format and as a printed manual,
with rich indexing/hyperlink scheme.

Technical editing appeared to be quite a task - given that we wanted to have both a printed and an HTML
version of the manual. Microsoft Word version 8 was supposed to be suitable for this task, and in principle
it is (despite its well-known problems), but the guidelines creation process (done by Jifi Karnik) is very
demanding.

The first task, undertaken by Zdeiika Uregova, which could be dubbed as “Smilauer’s syntax in
examples”, generated over 600 sheets of paper with every subsection from the Novoceska skladba
represented by at least one example. All of these has been revised by Jarmila Panevova, and partially by
others, to confirm or replace any questionable decisions taken in unclear cases. Meanwhile, the structure
of the core chapters of the guidelines have been defined by the author of this article together with the
initial indexing scheme. The indexing scheme has four levels: words, morphological characteristics,
syntactically-based phenomena based on the traditional notions, and the resulting analytical functions.
The indexing, or hyperlinking, in the manual is a very important feature, as it is impossible to structure
the guidelines from several points of view simultaneously. The basic structure follows that of the
traditional grammar book, with sections added where appropriate. This is based on the assumption that a
typical annotator will be a linguist or somebody familiar with the traditional grammar. However, the
indexes serve as entry points for other points of view, such as the “computational” one, starting with
morphological and part-of-speech information, or the “experienced annotator” one, who remembers
wording of the examples, but not quite how to annotate them. Also, the indexes should be also useful for
the user of the treebank, who simply wants to know what an analytical function (such as Adv or Coord)
has been used for. Later, we will develop also the terminological index.

All the annotators have helped to formulate the final wording in the Guidelines, and each of them is
responsible for a certain section of the Guidelines (for example, for subject, or rhematizers and multiword
units, etc.). Given their effort in this respect, and also their contribution to the formulation of the
annotation rules during the first phase of the project, they all become not only the annotators, but also the
authors of the Guidelines (Bémova et al. 1997).

Starting November 1997, even though the Guidelines are not quite complete and not all problems have
been resolved, we started the third phase: annotation of new data continues. We expect to have 120,000
sentences annotated by the end of June of 1998. In the final phase of the project we will run consistency
tests, which are now being prepared by people outside the group. We aim at half million words (200,000
sentences) to form the Prague Dependency Treebank at the end of the project. There are also other non-
trivial tasks connected to the project: for example, the tagged data (level 1) have to be merged with the
structurally annotated data, changes in morphology have to be incorporated, the resulting format must be
converted to SGML to be included in the Czech National Corpus, etc. These tasks are being worked on by
our collaborators from our Institute, mainly by those who are ultimately interested in using the PDT for
their own research.

3.2 Tools

Manual annotation does not mean that people are typing complicated formal representations by hand into
a computer. Even the first annotation attempts in the times when graphical editing was resource-

demanding and therefore not feasible were guided by software tools. These tools allowed the annotators to
assign only a formally correct entry, avoiding expensive checking-and-correction process afterwards.

Based on the availability of computing power today, we decided that for the annotation of the PDT we use
as advanced tools as possible. After one year of experience of annotating both morphologically and
syntactically, it seems that this was the right choice.

3.2.1 Morphological disambiguation: sgd and DA

We use a special purpose tool for morphological annotation, which allows for an easy disambiguation of
lemmas and tags as output by the morphological analyzer. The tool has first been implemented under the
Linux operating system under the name sgd by Karel Skoupy (and is capable of running also on Solaris
and other operating systems of the Unix type). It has been reimplemented also for the Windows 95
platform by Jifi Hana (under the DA name), to allow for annotators who do not have the possibility to
install Linux on their home machines. The user interface is identical. The sgd tool is text-terminal based
so it can be relatively easily (character coding problems aside) used from any vt 100-capable terminal, as
well as a from an xterm or similar programs.

The tools work full screen on texts in a SGML format (as defined by the Czech National Corpus’ standard
data type definition, namely, the csts . dtd) preprocessed by a morphological processor (see sect. 2.1.2
Morphological Analysis above). The annotators are presented with a list of ambiguous words as found in
the input text (expandable to full text list, with ambiguous words marked by an asterisk). The full text
context is also displayed in a separate window, with the active word marked by reverse video. The largest
part of the screen is devoted to the disambiguation process itself. The annotator first chooses the correct
lemma, and then, if needed (which is usually the case, as more than 45% words (tokens) are
morphologically ambiguous in Czech), the correct tag. S/he has the possibility also to edit both the lemma
and the tag, in case the morphological processor did not know the word altogether or made an error. The
text is saved only with the lemmas and tags chosen by the annotators. We must admit that saving only the
disambiguated lemmas and tags was a decision which now makes problems when we want to upgrade the
annotated data using new lexicons and tags (as the morphology evolves, of course).

There are other tools related to morphological annotation, but these are mostly standard Unix tools (diff,
flex, awk, perl etc.). These help to resolve differences between two annotators on the same text and to do
other conversions of the material.

3.2.2 The analytical level annotation tool: GRAPH

The analytical level, even though we are interested in the structure and one attribute (analytical function)
“only”, is a major challenge because of its inherently non-linear nature. We have used a program called
rather uninspiratively GRAPH. This program works under Microsoft Windows (3.1 and 95) and has been
developed as a graduate thesis based on initial specification developed long before the annotation project
actually began. It has changed a lot since then - there were about 40 versions of it with bug fixes, minor
and major updates. The program allows for drag-and-drop style editing of trees with annotated nodes. It is
not just for dependency-based formal representations, even though it has special features (such as visual
node ordering) which were inspired by such formalisms. Several files can be opened concurrently,
(sub)trees may be copied among them using multiple-buffer clipboard, files may be searched for node
annotations. The display of trees (attributes to be displayed, colors, fonts, line thickness, etc.) is fully
configurable to suit the task at hand as well as the annotator’s preferences, which might depend on the
hardware or other differences. The program can be completely mouseless driven, too.

One of the major features recently introduced into the GRAPH program is the possibility to use macros -
or in other words, the program became programmable. The programming language (which is interpreted
at the moment) is similar to C but contains only those constructs necessary for the annotation tasks. The

functions can be invoked interactively (by a keypress) or from the command line when starting the
GRAPH program. These macros have been used so far for two different purposes:

ee as shortcuts, long asked for by the annotators, to avoid opening 2 or 3 windows when selecting the
appropriate analytical function for a node in the tree;

oo for a preliminary assignment of analytical functions to nodes when the tree structure is built, but before
the manual node annotation.

The programming facility is not intended to be used by the annotators, but they are able to use the macros
prepared by programmers. We expect that we will use these macros also for tree checking and
transformations, will it be necessary e.g. after changes made to the annotation rules. The programming
language allows for almost all the editing operations made normally by the annotators, including tree
restructuring. Thus in principle they could be used also for initial tree structure assignment, but it will
have to be seen if such a “macro” is feasible to implement (in fact, that would be an attempt at parsing!).

The shortcuts allow to assign an analytical function to an active node by a simple keypress, or a Ctrl
and/or Shift plus a key in case of functions “suffixed” by Co, Ap or Pa. These macros also store the
value previously assigned to this node, and another macro function, when invoked, can thus revert to the
previous value, should the annotator decide that s/he made a mistake. There are also macros for node
swap, for assignment of the At r function to all nodes in a subtree (a frequent case near the leaves of the
tree), and for special coordination and apposition handling.

The initial analytical function assignment is performed by a 800+ lines long function which tries to assign
the most plausible analytical function to every node of a tree. The assignment is based on relatively simple
hand-crafted rules. They are far from perfect, and sometimes intentionally disregard some complicated
contexts, but as the first feedback from the annotators shows, they are correct in almost 80% cases. These
rules will be complemented by a set of rules working with lists of verbs requiring certain type of object
constructions, which should enhance the assignment of he Obj analytical function and avoid the need to
search such lists in the Guidelines (similarly, the function can deal with multiword prepositions and
conjunctions, rhematizers etc.).

The initial assignment function can also be used (under a different name) on a file as a whole, which
means that the annotators don’t have to run the macro on every tree. The batch feature of the GRAPH
program also allows to run the same macro on many files using a single command, which might help
should the work be divided between “structure” annotation and “analytical function” annotation (which is
not the case at the moment, but it is an open question whether we will do it in the future or not).

The macros could be used also for complex searches in the whole treebank, but currently this is possible
only at the program level. We plan to introduce also an interactive user interface to the macro
programming language, which would allow also the user to specify a complex search query.

4 Treebank Usage: Parsing Unrestricted Text

The treebank can obviously be used for further linguistic research, as it contains a lot of material
annotated in a way directly usable by original linguistic research, quickly searchable using different
criteria. However, in the present contribution we will discuss a more “computational” usage of the
treebank, namely, as a basis for creating a statistically-based parser of unrestricted written text.

4.1 The Problem of Parsing

There are many attempts to parse sentences of natural language at various levels (Brill 1993a, Brill 1993b,
Collins 1996, Collins 1997, Ribarov 1996). We aim here at syntactico-semantic parsing of unrestricted
text. It is a well-known fact that hand-crafted rules work well for restricted domains and vocabularies,
whereas they generally fail for unrestricted text parsing. So far the (partial and imperfect, but still the best

available) answer to this problem has been statistical parsing based on training on manually annotated
data.

Having such a resource available for Czech (the Prague Dependency Treebank as described in the
previous sections), we decided to pursue this paradigm further, trying to combine the best of both worlds.
While statistical models are good at discovering relations which no linguist would and even could
consider without examining similar amount of data (which is typically impossible), the computational
linguistics perspective is indispensable in guiding the selection process.

4.2 The Model

We have developed a statistical model which has been successfully used for tagging (full morphological
disambiguation), where it improved accuracy by 10 percentage points, from 80% (Hladka 1994, Haji¢ and
Hladka 1997a) to 90% (Haji¢ and Hladka 1997b). The statistical model is based on the exponential
probabilistic model of the form

Y1) = €51 0 50/ 7,0

where fi(y.x) is a feature selector function, which returns 1 or 0 depending on the value of y and the
context x, 7, is its weight, and Z,(x) is a normalization factor making the distribution a probabilistic
distribution which sums to 1.

This crucial property of this model, used successfully for many applications in tagging as well as in
machine translation, is the set of » features (typically in the order of hundreds). These features are selected
automatically, based on objective criteria, from a much larger “pool” of available features. The selection of
features may be guided by two different principles: a “minimal cross-entropy” principle, which compares
the probability distribution constructed to the training data (using the cross-entropy measure, or simply

the probability of training data), or “minimal error rate” (again, on training data). We have chosen the
second principle, as it more directly attacks the problem at hand.

The selection of features, however, depends also on the values of ;. The basic method for feature weight
computation is the Maximum Entropy method. Unfortunately this method involves several numerical
iterative algorithms which makes it rather slow. We believe, based on our experience with similar models
(and with smoothing, which displays a similar “weighting” issue, in general) that the exact weight
computation is not so important to the resulting model performance, and thus that the values of ; may be
roughly - and quickly - approximated instead. This would allow to select features from larger pools,
enabling more sophisticated features to be selected.

4.3 The Parsing Scheme

It is simple to define what is to be predicted in tagging: for each input word form, it is the tag of that
word. In parsing, however, there is no straightforward way to define the output random variable. It scems
that the most natural way is to predict (within the dependency framework) the governor of each word.
Each node is a k-tuple of attribute-value pairs, such as lemma, tag, form, analytical function, etc. The
context of a dependency relation is then the linear list of nodes (with some values possibly unspecified) of
the whole sentence, plus the set of dependency relations generated so far. Although in principle the
dependency relations within a sentence can be generated in any order (just making sure that the result is a
tree), we prefer them being generated in a top-down manner. It makes our life easier in the sense of
getting rid of deferred feature evaluation and similar computationally expensive phenomena.

The pool of features to select from during the training phase of our exponential model contains features,
which appeared at least once (or, in general, m-times) in the training data and which correspond to the
following templates:

Dependent node | Skip Which Immediate Parent of Immediate | Left Brother
Governor? Governor Governor

all values do not skip all values any any
all values do not skip POS or lemma only | POS or lemma only | any
all values certain POS values | all values any any
all values do not skip POS or lemma only | any all values

An example of such a feature could be the following: “The current node is a noun, its governor is a
preposition, and the governor of its governor is a verb”. Such feature, if selected, should be presumably
given substantial weight, as it is the general scheme for many adverbials and objects (as opposed to the
feature “The current node is a verb, its governor is a preposition and the governor of its governor is a
verb”).

The will be a certain number of features representing the non-projectivity of the tree. A feature f, will
return 1 if the number of edges of the tree causing non-projectivity is equal to p. These features will,
presumably get negative weights to discount for too “wildly” non-projective trees.

If this set of templates is not sufficient enough, we will add more sophisticated features to the pool one by
one, implemented as code segments. We assume indeed that these features will be selected by an objective
selection process, but if not, we will not force their selection in any way.

Moreover, there will be a feature the task of which is to make sure that the result is a tree, not a general
graph. Such feature will be formulated as the inverse relation (it will return the value 1 if the graph is not
a tree) and it will be given the weight minus infinity (or, simply, a very large negative number). This
feature must always be present.

The computation of the feature weights will be approximated very roughly from the inverse of the
frequency of the feature, which should prefer more specific features.

The selection process will then proceed as follows: (a) it will start with the tree-preserving feature only,
(b) it will set the feature-adding threshold to some large but reasonable number, (¢) for each possible
feature from the pool of features, it will approximate its weight, and compute the error reduction count on
the training data should such feature be added permanently, (d) if the reduction is higher than the
threshold, it will add the feature permanently to the set, and it will take another feature and continue with
the step (c), (e) if all features have been tested (and possibly added to the resulting set of features), it will
lower the initial threshold by half, and if it is not lower than a preset minimal threshold, it will start over
again with the first feature from the pool with the step (¢).

After the training phase is finished and the set of features with weights associated to them is completed,
the parsing itself will proceed as follows: (a) it starts at the artificial single node making it the initial parse
tree, (b) it puts all edges (dependencies) possible to expand the tree on the stack, together with their
probability, (c) it gradually expands the stack in a breadth-first (parallel) manner (up to a certain breadth,
called the “beam width™), and (d) after all edges have been added, it selects the most probable parse tree
by simply taking the maximum of the product of all the edge probabilities.

5 Conclusions

Everybody would certainly agree that to build a treebank is a difficult task. Our belief is, however, that all
the hard work will pay off - in that not only us who are building it, but all the computational linguists
interested in morphology and syntax of natural languages in general and of Czech or other inflectional
and free word order languages in particular will benefit from its existence. The building of the treebank
has been very fruitful even now, halfway through the whole treecbank annotation: we have been effectively
forced to describe the syntactic behavior of Czech more explicitly and more widely (in the sense of overall
coverage, including also so called “peripheral” phenomena) than ever.

6 References

Bémova et al. (1997): Anotace na analytické roving - ptirucka pro anotatory [Apnotation on the
Analytical Level - Annotator’s Guidelines], Technical Report #4 (draft), LJD UFAL MFF UK, Prague,
Czech Republic (in Czech).

Brill, E. (1993a): Automatic Grammar Induction and Parsing Free Text: A Transformation-Based
Approach. In: Proceedings of the 3™ International Workshop on Parsing Technologies, Tilburg, The
Netherlands.

Brill, E. (1993b): Transformation-Based Error-Driven Parsing. In: Proceedings of the 12™ National
Conference on Artificial Intelligence.

Collins, M. (1996): A New Statistical Parser Based on Bigram Lexical Dependencies, In: Proceedings of
the 34" Annual Meeting of the ACL 96, Santa Cruz, CA, USA, June 24-27, pp. 184-191.

Collins, M. (1997): Statistical Parser Based on Bigram Lexical Dependencies, In: Proceedings of the 35
Annual Meeting of the ACL/EACL’97, Madrid, Spain.

Hajic, J., and Hladka, B. (1997a): Probabilistic and Rule-based Tagger of an Inflective Language - A
Comparison, In: Proceedings of the 5™ Conference on Applied Natural Language Processing, ACL,
Washington, DC, USA, pp. 111-118

Haji¢, J., and Hladka, B. (1997b): Error-driven Tagging for a Rich, Structured Tagset, Based on an
Exponential Model, Technical Report #3, LJD UFAL MFF UK, Prague, Czech Republic.

Haji¢, J., and Hladk4, B. (in print): Morfologické znackovani Cestiny [Morphological tagging of Czech],
In: Slovo a Slovesnost, Vol. 58, No. 4, UJC AV CR, Prague.

Haji¢, J., and Ribarov, K. (1997): Rule-Based Dependencies, In: Proceedings of the Workshop on
Empirical Learning of Natural Language Processing Tasks, MLNet, Prague, Czech Republic, April 23-25,
pp. 125-136

Hladka, B. (1994): Programové vybaveni pro zpracovani velkych ¢eskych textovych korpusii [Software for
Large Czech Corpora Annotation], MSc thesis, MFF UK, Prague, Czech Republic.

Panevova, J. (1971), Opisanie obstojatel’stva vremeni v generativnoj sisteme s neskol ’kimi urovnjami (na
materiale ¢eSskogo jazyka). Prague Bulletin of Mathematical Linguistics 15, 19-40.

Panevova, J. (1973), Véty s véeobecnym konatelem [Sentences with a general Actor]. In: Studia Slavica
Pragensia, Prague: Charles University, 133-144. Translated in: Contributions to Functional Syntax,
Semantics, and Language Comprehension (ed. by P. Sgall), Prague: Academia and Amsterdam: John
Benjamins, 1973, 203-221.

Panevova, J. (1974), On Verbal Frames in Functional Generative Description. Part I, Prague Bulletin of
Mathematical Linguistics 22, 3-40, Part II, Prague Bulletin of Mathematical Linguistics 23, 1975, 17-52.

Panevova, J. (1975a), Rozviti pfedmétova a prislovecna, dopliujici a uréujici [Object and adverbial
modifications, complementing and specifying]. Nase te€ 58, 61-66.

Panevova, J. (1975b), Tzv. vedlejsi véty mistni a jejich vyznamova stavba [The so-called local embedded
clauses and their semantic structure]. Slovo a slovesnost 37, 284-290.

Panevova, J. (1978), Inner Participants and Free Adverbials. In: Prague Studies in Mathematical
Linguistics 6, 227-254.

Panevova, J. (1979), From Tectogramatics to Morphemics. In the series: Explizite Beschreibung der
Sprache und automatische Textbearbeitung IV, Prague: MFF UK.

Panevova, J. (1980), Formy a funkce ve stavbé Ceské véty [Forms and functions in the structure of Czech
sentence]. Prague: Academia.

Panevova, J. (1991), On a Classification of Adverbials. In: Proceedings of the 14™ International Congress
of Linguists I, (ed. by W. Bahner, J. Schild, D. Vichweger), Berlin: Akademie-Verlag, 804-806.

Panevova, J. (1994), Valency Frames and the Meaning of the Sentence. In: The Prague School of
Structural and Functional Linguistics (ed. by Ph. L. Luelsdorff), Linguistic and Literary Studies in Eastern
Europe 41, Amsterdam-Philadelphia: John Benjamins, 223-243.

Ribarov, K. (1996): Automaticka tvorba gramatiky ptirozeného jazyka [The Automatic Creation of a
Grammar of a Natural Language], MSc thesis, MFF UK Prague.

Sgall, P. et al. (1986): The Meaning of the Sentence and Its Semantic and Pragmatic Aspects, Reidel
Publishing Company, Dordrecht, Netherlands, Academia, Prague, Czech Republic.

Smilauer, V. (1947), Novoceskd skladba [Syntax of Contemporary Czech], 1* ed., Prague.
Smilauer, V. (1969), Novodeska skladba [Syntax of Contemporary Czech], 3" ed., SPN, Prague, 574 pp.

