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Abstract

Our CoNLL 2009 Shared Task system in-
cludes three cascaded components: syntactic
parsing, predicate classification, and semantic
role labeling. A pseudo-projective high-order
graph-based model is used in our syntactic de-
pendency parser. A support vector machine
(SVM) model is used to classify predicate
senses. Semantic role labeling is achieved us-
ing maximum entropy (MaxEnt) model based
semantic role classification and integer linear
programming (ILP) based post inference. Fi-
nally, we win the first place in the joint task,
including both the closed and open challenges.

1 System Architecture

Our CoNLL 2009 Shared Task (Hajič et al., 2009):
multilingual syntactic and semantic dependencies
system includes three cascaded components: syn-
tactic parsing, predicate classification, and semantic
role labeling.

2 Syntactic Dependency Parsing

We extend our CoNLL 2008 graph-based
model (Che et al., 2008) in four ways:

1. We use bigram features to choose multiple pos-
sible syntactic labels for one arc, and decide the op-
timal label during decoding.

2. We extend the model with sibling features (Mc-
Donald, 2006).

3. We extend the model with grandchildren fea-
tures. Rather than only using the left-most and right-
most grandchildren as Carreras (2007) and Johans-
son and Nugues (2008) did, we use all left and right
grandchildren in our model.

4. We adopt the pseudo-projective approach in-
troduced in (Nivre and Nilsson, 2005) to handle the
non-projective languages including Czech, German
and English.

2.1 Syntactic Label Determining

The model of (Che et al., 2008) decided one la-
bel for each arc before decoding according to uni-
gram features, which caused lower labeled attach-
ment score (LAS). On the other hand, keeping all
possible labels for each arc made the decoding in-
efficient. Therefore, in the system of this year, we
adopt approximate techniques to compromise, as
shown in the following formulas.

f lbl
uni(h, c, l) = f lbl

1 (h, 1, d, l) ∪ f lbl
1 (c, 0, d, l)

L1(h, c) = arg maxK1
l∈L(w · f lbl

uni(h, c, l))

f lbl
bi (h, c, l) = f lbl

2 (h, c, l)

L2(h, c) = arg maxK2

l∈L1(h,c)(w · {f lbl
uni ∪ f lbl

bi })
For each arc, we firstly use unigram features to

choose the K1-best labels. The second parameter of
f lbl
1 (·) indicates whether the node is the head of the

arc, and the third parameter indicates the direction.
L denotes the whole label set. Then we re-rank the
labels by combining the bigram features, and choose
K2-best labels. During decoding, we only use the
K2 labels chosen for each arc (K2 ¿ K1 < |L|).

2.2 High-order Model and Algorithm

Following the Eisner (2000) algorithm, we use spans
as the basic unit. A span is defined as a substring
of the input sentence whose sub-tree is already pro-
duced. Only the start or end words of a span can link
with other spans. In this way, the algorithm parses
the left and the right dependence of a word indepen-
dently, and combines them in the later stage.

We follow McDonald (2006)’s implementation of
first-order Eisner parsing algorithm by modifying its
scoring method to incorporate high-order features.
Our extended algorithm is shown in Algorithm 1.

There are four different span-combining opera-
tions. Here we explain two of them that correspond
to right-arc (s < t), as shown in Figure 1 and 2. We



Algorithm 1 High-order Eisner Parsing Algorithm
1: C[s][s][c] = 0, 0 ≤ s ≤ N , c ∈ cp, icp # cp: complete; icp: incomplete
2: for j = 1 to N do
3: for s = 0 to N do
4: t = s + jL
5: if t > N then
6: break
7: end if

# Create incomplete spans
8: C[s][t][icp] = maxs≤r<t;l∈L2(s,t)(C[s][r][cp] + C[t][r + 1][cp] + Sicp(s, r, t, l))
9: C[t][s][icp] = maxs≤r<t;l∈L2(t,s)(C[s][r][cp] + C[t][r + 1][cp] + Sicp(t, r, s, l))

# Create complete spans
10: C[s][t][cp] = maxs<r≤t;l=C[s][r][icp].label(C[s][r][icp] + C[r][t][cp] + Scp(s, r, t, l))
11: C[t][s][cp] = maxs≤r<t;l=C[t][r][icp].label(C[r][s][cp] + C[t][r][icp] + Scp(t, r, s, l))
12: end for
13: end for

follow the way of (McDonald, 2006) and (Carreras,
2007) to represent spans. The other two operations
corresponding to left-arc are similar.

 

Figure 1: Combining two spans into an incomplete span

Figure 1 illustrates line 8 of the algorithm in Al-
gorithm 1, which combines two complete spans into
an incomplete span. A complete span means that
only the head word can link with other words fur-
ther, noted as “→” or “←”. An incomplete span
indicates that both the start and end words of the
span will link with other spans in the future, noted as
“99K” or “L99”. In this operation, we combine two
smaller spans, sps→r and spr+1←t, into sps99Kt with
adding arcs→t. As shown in the following formu-
las, the score of sps99Kt is composed of three parts:
the score of sps→r, the score of spr+1←t, and the
score of adding arcs→t. The score of arcs→t is
determined by four different feature sets: unigram
features, bigram features, sibling features and left
grandchildren features (or inside grandchildren fea-
tures, meaning that the grandchildren lie between s
and t). Note that the sibling features are only related
to the nearest sibling node of t, which is denoted as
sck here. And the inside grandchildren features are
related to all the children of t. This is different from

the models used by Carreras (2007) and Johansson
and Nugues (2008). They only used the left-most
child of t, which is tck′ here.

ficp(s, r, t, l) = funi(s, t, l) ∪ fbi(s, t, l)
∪ fsib(s, sck, t) ∪ {

⋃k′
i=1 fgrand(s, t, tci, l)}

Sicp(s, r, t, l) = w · ficp(s, r, t, l)

S(sps99Kt) = S(sps→r) + S(spr+1←t)
+ Sicp(s, r, t, l)

In Figure 2 we combine sps99Kr and spr→t into
sps→t, which explains line 10 in Algorithm 1. The
score of sps→t also includes three parts, as shown
in the following formulas. Although there is no new
arc added in this operation, the third part is neces-
sary because it reflects the right (or called outside)
grandchildren information of arcs→r.

r trc1 rcks r s tr rc1 rck

l
l

 

Figure 2: Combining two spans into a complete span

fcp(s, r, t, l) =
⋃k

i=1 fgrand(s, r, rci, l)

Scp(s, r, t, l) = w · fcp(s, r, t, l)

S(sps→t) = S(sps99Kr)
+ S(spr→t) + Scp(s, r, t, l)



2.3 Features
As shown above, features used in our model can be
decomposed into four parts: unigram features, bi-
gram features, sibling features, and grandchildren
features. Each part can be seen as two different sets:
arc-related and label-related features, except sibling
features, because we do not consider labels when us-
ing sibling features. Arc-related features can be un-
derstood as back-off of label-related features. Actu-
ally, label-related features are gained by simply at-
taching the label to the arc-features.

The unigram and bigram features used in our
model are similar to those of (Che et al., 2008), ex-
cept that we use bigram label-related features. The
sibling features we use are similar to those of (Mc-
Donald, 2006), and the grandchildren features are
similar to those of (Carreras, 2007).

3 Predicate Classification

The predicate classification is regarded as a super-
vised word sense disambiguation (WSD) task here.
The task is divided into four steps:

1. Target words selection: predicates with multi-
ple senses appearing in the training data are selected
as target words.

2. Feature extraction: features in the context
around these target words are extracted as shown in
Table 4. The detailed explanation about these fea-
tures can be found from (Che et al., 2008).

3. Classification: for each target word, a Support
Vector Machine (SVM) classifier is used to classify
its sense. As reported by Lee and Ng (2002) and
Guo et al. (2007), SVM shows good performance on
the WSD task. Here libsvm (Chang and Lin, 2001)
is used. The linear kernel function is used and the
trade off parameter C is 1.

4. Post processing: for each predicate in the test
data which does not appear in the training data, its
first sense in the frame files is used.

4 Semantic Role Labeling

The semantic role labeling (SRL) can be divided
into two separate stages: semantic role classification
(SRC) and post inference (PI).

During the SRC stage, a Maximum en-
tropy (Berger et al., 1996) classifier is used to
predict the probabilities of a word in the sentence

Language No-duplicated-roles
Catalan arg0-agt, arg0-cau, arg1-pat, arg2-atr, arg2-loc
Chinese A0, A1, A2, A3, A4, A5,
Czech ACT, ADDR, CRIT, LOC, PAT, DIR3, COND
English A0, A1, A2, A3, A4, A5,
German A0, A1, A2, A3, A4, A5,
Japanese DE, GA, TMP, WO
Spanish arg0-agt, arg0-cau, arg1-pat, arg1-tem, arg2-atr,

arg2-loc, arg2-null, arg4-des, argL-null, argM-
cau, argM-ext, argM-fin

Table 1: No-duplicated-roles for different languages

to be each semantic role. We add a virtual role
“NULL” (presenting none of roles is assigned)
to the roles set, so we do not need semantic role
identification stage anymore. For a predicate
of each language, two classifiers (one for noun
predicates, and the other for verb predicates) predict
probabilities of each word in a sentence to be each
semantic role (including virtual role “NULL”). The
features used in this stage are listed in Table 4.

The probability of each word to be a semantic role
for a predicate is given by the SRC stage. The re-
sults generated by selecting the roles with the largest
probabilities, however, do not satisfy some con-
strains. As we did in the last year’s system (Che et
al., 2008), we use the ILP (Integer Linear Program-
ming) (Punyakanok et al., 2004) to get the global op-
timization, which is satisfied with three constrains:

C1: Each word should be labeled with one and
only one label (including the virtual label “NULL”).

C2: Roles with a small probability should never
be labeled (except for the virtual role “NULL”). The
threshold we use in our system is 0.3.

C3: Statistics show that some roles (except for
the virtual role “NULL”) usually appear once for
a predicate. We impose a no-duplicate-roles con-
straint with a no-duplicate-roles list, which is con-
structed according to the times of semantic roles’
duplication for each single predicate. Table 1 shows
the no-duplicate-roles for different languages.

Our maximum entropy classifier is implemented
with Maximum Entropy Modeling Toolkit1. The
classifier parameters are tuned with the development
data for different languages respectively. lp solve
5.52 is chosen as our ILP problem solver.

1http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html
2http://sourceforge.net/projects/lpsolve



5 Experiments

5.1 Experimental Setup
We participate in the CoNLL 2009 shared task
with all 7 languages: Catalan (Taulé et al., 2008),
Chinese (Palmer and Xue, 2009), Czech (Hajič et
al., 2006), English (Surdeanu et al., 2008), Ger-
man (Burchardt et al., 2006), Japanese (Kawahara
et al., 2002), and Spanish (Taulé et al., 2008). Be-
sides the closed challenge, we also submitted the
open challenge results. Our open challenge strategy
is very simple. We add the SRL development data
of each language into their training data. The pur-
pose is to examine the effect of the additional data,
especially for out-of-domain (ood) data.

Three machines (with 2.5GHz Xeon CPU and
16G memory) were used to train our models. Dur-
ing the peak time, Amazon’s EC2 (Elastic Com-
pute Cloud)3 was used, too. Our system requires
15G memory at most and the longest training time
is about 36 hours.

During training the predicate classification (PC)
and the semantic role labeling (SRL) models, golden
syntactic dependency parsing results are used. Pre-
vious experiments show that the PC and SRL test re-
sults based on golden parse trees are slightly worse
than that based on cross trained parse trees. It is,
however, a pity that we have no enough time and ma-
chines to do cross training for so many languages.

5.2 Results and Discussion
In order to examine the performance of the ILP
based post inference (PI) for different languages, we
adopt a simple PI strategy as baseline, which se-
lects the most likely label (including the virtual la-
bel “NULL”) except for those duplicate non-virtual
labels with lower probabilities (lower than 0.5). Ta-
ble 2 shows their performance on development data.

We can see that the ILP based post inference can
improve the precision but decrease the recall. Ex-
cept for Czech, almost all languages are improved.
Among them, English benefits most.

The final system results are shown in Table 3.
Comparing with our CoNLL 2008 (Che et al., 2008)
syntactic parsing results on English4, we can see that
our new high-order model improves about 1%.

3http://aws.amazon.com/ec2/
4devel: 85.94%, test: 87.51% and ood: 80.73%

Precision Recall F1
Catalan simple 78.68 77.14 77.90

Catalan ILP 79.42 76.49 77.93
Chinese simple 80.74 74.36 77.42

Chinese ILP 81.97 73.92 77.74
Czech simple 88.54 84.68 86.57

Czech ILP 89.23 84.05 86.56
English simple 83.03 83.55 83.29

English ILP 85.63 83.03 84.31
German simple 78.88 75.87 77.34

German ILP 82.04 74.10 77.87
Japanese simple 88.04 70.68 78.41

Japanese ILP 89.23 70.16 78.56
Spanish simple 76.73 75.92 76.33

Spanish ILP 77.71 75.34 76.51

Table 2: Comparison between different PI strategies

For the open challenge, because we did not mod-
ify the syntactic training data, its results are the same
as the closed ones. We can, therefore, examine the
effect of the additional training data on SRL. We can
see that along with the development data are added
into the training data, the performance on the in-
domain test data is increased. However, it is inter-
esting that the additional data is harmful to the ood
test.

6 Conclusion and Future Work

Our CoNLL 2009 Shared Task system is com-
posed of three cascaded components. The pseudo-
projective high-order syntactic dependency model
outperforms our CoNLL 2008 model (in English).
The additional in-domain (devel) SRL data can help
the in-domain test. However, it is harmful to the ood
test. Our final system achieves promising results. In
the future, we will study how to solve the domain
adaptive problem and how to do joint learning be-
tween syntactic and semantic parsing.
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Syntactic Accuracy (LAS) Semantic Labeled F1 Macro F1 Score
devel test ood devel test ood devel test ood

Catalan closed 86.65 86.56 —– 77.93 77.10 —– 82.30 81.84 —–open —– —– 77.36 —– 81.97

Chinese closed 75.73 75.49 —– 77.74 77.15 —– 76.79 76.38 —–open —– —– 77.23 —– 76.42

Czech closed 80.07 80.01 76.03 86.56 86.51 85.26 83.33 83.27 80.66
open —– —– 86.57 85.21 —– 83.31 80.63

English closed 87.09 88.48 81.57 84.30 85.51 73.82 85.70 87.00 77.71
open —– —– 85.61 73.66 —– 87.05 77.63

German closed 85.69 86.19 76.11 77.87 78.61 70.07 81.83 82.44 73.19
open —– —– 78.61 70.09 —– 82.44 73.20

Japanese closed 92.55 92.57 —– 78.56 78.26 —– 85.86 85.65 —–open —– —– 78.35 —– 85.70

Spanish closed 87.22 87.33 —– 76.51 76.47 —– 81.87 81.90 —–open —– —– 76.66 —– 82.00

Average closed —– 85.23 77.90 —– 79.94 76.38 —– 82.64 77.19
open 80.06 76.32 82.70 77.15

Table 3: Final system results
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Catalan Chinese Czech English German Japanese Spanish
ChildrenPOS ¨ ♦ ¨♦

ChildrenPOSNoDup ¨ ♦ ¨ ♦
ConstituentPOSPattern ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

ConstituentPOSPattern+DepRelation ¨ ♦ ¨ ♦ ¨ ♦
ConstituentPOSPattern+DepwordLemma ¨ ♦ ¨ ♦ ¨ ♦
ConstituentPOSPattern+HeadwordLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

DepRelation N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦
DepRelation+DepwordLemma ¨ ♦ ¨ ♦

DepRelation+Headword N M N M N N M N M N
DepRelation+HeadwordLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

DepRelation+HeadwordLemma+DepwordLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
DepRelation+HeadwordPOS N M N M N M N M N M N

Depword ¨ ♦ ¨ ♦
DepwordLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

DepwordLemma+HeadwordLemma ¨ ♦ ¨ ♦ ¨ ♦
DepwordLemma+RelationPath ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

DepwordPOS N M N M N M ¨ ♦ N M N M ¨ ♦ N M
DepwordPOS+HeadwordPOS ¨ ♦ ¨ ♦

DownPathLength ¨ ♦ ¨ ♦
FirstLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

FirstPOS ¨ ♦ ¨ ♦
FirstPOS+DepwordPOS ¨ ♦ ¨ ♦ ¨ ♦

FirstWord ¨ ♦ ¨ ♦
Headword N M N M N M N M N M ¨ ♦ N

HeadwordLemma N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ ¨ ♦ N
HeadwordLemma+RelationPath ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

HeadwordPOS N M N M N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M
LastLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

LastPOS ¨ ♦ ¨ ♦
LastWord ¨ ♦

Path ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
Path+RelationPath ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

PathLength ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
PFEAT N M N M N M

PFEATSplit N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦
PFEATSplitRemoveNULL N M N M N M

PositionWithPredicate ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
Predicate N M ¨ ♦ N M N M ¨ ♦ N M N M N M ¨ ♦

Predicate+PredicateFamilyship ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
PredicateBagOfPOSNumbered M N M N M N M

PredicateBagOfPOSNumberedWindow5 N M N M N M N M N M
PredicateBagOfPOSOrdered N M N M N M N M N

PredicateBagOfPOSOrderedWindow5 N M N M N M N M N M N M
PredicateBagOfPOSWindow5 N N M N M N M N M N

PredicateBagOfWords M N M N N M N M
PredicateBagOfWordsAndIsDesOfPRED N M N M M N M N M

PredicateBagOfWordsOrdered M N M N M M N M N M
PredicateChildrenPOS N M ¨ ♦ N M N M N M N M N M ¨ ♦

PredicateChildrenPOSNoDup N M N M N M N M N M N M
PredicateChildrenREL N M ¨ ♦ N M N M N M N M ¨ ♦ N M

PredicateChildrenRELNoDup N M ¨ ♦ N M N M N M N M ¨ ♦ N M
PredicateFamilyship ¨ ♦

PredicateLemma N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ ¨ ♦ N M ¨ ♦
PredicateLemma+PredicateFamilyship ¨ ♦ ¨ ♦ ¨ ♦

PredicateSense ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
PredicateSense+DepRelation ¨ ♦ ¨ ♦

PredicateSense+DepwordLemma ¨ ♦ ¨ ♦
PredicateSense+DepwordPOS ¨ ♦ ¨ ♦

PredicateSiblingsPOS N M N M N N M N M N M
PredicateSiblingsPOSNoDup N M ¨ ♦ N M N M N M N M N M ¨ ♦

PredicateSiblingsREL N M ¨ ♦ N M N M N M N M N M
PredicateSiblingsRELNoDup N M N M ¨ ♦ M N M N M ¨ ♦ N M ¨ ♦

PredicateVoiceEn N M
PredicateWindow5Bigram N M N M N M N M

PredicateWindow5BigramPOS N M N M N M N M N M N M
RelationPath ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
SiblingsPOS ¨ ♦ ¨ ♦
SiblingsREL ¨

SiblingsRELNoDup ¨ ♦ ¨ ♦
UpPath ¨ ♦ ¨ ♦ ¨ ♦ ¨

UpPathLength ¨ ♦
UpRelationPath ¨ ♦ ¨ ♦ ¨ ♦

UpRelationPath+HeadwordLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

Table 4: Features that are used in predicate classification (PC) and semantic role labeling (SRL). N: noun predicate
PC, M: verb predicate PC, ¨: noun predicate SRL, ♦: verb predicate SRL.


