
Getting stuff done with Big Data

Lecture Three: Randomised Algorithms

Miles Osborne

School of Informatics

University of Edinburgh

miles@inf.ed.ac.uk

February 11, 2012

Miles Osborne Getting stuff done with Big Data 1

miles@inf.ed.ac.uk

Motivation

Building Blocks
Probabilistic Counting
Universal Hashing
Finger Printing

Bloom Filters

Distance Functions

Miles Osborne Getting stuff done with Big Data 2

Motivation

Computational efficiency will always be a concern:

◮ The more efficient we are, the more/ bigger problems we can
tackle.

◮ Greater efficiency means cheaper running costs.

◮ Using more data can mean better results

◮ Even with a cluster, we may have to compete with other
services.

◮ Storage / processing times may grow very quickly with Big
Data

◮ For mobiles, we may have limited resources.

We will always want to tackle problems that don’t fit into our
machines

Miles Osborne Getting stuff done with Big Data 3

Motivation

Example

Suppose we want to count the numbers of times each word pair
occurs in a large number of documents. How can we do this in a
space efficient way?

◮ An exact approach would try to guess the maximum count per
pair (say 232).

◮ Allocate a 32-bit counter to each pair of words.
◮ Update this counter every time we see the corresponding pair.

◮ Allocating this space in advance is very wasteful.

Can we do better?

Miles Osborne Getting stuff done with Big Data 4

Motivation

We won’t see all possible pairs:

◮ Some pairs will be seen many times (eg function words).

◮ Some pairs will be seen a few times (eg a rare word and a
functiom word).

◮ Most pairs will never be seen at all. (pairs of rare words).

We can use a sparse representation to only store pair-counts we
have seen so far.
Can we do even better?

Miles Osborne Getting stuff done with Big Data 5

Motivation

Say we don’t need exact counts:

◮ We may only care about ranking pairs of words by frequency.

◮ We may only want the top-n most frequent pairs.

By storing approximate counts, we can save on space.

If we can tolerate errors / inexact results, then
randomised approaches will provably be more space/
time efficient (etc) than exact methods.

Miles Osborne Getting stuff done with Big Data 6

Motivation

Randomised algorithms:

◮ Replace an exact method with one that makes mistakes.

◮ These mistakes (error rate, ǫ) can be quantified.

◮ Depending upon the application, the errors may vary:
◮ When storing items, we might think we stored items that we

never inserted (false positive).
◮ When processing items, our approach might fail to find a

solution at all.

◮ Typically, there is a trade-off between the error rate and
performance level.

Randomised approaches are often the most efficient approach to
many classes of problems

Miles Osborne Getting stuff done with Big Data 7

Probabilistic Counting

Returning to our counting problem:

◮ We want to allocate the smallest amount of space possible to
our counters.

◮ Errors here might involve mis-counting.

◮ We could sample the data and only count (say) every 1 item
in ten.

◮ Down-sampling may miss rare events.

◮ Probabilistic counting is a randomised counting approach.

Miles Osborne Getting stuff done with Big Data 8

Probabilistic Counting

Central idea:

◮ Only store exponents (saves on space)

◮ Only approximate counts (makes errors)

True Count Approximate Count
1 1
2 – 10 2
10 – 100 3

Miles Osborne Getting stuff done with Big Data 9

Probabilistic Counting

How it works:

◮ Every time we see an instance, instead of always updating the
counter f by one, only update it by 1 with probability 2−f .

◮ To update the counter, the test is whether some random
number (sampled uniformly between 0 and 1) is less than 2−f

◮ We now need only spend log(log(f)) bits per counter, instead
of log(f) bits.

This counts in log-space.

Miles Osborne Getting stuff done with Big Data 10

Probabilistic Counting

Example

Suppose we count the letter a in some stream:

Stream Random Number Decision

Counter is 0 initially
a 0.3 20 = 1.0, update, new counter is 1
aa 0.7 2−1 = 0.5, fail, no update
aaa 0.3 2−1 = 0.5, update, new counter is 2
aaaa 0.1 2−2 = 0.25, update, new counter is 3

Miles Osborne Getting stuff done with Big Data 11

Probabilistic Counting

Example

In general we will be counting many objects

Instances True count Approximate counts

1000 1 1
1000 4 2

Space used (32 bits per exact counter, 2 bits per approx counter):
True count Approximate count

2000 * 32 2000 * 2

Miles Osborne Getting stuff done with Big Data 12

Probabilistic Counting

◮ At times we can mis-estimate counts by an order of
magnitude or more!

◮ We may under-count or over-count

◮ Using a smaller base (less than 2) reduces errors (there are
more update chances, but we can count to less)

Miles Osborne Getting stuff done with Big Data 13

Hashing

Many randomised approaches rest upon hashing:

◮ Hashing can be used to reduce space requirements (see Bloom
Filters).

◮ . . . can be used for a speed-up (see Distance metrics)

◮ . . . and also for streaming algorithms.

A hash function maps items from a range 1 . . . m to 1 . . . n, where
n << m

Miles Osborne Getting stuff done with Big Data 14

Hashing

A good hash function h(X) has few collisions:

◮ P(h(x) = h(y)) = 1
n

(ie the chance of any two items having
the same address is the chance of visiting any address with an
equal chance)

Good hash functions should be quick to evaluate, since we may be
hashing millions of times.

Miles Osborne Getting stuff done with Big Data 15

Hashing

Universal Hashing is often used:

◮ Pick random numbers a and b.

◮ Pick some large prime p at random:

h(x) = ((ax + b)%p) %n

◮ This uses a modulus operator.

◮ Each time we pick a new set of random numbers, we get a
new hash function.

Universal Hashing closely satisfies the requirements of good
hashing.

Miles Osborne Getting stuff done with Big Data 16

Hashing

Quiz

Suppose you want to hash a string. How can you do it with
Universal Hashing?

Miles Osborne Getting stuff done with Big Data 17

Finger Printing

At times, we need to store some object, but we want to do it
compactly:

◮ A fingerprint is the hash address of some object.

◮ The larger n is, the more bits we use.

◮ The smaller n is, the greater the chance of making a mistake
(a collision).

◮ We only store the fingerprint of objects.
◮ Item comparison is fast: just use fingerprints.
◮ Item storage can be compact: just store fingerprints.

Miles Osborne Getting stuff done with Big Data 18

Finger Printing

Example

String Finger print (bit pattern)
adssdsds 111
dsfdfda 010
wewdsws 110

Using one bit, we collide twice; three bits there are no collisions

Miles Osborne Getting stuff done with Big Data 19

Mid Summary

◮ Motivated the need for randomised algorithms.

◮ Introduced a set of techniques.

Miles Osborne Getting stuff done with Big Data 20

Bloom Filters: Motivation

Often we need to store items

◮ Ngrams for language models

◮ Translation tables

◮ Model parameters

◮ Etc

Miles Osborne Getting stuff done with Big Data 21

Bloom Filters: Motivation

Two storage problems:

◮ Membership task: Did we store some item?

◮ Key-value task: Return the value associated with some key.

We will focus upon the Membership task

Miles Osborne Getting stuff done with Big Data 22

Bloom Filters: Motivation

We can work-out worst-case space requirements

◮ Suppose we have n possible items we need to store
◮ For example, all possible word pairs

◮ To store a set of word pairs of size s:
◮ Work-out how many possible subsets of size s there are.
◮ Allocate a code-word to each distinct subset.
◮ Storing our subset means assigning a code word to that subset

and storing the code-word.

◮ This takes log
(

n

s

)

bits per set.

As the underlying universe increases in size, there are more possible
subsets and so we need to use more space for each item.

Miles Osborne Getting stuff done with Big Data 23

Bloom Filters: Motivation

Suppose we can make mistakes:

◮ We might say we stored an item we never inserted into the
table.

◮ This is a False Positive.

◮ We might fail to recover some item we inserted into the table.
◮ This is a False Negative.

Miles Osborne Getting stuff done with Big Data 24

Bloom Filter

A Bloom Filter is a randomised data-structure which supports
membership queries, with the possibility of False Positives.

◮ Extremely simple.

◮ Based upon a bit vector.

◮ . . . and a set of k hash functions (Universal Hashing) indexing
bit addresses.

◮ Used in mainstream Computer Science:
◮ Routing in networks.
◮ Detecting intruders.
◮ Managing caches.
◮ etc

Also used to represent large language models in Machine
Translation

Miles Osborne Getting stuff done with Big Data 25

Bloom Filters

Suppose we want to store items: A,B ,C :

0 1 2 3 4 5 6
0 0 0 0 0 0 0

The BF is initially empty.

Miles Osborne Getting stuff done with Big Data 26

Bloom Filters

Storing A:

0 1 2 3 4 5 6
1 0 0 1 0 0 0

(Using two hash functions)

Miles Osborne Getting stuff done with Big Data 27

Bloom Filters

Storing B :

0 1 2 3 4 5 6
1 0 0 1 0 0 1

Miles Osborne Getting stuff done with Big Data 28

Bloom Filters

Did we store A?

0 1 2 3 4 5 6
1 0 0 1 0 0 1

We hash again and find that all the hashed bits are set:
→ true positive

Miles Osborne Getting stuff done with Big Data 29

Bloom Filters

Did we store C?

0 1 2 3 4 5 6
1 0 0 1 0 0 1

We hash again and find that bit 2 is not set:
→ true negative

Miles Osborne Getting stuff done with Big Data 30

Bloom Filters

Did we store D?

0 1 2 3 4 5 6
1 0 0 1 0 0 1

We hash again and find that bits 0 and 6 are set:
→ false positive

Miles Osborne Getting stuff done with Big Data 31

Bloom Filters

The error rate depends upon

◮ The number items in the table.

◮ The size of the table.

If we insert more items into a table of fixed size, then the error rate
must increase.

Miles Osborne Getting stuff done with Big Data 32

Bloom Filters

For a given number of entries s and a table of size m bits:

◮ We need to use k hash functions:

k =
m

s
ln 2

◮ The error rate of our table is:

ǫ = 0.5k

Miles Osborne Getting stuff done with Big Data 33

Bloom Filters

Bloom Filters have curious properties:

◮ They never fill-up.

◮ We can always recognise items we inserted into the table.

◮ It is very hard to reverse engineer a BF
◮ Interesting privacy implications.

Miles Osborne Getting stuff done with Big Data 34

Example: Querying 4 billion Strings

We created two BFs to represent 4B strings:

◮ Table One: 700M of space, using 1 hash function.
◮ 50% error rate

◮ Table Two: 2GB of space, using 3 hash functions.
◮ 11% error rate

24 GB to represent the strings exactly using gzip

Miles Osborne Getting stuff done with Big Data 35

Example: Querying 4 billion Strings

700M Filter:

Ngram Inserted into the table?
serve as the instruments Yes
serve as there insurer No

sarkozy sarkozy sarkozy No
ZZZZX zxzxzx rareta No

mein name ish trudyyyy No
bvcxc can’t sphelle No

duo core quad core pentium No
serve the instructional institution No

the vodka is strong No
the meat has gone bad No

Miles Osborne Getting stuff done with Big Data 36

Example: Querying 4 billion Strings

2GB Filter:

Ngram Inserted into the table?
serve as the instruments Yes
serve as there insurer No

sarkozy sarkozy sarkozy No
ZZZZX zxzxzx rareta No

mein name ish trudyyyy No
bvcxc can’t sphelle No

duo core quad core pentium No
serve the instructional institution No

the vodka is strong No
the meat has gone bad No

Miles Osborne Getting stuff done with Big Data 37

Example: Language Models

In Machine Translation we might want to use trillions of words of
text:

◮ It takes 1.5k machines one day (using Map Reduce) to count
all ngrams in this data

◮ As more and more data is used, translation performance
continues to increase

◮ The language model itself cannot be stored on a single
machine

Miles Osborne Getting stuff done with Big Data 38

Example: Language Models

Using a randomised representation:

◮ We can achieve a one-order of magnitude space reduction
over an exact representation

◮ Translation can tolerate errors in the language model

The very largest language models are randomised and distributed
over multiple machines

Miles Osborne Getting stuff done with Big Data 39

Distance Functions: Motivation

A distance function measures how ‘close’ two items are to each
other:

◮ All Facebook friends who share similar interests.

◮ Web pages that are similar to a search query.

◮ Images that look like houses

◮ Documents that are near-duplicates of each other.

All of these tasks use distance functions

Miles Osborne Getting stuff done with Big Data 40

Distance Functions: Motivation

Suppose you want to find all duplicate and near-duplicate Web
pages:

◮ Vast numbers of Web pages are copied / edited.

◮ Web size estimate 2008∗: more than 1 trillion web pages

* http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

Miles Osborne Getting stuff done with Big Data 41

Distance Functions: Motivation

A naive approach compares each page to every other page

◮ A randomised approach can do it using sorting

Basic idea:

◮ Construct a special fingerprinting scheme.

◮ Sort items by their fingerprint.

◮ Items that share the same fingerprint are likely to be similar to
each other.

Miles Osborne Getting stuff done with Big Data 42

Randomised Distance Metric

Represent items as vectors:

◮ Each component might be the presence of a word

◮ Vector representations are common in Search etc

Assign a fingerprint as follows:

◮ Randomly construct a hyperplane.

◮ Assign a zero or one depending on which side of the
hyperplane the vector is placed

Miles Osborne Getting stuff done with Big Data 43

Randomised Distance Metric

Two red points are close to each other

Miles Osborne Getting stuff done with Big Data 44

Randomised Distance Metric

Red points in same plane

Miles Osborne Getting stuff done with Big Data 45

Randomised Distance Metric

Errors:

◮ Random hyperplanes might misclassify an item.

◮ We can repeat the whole process and amplify the success
probability.

Miles Osborne Getting stuff done with Big Data 46

Randomised Distance Metric: Locality Sensitive Hashing

Many language tasks involve finding similar items:

◮ Search (documents similar to a query)

◮ First Story Detection (very new documents)

LSH is a fast cosine-search based upon a randomised distance
metric

Miles Osborne Getting stuff done with Big Data 47

Randomised Distance Metric: Locality Sensitive Hashing

We have used LSH to find breaking news in Twitter

◮ More than 1 million new posts a day

◮ Breaking news: a new Tweet that is different from Tweets
seen so far

Exact approaches take linear time in terms of the number of
documents seen so far

Miles Osborne Getting stuff done with Big Data 48

Randomised Distance Metric: Locality Sensitive Hashing

 0

 20

 40

 60

 80

 100

 120

 0 50000 100000 150000 200000 250000

T
im

e
pe

r
10

0
do

cu
m

en
ts

 (
se

c)

Number of documents processed

UMass system
Our system

Miles Osborne Getting stuff done with Big Data 49

Summary

◮ Introduced Bloom Filters.

◮ Introduced Randomised Distance Functions.

Miles Osborne Getting stuff done with Big Data 50

	Motivation
	Building Blocks
	Probabilistic Counting
	Universal Hashing
	Finger Printing

	Bloom Filters
	Distance Functions

