
Getting stuff done with Big Data

Lecture Two: Map Reduce and Hadoop

Miles Osborne

School of Informatics

University of Edinburgh

miles@inf.ed.ac.uk

February 11, 2012

Miles Osborne Getting stuff done with Big Data 1

miles@inf.ed.ac.uk

Map Reduce
Major Components
Critique

MR Programming Model
Examples
Efficiency

Hadoop
Examples

Miles Osborne Getting stuff done with Big Data 2

Background

MR is a parallel programming model and associated infra-structure
introduced by Google in 2004:

◮ Assumes large numbers of cheap, commodity machines.

◮ Failure is a part of life.

◮ Tailored for dealing with Big Data

◮ Simple

◮ Scales well

Miles Osborne Getting stuff done with Big Data 3

Background

Early Google Server (source: nialkennedy, flickr)

Miles Osborne Getting stuff done with Big Data 4

Background

Who uses it?

◮ Google (more than 1 million cores, rumours have it)

◮ Yahoo! (more than 100K cores)

◮ Facebook (8.8k cores, 12 PB storage)

◮ Twitter

◮ IBM

◮ Amazon Web services

◮ Edinburgh (!)

◮ Many many small start-ups

http://wiki.apache.org/hadoop/PoweredBy

Miles Osborne Getting stuff done with Big Data 5

Source: Zhao et al, Sigmetrics 09
Miles Osborne Getting stuff done with Big Data 6

Miles Osborne Getting stuff done with Big Data 7

Components

Major components:

◮ 1: MR task scheduling and environment
◮ Running jobs, dealing with moving data, coordination, failures

etc

◮ 2: Distributed File System (DFS)
◮ Storing data in a robust manner across a network; moving data

to nodes

◮ 3: Distributed Hash Table (BigTable)
◮ Random-access to data that is shared across the network

Hadoop is an open-source version of 1 and 2; HBase (etc) are
similar to 3

Miles Osborne Getting stuff done with Big Data 8

MR

Tasks are run in parallel across the cluster(s):

◮ Computation moves to the data.

◮ Multiple instances of a task may be run at once
◮ Speculative execution guards against task failure

◮ Tasks can be run rack-aware:
◮ Tasks access data that is within the rack they are running on

Miles Osborne Getting stuff done with Big Data 9

MR

Data is stored across one or more clusters:

◮ Files are stored in blocks

◮ Blocks size is optimised for disk-cache size (often 64M)

◮ Blocks are replicated across the network
◮ Replication adds fault tolerance
◮ Replication increases the chance that the data is on the same

machine as the task needing it

◮ Blocks are read sequentially and written sequentially

◮ Blocks are also spread evenly across the cluster

Miles Osborne Getting stuff done with Big Data 10

MR

Files are often big:

◮ 100s of GB or more

◮ Few, big files mean less overheads

◮ Hadoop currently does not support appending
◮ Appending to a file is natural for streaming input

◮ Under Hadoop, blocks are write-only.

Miles Osborne Getting stuff done with Big Data 11

MR

Tasks and data are centrally managed:

◮ Dash-board to monitor and manage progress

◮ Under Hadoop, this is a single-point of failure

Possibility of moving jobs across data centres

◮ Take advantage of cheap electricity

◮ Deals with load-balancing, disasters etc

Miles Osborne Getting stuff done with Big Data 12

BigTable

BigTable is a form of Database:

◮ Based on shared-nothing architecture

◮ Petabyte scaling, across thousands of machines

◮ Has a simple data model

◮ Designed for managing structured data
◮ Storing Web pages, URLs, etc
◮ Key-value pairs

◮ BigTable provides random access to data

◮ Can be used as a source and sink for MR jobs

Miles Osborne Getting stuff done with Big Data 13

Programming Model

MR offers one restricted version of parallel programming:

◮ Coarse-grained.

◮ No inter-process communication.

◮ Communication is (generally) through files.

Miles Osborne Getting stuff done with Big Data 14

Programming Model

Mapping:

◮ The input data is divided into shards.

◮ The Map operation works over each shard and emits key-value
pairs.

◮ Each mapper works in parallel.

Keys and values can be anything which can be represented as a
string.

Miles Osborne Getting stuff done with Big Data 15

Programming Model

Reducing:

◮ After mapping, each key-value pair is hashed on the key.

◮ Hashing sends that key-value pair to a given reducer.
◮ All keys that hash to the same value are sent to the same

reducer.

◮ The input to a reducer is sorted on the key.
◮ Sorted input means that related key-value pairs are locally

grouped together.

Miles Osborne Getting stuff done with Big Data 16

Programming Model

Shard1

Shard2

Shard3

Shard4

Shard5

Reducer
output1

Reducer
output2

Reducer
output3

M1

M2

M3

M4

M5

R1

R2

R3

Input

Mappers

Reducers

Output
Intermediate
output

Miles Osborne Getting stuff done with Big Data 17

Programming Model

Note:

◮ Each Mapper and Reducer runs in parallel.

◮ There is no state sharing between tasks.
◮ Task communication is achieved using either external resources

or at start-time

◮ There need not be the same number of Mappers as Reducers.
◮ It is possible to have no Reducers.

Miles Osborne Getting stuff done with Big Data 18

Programming Model

Note:

◮ Tasks read their input sequentially.
◮ Sequential disk reading is far more efficient than random access

◮ Reducing starts once Mapping ends.
◮ Sorting and merging etc can be interleaved.

Miles Osborne Getting stuff done with Big Data 19

Aside: Map-Reduce in one line

Under Unix, you can quickly test a MR job:

% cat input | mapper | sort -0 +1 | reducer > output

mapper is your Mapper and reducer is the Reducer

Miles Osborne Getting stuff done with Big Data 20

Example: Tokenisation

Example

Convert John’s to John +s

◮ The input data will be a list of documents

◮ The output will be a list of tokenised documents

◮ There is no need to run a reducing stage

Miles Osborne Getting stuff done with Big Data 21

Example: Tokenisation

Mapper:

◮ Tokeniser reads input

◮ Emits tokenised output

Sentence ordering may not be honoured (how can we do this?)

Miles Osborne Getting stuff done with Big Data 22

Example: Word Counting

Example

Count the number of words in a collection of documents

◮ Our Mapper counts words in each shard.

◮ The Reducer gathers together partial counts for a given word
and sums them

Miles Osborne Getting stuff done with Big Data 23

Example: Word Counting

Mapper:

◮ For each sentence, emit word, 1 pair.
◮ The key is the word
◮ The value is the number 1

Miles Osborne Getting stuff done with Big Data 24

Example: Word Counting

Reducer:

◮ Each Reducer will see all instances of a given word.

◮ Sequential reads of the reducer input give partial counts of a
word.

◮ Partial counts can be summed to give the total count.

Miles Osborne Getting stuff done with Big Data 25

Example: Word Counting

Input sentences:

◮ the cat

◮ the dog

Key Value
the 1
cat 1
the 1
dog 1

Mapper output

Miles Osborne Getting stuff done with Big Data 26

Example: Word Counting

Reducer 1 input Reducer 2 input
the, 1 cat, 1
the, 1
dog, 1

Reducer 1 output Reducer 2 output
the, 2 cat, 1
dog, 1

Miles Osborne Getting stuff done with Big Data 27

Map Reduce Efficiency

MR algorithms involve a lot of disk and network traffic:

◮ We typically start with Big Data

◮ Mappers can produce intermediate results that are bigger than
the input data.

◮ Task input may not be on the same machine as that task.
◮ This implies network traffic

◮ Per-reducer input needs to be sorted.

Miles Osborne Getting stuff done with Big Data 28

Map Reduce Efficiency

Sharding might not produce a balanced set of inputs for each
Reducer:

◮ Often, the data is heavily skewed
◮ Eg all function words might go to one Reducer

◮ Having an imbalanced set of inputs turns a parallel algorithm
into a sequential one

Miles Osborne Getting stuff done with Big Data 29

Map Reduce Efficiency

Selecting the right number of Mappers and Reducers can improve
speed

◮ More tasks mean each task might fit in memory / require less
network access

◮ More tasks mean that failures are quicker to recover from.

◮ Fewer tasks have less of an over-head.

This is a matter of guess-work

Miles Osborne Getting stuff done with Big Data 30

Map Reduce Efficiency

Algorithmically, we can:

◮ Emit fewer key-value pairs
◮ Each task can locally aggregate results and periodically emit

them.
◮ (This is called combining)

◮ Change the key
◮ Key selection implies we partition the output. Some other

selection might partition it more evenly

Miles Osborne Getting stuff done with Big Data 31

Midway Summary

◮ Introduced MR and the MR programming model

◮ Sample MR applications

◮ Looked at efficiency

Miles Osborne Getting stuff done with Big Data 32

History

Nutch started in 2002 by Doug Cutting and Mike Cazfarella

◮ Early open-source web-search engine

◮ Written in Java

◮ Realisation that it would not scale for the Web
◮ 2004: Google MR and GFS papers appeared
◮ 2005: Working MR implementation for Nutch
◮ 2006: Hadoop became standalone project

◮ 2008: Hadoop broke world record for sorting 1TB of data

Miles Osborne Getting stuff done with Big Data 33

Hadoop Overview

Set of components (Java), implementing most of MR-related
ecosystem:

◮ MapReduce

◮ HDFS (Hadoop distributed filesytem)

◮ Services on top:
◮ HBase (BigTable)
◮ Pig (sql-like job control)

◮ Job-control

Miles Osborne Getting stuff done with Big Data 34

Overview

Hadoop supports a variety of ways to implement MR jobs:

◮ Natively, as java

◮ Using the ‘streaming’ interface
◮ Mappers and reducers can be in any language
◮ Performance penalty, restricted functionality

◮ C++ hooks etc

Miles Osborne Getting stuff done with Big Data 35

Word Counting

Word counting using Hadoop:

◮ Use HDFS

◮ Specify the MR program

◮ Run the job

Note: all commands are for Hadoop 0.19

Miles Osborne Getting stuff done with Big Data 36

Word Counting

First need to upload data to HDFS

◮ Hadoop has a set of filesystem-like commands to do this:
◮ hadoop dfs -mkdir data
◮ hadoop dfs -put file.text data/

◮ This creates a new directory and uploads the file file.txt to
HDFS

◮ We can verify that it is there:
◮ hadoop dfs -ls data/

Miles Osborne Getting stuff done with Big Data 37

Word Counting

Mapper:

◮ Using Streaming, a Mapper reads from STDIN and writes to
STDOUT

◮ Keys and Values are delimited (by default) using tabs.

◮ Records are split using newlines

Miles Osborne Getting stuff done with Big Data 38

Word Counting

Mapper:

1 while !eof(STDIN) do
2 line = readLine(STDIN)
3 wordList = split(line)
4 foreach word in wordList do
5 print word TAB 1 NEWLINE
6 end

7 end

Miles Osborne Getting stuff done with Big Data 39

Word Counting

Reducer

1 prevWord = ”” ; valueTotal = 0
2 while !eof(STDIN) do
3 line = readLine(STDIN); (word,value) = split(line)
4 if word eq prevWord or prevWord eq ”” then
5 valueTotal += value
6 prevWord = word

7 else
8 print prevWord valueTotal NEWLINE
9 prevWord = word; valueTotal = value

10 end

11 end
12 print word valueTotal NEWLINE

Miles Osborne Getting stuff done with Big Data 40

Word Counting

Improving the Mapper

1 wordsCounts = {}
2 while !eof(STDIN) do
3 line = readLine(STDIN)
4 wordList = split(line)
5 foreach word in wordList do
6 wordCounts{word}++
7 end

8 end
9 foreach word in keys(wordCounts) do

10 count = wordCounts{word}
11 print word TAB count NEWLINE

12 end

Miles Osborne Getting stuff done with Big Data 41

Word Counting

Our improved Mapper:

◮ Only emits one word-count pair, per word and shard

◮ This uses a Combiner technique

◮ Uses an unbounded amount of memory

Word counting 2 million tokens (Unix MR simulation)

Mapper Time
Naive 1 minute 5 sec
Combiner 10 sec

How can you change it to use a bounded amount of memory?

Miles Osborne Getting stuff done with Big Data 42

Secondary Sorting

At times, we may want to resort the Reducer input:

◮ Hadoop only guarantees that the same keys are grouped
together

◮ We may want to ensure that some key occurs before other
ones

◮ Eg when estimating the parameters of models we may want a
normalising constant first

Miles Osborne Getting stuff done with Big Data 43

Secondary Sorting Example

Reducer input:

Ordinary Resorted

loves mary 1 loves NULL 3
loves NULL 3 loves bob 2
loves bob 2 loves mary 1

After reading each line we can immediately emit probabilities

Miles Osborne Getting stuff done with Big Data 44

Critique

MR has generated a lot of interest:

◮ It solves all scaling problems!

◮ Google use it, so it must be great

◮ Start-ups etc love it and they generate a lot of chatter in the
Tech Press

◮ Big companies use DBs and they don’t talk about it

◮ Who needs complicated, expensive DBs anyway

Miles Osborne Getting stuff done with Big Data 45

Background

Google Trends: Blue (DBMS mentions), Red (Hadoop mentions)

Miles Osborne Getting stuff done with Big Data 46

Critique

Stonebraker et al considered whether MR can replace parallel
databases

◮ P-DBs have been in development for 20+ years

◮ Robust, fast, scalable

◮ Based upon declarative data models

Miles Osborne Getting stuff done with Big Data 47

Critique

Which application classes might MR be a better choice than a
P-DB?

◮ Extract-transform-load problems
◮ Read data from multiple sources
◮ Parse and clean it
◮ Transform it
◮ Store some of the data

◮ Complex analytics
◮ Multiple passes over the data
◮ Computing complex reports etc

◮ Semi-structured data
◮ No single scheme for the data (eg logs from multiple sources)

◮ Quick-and-dirty analyses
◮ Asking questions over the data, with minimum fuss and effort

Miles Osborne Getting stuff done with Big Data 48

Critique

Resulted indicated:

◮ For a range of core tasks, a P-DB was faster than Hadoop
◮ P-DBs are flexible enough to deal eg with semi-structured data

◮ (Unclear whether this is implementation-specific)

◮ Hadoop was criticised as being too low-level
◮ Higher-level abstractions such as Pig might help

◮ Hadoop was easier for quick-and-dirty tasks
◮ Writing MR jobs can be easier than complex SQL queries
◮ Non-specialists can quickly write MR jobs

◮ Hadoop is a lot cheaper

Miles Osborne Getting stuff done with Big Data 49

Critique

MR is not really suited for low-latency problems:

◮ Batch nature and lack of real-time guarantees means you
shouldn’t use it for front-end tasks

MR is not a good fit for problems which need global state
information:

◮ Many Machine Learning algorithms require maintenance of
centralised information and this implies a single task

Use the right tool for the job

Miles Osborne Getting stuff done with Big Data 50

Summary

◮ History

◮ Looked at major components

◮ Two examples

◮ Critique

Miles Osborne Getting stuff done with Big Data 51

	Map Reduce
	Major Components
	Critique

	MR Programming Model
	Examples
	Efficiency

	Hadoop
	Examples

