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Background

MR is a parallel programming model and associated infra-structure
introduced by Google in 2004:

◮ Assumes large numbers of cheap, commodity machines.

◮ Failure is a part of life.

◮ Tailored for dealing with Big Data

◮ Simple

◮ Scales well
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Background

Early Google Server (source: nialkennedy, flickr)
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Background

Who uses it?

◮ Google (more than 1 million cores, rumours have it)

◮ Yahoo! (more than 100K cores)

◮ Facebook (8.8k cores, 12 PB storage)

◮ Twitter

◮ IBM

◮ Amazon Web services

◮ Edinburgh (!)

◮ Many many small start-ups

http://wiki.apache.org/hadoop/PoweredBy
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Source: Zhao et al, Sigmetrics 09
Miles Osborne Getting stuff done with Big Data 6



Miles Osborne Getting stuff done with Big Data 7



Components

Major components:

◮ 1: MR task scheduling and environment
◮ Running jobs, dealing with moving data, coordination, failures

etc

◮ 2: Distributed File System (DFS)
◮ Storing data in a robust manner across a network; moving data

to nodes

◮ 3: Distributed Hash Table (BigTable)
◮ Random-access to data that is shared across the network

Hadoop is an open-source version of 1 and 2; HBase (etc) are
similar to 3
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MR

Tasks are run in parallel across the cluster(s):

◮ Computation moves to the data.

◮ Multiple instances of a task may be run at once
◮ Speculative execution guards against task failure

◮ Tasks can be run rack-aware:
◮ Tasks access data that is within the rack they are running on
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MR

Data is stored across one or more clusters:

◮ Files are stored in blocks

◮ Blocks size is optimised for disk-cache size (often 64M)

◮ Blocks are replicated across the network
◮ Replication adds fault tolerance
◮ Replication increases the chance that the data is on the same

machine as the task needing it

◮ Blocks are read sequentially and written sequentially

◮ Blocks are also spread evenly across the cluster
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MR

Files are often big:

◮ 100s of GB or more

◮ Few, big files mean less overheads

◮ Hadoop currently does not support appending
◮ Appending to a file is natural for streaming input

◮ Under Hadoop, blocks are write-only.
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MR

Tasks and data are centrally managed:

◮ Dash-board to monitor and manage progress

◮ Under Hadoop, this is a single-point of failure

Possibility of moving jobs across data centres

◮ Take advantage of cheap electricity

◮ Deals with load-balancing, disasters etc
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BigTable

BigTable is a form of Database:

◮ Based on shared-nothing architecture

◮ Petabyte scaling, across thousands of machines

◮ Has a simple data model

◮ Designed for managing structured data
◮ Storing Web pages, URLs, etc
◮ Key-value pairs

◮ BigTable provides random access to data

◮ Can be used as a source and sink for MR jobs
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Programming Model

MR offers one restricted version of parallel programming:

◮ Coarse-grained.

◮ No inter-process communication.

◮ Communication is (generally) through files.
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Programming Model

Mapping:

◮ The input data is divided into shards.

◮ The Map operation works over each shard and emits key-value
pairs.

◮ Each mapper works in parallel.

Keys and values can be anything which can be represented as a
string.
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Programming Model

Reducing:

◮ After mapping, each key-value pair is hashed on the key.

◮ Hashing sends that key-value pair to a given reducer.
◮ All keys that hash to the same value are sent to the same

reducer.

◮ The input to a reducer is sorted on the key.
◮ Sorted input means that related key-value pairs are locally

grouped together.
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Programming Model
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Programming Model

Note:

◮ Each Mapper and Reducer runs in parallel.

◮ There is no state sharing between tasks.
◮ Task communication is achieved using either external resources

or at start-time

◮ There need not be the same number of Mappers as Reducers.
◮ It is possible to have no Reducers.
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Programming Model

Note:

◮ Tasks read their input sequentially.
◮ Sequential disk reading is far more efficient than random access

◮ Reducing starts once Mapping ends.
◮ Sorting and merging etc can be interleaved.
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Aside: Map-Reduce in one line

Under Unix, you can quickly test a MR job:

% cat input | mapper | sort -0 +1 | reducer > output

mapper is your Mapper and reducer is the Reducer
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Example: Tokenisation

Example

Convert John’s to John +s

◮ The input data will be a list of documents

◮ The output will be a list of tokenised documents

◮ There is no need to run a reducing stage
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Example: Tokenisation

Mapper:

◮ Tokeniser reads input

◮ Emits tokenised output

Sentence ordering may not be honoured (how can we do this?)
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Example: Word Counting

Example

Count the number of words in a collection of documents

◮ Our Mapper counts words in each shard.

◮ The Reducer gathers together partial counts for a given word
and sums them
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Example: Word Counting

Mapper:

◮ For each sentence, emit word, 1 pair.
◮ The key is the word
◮ The value is the number 1
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Example: Word Counting

Reducer:

◮ Each Reducer will see all instances of a given word.

◮ Sequential reads of the reducer input give partial counts of a
word.

◮ Partial counts can be summed to give the total count.
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Example: Word Counting

Input sentences:

◮ the cat

◮ the dog

Key Value
the 1
cat 1
the 1
dog 1

Mapper output

Miles Osborne Getting stuff done with Big Data 26



Example: Word Counting

Reducer 1 input Reducer 2 input
the, 1 cat, 1
the, 1
dog, 1

Reducer 1 output Reducer 2 output
the, 2 cat, 1
dog, 1
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Map Reduce Efficiency

MR algorithms involve a lot of disk and network traffic:

◮ We typically start with Big Data

◮ Mappers can produce intermediate results that are bigger than
the input data.

◮ Task input may not be on the same machine as that task.
◮ This implies network traffic

◮ Per-reducer input needs to be sorted.
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Map Reduce Efficiency

Sharding might not produce a balanced set of inputs for each
Reducer:

◮ Often, the data is heavily skewed
◮ Eg all function words might go to one Reducer

◮ Having an imbalanced set of inputs turns a parallel algorithm
into a sequential one
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Map Reduce Efficiency

Selecting the right number of Mappers and Reducers can improve
speed

◮ More tasks mean each task might fit in memory / require less
network access

◮ More tasks mean that failures are quicker to recover from.

◮ Fewer tasks have less of an over-head.

This is a matter of guess-work
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Map Reduce Efficiency

Algorithmically, we can:

◮ Emit fewer key-value pairs
◮ Each task can locally aggregate results and periodically emit

them.
◮ (This is called combining)

◮ Change the key
◮ Key selection implies we partition the output. Some other

selection might partition it more evenly
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Midway Summary

◮ Introduced MR and the MR programming model

◮ Sample MR applications

◮ Looked at efficiency
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History

Nutch started in 2002 by Doug Cutting and Mike Cazfarella

◮ Early open-source web-search engine

◮ Written in Java

◮ Realisation that it would not scale for the Web
◮ 2004: Google MR and GFS papers appeared
◮ 2005: Working MR implementation for Nutch
◮ 2006: Hadoop became standalone project

◮ 2008: Hadoop broke world record for sorting 1TB of data
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Hadoop Overview

Set of components (Java), implementing most of MR-related
ecosystem:

◮ MapReduce

◮ HDFS (Hadoop distributed filesytem)

◮ Services on top:
◮ HBase (BigTable)
◮ Pig (sql-like job control)

◮ Job-control
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Overview

Hadoop supports a variety of ways to implement MR jobs:

◮ Natively, as java

◮ Using the ‘streaming’ interface
◮ Mappers and reducers can be in any language
◮ Performance penalty, restricted functionality

◮ C++ hooks etc
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Word Counting

Word counting using Hadoop:

◮ Use HDFS

◮ Specify the MR program

◮ Run the job

Note: all commands are for Hadoop 0.19
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Word Counting

First need to upload data to HDFS

◮ Hadoop has a set of filesystem-like commands to do this:
◮ hadoop dfs -mkdir data
◮ hadoop dfs -put file.text data/

◮ This creates a new directory and uploads the file file.txt to
HDFS

◮ We can verify that it is there:
◮ hadoop dfs -ls data/
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Word Counting

Mapper:

◮ Using Streaming, a Mapper reads from STDIN and writes to
STDOUT

◮ Keys and Values are delimited (by default) using tabs.

◮ Records are split using newlines
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Word Counting

Mapper:

1 while !eof(STDIN) do
2 line = readLine(STDIN)
3 wordList = split(line)
4 foreach word in wordList do
5 print word TAB 1 NEWLINE
6 end

7 end
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Word Counting

Reducer

1 prevWord = ”” ; valueTotal = 0
2 while !eof(STDIN) do
3 line = readLine(STDIN); (word,value) = split(line)
4 if word eq prevWord or prevWord eq ”” then
5 valueTotal += value
6 prevWord = word

7 else
8 print prevWord valueTotal NEWLINE
9 prevWord = word; valueTotal = value

10 end

11 end
12 print word valueTotal NEWLINE
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Word Counting

Improving the Mapper

1 wordsCounts = {}
2 while !eof(STDIN) do
3 line = readLine(STDIN)
4 wordList = split(line)
5 foreach word in wordList do
6 wordCounts{word}++
7 end

8 end
9 foreach word in keys(wordCounts) do

10 count = wordCounts{word}
11 print word TAB count NEWLINE

12 end
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Word Counting

Our improved Mapper:

◮ Only emits one word-count pair, per word and shard

◮ This uses a Combiner technique

◮ Uses an unbounded amount of memory

Word counting 2 million tokens (Unix MR simulation)

Mapper Time
Naive 1 minute 5 sec
Combiner 10 sec

How can you change it to use a bounded amount of memory?
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Secondary Sorting

At times, we may want to resort the Reducer input:

◮ Hadoop only guarantees that the same keys are grouped
together

◮ We may want to ensure that some key occurs before other
ones

◮ Eg when estimating the parameters of models we may want a
normalising constant first
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Secondary Sorting Example

Reducer input:

Ordinary Resorted

loves mary 1 loves NULL 3
loves NULL 3 loves bob 2
loves bob 2 loves mary 1

After reading each line we can immediately emit probabilities
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Critique

MR has generated a lot of interest:

◮ It solves all scaling problems!

◮ Google use it, so it must be great

◮ Start-ups etc love it and they generate a lot of chatter in the
Tech Press

◮ Big companies use DBs and they don’t talk about it

◮ Who needs complicated, expensive DBs anyway
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Background

Google Trends: Blue (DBMS mentions), Red (Hadoop mentions)
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Critique

Stonebraker et al considered whether MR can replace parallel
databases

◮ P-DBs have been in development for 20+ years

◮ Robust, fast, scalable

◮ Based upon declarative data models
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Critique

Which application classes might MR be a better choice than a
P-DB?

◮ Extract-transform-load problems
◮ Read data from multiple sources
◮ Parse and clean it
◮ Transform it
◮ Store some of the data

◮ Complex analytics
◮ Multiple passes over the data
◮ Computing complex reports etc

◮ Semi-structured data
◮ No single scheme for the data (eg logs from multiple sources)

◮ Quick-and-dirty analyses
◮ Asking questions over the data, with minimum fuss and effort
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Critique

Resulted indicated:

◮ For a range of core tasks, a P-DB was faster than Hadoop
◮ P-DBs are flexible enough to deal eg with semi-structured data

◮ (Unclear whether this is implementation-specific)

◮ Hadoop was criticised as being too low-level
◮ Higher-level abstractions such as Pig might help

◮ Hadoop was easier for quick-and-dirty tasks
◮ Writing MR jobs can be easier than complex SQL queries
◮ Non-specialists can quickly write MR jobs

◮ Hadoop is a lot cheaper
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Critique

MR is not really suited for low-latency problems:

◮ Batch nature and lack of real-time guarantees means you
shouldn’t use it for front-end tasks

MR is not a good fit for problems which need global state
information:

◮ Many Machine Learning algorithms require maintenance of
centralised information and this implies a single task

Use the right tool for the job
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Summary

◮ History

◮ Looked at major components

◮ Two examples

◮ Critique
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