Wild Experimenting in MT

Ondřej Bojar, Aleš Tamchyna and Jan Berka

February 17, 2012

Ondřej Bojar, Aleš Tamchyna and Jan Berka

Wild Experimenting in MT

3

- 4 同 6 4 日 6 4 日 6

Tamil

Overview:

- A Dravidian language with more than 60 million native speakers.
- Official language in India, Sri Lanka, Singapore.
- Long history and tradition a classical language.

MT-related properties:

- Uses its own script.
- Written left-to-right.
- Agglutinating language.
- SOV word order.

3

___ ▶

Components of Phrase-based MT (1/2)

- Word alignment
 - Learned from sentence-aligned parallel data.
 - Example query: What is the probability of '*car*' given German '*Auto*'?
 - Implemented in GIZA++.
- Translation model = phrase table
 - Trained heuristically based on the word alignment.
 - Example query: What is the probability of 'a fast car' given 'ein schnelles Auto'?
 - Implementation included in Moses toolkit.
- Language model
 - Trained from target-side monolingual data.
 - How probable are the words 'a fast car' in an English sentence?
 - Various toolkits exits: SRILM, IRSTLM,...

- 4 同 6 4 日 6 4 日 6

Components of Phrase-based MT (2/2)

Feature weights

- Result of optimization towards a metric of translation quality.
- Should the decoder trust language model score? How badly should the decoder penalize changes in word order?
- Optimization algorithms/metrics are an active area of research.
- Most commonly used is Minimum Error Rate Training (MERT), optimizing for BLEU.
- Decoder
 - Combines all previous steps in a model that generates translations based on input sentences.
 - Searches the hypothesis space for the most adequate translation.
 - Many decoders exist, we will be using Moses.

くほと くほと くほと

eman – Experiment MANager

In our SMT playground for eman, the components correspond to seeds:

Pipeline Step	eman Seed	Examples of Seed Arguments
Word alignment	align	corpus, source/target language
Translation model	tm	align step
Language model	lm	srilm step, target language
Weights tuning	mert	model step, sentences for tuning
Translation	translate	mert step, input sentences
Evaluation	eval(uator)	translate step, MT metric

- User defines steps based on seeds.
- eman:
 - Executes the steps.
 - Handles step dependecies, status, cloning,...

- Install eman, prepare the environment for experimenting.
- A quick introduction to using eman.
- Run a baseline experiment English \rightarrow Tamil.
- Explore ways to improve the translation quality.

3

What's wrong with the baseline?

- Tamil is an agglutinating language.
 - One stem/lemma has many forms \Rightarrow *data sparsity*.
 - Word affixes encode a lot of information.
 - This information is mostly represented by syntax in English.
- Tamil has a different word order.
 - English is an SVO language, Tamil is SOV.
 - English *pre*-positions are Tamil *post*-positions.
 - Overall, Tamil constituents tend to be head-final.
- We are using tiny data. Well, that's a technical constaint.

We need better word alignment.

- Instead of form \rightarrow form, let's try stem4 \rightarrow stem4.
- Stemming all words to 4 characters:
 - is crude, linguistically incorrect.
 - almost always improves BLEU score (unless data is really large).
 - \Rightarrow Reduction of data sparsity outweighs stemming errors.

E 5 4

Employ splitting of Tamil affixes.

Align true Tamil stems instead of the crude approximation.

• Will the BLEU score be higher than with stem4->stem4?

3

- 4 同 6 4 日 6 4 日 6

Translate into a different language ta_split with affixes split from stems.

• Bound morphemes become free.

 \Rightarrow Word:morpheme ratio more similar to English.

- Data are dramatically less sparse.
- Can we directly compare BLEU with translations into 'normal' Tamil?

くほと くほと くほと

Treex to the rescue: change source-side word order.

- Less distortion (i.e. need to reorder words when translating).
- Run your Treex reordering scenario on the English data.
- Do a complete training/evaluation pipeline.

3

∃ ► < ∃ ►</p>