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Distributional Semantics
Recall

The main questions have been:

1. What is the sense of a given word?

2. How can it be induced and represented?

3. How do we relate word senses (synonyms, antonyms,
hyperonym etc.)?

Well established answers:

1. The sense of a word can be given by its use, viz. by the
contexts in which it occurs;

2. It can be induced from (either raw or parsed) corpora and can
be represented by vectors.

3. Cosine similarity captures synonyms (as well as other semantic
relations).



From Formal to Distributional Semantics
New research questions in DS

1. Do all words live in the same space?

2. What about compositionality of word sense?

3. How do we “infer” some piece of information out of another?



From Formal Semantics to Distributional Semantics
Recent results in DS

1. From one space to multiple spaces, and from only vectors to
vectors and matrices.

2. Several Compositional DS models have been tested so far.

3. New “similarity measures” have been defined to capture
lexical entailment and tested on phrasal entailment too.



Multiple semantics spaces
Phrases

All the expressions of the same syntactic category live in the same
semantic space.
For instance, ADJ N (“special collection”) live in the same space
of N (“archives”).

important route nice girl little war

important transport good girl great war
important road big girl major war
major road guy small war

red cover special collection young husband

black cover general collection small son
hardback small collection small daughter
red label archives mistress



Multiple semantics spaces
Problem of one semantic space model

and of the valley moon

planet > 1K > 1K > 1K 20.3 24.3
night > 1K > 1K > 1K 10.3 15.2
space > 1K > 1K > 1K 11.1 20.1

“and”, “of”, “the” have similar distribution but a very different
meaning:

“the valley of the moon” vs. “the valley and the moon”

the semantic space of these words must be different from those of
eg. nouns (“valley’, “moon”).



Compositionality in DS: Expectation
Disambiguation



Compositionality in DS: Expectation
Semantic deviance



Compositionality in Formal Semantics
Verbs

Recall:

I an intransitive verb is a set entities, hence it’s a one argument
function. λx .walk(x);

I transitive verb: set of pairs of entities, hence it’s a two
argument function: λy .λx .teases(y , x).
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DP DP\S
The function “walk” selects a subset of De .



Compositionality in Formal Semantics
Adjectives

Syntax: N

ADJ N

N

N/N N

ADJ is a function that modifies a noun:

(λY .λx .Red(x) ∧ Y (x))(Moon) λx .Red(x) ∧ Moon(x)

[[Red]] ∩ [[Moon]]



Compositionality: DP IV
Kintsch (2001)

Kintsch (2001): The meaning of a predicate varies depending on
the argument it operates upon:

The horse run vs. the color run

Hence, take “gallop” and “dissolve” as landmarks of the semantic
space,

I “the horse run” should be closer to “gallop” than to
“dissolve”.

I “the color run” should be closer to “dissolve” than to “gallop”

(or put it differently, the verb acts differently on different nouns.)



Compositionality: ADJ N
Pustejovsky (1995)

I red Ferrari [the outside]

I red watermelon [the inside]

I red traffic light [only the signal]

I ..

Similarly, “red” will reinforce the concrete dimensions of a concrete
noun and the abstract ones of an abstract noun.



Compositionality in DS
Different Models

horse run horse + run horse � run run(horse)

gallop 15.3 24.3 39.6 371.8 24.6
jump 3.7 15.2 18. 9 56.2 19.3
dissolve 2.2 20.1 22.3 44.2 12.4

I Additive and/or Multiplicative Models: Mitchell & Lapata
(2008), Guevara (2010)

I Function application: Baroni & Zamparelli (2010),
Grefenstette & Sadrzadeh (2011)

I For others, see Mitchell and Lapata (2010) overview.



Compositionality as vectors composition
Mitchell and Lapata (2008,2010): Class of Models

General class of models:

~p = f (~u, ~v ,R,K )

I ~p can be in a different space than ~u and ~v .

I K is background knowledge

I R syntactic relation.

Putting constraints will provide us with different models.



Compositionality as vectors composition
Mitchell and Lapata (2008,2010): Constraints on the models

1. Not only the ith components of ~u and ~v contribute to the ith
component of ~p. Circular convolution:

pi = Σjuj · vi−j
2. Role of K , e.g. consider the argument’s distributional

neighbours Kitsch 2001:

~p = ~u + ~v + Σ~n

3. Asymmetry weights pred and arg differently:

pi = αui + βvi

4. the ith component of ~u should be scaled according to its
relevance to ~v and vice versa. multiplicative model

pi = ui · vi



Compositionality: DP IV
Mitchell and Lapata (2008,2010): Evaluation data set

I 120 experimental items consisting of 15 reference verbs each
coupled with 4 nouns and 2 (high- and low-similarity)
landmarks

I Similarity of sentence with reference vs. landmark rated by 49
subjects on 1-7 scale

Noun Reference High Low
The fire glowed burned beamed
The face glowed beamed burned
The child strayed roamed digressed
The discussion strayed digressed roamed
The sales slumped declined slouched
The shoulders slumped slouched declined

Table 1: Example Stimuli with High and Low similarity
landmarks

glowed. Sentence pairs were presented serially in
random order. Participants were asked to rate how
similar the two sentences were on a scale of one
to seven. The study was conducted remotely over
the Internet using Webexp4, a software package de-
signed for conducting psycholinguistic studies over
the web. 49 unpaid volunteers completed the exper-
iment, all native speakers of English.

Analysis of Similarity Ratings The reliability
of the collected judgments is important for our eval-
uation experiments; we therefore performed several
tests to validate the quality of the ratings. First, we
examined whether participants gave high ratings to
high similarity sentence pairs and low ratings to low
similarity ones. Figure 2 presents a box-and-whisker
plot of the distribution of the ratings. As we can see
sentences with high similarity landmarks are per-
ceived as more similar to the reference sentence. A
Wilcoxon rank sum test confirmed that the differ-
ence is statistically significant (p< 0.01). We also
measured how well humans agree in their ratings.
We employed leave-one-out resampling (Weiss and
Kulikowski, 1991), by correlating the data obtained
from each participant with the ratings obtained from
all other participants. We used Spearman’s !, a non
parametric correlation coefficient, to avoid making
any assumptions about the distribution of the simi-
larity ratings. The average inter-subject agreement5
was != 0.40. We believe that this level of agree-
ment is satisfactory given that naive subjects are
asked to provide judgments on fine-grained seman-
tic distinctions (see Table 1). More evidence that
this is not an easy task comes from Figure 2 where
we observe some overlap in the ratings for High and
Low similarity items.

4http://www.webexp.info/
5Note that Spearman’s rho tends to yield lower coefficients

compared to parametric alternatives such as Pearson’s r.
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Figure 2: Distribution of elicited ratings for High and
Low similarity items

Model Parameters Irrespectively of their form,
all composition models discussed here are based on
a semantic space for representing the meanings of
individual words. The semantic space we used in
our experiments was built on a lemmatised version
of the BNC. Following previous work (Bullinaria
and Levy, 2007), we optimized its parameters on a
word-based semantic similarity task. The task in-
volves examining the degree of linear relationship
between the human judgments for two individual
words and vector-based similarity values. We ex-
perimented with a variety of dimensions (ranging
from 50 to 500,000), vector component definitions
(e.g., pointwise mutual information or log likelihood
ratio) and similarity measures (e.g., cosine or confu-
sion probability). We used WordSim353, a bench-
mark dataset (Finkelstein et al., 2002), consisting of
relatedness judgments (on a scale of 0 to 10) for 353
word pairs.
We obtained best results with a model using a

context window of five words on either side of the
target word, the cosine measure, and 2,000 vector
components. The latter were the most common con-
text words (excluding a stop list of function words).
These components were set to the ratio of the proba-
bility of the context word given the target word to
the probability of the context word overall. This
configuration gave high correlations with the Word-
Sim353 similarity judgments using the cosine mea-
sure. In addition, Bullinaria and Levy (2007) found
that these parameters perform well on a number of
other tasks such as the synonymy task from the Test
of English as a Foreign Language (TOEFL).
Our composition models have no additional pa-
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Compositionality: DP IV
Mitchell and Lapata (2008,2010): Evaluation results

Models vs. Human judgment: different ranging scale.
Additive model, Non compositional baseline, weighted additive and
Kintsch (2001) don’t distinguish between High (close) and Low
(far) landmarks.
Multiplicative and combined models are closed to human ratings.
The former does not require parameter optimization.

Model High Low ρ

NonComp 0.27 0.26 0.08
Add 0.59 0.59 0.04
Weight Add 0.35 0.34 0.09
Kintsch 0.47 0.45 0.09
Multiply 0.42 0.28 0.17
Combined 0.38 0.28 0.19
Human Judg 4.94 3.25 0.40

See also Grefenstette and Sadrzadeh (2011)



Compositionality as vector combination: problems
Grammatical words: highly frequent

planet night space color blood brown
the >1K >1K >1K >1K >1K >1K
moon 24.3 15.2 20.1 3.0 1.2 0.5
the moon ?? ?? ?? ?? ?? ??



Composition as vector combination: problems
Grammatical words variation

car train theater person movie ticket
few >1K >1K >1K >1K >1K >1K
a few >1K >1K >1K >1K >1K >1K
seats 24.3 15.2 20.1 3.0 1.2 0.5
few seats ?? ?? ?? ?? ?? ??
a few seats ?? ?? ?? ?? ?? ??

I There are few seats available. negative: hurry up!

I There are a few seats available. positive: take your time!



Compositionality in DS: Function application
Baroni and Zamparelli (2010)

Distributional Semantics (e.g. 2 dimensional space):

N/N: matrix

red d1 d2

d1 n1 n2
d2 m1 m2

N: vector

moon

d1 k1
d2 k2

Function app. by the matrix product and returns a vector:
red(−−−→moon) =

∑n
i=1 redi mooni

N: vector

red moon

d1 (n1, n1) · (k1, k2)
d2 (m1,m2) · (k1, k2)

=

N: vector

red moon

d1 (n1k1) + (n2k2)
d2 (m1k1) + (m2k2)



Compositionality in DS: Function application
Learning methods

I Vectors are induced from the corpus by a lexical association
co-frequency function. [Well established]

I Matrices are learned by regression (Baroni & Zamparelli (2010)).
E.g.:

“red” is learned, using linear regression, from the pairs (N, red-N).

. . . . . .



Compositionality in DS: Function application
Learning matrices

red (R) is a matrix whose values are unknown (I use capitol letters for
unknown): [

R11 R12

R21 R22

]
We have harvested the vectors ~moon and ~army representing “moon” and
“army”, resp. and the vectors ~n1 = (n11, n12) and ~n2 = (n21, n22) representing
“red moon”, “red army”. Since we know that e.g.

R ~moon =

[
R11moon1 + R12moon2
R21moon1 + R22moon2

]
=

[
n11
n12

]
= ~n1

taking all the data together, we end up having to solve the following multiple
regression problems to determine the R values (r11, r12 etc.)

R11moon1 + R12moon2 = n′
11

R11army1 + R12army2 = n′
21

R21moon1 + R22moon2 = n′
12

R21army1 + R22army2 = n′
22

which are solved by assigning weights to the unknown (Baroni and Zamparelli
(2010) have not used the intercept).



Compositionality in DS: ADJ N
Comparison Compositional DS models

Baroni & Zamparelli 2010 have

I trained separate models for each adjective;

I (a) composed the learned matrix (function) with a noun
vector (argument) by matrix product (·) – the adjective
weight matrix with the noun vector value;

I composed adjectives with nouns using: (b) additive and (c)
multiplicative model –starting from adjective and noun
vectors;

I harvested vectors for “adjective-noun” from the corpus;

I compared (a) “learned matrix · vector noun” (“function
application”) vs. (b) “vector adj + vector noun” vs. (c)
“vector adj � vector noun”;

I shown that – among (a), (b), (c) – (a) gives results more
similar to the “harvested vector adj-noun” than the other two
methods.



Compositionality in DS: ADJ N
Observed ADJ N vs. Composed ADJ(N): (a) when observed and composed are close

To double check the validity of the functional approach, the results
of the matrix product has been compared to the vectors observed
(induced) from the corpus:



Compositionality in DS: ADJ N
Observed ADJ N vs. Composed ADJ(N): (b) when observed and composed are far



From Formal to Distributional Semantics
FS domains and DS spaces

I FS:
I Atomic vs. functional types
I Typed denotational domains
I Correspondence between syntactic categories and semantic

types

I Could we import these ideas in DS?
I Vectors vs. matrices Seems promising
I Typed semantic spaces
I Correspondence between syntactic categories and semantic

types



Compositionality in DS: next steps
Summing up

I DS research has obtained satisfactory results on content words
by evaluating them on different lexical semantic tasks.

I New research is “importing” in the DS framework some of the
understanding achieved within the FS school.

To tackle compositionality in DS a better understanding of
grammatical words should be reached.



Entailment
Entailment in FS

FS starting point is logical entailment between propositions, hence
it’s based on the referential meaning of sentences (Dt = {0, 1}).

All domains are partially ordered, e.g.:

I Dt = {0, 1} and 0 ≤t 1,

I De→t : {student, person},
s.t. [[student]] = {a, b} and [[person]] = {a, b, c},
by def: [[student]] ≤e→t [[person]] since
∀α ∈ De [[student]]([[α]]) ≤t [[person]]([[α]]),



Entailment
Entailment in DS

I Lexical entailment: already some successful results.

I Phrase entailment: a few studies done.

I Sentential entailment: none.



Entailment
DS success on Lexical entailment

Cosine similarity has shown to be a valid measure for the synonymy
relation, but it does not capture the “is-a” relation properly: it’s
symmetric!
Kotlerman, Dagan, Szpektor and Zhitomirsky-Geffet 2010 see is-a
relation as “feature inclusion” (where “features” are the space
dimensions) and propose an asymmetric measure based on
empirical harvested vectors. Intuition behind their measure:

1. Is-a score higher if included features are ranked high for the
narrow term.

2. Is-a score higher if included features are ranked high in the
broader term vector as well.

3. Is-a score is lower for short feature vectors.

Very positive results compared to WordNet-based measures.
They have focused on nouns.



Entailment
Entailment at phrasal level in DS

Baroni, Bernardi, Do and Shan (EACL 2012):

I Dagan et. al. measure

I does generalize to expressions of the noun category, tested on
N1 ≤ N2 and ADJ N1 ≤ N1.

I does not generalize to expressions of other categories, tested
on QPs.

I FS different partial order for different domains; DS different
partial orders for different semantic spaces.



Entailment
SVM learned QP entailment

Quantifier pair Correct Quantifier pair Correct
many |= several 19% many 6|= most 65%
many |= some 86% many 6|= no 52%
each |= some 99% both 6|= many 73%
most |= many 18% both 6|= most 94%
much |= some 88% both 6|= several 15%
every |= many 87% either 6|= both 62%

all |= many 88% many 6|= all 97%
all |= most 85% many 6|= every 98%
all |= several 99% few 6|= many 20%
all |= some 99% few 6|= all 97%

both |= either 2% several 6|= all 99%
both |= some 56% some 6|= many 49%

several |= some 76% some 6|= all 99%
Subtotal 77% some 6|= each 98%

some 6|= every 99%
several 6|= every 99%
several 6|= few 94%

Subtotal 79%

P: 77%, R: 77%, F: 77%, A: 78%**



Entailment
Partially ordered spaces

The results show that:

I DS models do contain information needed to detect the
entailment relation among other categories too, e.g. QP.

I Not the same dimensions/not the same relations among
dimensions are at work for different partial orders (≤QP vs.
≤N)

Questions: which are the dimensions involved in the entailment
relation for the various categories? Can we hope to find an
abstract definition based on atomic and function types as in FS?



Conclusions
Ideas imported from FS into DS

(a) Meaning flows from the words;

(b) “Complete” (vectors) vs. Incomplete words (matrices);

(c) Meaning representations are guided by the syntactic structure.

(d) Different partial order for different semantic spaces



Conclusions
What else?

(a) What’s the meaning of grammatical work?

(b) What’s the meaning of a sentence?

(c) What’s the meaning of “entities”, e.g., “John”.

(d) Which is the DS representation corresponding to a higher
order function, e.g. QP?

(e) What’s the linear algebra operation corresponding to lambda
abstraction – how can structure be de-composed in a DS
representation (e.g. relative clauses)?

We are currently working on (a) and we will address some of these
questions within the 5 year EU project: COMPOSES
(http://clic.cimec.unitn.it/composes/).

http://clic.cimec.unitn.it/composes/
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