Syntactic Analysis
Daniel Zeman

December 7, 2018
Outline

1 Constituents vs. Dependencies

2 Universal Dependencies
 - A Tour through UD Syntax
 - Nonverbal Predicate and Copula
 - Ellipsis and Enhanced UD
 - Core Arguments vs. Oblique Dependents
Constituents vs. Dependencies
Outline

1. Constituents vs. Dependencies

2. Universal Dependencies
 - A Tour through UD Syntax
 - Nonverbal Predicate and Copula
 - Ellipsis and Enhanced UD
 - Core Arguments vs. Oblique Dependents
Syntactic Structure

- Different shapes in different theories
- Typically a tree
 - Constituents (phrase tree structure)
 - Dependencies (dependency tree structure)
Constituent Tree

(S (NP (N Paul)) (VP (V gave) (NP (N Peter)) (NP (C two) (N pears))))

Syntactic Analysis
Paul gave Peter two pears.
Dependency Tree with Labels

[#,0] ([gave,2] ([Paul,1], [Peter,3], [pears,5] ([two,4])), [.,6])

/ AuxS
 gave / Pred
 Paul / Sb
 Peter / Obj
 pears / Obj
 two / Atr
Paul gave Peter two pears.
Constituents vs. Dependencies

- The two models are interconnected

- Sentence divided to **phrases** (constituents)
 - Recursive: phrases divided to smaller phrases
 - The smallest phrases are words

- There are **dependencies** (relations) between words (constituents)
 - **Head** of phrase = governing node, parent node
 - The other nodes are dependent nodes, children of the head
Phrase vs. Dependency Trees

Syntactic Analysis

Universal Dependencies
Phrase vs. Dependency Trees

- **Phrase trees**
 - Usually do not mark the **head**
 - May not mark the **function** of the constituent in the superordinate constituent
Phrase vs. Dependency Trees

- **Phrase trees**
 - Usually do not mark the **head**
 - May not mark the **function** of the constituent in the superordinate constituent

- **Dependency trees**
 - Do not show **nonterminals** (phrase types)
 - Nor any other phrase-level features
 - Do not show “how the sentence is generated” (order, recursion, **proximity** of constituents)
Example

Syntactic Analysis

Universal Dependencies

11/111
Discontinuous Phrases

- Classical context-free grammar cannot describe them!
- They cannot be represented by bracketing.
- English example: *I found the best example ever.*
- Czech example: *(Soubor (se nepodařilo) otevřít).* “File couldn’t be opened.”

```
<table>
<thead>
<tr>
<th>VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR(nepodařilo)</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>se</td>
</tr>
<tr>
<td>nepodařilo</td>
</tr>
<tr>
<td>soubor</td>
</tr>
</tbody>
</table>
```
Nonprojectivity

- Dependency tree including word order (x-coordinate of nodes).
- Projection to the base: the vertical from the node crosses a dependency (nonprojective edge).
- Formally:
 - Dependency \([g, x_g], [d, x_d]\) where \(x_w\) is the order of the word \(w\) in the sentence.
 - There exists a node \([n, x_n]\) that \(x_g < x_n < x_d\) or \(x_d < x_n < x_g\) and \([n, x_n]\) is not in subtree rooted by \([g, x_g]\).
- Informally: The string spanned by the subtree of the governing node is discontinuous, it contains gaps.
Nonprojectivity Can Be Handled by a Dependency Tree!

```
  nepodařilo / Pred
   /  
  se / AuxT  otevřít / Sb
   /  
soubor / Obj
```
Nonprojectivity Can Be Handled by a Dependency Tree!

```
root

Obj

AuxT

Sb

soubor  se  nepodařilo  otevřít
file   itself did-not-succeed to-open
```
Universal Dependencies
Outline

1. Constituents vs. Dependencies

2. Universal Dependencies
 - A Tour through UD Syntax
 - Nonverbal Predicate and Copula
 - Ellipsis and Enhanced UD
 - Core Arguments vs. Oblique Dependents
Syntactic Analysis

Constituents vs. Dependencies
My daughter bought some bread and cheese

Min datter købte nogle brød og ost

Min dotter köpte några bröd och ost
Universal Dependencies

http://universaldependencies.org/

Milestones:

- 2008-05 Interset (morphological features)
- 2012-05 Google Universal POS tags
- 2012-05 HamleDT (harmonized Prague-style treebanks)
- 2013-08 Google Universal Dependency Treebank
- 2014-05 Universal Stanford Dependencies
- 2014-04 EACL Göteborg, kick-off meeting of UD
- 2014-10 UD guidelines version 1
- 2015-01 released first 10 treebanks
- every ~6 months new release
- 2016-12 UD guidelines version 2
- 2017-05 CoNLL Shared Task in parsing UD
- 2018-06 second Shared Task
- every ~6 months new release
- Same things annotated same way across languages...
- ... while highlighting different coding strategies
Manning’s Law

The secret to understanding UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.
2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.
3. UD must be suitable for rapid, consistent annotation by a human annotator.
4. UD must be easily comprehended and used by a non-linguist, whether a language learner or an engineer with prosaic needs for language processing. ... it leads us to favor traditional grammar notions and terminology.
5. UD must be suitable for computer parsing with high accuracy.
6. UD must support well downstream language understanding tasks (relation extraction, reading comprehension, machine translation, ...)

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
The secret to understanding UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.

2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
Manning’s Law

The secret to understanding UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.
2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.
3. UD must be suitable for rapid, consistent annotation by a human annotator.

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
Manning’s Law

The secret to understanding UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.
2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.
3. UD must be suitable for rapid, consistent annotation by a human annotator.
4. UD must be easily comprehended and used by a non-linguist, whether a language learner or an engineer with prosaic needs for language processing. ... it leads us to favor traditional grammar notions and terminology.

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
Manning’s Law

The secret to understanding UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.
2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.
3. UD must be suitable for rapid, consistent annotation by a human annotator.
4. UD must be easily comprehended and used by a non-linguist, whether a language learner or an engineer with prosaic needs for language processing. ... it leads us to favor traditional grammar notions and terminology.
5. UD must be suitable for computer parsing with high accuracy.

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
Manning’s Law

The secret to understanding UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.
2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.
3. UD must be suitable for rapid, consistent annotation by a human annotator.
4. UD must be easily comprehended and used by a non-linguist, whether a language learner or an engineer with prosaic needs for language processing. ... it leads us to favor traditional grammar notions and terminology.
5. UD must be suitable for computer parsing with high accuracy.
6. UD must support well downstream language understanding tasks (relation extraction, reading comprehension, machine translation, ...)

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
Same Thing Same Way

George killed the dragon

PROPN VERB DET NOUN

Constituents vs. Dependencies
George killed the dragon

Mharaigh Seoirse an dragan
Same Thing Same Way

George killed the dragon
Mharaigh Seoirse an dragan

Jorge mató al dragón
Same Thing Same Way

George killed the dragon

Mharaigh Seoirse an dragan

Jorge mató a el dragón
Same Thing Same Way

Syntactic Analysis

Constituents vs. Dependencies

George killed the dragon

Mharaigh Seoirse an dragan

Jorge mató a el dragón

Draka zabil Jiří
Same Meaning \neq Same Construction!

[Diagram of syntactic analysis with labels: root, nsubj, obj, det, PRON, VERB, DET, NOUN]
Same Meaning ≠ Same Construction!

He killed the dragon

The dragon was killed by him
He killed the dragon.

The dragon was killed by him.

His killing of the dragon.
Same Meaning ≠ Same Construction!

He killed the dragon

The dragon was killed by him

His killing of the dragon

The dragon that was killed

Syntactic Analysis
Constituents vs. Dependencies
राजा विष्णुशर्मण आहुया प्रोवााच
rājā viṣṇuśarmāṇāṁ āhūya provāca
king Vishnusharma having-summoned said

Syntactic Analysis
Constituents vs. Dependencies
The king summoned Vishnusharma and said, 'Pravaca.'
Universal Dependencies
A Tour through UD Syntax
Outline

1. Constituents vs. Dependencies

2. Universal Dependencies
 - A Tour through UD Syntax
 - Nonverbal Predicate and Copula
 - Ellipsis and Enhanced UD
 - Core Arguments vs. Oblique Dependents
The cat could have chased all the dogs down the street.
• Content words are related by dependency relations
Content words are related by dependency relations

Function words attach to closest content words
Content words are related by dependency relations
Function words attach to closest content words
Punctuation attach to head of phrase or clause
The cat could have chased all the dogs down the street.

Not “dependency” in the strictly syntactic sense!
The dog was chased by the cat.

Kučeto se presledvaše ot kotkata.
The dog was chased by the cat.
The dog was chased by the cat.
The dog was chased by the cat.

Pes byl honěn kočkou.
Dependents of Clauses (Verbal or Not)

<table>
<thead>
<tr>
<th>Core</th>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nsubj</td>
<td>csubj</td>
<td>advmod</td>
<td>aux</td>
</tr>
<tr>
<td>Non-Core</td>
<td>obl</td>
<td>advcl</td>
<td>discourse</td>
<td>cop</td>
</tr>
<tr>
<td></td>
<td>vocative</td>
<td>dislocated</td>
<td></td>
<td>mark</td>
</tr>
<tr>
<td></td>
<td>expl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependents of Verbs, Adjectives and Adverbs

<table>
<thead>
<tr>
<th>Core</th>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>obj</td>
<td>ccomp</td>
<td>advmod</td>
</tr>
<tr>
<td></td>
<td>iobj</td>
<td>xcomp</td>
<td></td>
</tr>
<tr>
<td>Non-Core</td>
<td>obl</td>
<td>advcl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>expl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependents of Nominals

<table>
<thead>
<tr>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>nmod</td>
<td>acl</td>
<td>amod</td>
<td>det</td>
</tr>
<tr>
<td>appos</td>
<td></td>
<td>nummod</td>
<td>case</td>
</tr>
</tbody>
</table>
Noun Phrase

Dependents of Nominals

<table>
<thead>
<tr>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>nmod</td>
<td>acl</td>
<td>amod</td>
<td>det</td>
</tr>
<tr>
<td>appos</td>
<td></td>
<td>nummod</td>
<td>case</td>
</tr>
<tr>
<td>compound</td>
<td></td>
<td></td>
<td>clf</td>
</tr>
<tr>
<td>flat</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntactic Analysis

Constituents vs. Dependencies
Coordinate structures are headed by the first conjunct

- Subsequent conjuncts depend on it via the `conj` relation
- Conjunctions depend on the next conjunct via the `cc` relation
- Punctuation marks depend on the next conjunct via the `punct` relation
But Some Languages Might Prefer the Opposite

Coordinate structures would be headed by the last conjunct
- Preceding conjuncts would depend on it via the conj relation
- Conjunctions would depend on the preceding conjunct
- Punctuation marks would depend on the preceding conjunct
Multiword Expressions

<table>
<thead>
<tr>
<th>Relation</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixed</td>
<td>in spite of, as well as, ad hoc</td>
</tr>
<tr>
<td>flat</td>
<td>president Havel, New York, four thousand</td>
</tr>
<tr>
<td>compound</td>
<td>phone book, dress up</td>
</tr>
<tr>
<td>goeswith</td>
<td>notwith standing, with out</td>
</tr>
</tbody>
</table>

- UD annotation almost does not permit “words with spaces”
 - Multiword expressions are analyzed using special relations
 - The fixed, flat and goeswith relations are always head-initial
 - The compound relation reflects the internal structure
- Words with spaces may be allowed in v2:
 - Vietnamese (spaces delimit syllables, not words)
 - Numbers (“1 000 000”)
 - Possibly other approved cases, e.g. multi-word abbreviations
<table>
<thead>
<tr>
<th>Relation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>parataxis</td>
<td>Loosely linked clauses of same rank</td>
</tr>
<tr>
<td>list</td>
<td>Lists without syntactic structure</td>
</tr>
<tr>
<td>orphan</td>
<td>Orphans in ellipsis linked together</td>
</tr>
<tr>
<td>reparandum</td>
<td>Disfluency linked to (speech) repair</td>
</tr>
<tr>
<td>foreign</td>
<td>Elements within opaque stretches of code switching</td>
</tr>
<tr>
<td>dep</td>
<td>Unspecified dependency</td>
</tr>
<tr>
<td>root</td>
<td>Syntactically independent element of clause/phrase</td>
</tr>
</tbody>
</table>
Language-specific Relation Subtypes

- Language-specific relations are subtypes of universal relations added to capture important phenomena
- Subtyping permits us to “back off” to universal relations

<table>
<thead>
<tr>
<th>Relation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl:relcl</td>
<td>Relative clause</td>
</tr>
<tr>
<td>compound:prt</td>
<td>Verb particle (dress up)</td>
</tr>
<tr>
<td>nmod:poss</td>
<td>Possessive nominal (Mary’s book)</td>
</tr>
<tr>
<td>obl:agent</td>
<td>Agent in passive (saved by the bell)</td>
</tr>
<tr>
<td>cc:preconj</td>
<td>Preconjuction (both ... and)</td>
</tr>
<tr>
<td>det:predet</td>
<td>Predeterminer (all those ...)</td>
</tr>
</tbody>
</table>
Universal Dependencies
Nonverbal Predicate and Copula
Outline

1. Constituents vs. Dependencies

2. Universal Dependencies
 - A Tour through UD Syntax
 - Nonverbal Predicate and Copula
 - Ellipsis and Enhanced UD
 - Core Arguments vs. Oblique Dependents
Some languages use a copula verb:

```
nsubj
   cop
det
   amod
   punct
Ivan is the best dancer.
```

Some languages use a copula pronoun:

```
nsubj
   punct
   cop
   amod
   punct
Ivan – to najlepszy tancerz.
Ivan – it best dancer.
```
Some languages use a copula verb:

- Ivan is the best dancer.

Some languages omit the copula:

- Ivan lučšij tancor.
 - Ivan best dancer.
Some languages use a copula verb:

- Ivan was the best dancer.

Some languages use it only in some tenses:

- Ivan byl lučším tancorem.
- Ivan was best dancer.
Copula Verbs: We Are Restrictive!

- *To be* is copula:

 Ivan is the best dancer.

- *To become* is not copula:

 Ivan became the best dancer.
Once Copula, Always Copula!

- This is parallel with Russian:

```
Ivan is the best dancer.
```

- This is also parallel with Russian:

```
Ivan is today in Moscow.
```
Well, Almost...

- This is parallel with Russian:

```
Ivan is today in Moscow.
```

- But not with this in English:

```
There is a dancer in Moscow.
```
A clause can be the subject:

```
The problem is that he is missing.
```

But it cannot be annotated as the nonverbal predicate:

```
The problem is that he is missing.
```
1. Constituents vs. Dependencies

2. Universal Dependencies
 - A Tour through UD Syntax
 - Nonverbal Predicate and Copula
 - Ellipsis and Enhanced UD
 - Core Arguments vs. Oblique Dependents
Some treebanks would use an empty node to represent the second went.
UD enhanced representation now allows empty nodes!
But the basic representation sticks with the overt words.
Kate went to Florida and Jane (went) to Europe
Kate went to Florida and Jane (went) to Europe
Kate went to Florida and Jane (went) to Europe

Syntactic Analysis
Constituents vs. Dependencies
UD V2: The orphan Relation

Kate went to Florida and Jane (went) to Europe
Kate wants to go to Florida and Jane (wants) (go) to Europe
Kate wants to go to Florida and Jane (wants) (go) to Europe
Enhanced Dependencies: Coordination

Jane eats sweet apples and oranges

Syntactic Analysis
Constituents vs. Dependencies
A gdzie szukać szamponu, który myje?
And where to-look for-shampoo, that washes?
Universal Dependencies
Core Arguments vs. Oblique Dependents
Outline

1. Constituents vs. Dependencies

2. Universal Dependencies
 - A Tour through UD Syntax
 - Nonverbal Predicate and Copula
 - Ellipsis and Enhanced UD
 - Core Arguments vs. Oblique Dependents
Dependents of Clauses (Verbal or Not)

<table>
<thead>
<tr>
<th>Core</th>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>nsubj</td>
<td>subj</td>
<td>advmod</td>
<td>aux</td>
<td></td>
</tr>
<tr>
<td>oblique</td>
<td>advcl</td>
<td>discourse</td>
<td>cop</td>
<td></td>
</tr>
<tr>
<td>vocative</td>
<td>expl</td>
<td>mark</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependents of Verbs, Adjectives and Adverbs

<table>
<thead>
<tr>
<th>Core</th>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>ccomp</td>
<td>advmod</td>
<td></td>
</tr>
<tr>
<td>ioobj</td>
<td>xcomp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependents of Nominals

<table>
<thead>
<tr>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>nmod</td>
<td>acl</td>
<td>det</td>
<td></td>
</tr>
<tr>
<td>appos</td>
<td>amod</td>
<td>case</td>
<td></td>
</tr>
</tbody>
</table>
I gave her a book.
Information Packaging

Syntactic Analysis

Constituents vs. Dependencies

I gave her a book.

PRON VERB PRON DET NOUN

I gave a book to her.

PRON VERB DET NOUN ADP PRON
He loaded the wagon with hay

Syntactic Analysis

Constituents vs. Dependencies
Information Packaging

Syntactic Analysis

Constituents vs. Dependencies
UD is NOT about Semantic Roles!

I gave her a book

I gave a book to her

Syntactic Analysis
Constituents vs. Dependencies
Manning’s Law – What If We Do Semantic Roles?

The secret to understanding the design and current success of UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.
2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.
3. UD must be suitable for rapid, consistent annotation by a human annotator.
4. UD must be easily comprehended and used by a non-linguist, whether a language learner or an engineer with prosaic needs for language processing. ... it leads us to favor traditional grammar notions and terminology.
5. UD must be suitable for computer parsing with high accuracy.
6. UD must support well downstream language understanding tasks (relation extraction, reading comprehension, machine translation, ...)

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
UD Avoids Argument-Adjunct Distinction!

I gave her a book on Monday

I gave a book to her on Monday

Syntactic Analysis
Constituents vs. Dependencies
Avoiding an Argument-Adjunct Distinction

- From the guidelines:
 - Subtle, unclear, and frequently argued over
 - Questionable as a categorical distinction
 - Best practical solution is to eliminate it

- BUT:
 - Cannot be eliminated completely
 - Some people/data have it and want to keep it
 - It aligns well with traditional grammars
 - THERE IS NOW A RELATION SUBTYPE obl:arg

- AND I will argue that
 - Core-oblique distinction is unclear and argued over too
 - (Though I will not propose to discard it.)
Avoiding an Argument-Adjunct Distinction

- From the guidelines:
 - Subtle, unclear, and frequently argued over
 - Questionable as a categorical distinction
 - Best practical solution is to eliminate it

- **BUT:**
 - Cannot be eliminated completely
 - Some people/data have it and want to keep it
 - It aligns well with traditional grammars
 - \Rightarrow there is now a relation subtype $obl:arg$
Avoiding an Argument-Adjunct Distinction

- From the guidelines:
 - Subtle, unclear, and frequently argued over
 - Questionable as a categorical distinction
 - Best practical solution is to eliminate it

- BUT:
 - Cannot be eliminated completely
 - Some people/data have it and want to keep it
 - It aligns well with traditional grammars
 - \(\Rightarrow \) there is now a relation subtype \texttt{obl:arg} \\

- AND I will argue that
 - Core-oblique distinction is unclear and argued over too
 - (Though I will not propose to discard it.)
So What Is Core and Why?
Community Confusion

- UD v1 guidelines took core-oblique for granted

- English (simplified):
 - Bare noun phrase \Rightarrow core argument (nsubj, obj, iobj)
 - Prepositional phrase \Rightarrow oblique argument or adjunct (obl)

Other languages: not necessarily! (Spanish, Japanese)

But some people simply took the English rule…

Manning's law: non-linguists!

Clash with traditional terminology

Grammars of German, Czech etc. define prepositional objects

But these are not necessarily core…

Yet some people took their national definition of object…
Community Confusion

- UD v1 guidelines took core-oblique for granted

- English (simplified):
 - Bare noun phrase \Rightarrow core argument (nsubj, obj, iobj)
 - Prepositional phrase \Rightarrow oblique argument or adjunct (obl)

- Other languages: not necessarily! (Spanish, Japanese)
 - But some people simply took the English rule...
 - Manning’s law: non-linguists!
Community Confusion

- UD v1 guidelines took core-oblique for granted

- English (simplified):
 - Bare noun phrase ⇒ core argument (nsubj, obj, iobj)
 - Prepositional phrase ⇒ oblique argument or adjunct (obl)

- Other languages: not necessarily! (Spanish, Japanese)
 - But some people simply took the English rule...
 - Manning’s law: non-linguists!

- Clash with traditional terminology
 - Grammars of German, Czech etc. define prepositional objects
 - But these are not necessarily core...
 - Yet some people took their national definition of object...
Language-specific Coding Strategy

- **Idea:**
 - Oblique arguments are marked similarly to adjuncts (prepositions, certain morphological cases...)
 - Core arguments are marked differently
 - ⇒ easy for annotators and non-linguists!

- **Why are core arguments special?**
 - They tend to be targeted by grammatical rules
 - Passivization
 - Control verbs
 - Reflexives
 - ...

Syntactic Analysis
Constituents vs. Dependencies
Core vs. oblique is not defined in traditional grammar
How shall we define it?

Andrews, 2007 (In Shopen: Language Typology)

Identify primary transitive predicates
We need semantic roles for this! (One-time only.)

Actor/agent = function A
Undergoer/patient = function P

Note the way they are coded
Note other grammatical rules that target them
Generalize to other predicates with same coding and rules

Then define:
function A
\text{nsubj}
function P
\text{obj}
Language-specific Coding Strategy

- Core vs. oblique is not defined in traditional grammar
- How shall we define it?

- Andrews, 2007 (In Shopen: Language Typology)
 - Identify primary transitive predicates
 - We need semantic roles for this! (One-time only.)

Syntactic Analysis
Constituents vs. Dependencies
Language-specific Coding Strategy

- Core vs. oblique is not defined in traditional grammar
- How shall we define it?

- Andrews, 2007 (In Shopen: Language Typology)
 - Identify primary transitive predicates
 - We need semantic roles for this! (One-time only.)
 - Actor/agent = function A
 - Undergoer/patient = function P
Language-specific Coding Strategy

- Core vs. oblique is not defined in traditional grammar
- How shall we define it?

- Andrews, 2007 (In Shopen: Language Typology)
 - Identify primary transitive predicates
 - We need semantic roles for this! (One-time only.)
 - Actor/agent = function A
 - Undergoer/patient = function P
 - Note the way they are coded
 - Note other grammatical rules that target them
 - Generalize to other predicates with same coding and rules
Language-specific Coding Strategy

- Core vs. oblique is not defined in traditional grammar
- How shall we define it?

- Andrews, 2007 (In Shopen: Language Typology)
 - Identify primary transitive predicates
 - We need semantic roles for this! (One-time only.)
 - Actor/agent = function A
 - Undergoer/patient = function P
 - Note the way they are coded
 - Note other grammatical rules that target them
 - Generalize to other predicates with same coding and rules

- Then define:
 - function A \(\Rightarrow\) nsubj
 - function P \(\Rightarrow\) obj
Transitive Predicates in English

John \textit{kills} Mary (primary transitive)

\text{PROPN VERB PROPN}

Syntactic Analysis
Constituents vs. Dependencies
Transitive Predicates in English

Primary Transitive

John **kills** Mary

Generalized Transitive

John **loves** Mary
Transitive Predicates in English

Primary Transitive
- John kills Mary

Generalized Transitive
- John loves Mary

Constituents vs. Dependencies
Transitive Predicates in English

Syntactic Analysis: Constituents vs. Dependencies
Passivization in English

Syntactic Analysis
Constituents vs. Dependencies
Subject Control in English

Syntactic Analysis
Constituents vs. Dependencies

John wants to kill Mary

John wants to love Mary
Object Control in English

- Ann made John kill Mary
- Ann made John love Mary

Syntactic Analysis
Constituents vs. Dependencies
Some Problems

- Some temporal adjuncts are bare noun phrases
 - *I work the whole week.*
 - *I work every Friday.*

- At least it cannot passivize:
 - *The whole week is worked by me.*
 - *Every Friday is worked by me.*

- But...
Some Problems

- Some transitive verbs cannot passivize
 - *John has a new car.*
 - *A new car is had by John.*
 - *Friday does not suit me.*
 - *I am not suited by Friday.*
Some Problems

- Some transitive verbs cannot passivize
 - *John has a new car.*
 - *A new car is had by John.*
 - *Friday does not suit me.*
 - *I am not suited by Friday.*

- Some prepositional verbs can passivize
 - *You can rely on Ben.*
 - *Ben can be relied on.*
 - *They will take care of your children.*
 - *Your children will be taken care of.*
Tentative Summary?

- The borderline is inherently fuzzy
- No universally applicable and exact algorithm
- Better described in terms of probability
The borderline is inherently fuzzy
No universally applicable and exact algorithm
Better described in terms of probability

Core coding not favored by adjuncts
Oblique coding similar to most adjuncts
Passivization etc. may help…
... but does not work as strict criterion
The borderline is inherently fuzzy
No universally applicable and exact algorithm
Better described in terms of probability

Core coding not favored by adjuncts
Oblique coding similar to most adjuncts
Passivization etc. may help...
... but does not work as strict criterion

Semantic roles needed when starting a new language
Argument-adjunct needed to describe exceptions (*the whole week*)
Intransitive Predicates

- Just one core argument
 - We already “know” how to find out if there are two

- \(\Rightarrow \) function \(S \)
 - Regardless of semantic role:
 - \textit{John} runs.
 - \textit{John} sleeps.
 - \textit{John} falls.

- Then define:
 - function \(S \Rightarrow \text{nsubj} \)
Ditransitive Predicates

- Three core arguments
- Is one of them “least core”? ⇒ \(iobj \)
- (Alternatively, we could look at the semantic roles once again.)

\[
\begin{align*}
\text{I} & \quad \text{gave} \quad \text{her} \quad \text{a} \quad \text{book} \\
\text{PRON} & \quad \text{VERB} \quad \text{PRON} \quad \text{DET} \quad \text{NOUN}
\end{align*}
\]

- Passivization:
 - \(She \) was given \(a \) \(book \) \(by \) \(me. \)
 - \(?A \) \(book \) was given \(her \) \(by \) \(me. \)
- Three core arguments
- Is one of them “least core”? ⇒ iobj
- (Alternatively, we could look at the semantic roles once again.)

Andrews (2007): the status of the notion of ‘indirect object’ is problematic and difficult to sort out. The top priority is to work out what properties recipients and themes do and do not share with P arguments of primary transitive verbs.
Jorge mató al dragón.

El dragón fue matado por Jorge.
Spanish Transitive Clauses

Syntactic Analysis
Constituents vs. Dependencies
Spanish Adjunct Exceptions

Él trabaja toda la semana.

He works whole the week.

Subiremos a el tren a las cinco.

We-will-board to the train at the five.
Spanish Ditransitive Clauses

Pedro le dio un libro a Isabel

PROPN PRON VERB DET NOUN ADP PROPN

Syntactic Analysis
Constituents vs. Dependencies
Spanish Ditransitive Clauses

Pedro le dio un libro a Isabel
PROPN PRON VERB DET NOUN ADP PROPN

Un libro fue dado a Isabel por Pedro
DET NOUN AUX VERB ADP PROPN ADP PROPN
Czech

Jiří zabil draka

Drak byl zabit Jiřím

Syntactic Analysis
Constituents vs. Dependencies
Czech Transitive Clauses

Syntactic Analysis

Constituents vs. Dependencies

83/111
Czech Adjunct Exceptions

Pracuje celý týden
He-works whole week

VERB ADJ NOUN
Case=Acc

Syntactic Analysis
Constituents vs. Dependencies
Czech Ditransitive Clauses

Syntactic Analysis

Constituents vs. Dependencies

Universal Dependencies

85/111
Dative: Recipient vs. Beneficiary

Syntactic Analysis

Constituents vs. Dependencies

86/111
Monotransitive with Dative?

1. Zuzka pomohla Martinovi s úkolem.
 - Zuzka (PROP N Case=Nom) helped (VERB) Martin (PROP N Case=Dat) with (ADP) homework (NOUN Case=Ins).

2. Martinovi bylo pomůženo s úkolem.
 - Martin (PROP N Case=Dat) was (AUX) helped (ADJ) with (ADP) homework (NOUN Case=Ins).
Monotransitive with Genitive?

- Novináři musí dbát zásad objektivity.
 - Journalists must observe principles of objectivity.

Syntactic Analysis

Constituents vs. Dependencies
Monotransitive with Instrumental?

Syntactic Analysis
Constituents vs. Dependencies

89/111
Monotransitive with Preposition?

They relied on director's decision.

Na ředitelovo rozhodnutí bylo spoléháno.

Spoléhali na ředitelovo rozhodnutí.
There is a core-oblique scale:
- Nom > Acc > Gen, Dat > Ins > preposition

Where is the borderline?
Tentative Summary 2

- There is a core-oblique scale:
 - Nom > Acc > Gen, Dat > Ins > preposition

- Where is the borderline?

- UD Czech 1.0: object = argument
 - Nom, Acc, Gen, Dat, Ins, ADP > “adverbial”
There is a core-oblique scale:
- **Nom > Acc > Gen, Dat > Ins > preposition**

Where is the borderline?

- **UD Czech 1.0: object = argument**
 - Nom, Acc, Gen, Dat, Ins, ADP > “adverbial”
- **UD Czech 2.1: bare NP > PP**
 - Nom, Acc, Gen, Dat, Ins > ADP + adjuncts
There is a core-oblique scale:
- Nom > Acc > Gen, Dat > Ins > preposition

Where is the borderline?

UD Czech 1.0: object = argument
- Nom, Acc, Gen, Dat, Ins, ADP > “adverbial”

UD Czech 2.1: bare NP > PP
- Nom, Acc, Gen, Dat, Ins > ADP + adjuncts

But perhaps we should go even further?
- Nom, Acc > Gen, Dat, Ins, ADP + adjuncts
There is a core-oblique scale:
- Nom > Acc > Gen, Dat > Ins > preposition

Where is the borderline?

UD Czech 1.0: object = argument
- Nom, Acc, Gen, Dat, Ins, ADP > “adverbial”

UD Czech 2.1: bare NP > PP
- Nom, Acc, Gen, Dat, Ins > ADP + adjuncts

But perhaps we should go even further?
- Nom, Acc > Gen, Dat, Ins, ADP + adjuncts
- ⇒ No ditransitives in Czech!
Basque Transitive Clauses

Syntactic Analysis
Constituents vs. Dependencies

92/111
Basque Transitive Clauses

Syntactic Analysis
Constituents vs. Dependencies

- **Ekaitzak itsasontzia hondoratu du**
 - *Storm ship sank it-has-it*
 - Case=Erg
 - Case=Abs

- **(Niri) ardoa gustatzen zait**
 - *To-me wine pleasing me-is-it*
 - Case=Dat
 - Case=Abs
Basque Intransitive Clauses

Syntactic Analysis

Constituents vs. Dependencies
Basque Ditransitive Clauses

Syntactic Analysis

Constituents vs. Dependencies

Basque Ditransitive Clauses

(nik) (zuri) liburua eman dizut
(I) (you) book given I-have-you-it

Case=Erg Case=Dat Case=Abs

(nik) (zuri) liburua eman dizut
(I) (you) book given I-have-you-it

Case=Erg Case=Dat Case=Abs
Basque Ditransitive Clauses

Syntactic Analysis

Constituents vs. Dependencies
Basque Causative Applied to Dative Subject

Syntactic Analysis

Constituents vs. Dependencies
Yidin Transitive Clauses

Syntactic Analysis

Constituents vs. Dependencies
"I, (who) was slapped by the woman, laughed"

Yidiɲ “Dative” Adnominal Clauses

Ŋayu

maŋga:ɲ

(ŋaɲaɲ)

buɲa:n

wuɹa:ɲunda

I

laughed

me

woman

slapping

PRON

VERB

PRON

NOUN

VERB

Case=Nom

Case=Acc

Case=Erg

acl:datsub

nsubj

obj

nsubj

Syntactic Analysis

Constituents vs. Dependencies

99/111
Yidin “Dative” Adnominal Clauses

“'I, (who) was slapped by the woman, laughed”

The coreferential (and elidable) NP must have S or P function.
“I, (who) was lauging, was slapped by the woman”

The coreferential (and elidable) NP must have S or P function.
Yidiɲ Antipassive

“İ, (who) was slapping the woman, laughed”

Original P is now oblique and original A is now S.
Tagalog Transitive Clauses

Syntactic Analysis

Constituents vs. Dependencies

Universal Dependencies

102/111
Magaalis Will-take the woman from sack

Aalisin Will-take woman the rice from sack

Syntactic Analysis

Constituents vs. Dependencies
Tagalog Locative Voice ⇒ Ditransitive!

Syntactic Analysis

Constituents vs. Dependencies

104/111
Tagalog Benefactive Voice ⇒ Ditransitive!

Ipagaalis ng babae ang bigas ang bata

Will-take woman for-the rice child

VERB DET NOUN DET NOUN DET NOUN

Voice=Benf Case=Acc Case=Acc Case=Nom

Syntactic Analysis
Constituents vs. Dependencies
Plains Cree Transitive Clauses

Syntactic Analysis

Constituents vs. Dependencies

nominal
bare NP
Case
pre-verb
cross-ref on verb
agreement
post-verb
cross-ref on verb

root

nsubj

obj

verb

declarative-clause

nominal
bare NP
Case
Direct-Inverse Voice in Plains Cree

Animacy hierarchy: 1st person > 3rd person
Direct-Inverse Voice in Plains Cree

Animacy hierarchy: 1st person > 3rd person
Should we set nsubj > obj?
Direct-Inverse Voice in Plains Cree

Syntactic Analysis
Constituents vs. Dependencies

108/111
The theme (not the recipient) is indirect object because it is not cross-referenced on the verb (it is inanimate, while the verb references an animate object).
75 Languages and Growing

- **I.-E.:** 🇨🇲 Armenian, 🇬🇷 Ancient Greek, Greek, 🇫🇷 Breton, 🇮🇪 Irish
 - Germanic: 🇦🇫 Afrikaans, 🇩🇰 Danish, 🇳🇱 Dutch, 🇬🇧 English, 🇫🇴 Faroese, 🇩🇪 German, 🇬🇧 Gothic, 🇳🇴 Norwegian, 🇸🇪 Swedish
 - Romance: 🇪🇸 Catalan, 🇫🇷 French, 🇬🇱 Galician, 🇮🇹 Italian, 🏮 Latin, 🇪🇸 Old French, 🇵🇹 Portuguese, 🇷🇴 Romanian, 🇪🇸 Spanish
 - Balto-Slavic: 🇧🇾 Belarusian, 🇧🇬 Bulgarian, 🇸🇮 Church Slavonic, 🇭🇷 Croatian, 🇨🇿 Czech, 🇵🇱 Polish, 🇷🇺 Russian, 🇸🇷 Serbian, 🇸🇰 Slovak, 🇸🇮 Slovenian, 🇸 IonicPage, 🇺🇦 Ukrainian, 🇱🇻 Latvian, 🇱🇹 Lithuanian
 - Indo-Ir.: 🇮🇷 Kurmanji, 🇮🇷 Persian, 🇮🇳 Hindi, Marathi, Sanskrit, Urdu
- **Uralic:** 🇯🇪 Erzya, 🇪🇪 Estonian, 🇫🇮 Finnish, 🇩🇪 Hungarian, 🇫🇮 Komi, 🇸امي Sami
- **Dravidian:** 🇮🇳 Tamil, Telugu
- **Turkic:** 🇫🇷 Kazakh, ⌂ Turkish, 🇨🇳 Uyghur
- **Afro-Asiatic:** 🇦🇬 Akkadian, 🇪🇹 Amharic, 🇦🇷 Arabic, 🇪🇬 Coptic, 🇮🇱 Hebrew, 🇲🇹 Maltese
- **Sino-Tibetan:** 🇨🇳 Cantonese, 🇨🇳 Chinese; Aus.-As.: 🇻🇳 Vietnamese
- **Tai-Kadai:** 🇹🇭 Thai; Austronesian: 🇮🇩 Indonesian, 🇵🇭 Tagalog
- **Other:** 🇷🇺 Buryat, 🇯🇵 Japanese, 🇫🇷 Korean, 🇪🇸 Basque, 🇸🇪 Swedish Sign, 🇳🇬 Naija, 🇳🇬 Bambara, 🇳🇬 Yoruba, 🇳🇬 Warlpiri

Syntactic Analysis
Constituents vs. Dependencies
Summary

- Constituent (phrase) trees … context-free grammar
- Dependency trees (or graphs)
 - Nonprojective dependencies
- Universal Dependencies
 - Unified annotation for all languages
 - Language-specific extensions
 - Content words higher than function words … better parallelism
 - Clauses – nominals – modifier words
 - Core arguments vs. oblique dependents

https://ufal.cz/courses/npfl094