Computational Morphology and Syntax of Natural Languages

Daniel Zeman

October 2, 2020
Presentations and talks will be in English
 - This year even if all students present understand Czech (the talks will be recorded and made available for those who could not be present)

Questions welcome in both English and Czech
 - If you do not want to be recorded, keep your question until after the talk
 - Or write me at zeman@ufal.mff.cuni.cz any time

And I have many examples from Czech 😊
Getting Credits

- 2–3 smaller tasks
 - homework style
 - less flexible deadlines

- Alternatively: one larger project
 - ask me if interested
 - can be combined with your mgr. (or bc.) thesis
An “Unbalanced” Course

- 1/3 linguistics, 2/3 tools
- 1/3 lab work, 2/3 lectures
- 3/4 morphology, 1/4 syntax
- Mostly rule-based
 - almost no machine learning
 - no neural networks
Outline: Morphology

- Morphemic segmentation
 - \textit{un} + \textit{beat} + \textit{able}

- Phonology ("morphonomy") and orthography
 - \textit{baby} + \textit{s} = \textit{babies}

- Inflectional vs. derivational morphology

- Morphological analysis: word form \rightarrow lemma + morphosyntactic features (tag)

- Tagging (context-aware disambiguation)

- Unsupervised affix detection in corpus

- Mining of word forms from corpus
Morphological Analysis

- Input:
 - word form (token)

- Output:
 - set (possibly empty) of analyses
 - an analysis:
 - lemma (base form of the lexeme)
 - tag (morphological, POS)
 - ... part of speech
 - ... features and their values
MA Example

- Language: 🇨🇿 Czech
- Input: *malými*
- Output (only one selected analysis here):
 - lemma = *malý* "small"
 - tag = AAFP71A
 - part of speech = AA (adjective / přídavné jméno)
 - gender = F (feminine / ženský)
 - number = P (plural / množné)
 - case = 7 (instrumental / 7. pád)
 - degree of comparison = 1 (positive / 1. stupeň)
 - polarity = A (affirmative / kladné)
Language: English
Input: flies
Output:
- lemma 1 = fly-1 (to move in the air)
- tag 1 = VBZ (verb, present tense 3rd person singular)
- lemma 2 = fly-2 (an insect)
- tag 2 = NNS (noun, plural)

Output is not disambiguated with respect to context
By tagging we usually mean context-based disambiguation

Most taggers employ machine learning methods

Taggers may or may not work on top of MA

- MA may provide readings not known from training
- If a tagged corpus is available but MA is not, a tagger can still be trained on the corpus
Morphemic Segmentation

- Morpheme is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
 - input: *closed*
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
 - input: *closed*
 - identify the morphemes: *close* + *d*
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning.
- Morpheme segmentation = finding morpheme boundaries within words.
- Typically part of MA:
 - input: *closed*
 - identify the morphemes: *close + d*
 - interpret them: *verb (close) + past tense*
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning.
- Morpheme segmentation = finding morpheme boundaries within words.
- Typically part of MA:
 - input: *closed*
 - identify the morphemes: *close* + *d*
 - interpret them: *verb (close) + past tense*
 - output: *close* + VBD
Sometimes it is useful to know the morphemes even if we cannot interpret them.

Data sparseness, e.g., in machine translation:

- en: city
Morphemic Segmentation

- Sometimes it is useful to know the morphemes even if we cannot interpret them.

- Data sparseness, e.g., in machine translation:
 - en: city

 - cs alignments in parallel corpus: město (nom/acc/voc sing, 42×), města (gen sing, nom/acc/voc plur, 40×), městě (loc sing, 32×), měst (gen plur, 9×), městské (adj, 7×), městem (ins sing, 7×), městských (adj, 4×), městská (adj, 4×), městský (adj, 2×), městu (dat sing, 2×), městech (loc plur, 2×) … total 11 forms seen.
Sometimes it is useful to know the morphemes even if we cannot interpret them.

Data sparseness, e.g., in machine translation:

- English: *city*

- Czech alignments in parallel corpus: *město* (nom/acc/voc sing, 42×), *města* (gen sing, nom/acc/voc plur, 40×), *městě* (loc sing, 32×), *měst* (gen plur, 9×), *městské* (adj, 7×), *městem* (ins sing, 7×), *městských* (adj, 4×), *městská* (adj, 4×), *městský* (adj, 2×), *městu* (dat sing, 2×), *městech* (loc plur, 2×) ... total 11 forms seen

- Missing Czech: *městům* (dat plur), *městy* (ins plur), *městského*, *městskému*, *městkém*, *městským*, *městští*, *městskými*, *městskou* (adj remaining forms) ... total 9 forms missing
Morphemic Segmentation

- Sometimes it is useful to know the morphemes even if we cannot interpret them
- Data sparseness, e.g., in machine translation

- **Stemming** = stripping all morphemes but the stem
 - IN: *The British players were unbeatable.*
 - OUT: *The Brit play were beat.*

- **Lemmatization** = replacing all words with their lemmas (as with tagging, disambiguation may be assumed)
 - IN: *The British players were unbeatable.*
 - OUT: *the British player be (un)beatable.*
Inflection vs. Derivation

- **Derivational morphology:**
 - New lemma!
 - Often (but not always) new part of speech

- **Inflectional morphology:**
 - Set of forms of one lemma (lexeme)
 - The set is called paradigm

- The borderline is sometimes quite fuzzy
Outline: Syntax

- Constituency vs. dependency
- Context-free grammars
- Transition network grammars
- Shallow parsing (chunking)
- Chart parsers
- Dependency parsers
 - Transition-based
 - Graph-based
- Clause boundaries
This is a dependency tree. The root node is "tree" with the label "NOUN.root".
This is a dependency tree.
The thrift holding company said

0

NP-SBJ-1

PRP

it

VP

expects

NP-SBJ
Applications of Morphology

- First step before broader NLP applications:
 - (Input for syntactic parsing)
 - (Machine translation)
 - Rule-based MT: full-fledged analysis and generation
 - Statistical MT: fighting data sparseness
 - Neural MT: nothing (character embeddings instead)
 - Finding word boundaries (Chinese, Japanese)
 - Dictionaries
Applications of Morphology

- Text-to-speech systems (speech synthesis)
 - Morphology affects pronunciation
 - English \textit{th} is normally pronounced \textit{θ} or \textit{ð}
 - However, not in \textit{boathouse} (\textit{boat} + \textit{house})
 - Czech \textit{proudit} =
 - ... \textit{proud} + \textit{it} ("stream" + INF = "flow")
 - ... \textit{pro} + \textit{udí} + \textit{it} ("through" + "smoke" + INF = "smoke thoroughly")
 - (Speech recognition)
 - Morphology allows for smaller dictionaries
Applications of Morphology

- Word processing
- Typing Japanese text
 - Two kana syllabic scripts and kanji (Chinese characters)
 - Typically, people type in kana and system converts to kanji whenever necessary
 - Disambiguation needed!
 - Bound morphemes remain in kana (morphological rules)
Applications of Morphology

- **Word processing: find & replace terms**
 - 🇨🇿 Czech: *kniha* “book” → *dílo* “work”
 - *knihy* → *díla*
 - *knize* → *dílu*
 - *knihu* → *dílo*
 - *kniho* → *dílo*
 - *knihou* → *dílem*
 - *knih* → *děl*
 - *kniham* → *dílům*
 - *kniháč* → *dílech*
 - *knihami* → *díly*

- **Document retrieval**
 - Keywords in query are typically base forms
 - The forms in documents are inflected
Morphology-Based Typology

- **Isolating languages**
 - Chinese: ごう bú あî chī qīngcài
 - “dog not like eat vegetable”

- **Inflectional languages**
 - Romance and Slavic languages: 🇪🇸 Spanish: pueœ+es = poder + present indicative, 2nd person, singular

- **Agglutinative languages**
 - 🇹🇷 Turkish: çöplüklerimizdeki̇lerdenmi̇ydi = çöp + lük + ler + imiz + de + ki + ler + den + mi + y + di = “was it from those that were in our garbage cans?”

- **Polysynthetic languages**
 - Eskimo-Aleut languages
Polysynthetic Languages

- Found in Siberia and the Americas
- Intricately compose words of many lexical morphemes that are not easily told apart
 - Typically include both subject- and object-verb agreement
- That is why linguists decided not to separate them orthographically
- Nevertheless, words usually are separated. They are just long
- One long word may cover a whole sentence in other languages
- Chukchi example (Skorik 1961: 102):
 - \(T\text{ə}mey\text{n}\text{ə}levt\text{p}\text{ə}t\text{a}r\text{k}\text{ə}n. \)
 - \(T\text{ə}-mey\text{n}\text{ə}-levt-p\text{a}yt\text{ə}-rk\text{ə}n. \)
 - 1.SG.SUBJ-great-head-hurt-PRES.1
 - “I have a fierce headache.”
Morphological Devices (Overview)

- Affixes (prefixes and suffixes): concatenative morphology
- Compounding
- Infixation
- Circumfixation
- Root and pattern (templatic) morphology
- Reduplication
- Subsegmental morphology
- Zero morphology
- Subtractive morphology
Affixation

- Most common way of inflection and derivation
- Three morpheme types: prefix + radix (stem) + suffix
 - en: *dog + s = dogs*
 - plural suffix -s
 - de: *mach + st = machst*
 - suffix -st denotes present indicative 2nd person singular
 - en: *un + beat + able*
 - prefix *un-* negates the meaning
 - suffix *-able* converts verb to adjective, expressing applicability of the action of the verb to something
Infixation

- Philippine languages, e.g., Bontoc:
 - *fikas* “strong” → *f+um+ikas* “be strong”
 - *kilad* “red” → *k+um+ilad* “be red”

- Could be analyzed as prefix to (stem minus initial consonant)
Circumfixation

- Prefix + suffix act together as one morpheme
 - 🇩🇪 German: *legen* “lay down” → *ge+leg+t* “laid down”
 - 🇮🇩 Indonesian: *besar* “big” → *ke+besar+an* “greatness”

- Similar but not the same as 🇨🇿 Czech superlatives
 - *nej+mlad+š+í* “youngest”
 - superlative + stem + comparative + singular nominative
Semitic languages (Arabic, Hebrew, Amharic...)

Arabic:

- root (usually 3 consonants): *k*t*b* “write”
- vowel pattern: *a*a* = active, *u*i* = passive
- template: *CVCVC* = first derivational class of verbs (binyan)
- result: *katab* “write”, *kutib* “be written”
Reduplication

- Copy whole stem or part of it
- Indonesian plural:
 - orang “man” → orang-orang “men”
- Javanese habitual-repetitive:
 - adus → odas+adus “take a bath”
 - bali → bola+bali “return”
- Yidiny (Australian language)
 - gindalba “lizard” → gindal+gindalba “lizards”

- Reduplication cannot be modeled by finite-state automata!
Irish:

- \textit{cat} /kat/ = “cat” (singular)
- \textit{cait} /kat\i/ = “cats” (plural)

The plural morpheme consists just of one phonological feature (“high”), resulting in palatalization.
Zero Morphology

- Zero (empty) morpheme, marked sometimes as 0, Ø, λ or ε
- **Czech feminine plural case endings for žena “woman”**:
 - nom: žen+y = ženy
 - gen: žen+λ = žen
 - dat: žen+ám = ženám
 - acc: žen+y = ženy
 - voc: žen+y = ženy
 - loc: žen+ách = ženách
 - ins: žen+ami = ženami
Subtractive Morphology

- **Koasati (Muskogean language):**
 - singular verb: *pitaf* + *fi* + *n*
 - plural verb: *pit* + *li* + *n*
 - singular verb: *lasap* + *li* + *n*
 - plural verb: *las* + *li* + *n*

- Such examples are rare
- Moreover, one might argue that plural is the base form here
English: maximally two stems written together

Germanic languages in general favor compounds

German: *Hotentotenpotentatentantenatentäter*

- *Hotentot + en + Potentat + en + Tante + n + Atentäter*
- “Hottentot potentate aunt assassin”
- “assassin of aunt of potentate of Hottentots”
Further Reading