Computational Morphology and Syntax of Natural Languages

Daniel Zeman

http://ufal.mff.cuni.cz/course/npfl094
zeman@ufal.mff.cuni.cz
NPFL094

• Presentations and talks will be in English
 – Unless all students understand Czech
• Questions welcome in both Czech and English
• And I have many examples from Czech 😊
Caution

• No class on

 October 20

 October 27

 November 17 (national holiday)
Getting Credits

• Old way: one larger project
 – ask me if interested

• New way: several smaller tasks
 – homework style
 – less flexible deadlines
 – but hopefully less scary
Summer Semester: NPFL 105

- Morphological and Syntactic Analysis II
- Practical exercise in collecting language resources for one or two under-resourced languages
- Intended as team project
- => will be open only if there are 2+ participants
Outline: Morphology

- Morphemic segmentation
 - un + beat + able
- Phonology ("morphophonology") and orthography
 - baby + s = babies
- Inflectional vs. derivational morphology
- Morphological analysis: word form → lemma + morphosyntactic features (tag)
- Tagging (context-aware disambiguation)
- Unsupervised affix detection in corpus
- Mining of word forms from corpus
Morphological Analysis

• **Input:**
 – word form (token)

• **Output:**
 – set (possibly empty) of analyses
 – an analysis:
 • lemma (base form of the lexeme)
 • tag (morphological, POS)
 – part of speech
 – features and their values
MA Example

• Language: Czech
• Input: malými
• Output (only one selected analysis here):
 – lemma = malý ("small")
 – tag = AAFP71A
 • part of speech = AA (adjective / přídavné jméno)
 • gender = F (feminine / ženský)
 • number = P (plural / množné)
 • case = 7 (instrumental / 7. pád)
 • degree of comparison = 1 (positive / 1. stupeň) …
MA Example

• Language: English
• Input: *flies*
• Output:
 – lemma 1 = *fly*-1 (to move in the air)
 – tag 1 = VBZ (verb, present tense 3rd person singular)
 – lemma 2 = *fly*-2 (an insect)
 – tag 2 = NNS (noun, plural)
• Output is not disambiguated with respect to context
MA versus Tagging

• By *tagging* we usually mean context-based disambiguation

• Most taggers employ statistical methods

• Taggers may or may not work on top of MA
 – MA may provide readings not known from training
 – If a tagged corpus is available but MA is not, a tagger can still be trained on the corpus
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning
- Morphemic segmentation = finding morpheme boundaries within words
- Typically part of MA:
 - input: *closed*
 - identify the morphemes: *close + d*
 - interpret them: *verb (close) + past tense*
 - output: *close + VBD*
Morphemic Segmentation

- Sometimes it is useful to know the morphemes even if we cannot interpret them
 - Data sparseness, e.g. in machine translation:
 - en: *city*
 - cs alignments in parallel corpus: *město* (nom/acc/voc sg, 42×), *města* (gen sg, nom/acc/voc pl, 40×), *městě* (loc sg, 32×), *měst* (gen pl, 9×), *městské* (adj, 7×), *městem* (ins sg, 7×), *městských* (adj, 4×), *městská* (adj, 4×), *městský* (adj, 2×), *městu* (dat sg, 2×), *městech* (loc pl, 2×)
 - missing cs: *městům* (dat pl), *městy* (ins pl), *městského*, *městskému*, *městském*, *městským*, *městští*, *městskými*, *městskou* (adj remaining forms)
Morphemic Segmentation

• Sometimes it is useful to know the morphemes even if we cannot interpret them
 – Data sparseness, e.g. in machine translation

• **Stemming** = stripping all morphemes but the *stem*
 – IN: *The British players were unbeatable.*
 – OUT: *the Brit play were beat.*

• **Lemmatization** = replacing all words with their lemmas (as with tagging, disambiguation may be assumed)
 – OUT: *the British player be (un)beatable.*
Outline: Syntax

- Constituency vs. dependency
- Context-free grammars
- Transition network grammars
- Shallow parsing (chunking)
- Chart parsers
- Dependency parsers (Malt, MST)
- Clause boundaries
A record date has n't been set.
The governor could n't make it, so the lieutenant governor welcomed the special guests.
Applications of Morphology

• First step before broader NLP applications:
 – Input for (syntactic) parsing
 – Machine translation
 • Rule-based MT: full-fledged analysis and generation
 • Statistical MT: fighting data sparseness
 – Finding word boundaries (Chinese, Japanese)
 – Dictionaries
Applications of Morphology

• Text-to-speech systems (speech synthesis)
 – Morphology affects pronunciation
 • English *th* is normally pronounced θ or δ
 • However, not in *boathouse* (*boat* + *house*)
 • Czech *proudít* =
 – *proud + it* (“stream” + verb = “flow”)
 – *pro + ud’ + it* (“through” + “smoke” + verb = “smoke thoroughly”)

• Speech recognition
 – Morphology allows for smaller dictionaries
Applications of Morphology

• Word processing
 – Spell checking dictionaries
 – Inputting Japanese text
 • Two *kana* syllabic scripts and *kanji* (Chinese characters)
 • Typically, people type in *kana* and system converts to *kanji*
 whenever necessary
 • Disambiguation needed!
 • Bound morphemes remain in *kana* (morpho rules)
Applications of Morphology

• Word processing: find & replace terms
 – Czech: *kniha (book) ⇒ dílo (work)*
 • knihy ⇒ díla, kníze ⇒ dílu, knihu ⇒ dílo, kniho ⇒ dílo, knihou ⇒ dílem, knih ⇒ děl, knihám ⇒ dílům, knihách ⇒ dílech, knihami ⇒ díly

• Document retrieval
 – Keywords in query are typically base forms
 – The forms in documents are inflected
Morphology-Based Typology

• Isolating languages
 – Chinese: ɡǒu bú ài chī qīngcài
 = dog not like eat vegetable

• Inflectional languages
 – Romance and Slavic languages: Spanish pued+es = poder + present indicative, 2nd person, singular

• Agglutinative languages
 – Turkish: çöplüklerimizdeki lerden miydi = çöp + lük + ler + imiz + de + ki + ler + den + mi + y + di = “was it from those that were in our garbage cans?”

• Polysynthetic languages
 – Eskimo languages
Polysynthetic Languages

- Found in Siberia and the Americas
- Intricately compose words of many lexical morphemes that are not easily told apart
 - Typically include both subject- and object-verb agreement.
- That’s why linguists decided not to separate them orthographically
- Nevertheless, words usually are separated. They are just long
- One long word may cover a whole sentence in other languages
- Chukchi example (Skorik 1962: 102):
 - 1.SG.SUBJ-great-head-hurt-PRES.1
 - “I have a fierce headache.”
Morphological Devices (Overview)

- Affixes (prefixes and suffixes): concatenative morphology
- Compounding
- Infixation
- Circumfixation
- Root and pattern (templatic) morphology
- Reduplication
- Subsegmental morphology
- Zero morphology
- Subtractive morphology
Affixation

- Most common way of inflection and derivation
- Three morpheme types:
 prefix + radix (stem) + suffix
 - en: *dog + s = dogs*
 - plural suffix –*s*
 - de: *mach + st = machst*
 - suffix –*st* marks present indicative 2nd person singular
 - en: *un + beat + able*
 - prefix *un-* negates the meaning
 - suffix –*able* converts verb to adjective, expressing applicability of the action of the verb to something
Infixation

- Languages of the Philippines, e.g. Bontoc:
 - *fikas* “strong” ⇒ *f-*um+ikas “be strong”
 - *kilad* “red” ⇒ *k-*um+ilad “be red”

- Could be analyzed as prefix to (stem minus the initial consonant)
Circumfixation

• Prefix + suffix act together as one morpheme
 – German: legen “lay down” ⇒ ge+leg+t “laid down”
 – Indonesian: besar “big” ⇒ kə+besar+an “bigness”

• Similar, but not the same as Czech superlatives
 – nej + mlad + š + í “youngest”
 – superlative + stem + comparative + singular nominative
Templatic Morphology

• Semitic languages (Arabic, Hebrew, Amharic)
• Arabic:
 – root (usually 3 consonants): *ktb* “write”
 – vowel pattern: *aa* = active, *ui* = passive
 – template: CVCVC = first verb derivational class (*binyan*)
 – result: *katab* “write”, *kutib* “be written”
Reduplication

- Copy whole stem or part of it
 - Indonesian plural:
 - *orang* “man” ⇒ *orang*+*orang* “men”
 - Javanese habitual-repetitive:
 - *adus* ⇒ *odas*+*adus* “take a bath”
 - *bali* ⇒ *bola*+*bali* “return”
 - Yidin (an Australian language):
 - *gindalba* ⇒ *gindal*+*gindalba* “lizard”

- **Reduplication cannot be modeled by finite-state automata!**
Subsegmental Morphology

• Irish:
 – *cat* (/kat/) = “cat” (singular)
 – *cait* (/katʲ/) = “cats” (plural)

 – The plural morpheme consists just of one phonological feature (“high”), resulting in palatalization.
Zero Morphology

- Zero (empty) morpheme, marked sometimes as 0, ∅, λ or ε
 - Czech feminine plural case endings for žena “woman”:
 - nom: žen+y = ženy
 - gen: žen+λ = žen
 - dat: žen+ám = ženám
 - acc: žen+y = ženy
 - voc: žen+y = ženy
 - loc: žen+ách = ženách
 - ins: žen+ami = ženami
Subtractive Morphology

- Koasati (a Muskogean language, southeast US):
 - singular verb: *pitaf*+fi+n
 - plural: *pit*+li+n
 - singular verb: *lasap*+li+n
 - plural: *las*+li+n

- Such examples are rare
- Moreover, one might argue that plural is the base form here
Compounding

- English: maximally two stems written together
- Germanic languages in general favor compounds
- de: *Hotentotenpotentatentantenatentäter*
 - *Hotentot + en + Potentat + en + Tante + n + Atentäter*
 - “Hottentot potentate aunt assassin”
 - “assassin of aunt of potentate of Hottentots”
Recommended Further Reading

• These books may be difficult to obtain from the MFF library. Reading them is not required.