Computational Morphology and Syntax of Natural Languages

Daniel Zeman

http://ufal.mff.cuni.cz/course/npfl094
zman@ufal.mff.cuni.cz
NPFL094

• Presentations and talks will be in English
 – Unless all students understand Czech
• Questions welcome in both Czech and English
• And I have many examples from Czech 😊
Caution

• No class on

 October 28

 November 4

 November 25
Getting Credits

• 2-3 smaller tasks
 – homework style
 – less flexible deadlines

• Alternatively: one larger project
 – ask me if interested
 – can be combined with your mgr. (or bc.) thesis
An “Unbalanced” Course

- 1/3 linguistics, 2/3 tools
- 1/3 lab work, 2/3 lectures
- ¾ morphology, ¼ syntax
- Mostly rule-based
 - almost no machine learning
 - no neural networks
Outline: Morphology

• Morphemic segmentation
 – un + beat + able
• Phonology (“morphonology”) and orthography
 – baby + s = babies
• Inflectional vs. derivational morphology
• Morphological analysis: word form → lemma + morphosyntactic features (tag)
• Tagging (context-aware disambiguation)
• Unsupervised affix detection in corpus
• Mining of word forms from corpus
Morphological Analysis

• Input:
 – word form (token)

• Output:
 – set (possibly empty) of analyses
 – an analysis:
 • lemma (base form of the lexeme)
 • tag (morphological, POS)
 – part of speech
 – features and their values
MA Example

- **Language:** Czech
- **Input:** malými
- **Output (only one selected analysis here):**
 - lemma = malý ("small")
 - tag = AAFP71A
 - part of speech = AA (adjective / přídavné jméno)
 - gender = F (feminine / ženský)
 - number = P (plural / množné)
 - case = 7 (instrumental / 7. pád)
 - degree of comparison = 1 (positive / 1. stupeň) …
MA Example

- Language: English
- Input: *flies*

Output:
- lemma 1 = *fly-1* (to move in the air)
- tag 1 = VBZ (verb, present tense 3rd person singular)
- lemma 2 = *fly-2* (an insect)
- tag 2 = NNS (noun, plural)

Output is not disambiguated with respect to context
MA versus Tagging

- By *tagging* we usually mean context-based disambiguation
- Most taggers employ statistical methods
- Taggers may or may not work on top of MA
 - MA may provide readings not known from training
 - If a tagged corpus is available but MA is not, a tagger can still be trained on the corpus
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning
- Morphemic segmentation = finding morpheme boundaries within words
- Typically part of MA:
 - input: *closed*
 - identify the morphemes: *close + d*
 - interpret them: *verb (close) + past tense*
 - output: *close + VBD*
Morphemic Segmentation

- Sometimes it is useful to know the morphemes even if we cannot interpret them
 - Data sparseness, e.g. in machine translation:
 - en: city
 - cs alignments in parallel corpus: město (nom/acc/voc sg, 42×), města (gen sg, nom/acc/voc pl, 40×), městě (loc sg, 32×), měst (gen pl, 9×), městské (adj, 7×), městem (ins sg, 7×), městských (adj, 4×), městská (adj, 4×), městský (adj, 2×), městu (dat sg, 2×), městech (loc pl, 2×)
 - missing cs: městům (dat pl), městy (ins pl), městského, městskému, městském, městským, městští, městskými, městskou (adj remaining forms)
Morphemic Segmentation

- Sometimes it is useful to know the morphemes even if we cannot interpret them
 - Data sparseness, e.g. in machine translation

- **Stemming** = stripping all morphemes but the *stem*
 - IN: *The British players were unbeatable.*
 - OUT: *the Brit play were beat.*

- **Lemmatization** = replacing all words with their lemmas (as with tagging, disambiguation may be assumed)
 - OUT: *the British player be (un)beatable.***
Inflection vs. Derivation

- **Derivational morphology:**
 - New lemma!
 - Often (but not always) new part of speech.

- **Inflectional morphology:**
 - Set of forms of one lemma (lexeme)
 - The set is called *paradigm*

- The borderline is sometimes quite fuzzy
Outline: Syntax

• Constituency vs. dependency
• Context-free grammars
• Transition network grammars
• Shallow parsing (chunking)
• Chart parsers
• Dependency parsers (transition-, graph-based)
• Clause boundaries
A record date has n't been set.
The governor could n't make it, so the lieutenant governor welcomed the special guests.
Applications of Morphology

• First step before broader NLP applications:
 – (Input for (syntactic) parsing)
 – (Machine translation)
 • Rule-based MT: full-fledged analysis and generation
 • Statistical MT: fighting data sparseness
 – Finding word boundaries (Chinese, Japanese)
 – Dictionaries
Applications of Morphology

• Text-to-speech systems (speech synthesis)
 – Morphology affects pronunciation
 • English \(th \) is normally pronounced \(\theta \) or \(\delta \)
 • However, not in boathouse (boat + house)
 • Czech proudit =
 – proud + it (“stream” + INF = “flow”)
 – pro + ud’ + it (“through” + “smoke” + INF = “smoke thoroughly”)

• (Speech recognition)
 – Morphology allows for smaller dictionaries
Applications of Morphology

• Word processing
 – Spell checking dictionaries
 – Inputting Japanese text
 • Two kana syllabic scripts and kanji (Chinese characters)
 • Typically, people type in kana and system converts to kanji whenever necessary
 • Disambiguation needed!
 • Bound morphemes remain in kana (morpho rules)
Applications of Morphology

• Word processing: find & replace terms
 – Czech: kniha (*book*) ⇒ dílo (*work*)
 • knihy ⇒ díla, knize ⇒ dílu, knihu ⇒ dílo, kniho ⇒ dílo, knihou ⇒ dílem, knih ⇒ děl, knihám ⇒ dílům, knihách ⇒ dílech, knihami ⇒ díly

• Document retrieval
 – Keywords in query are typically base forms
 – The forms in documents are inflected
Morphology-Based Typology

• Isolating languages
 – Chinese: ｇǒｕ ｂú ài ｃｈī ｑīngcài
 = dog not like eat vegetable

• Inflectional languages
 – Romance and Slavic languages: Spanish ｐｕｅｄ+ｅｓ = ｐｏｄｅｒ +
 present indicative, 2nd person, singular

• Agglutinative languages
 – Turkish: ｃöplüklerimizdekilerdenmiydi = ｃöp + ｌüк + ｌｅｒ + ｉｍｉｚ +
 de + ki + ler + den + mi + y + di = “was it from those that were in
 our garbage cans?”

• Polysynthetic languages
 – Eskimo languages
Polysynthetic Languages

- Found in Siberia and the Americas
- Intricately compose words of many lexical morphemes that are not easily told apart
 - Typically include both subject- and object-verb agreement.
- That’s why linguists decided not to separate them orthographically
- Nevertheless, words usually are separated. They are just long
- One long word may cover a whole sentence in other languages
- Chukchi example (Skorik 1962: 102):
 - T-ə-meyy-ə-levt-pəyt-ə-rkən.
 - 1.SG.SUBJ-great-head-hurt-PRES.1
 - “I have a fierce headache.”
Morphological Devices (Overview)

- Affixes (prefixes and suffixes): concatenative morphology
- Compounding
- Infixation
- Circumfixation
- Root and pattern (templatic) morphology
- Reduplication
- Subsegmental morphology
- Zero morphology
- Subtractive morphology
Affixation

- Most common way of inflection and derivation
- Three morpheme types: prefix + radix (stem) + suffix
 - en: *dog + s = dogs*
 - plural suffix –*s*
 - de: *mach + st = machst*
 - suffix –*st* marks present indicative 2nd person singular
 - en: *un + beat + able*
 - prefix *un*- negates the meaning
 - suffix –*able* converts verb to adjective, expressing applicability of the action of the verb to something
Infixation

- Languages of the Philippines, e.g. Bontoc:
 - *fikas* “strong” ⇒ \textit{f-um}+ikas “be strong”
 - *kilad* “red” ⇒ \textit{k-um}+ilad “be red”

- Could be analyzed as prefix to (stem minus the initial consonant)
Circumfixation

• Prefix + suffix act together as one morpheme
 – German: *legen* “lay down” ⇒ *ge+leg+t* “laid down”
 – Indonesian: *besar* “big” ⇒ *kə+besar+an* “bigness”

• Similar, but not the same as Czech superlatives
 – *nej + mlad + š + í* “youngest”
 – superlative + stem + comparative + singular nominative
Templatic Morphology

- Semitic languages (Arabic, Hebrew, Amharic)
- Arabic:
 - root (usually 3 consonants): *ktb* “write”
 - vowel pattern: *aa* = active, *ui* = passive
 - template: CVCVC = first verb derivational class (*binyan*)
 - result: *katab* “write”, *kutib* “be written”
Reduplication

• Copy whole stem or part of it
 – Indonesian plural:
 • orang “man” ⇒ orang+orang “men”
 – Javanese habitual-repetitive:
 • adus ⇒ odas+adus “take a bath”
 • bali ⇒ bola+bali “return”
 – Yidin (an Australian language):
 • gindalba ⇒ gindal+gindalba “lizard”

• Reduplication cannot be modeled by finite-state automata!
Subsegmental Morphology

• Irish:
 – *cat* (/kat/) = “cat” (singular)
 – *cait* (/katʃ/) = “cats” (plural)

 – The plural morpheme consists just of one phonological feature (“high”), resulting in palatalization.
Zero Morphology

- Zero (empty) morpheme, marked sometimes as 0, \emptyset, λ or ε

 - Czech feminine plural case endings for žena “woman”:
 - nom: žen+y = ženy
 - gen: žen+λ = žen
 - dat: žen+ám = ženám
 - acc: žen+y = ženy
 - voc: žen+y = ženy
 - loc: žen+ách = ženách
 - ins: žen+ami = ženami
Subtractive Morphology

- Koasati (a Muskogean language, southeast US):
 - singular verb: *pita*+fi+n
 - plural: *pit*+li+n
 - singular verb: *lasap*+li+n
 - plural: *las*+li+n

- Such examples are rare
- Moreover, one might argue that plural is the base form here
Compounding

• English: maximally two stems written together
• Germanic languages in general favor compounds
• de: Hotentotenpotentatentantenatentäter
 – Hotentot + en + Potentat + en + Tante + n + Atentäter
 – “Hottentot potentate aunt assassin”
 – “assassin of aunt of potentate of Hottentots”
Recommended Further Reading

- These books may be difficult to obtain from the MFF library. Reading them is not required.
 - James Allen: *Natural Language Understanding*. Benjamin/Cummings, USA, 1995